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Abstract: We describe a novel variant of the driven molecular dynamics (DMD) method derived
for probing Raman active vibrations. The method is an extension of the conventional /~DMD
formulation for simulating IR activity by means of coupling an oscillating electric field to the
molecule’s dipole moment, £, and inducing absorption of energy via tuning the field to a resonant
frequency. In the present work, we modify the above prescription to invoke Raman activity by
coupling two electric fields, i.e., a “Pump” photon of frequency wp and a Stokes photon of
frequency ws to the molecule’s polarizability tensor, a, with the difference in the frequencies of
the two photons ® = wp - s corresponding to the Stokes Raman shift. If a particular o is close to
a Raman active vibrational frequency, energy absorption by the molecule ensues. Varying » over
the desired frequency range allows identifying and assigning all Raman active vibrational modes,
including anharmonic corrections, in the range by means of trajectory analysis. We show that only
one element of the full polarizability tensor, and its nuclear derivative, is needed for an a-DMD
trajectory, making this method well suited for ab initio dynamics implementation. Numerical
results using first-principles calculations are presented and discussed for the vibrational
fundamentals, combination bands, overtones of H,O, CHa, and the Cy fullerene.
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1. Introduction

Driven molecular dynamics (DMD) has recently become a powerful tool for calculating
and assigning infrared (IR) spectra. Its robustness is a direct consequence of DMD’s formulation,
where an external time-dependent driving potential i - £(t) is added to the Hamiltonian (i is the
dipole and £(t) is the electric field), and resonant energy absorption is duly invoked by choosing
the field’s frequency close to a system’s vibrational frequency. This was first aptly demonstrated
in single and double-laser IR multiphoton absorption (MPA) simulations of diatomics. [1-5] More
recently, it has been demonstrated on polyatomic molecules, as well as peptides and small proteins,
that DMD can routinely identify fundamentals, combination bands, overtones, and their
anharmonic shifts by the effort of propagating classical trajectories. [6-14] Particularly attractive
features of the dipole-driven MD, or #~-DMD, include the capability for assignment of vibrational
spectra [15] and a straightforward way to design pump-probe ‘virtual’ 2D experiments. [9]
Additionally, Fermi-like resonances have been observed, [10,14] and IR peaks arising due to
strong non-linearity of the dipole moment in shared-proton systems have been described. [12]
Furthermore, the ability of DMD to sample the low frequency parts of vibrational spectra, i.e. in
the far IR and terahertz regimes, can be especially useful in studies of biological macromolecules
and liquid phase simulations, as was demonstrated by bond-driving a water solvated dialanine.
[16] Yet despite these attractive characteristics of DMD, so far only dipole active vibrational
spectra, i.e. linear and 2D-IR, have been studied rigorously. In the present paper, we extend the
formalism of DMD to electric field-polarizability interaction, calling it a-DMD, and demonstrate
its applicability to calculating vibrational Raman activities on real systems.

Recent work on N>H*...OC shows that it is possible to carry out £-DMD simulations

directly using ab initio potential energy and dipole moment surfaces, PES and DMS respectively,



and their derivatives, without making approximations beyond the level of electronic structure
theory for these quantities. [14] This may potentially be particularly important for a-DMD
simulations, since accurate ab initio level analytical representation of a polarizability tensor
surface for a generic polyatomic molecule or cluster is expected to be more challenging than, for
instance, that of potential energy or dipole moment surfaces, as is done using the invariant
polynomial approach. [17] In fact, in the literature, the presently used analytical treatment of
molecular polarizability is based mainly on empirical models. [18-21] Substantially more
advanced and practically successful treatments of the polarizability tensor at a high ab initio level,
using truncated many-body expansions of monomer interactions, have been employed in the
special case of liquid water. [22,23] Plane wave DFT direct molecular dynamics simulations have
been carried out for calculating polarizability-polarizability correlation functions and Raman
spectra in liquid and solid phases using analytical methods for the polarizability tensor, [24-27]
however, a post SCF/non-DFT calculation of the full polarizability tensor at a molecular
configuration along the trajectory requires at least six additional dipole calculations, for example
by electric field finite-differences method. For some non-variational electronic structure methods,
e.g., MP2, CCSD, etc., a dipole calculation also requires evaluation of the energy gradient, making
direct ab initio trajectory calculations using these highly accurate methods computationally quite
inefficient. However, as we will show below, to propagate an a-DMD trajectory “on the fly” using
a generic electronic structure method, only two additional energy gradient calculations per time
step are required, allowing this method to scale identically to ¢~DMD.

As is the case with ¢~-DMD, all Raman active transitions beyond the usual fundamentals
can be detected with a-DMD by scanning or gauging, over the driving frequency. Namely,

combination bands and overtones can be captured within the usual classical limit, while purely



quantum effects, such as tunneling, energy and angular momentum quantization obviously cannot.
Additionally, diagonal anharmonicities and anharmonicities resulting from mode interactions can
be readily described. We note, however, that unlike the conventional MD approaches to calculating
spontaneous Raman scattering spectra using polarizability-polarizability correlation functions,
[28] a-DMD uses both the incident (Pump) and scattered (Stokes) lights as input to induce
absorption of energy by driving the molecule at the difference frequency. Thus, in the present
calculations, we do not measure ‘exact’ depolarization ratios as is done in MD simulations or a
normal mode analysis. [29] However, we do examine the molecule’s dynamical response to the
driving fields in the two polarization regimes: parallel and perpendicular. A driven trajectory yields
characteristic atomic displacements at resonant frequencies, similar to normal modes, [7,9,15]
which contain full information about the vibrational motion. In short, in ¢-DMD, one not only
generates a spectrum as one does from the correlation function methods, [24-27] but also assigns
it using simple trajectory analysis.

The rest of the paper presents a detailed theoretical derivation of the method followed by
several numerical examples to demonstrate the “proof of principle” of a-DMD. We continue the
presentation by demonstrating DMD-induced Raman activity on a small, quasi-spherical fullerene,
C2o. Perspective facility of a-DMD in designing mixed pump-probe virtual experiments, including
Raman-Raman, Raman-IR and IR-Raman types, is briefly explored in the Conclusions. Additional
theoretical support of the underlying theory and methodology is provided in the Supplementary

Information (SI).



2. Theory
In molecular dynamics driven by an electric field, the system Hamiltonian Ho, which
represents the ‘internal’ system energy, is appended with a time-dependent ‘external’ energy term,
H(p,q,t) = Ho(p,q) + W(q, 1) )
where p and q are the conjugate momenta and coordinates, i.e., 3N Cartesians for N atoms. In a
weak electric field regime, [30] the external energy may be written out in the order of electric field
£ powers
W(q,t) = Wi(q,t) + W(q,t) + - (2)
where the first-order contribution is the dipole-field energy,
Wi (q,t) = i(q) - £(t) (3)

the second-order contribution is the induced dipole-field energy, i.e., the polarizability,

1
Wa(q,t) = 7€) - alq) - €(1) (4)

etc. [31]

It has been shown extensively in several recent publications that driving the molecule with
the dipole term (W) produces energy absorption at resonant frequencies and allows one to
construct a complete IR spectrum of the molecule. [10-14] Moreover, the recorded vibrational
motions at the resonant driving frequencies provide characteristic signatures that can be used to
make unambiguous assignments. Namely, taking the electric field as a sinusoidal wave and
substituting it into Eq. 3 yields the well-known expression for the dipole-field driven energy term,

Wi(q,t) = |€lu:(q) cos(wt + ¢) )
where the scalar p, is the full dipole’s projection on the electric field unit vector. (Note that the
choice of phase is arbitrary and is usually taken as ¢ =0 or £r/2.) [2-5,13,14] Below, we consider

a similar approach to driving a molecule while using the induced dipole term (#2) and with two



independent field vectors, as input, oscillating at different frequencies. One field acts as a pump
photon, and the other acts as a probe photon, in a manner formally similar to a stimulated Raman
scattering process. Such an approach based on a pump-probe light driven harmonic oscillator has
been discussed previously in time-resolved studies of molecular vibrations and in studies of

vibrational dynamics of liquids and solids. [32,33]

virtual states
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Scheme 1. A DMD interpretation of a stimulated (Pump-Stokes) Raman scattering experiment for
a fictitious 2-level molecule, in the initial vibrational state v=0 and with wp the Pump light
frequency and ws the Stokes light frequency (blue and read arrows). When the difference in Pump-
Stokes frequencies mp - ms corresponds to the fundamental vibrational transition frequency (green
arrow), v=0 — v=I, stimulated Raman excitation occurs by the process of resonantly driving the
molecule at ©.

In a two-field stimulated Raman scattering experiment, in a classical setting, we assume
the initial state of the molecule is the equilibrium geometry with zero initial velocities, which
corresponds to the quantum ground vibrational state v=0. Therefore, we consider a Stokes shift
scenario, depicted in Scheme 1, with a Pump field of frequency wp and a Stokes field of frequency

ws. Treating the Pump and Stokes photons as plane polarized light, i.e., using plane waves, the

total electric field interacting with the system is given by [33,34]



1 . .
gt) = E{é’pe‘l(“’l’”‘i’l’) + Egel@stte)} 4 ¢ ¢, (6)

where &p = epép and & = £4&5 are the field polarization vectors. Substituting Eq. 6 into Eq. 4, the

induced dipole-field energy becomes,

Ep&sg

5 aps (q) cos(wt + Ap) + 0(2wp, 2ws, wp + wg) + const. (7

WZ (q) t) =

where w = wp — wg is the Stokes shift frequency, and A¢p = ¢p — ¢ is the phase shift between
the Pump and Stokes fields. The leading term in Eq. 7 oscillates at a vibrational frequency of the
molecule, by definition, is the Stokes shift. The second term is a combination of three waves, each
oscillating at a vibrationally non-contributing sum-frequency. They may be omitted since by
design: 2wp = 2wg ® wp + wg » w. The third term is the time-independent field-molecule
interaction energy related to Rayleigh scattering activity. In the perpendicular field alignment
regime, the constant term is expected to play a role in causing rotational excitation, but is presently
not retained in the simulations and is subject of further investigation (see SI for more details).
For convenience, the Pump-Stokes phase shift is set to zero to make the two fields in-phase,
and further, without loss of generality we require €p = &g = &, leading to a computationally

facilitated expression for the stimulated Raman excitation energy,

2

Wa(@, ) ~ 3 cps (@) cos(wt) ®

In Egs. 7 and 8, apgs(q) is an element of the full polarizability tensor a(q), introduced in Eq. 4,
coupling the Pump and Stokes polarizations, which may be set either parallel or perpendicular to
each other. It is obvious from the above that for two given polarization vectors, the Pump & and
the Stokes &g, the scalar quantity apg(q) completely determines the molecule’s interaction with
the field. In other words, the full polarizability tensor is not needed for the direct dynamics. Thus,

for a-DMD simulations, we find it useful to denote the scalar quantity aps(q) as the Polarizability



Tensor Surface (PTS), a 3N-6 dimensional function, in the same manner as potential energy
surface (PES) and dipole moment surface (DMS) are used in the conventional MD.
We proceed with writing out Hamilton’s equations of motion for the propagation of

trajectories. Of interest is the differential equation for the momentum,

2

. OH &5
b=~ 5g =~V (@~ Vars(@) cos(w) ©

where V(q) is the internal potential energy, i.e., the PES. The derivative of the PTS, which we refer
to as the driving force (DF), is responsible for vibrational Raman activity in the molecule. [29] As
was pointed out for the case of x-DMD above, exemplified by Eq. 5, the DF excites both
vibrational and rotational motions due to the space fixed orientation of the electric field. [14] Thus,
in addition to the total energy, a-DMD also leads to non-conservation of the total angular
momentum during a trajectory, normally a constant of motion, which requires a careful choice of
time integration step. It is important to emphasize that the form of Eq. 9 has been used for
elucidating the nature of coherent optical phonons in time-resolved experiments, identifying the
polarizability gradient term as cause for “stimulated Raman excitation”. [35] While others, for
instance, have used a differential equation identical to Eq. 9, but with a damping term, for deriving
the time evolution of an ensemble vibrational coordinate in a stimulated Raman scattering setting.
[32]

The DF is evaluated in the same manner as the derivative of the dipole moment, discussed
previously, [14] namely, by direct numerical differentiation of the electronic energy gradient. For

parallel/antiparallel Pump-Stokes polarization, with ép - 5 = +1,

829 g()lép) + g(—)lép) - 29(0)
aPP - aépaé\p - AZ

(10a)

and for perpendicular polarization, with £ - &' = 0,



aZg - g(/lé\P! Aé\S) + g(_/lé\Pr _Aé\S) - g(_/lé\P' Aé\S) - g(/lé\P' _Aé\S)
025025 42

Vapg = (10b)

where g(1€,1€") = VV (1€, A€") is the electronic energy gradient with one or two applied electric
fields, and A is an electric field differential (in practice ~30 mV/bohr). In the (anti)parallel and
perpendicularly polarized c-DMD, two and four additional energy gradient calculations are
required, respectively, to propagate Eq. 9 by one time step.

A typical ab initio calculation thus requires (i) a molecular structure at equilibrium and (i7)
a choice of a single field unit vector &p (parallel/antiparallel polarization) or two orthogonal unit
vectors €p and & in the laboratory frame. We note that it is often reasonable to evaluate the DF-
PTS at a lower level of theory than the PES and its gradient to avoid computational bottlenecks,
as is commonly done in similar applications. [14,36]

Given the formal similarity of the energy terms in Eqs. 5 and 8, we interpret Raman activity
as molecule’s absorption of the two-field energy, just as we interpret IR activity as energy
absorption in a single field £-DMD simulation. That is, resonant frequencies o are identified by

measuring the internal energy as a function of time, [7]

T

1
Iraman(@) = 7 [ de Ho(p(6 3,965 ) ()

0

which is expected to increase sharply on resonance and oscillate off resonance (see SI). In other
words, in the a-DMD simulations, spectra are recovered by measuring energy absorption at the
frequencies corresponding to the Stokes shifts. A plot of /raman VS. @ is a representation of the

spectrum, with each of the resonances (peaks) described by its corresponding trajectory values

q(t;w).



1677 cm’! 3852 cm’™ 3971 cm’
3000 R I

2000

1000

Energy /em’'

|

e
I
|

(A
: (=)

o & &6
Zo =

$,(B,)
o

.
e
I
I

02F

S

83(A)
S o

)

S
<)
—

\‘\‘\‘\7\ T
4 5

4‘1 0 ‘1 2 3 4 0 ‘1
Time /ps

Figure 1. Direct a-DMD trajectory analysis for the Raman active H,O fundamental frequencies

vi(A1)=1677cm!, v2(A1)=3852 cm’!, and v3(B2)=3971 cm!. Average absorbed energies are in

cm’!, symmetry-adapted coordinates s; and s in A, and s; in degrees. The intensity of the electric

field is 500 mV/bohr. The level of theory is MP2/cc-PVDZ.
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3. Computational details

The simulations presented for H>O and CH4 were carried out at the MP2/cc-pVDZ level of theory,
sufficient for demonstration purposes and for emphasizing general applicability of the ab initio
DMD. The simulations of Cy are, however, much more time consuming, and thus a less
computationally demanding level of theory was chosen, namely B3LYP/6-31G(d). All geometry
optimization, normal mode analysis, and IR intensities reported in this work were completed using
the MOLPRO-2019.2 program [37-39], while Raman intensities were determined using the
Gaussian 16 program [40]. All DMD trajectory calculations were performed using an external
velocity-Verlet time integrator coupled to MOLPRO-2019.2 as the “on the fly” generator of the
energy, gradient, and polarizability derivatives. We used the integration time step of 0.5 fs which
in the past gave very reliable results [13,14]. To ensure accurate evaluation of Eq. 10, we use a

small field differential (0.001 a.u.), which also requires that tight convergence on the electronic
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wavefunction, i.e., Kohn-Sham SCF orbitals, is imposed. It was found that whereas a 10-® Hartree
threshold on the SCF energy is sufficient for obtaining fully converged dipole derivatives (Vu,)
and PTS elements (o) for all the systems considered presently, a 10-!2 Hartree threshold was
necessary to produce converged polarizability derivatives (Va,,) for Cao.

Presently, we run simulations in the parallel Pump-Stokes polarization regime. We analyze
and plot the coordinates, driving forces, absorbed energy, etc. for the various X,Y,Z orientations
of the electric field. To facilitate the assignment of spectral features, we use symmetry-adapted

coordinates for H>O and CHs (Eq. S4-1, S4-2 in SI), and defined the average distance of the C

atoms to the center of mass (R(t)) and its fluctuation AR(t) = \/(R%(t)) — (R(t))? for Ca0. A
partial Raman spectrum of C»o was scanned, and the absorbed internal energy plotted as a function

of frequency (Eq. 11) to identify resonant frequencies.
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Figure 2. Direct a-DMD trajectory analysis of three of the Raman active CH4 fundamental
frequencies vi(T2)=1338 cm!, v3(A1)=3082 cm™!, and v4(T2)=3233 cm™!. The absorption energies
are in cm’', symmetry-adapted coordinates, s1 and s4 in A, and s7 in degrees. The intensity of the
electric field is 500 mV/bohr. The level of theory is MP2/cc-PVDZ.
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4. Results and Discussion
Tables S1-S3 summarize the harmonic vibrational frequencies, IR and Raman activities, and
additional data can also be found in the SI. Direct DMD simulations for H>O and CH4 were carried
out for the fundamental frequencies, an overtone, and a combination band to demonstrate the mode
assignment procedure. Since the dipole driving force is linear (Eq. 3) while the polarizability
driving force is quadratic in field (Eq. 4), the field magnitude in a-DMD simulation should be
stronger compared to #~-DMD to achieve comparable absorption of energy at the same resonant
frequency (see also S.2 of the SI). After some exploration, the field strengths were set to 500 and
100 mV/bohr for a-DMD and p-DMD, respectively. For an illustration, one may refer to Figure
S2 which compares energy absorption regimes of Raman (a-DMD) versus IR (¢ -DMD) for H>O.
For water, all three fundamentals are IR and Raman active, which provides a good test for
relative comparison of the two driving regimes. In a-DMD the two O-H stretching modes
(v2=3852 cm!' and v3=3971 c¢cm!) absorb significant amounts of energy, compared to a much
weaker absorption in the bending mode (vi=1677 cm™), as seen in Figure 1. For comparison, in -
DMD, the asymmetric stretch and the bending mode both absorb, while the symmetric stretch is
barely active (Figure S2). This is fully consistent with the quantum mechanical double harmonic
approximation result. Details of the time evolution of the symmetry-adapted coordinates (s;

symmetric stretch, s; asymmetric stretch, and s3 bending) can be seen in Figure S3 of the SI.
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Figure 3. Direct Raman a-DMD trajectory analysis of the CH4 overtone frequency 2vi=2677
cm’! and combination band v>+v3=4647 cm’l. The absorption energies are in cm™!, symmetry-
adapted coordinates, 51 in A, s> and s7 in degrees. The intensities of the electric field are 1.5 V/bohr
and 2.0 V/bohr, respectively. The level of theory is MP2/cc-PVDZ.

Similar coordinate analysis was carried out for some of the CH4 fundamental modes; their
resonant energy absorption is recorded in Figure 2. One can see evident excitation of the symmetry
coordinate corresponding to its normal mode. We also examined two non-fundamental
frequencies, one corresponding to the umbrella bending overtone 2vi=2677 cm™! and the other to
a combination band consisting of bending and symmetric stretch modes, v> + v3 =4647 cm’!
(Figure 3). While these transitions are forbidden in the double harmonic limit, to excite them in
a-DMD we used a Pump field of stronger intensity so as to induce appreciable non-linear, i.e.,
non-harmonic effects in both the potential and the polarizability functions. The energy profiles for
these highly non-harmonic bands display certain time delays for energy absorption, 4 and 8 ps for
the overtone and the combination band, respectively, before setting into resonances. This behavior

at non-fundamental resonances is related to the non-linear terms in the polarizability. It has been
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discussed in our previous work [13, 14] and is also addressed in Section S.3 of the SI. The large
amplitude oscillations of the symmetry-adapted stretching s; and bending s> coordinates confirm
the assignment of the combination band as v2 +v; (Figure 3), while the 2v; overtone is properly

characterized by a strongly increasing activity in the s7 bending coordinate.
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Figure 4. An illustration of the a-DMD facility as a Raman spectrum generating tool, here applied
to Cy in the parallel regime at the B3LYP/6-31G(d) level of theory. The absorbed energies were
recorded after 1.25 and 2.5 ps, respectively, and plotted as functions of the driven frequency with
aresolution gauge of 25 cm™!. The intensity of the electric field is 500 mV/bohr. The Raman-active
frequencies in the double harmonic approximations are marked by blue sticks.

For the purposes of demonstrating the present first-principles based a-DMD approach to
activating Raman modes in large polyatomics and clusters, we choose the smallest size carbon
cluster that can form a closed fullerene molecule. Namely, Czo has been the subject of a number
of theoretical studies at the level of density functional theory where it was shown that it can form
multiple isomers of various shapes, including ring, bowl or cage [41-47]. The predicted relative
stabilities of these isomers, however, appear to be quite sensitive to both the density functional and
the basis set [45-47]. In the present work, we use the B3LYP functional, as it has produced the

most consistent results for the fullerene, in conjunction with the 6-31G(d) orbital basis, with the

polarization functions added for a proper description of the polarizability tensor. Tables S3 and S4
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in the SI show the harmonic frequencies, IR, Raman intensities, and the XYZ coordinates of the
optimized structure of C20. We scanned the spectrum using the parallel Pump-Stokes alignment in
the range from 400 cm™! to 900 cm™! with a 25 cm™! gauge (a uniform frequency step). The spectrum
is summarized in Figure 4, and the corresponding characteristic motion vectors and absorption
profiles are shown in Figures S4-S5 in the SI. Clearly identifiable are the resonances at 450, 525,
625, and 828 cm™! measured after 1.25 ps of exposure to the Pump field. The most Raman active,
and by symmetry IR inactive, is the “breathing” mode at 828 cm™, also predicted as the most
Raman active in the double-harmonic limit. Coordinate analysis, Figure 5, for this mode shows a
well marked increase with time in the average sphere radius (R(t)) with a nearly constant radius
fluctuation AR (t). Note also the steady increase in the polarizability, along with the energy profile
(Figure S5), which indicates a ‘clean’ resonance with no detuning. The three other resonances are
non-breathing type distortion modes, as is visible from the coordinate profiles in Figure 5, and all
have much weaker Raman activity. Their polarizability and energy profiles indicate an initially
clean absorption up to ~1 ps followed by a slowdown as the trajectory samples the non-harmonic
parts of the potential and slightly detunes from the Pump frequency. All these resonances become
more pronounced, while also acquiring anharmonic shifts, with a longer Pump field exposure time
(2.5 ps). Such a systematic improvement in resolution was discussed previously by some of us in
other applications [7]. This is especially noticeable for the peak near 450 cm™!, a weakly Raman
active mode, which becomes clearly identifiable only at the longer driving time and red-shifts from

its harmonic frequency by ~30 cm™.
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6-31G(d) trajectories for the most Raman active frequencies. The intensity of the electric field is
500 mV/bohr.

5. Concluding remarks

The DMD method described in the present paper is a first-time demonstration of the use of
driven first-principles classical trajectories to stimulate Raman activity in molecules. We use two
oscillating electric field vectors: a Pump with frequency wp and a Stokes probe with frequency ws,
couple them to the molecule’s polarizability and tune the Raman shift frequency ® = wp - ®s to
locate resonant vibrational excitations. A full Raman spectrum, including anharmonicities,
combination bands, and overtones, can be constructed in this way, and what is particularly
important, the resonances can be readily assigned to the corresponding molecular vibrations using
the propagated trajectories. We also show that only one element of the full polarizability tensor,

along with its nuclear derivative, is needed for an a-DMD trajectory, making this method suitable
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for high-level ab initio molecular dynamics implementation, along with the already established
direct ab initio dipole driven DMD approach. The theoretical foundation of the present method
does not rely on any approximations beyond the electronic structure theory, i.e., the separation of
nuclear and electronic motion, degree of electron correlation, basis set, etc. Numerical calculations
performed at the MP2/cc-pVDZ and B3LYP/6-31G(d) levels of theory for H,O, CH4 and Cxo,
respectively, clearly demonstrate that the molecules absorb vibrational energy from the Pump field
at fundamental frequencies, overtones, and combination bands. Application of a-DMD to other
bulky and condensed and solid phase systems, such as transition metal clusters, carbon nanotubes
and nanosheets, liquids, etc., for which the polarizability tensor is not readily available from the
established models but may be calculated reasonably fast “on-the-fly”, can provide valuable
information about their vibrational structure in the Raman regime beyond the double harmonic
approximation. For such systems, a-DMD should efficiently complement the existing direct plane
wave DFT polarizability-polarizability correlation function approaches as a tool for spectra
characterization.

It is also instructive to briefly explore the exciting possibility of studying energy flow
dynamics by locating and “pumping”, for example, a Raman active mode, such as the 828 cm'!
mode in Cyo, and “probing” for IR activity in the prepared state. One may thus suggest novel
computational techniques in designing 2-dimensional spectroscopy, for which experimental
techniques already exist, [48] namely, pump-probe mixed IR-Raman, Raman-IR, Raman-Raman
virtual experiments on determination of vibrational energy flow between IR and Raman active

modes.
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S1: The stimulated Raman energy term
Here we examine the stimulated Raman energy, Eq. 8, by expanding and reordering the

corresponding cosine terms while setting ¢pp = ¢pg = 0 for compactness,

ek & £pe
Wa(q,£) = - app(q) cos(2wpt) + - ss(q) cos(2wst) + == aps(q) cos((wp + ws)t)
EpEg 3 g
+ T“PS(‘I) cos((wp — ws)t) + ZaPP(q) + I“ss(‘l) (51-1)

On the right-hand-side, the leading three terms are the vibrationally non-contributing waves
resulting from sum-frequency mixing. While computationally possible to include them in the
calculations by setting wp and wg to the laser frequencies used in a typical SRS experiment, their
numerical contribution to the equations of motion, Eq. 9, will be negligible compared to the Stokes
frequency term. Thus, these terms are neglected. The fourth term is the dominantly contributing
Stokes-shifted vibrationally-resonant driving term. The last two terms appear as non-driving
contributions to the induced-dipole-field energy and may actually be interpreted as the Rayleigh
scattering components of the Pump and Stokes fields. In the parallel alignment regime, P=S, and
the constant terms may be incorporated into the vibrationally resonant driving term. Their
contribution to the internal energy of the molecule (Eq. 11), compared to any finite Stokes-shift
vibrational frequency o, occurs indirectly by perturbing the oscillator motion and will also be
negligible. However, in the perpendicular alignment regime, they form a standalone term that
theoretically should contribute to rotational energy absorption. Other cases when the Rayleigh
terms can be important include driven systems with many very low frequency phonon-type
vibrational modes, as those present in biological macromolecules, polymers or liquids. The exact

contribution of the Raleigh terms will be examined in a future work.
2



S2: A 1-D harmonic oscillator with a linear polarizability term

For a harmonic oscillator of mass m in 1-D, the potential energy is
1
V(x) = Emw%xz (S2—-1)

where w, is the characteristic frequency. Expanding the polarizability in a Taylor series around

the minimum energy point

1
alx) = ag + oy x + E()(zx2 + - (52 -2)

and keeping the two leading terms defines the so-called double harmonic approximation for Raman
spectra, which is also the double-harmonic definition for the dipole moment function and the
resulting dipole (infrared) spectra. Substitution of Eq. S2-2 into Eq. 9 leads to a second-order linear
differential equation for the coordinate,

¥+ wix =y cos(wt + ) (S2 —-3)
where y = —géa, /2m. If the driving frequency w coincides with the characteristic frequency w,

this equation has the following solution,

t
x(t) = (2)/_0)0 + A) sin(wyt + 6) + <4ng + B) cos(wyt + 6) (S2—-4.1)
and the momentum,
(Y . yt
p(t) =m 10 woB | sin(wyt +0) + m T + woA ) cos(wyt + 6) (S2-4.2)
0

with 4 and B defined by the initial conditions. For a specific case with the system initially at rest,
as considered in the numerical calculations in the present work, and setting 8 = 0 , as required by

Eq. 8, the coordinate and momenta become, respectively,

t
x(t) = zy—wosin wot (52 -5.1)



and

myt m
p(t) = Tycos wot + z—aj/osin wot (S2-5.2)

Using Egs. S2-5 and Eq. 11, the average absorbed internal energy as a function of time is

t
1 p?(t)  mwix*(t)
Hy(t))y =—| dt’ S2-6
(Ho(©) =7 [ ( 2 (52-6)
0
and after the integration and some manipulation, it simplifies to
(Ho(0)) = ES¥w2t2[1 + 3sinc?(wot)] (S2—7)
with the characteristic polarizability energy
4.2
(@) €0 a1
Ej W =— S2-8.1
0 96mw? ( )
Similarly, for dipole driving, with y = —&yu, /m, the characteristic dipole energy is
2,2
w _ ok
ES' =—— S2-8.2
©  24mw? ( )

where p, is the dipole derivative.

In a resonant steady state, with t » v3/w,, the oscillating term in the square brackets of

Eq. S2-7 is much smaller than the unity, and hence the internal energy increases quadratically with

time as

(Ho()) ~ BV wt? (S2-9)

Equations S2-7 - S2-9 have two implications for resonantly driving a generic polyatomic molecule

in either Raman or infrared (dipole driven) regimes: (i) steady state conditions are reached slower

at lower frequencies, i.e. one needs longer driving times at lower frequency fundamentals than at

higher ones to identify a resonance, and (ii) the response of the molecule to the incident Raman

field is much more sensitive to the field strength than that of the dipole field, that is, in DMD

4



simulations one will always need much stronger electric fields to induce Raman active resonances

than dipole active resonances, both in the form of energy absorption.

S.3: 1-D and 2-D harmonic oscillators with a quadratic polarizability term
It is instructive to examine the role of the higher order terms in Eq. S2-2. Assuming the quadratic

term while neglecting the linear term results in the following equation for the coordinate

¥+ <1 — %cos(wt)) w3x =0 (S3—-1)
0

where y = —gfa,/2m. This is a case of a parametric oscillator, i.e., one with a variable

characteristic frequency, wo(t), and one that has the solutions in terms of Mathieu’s functions [1]

x(6) = 4;,Ce (<2, ,t) + 4,5¢ (22,7, 1) (S3—2)

w w
with the coefficients A1, 42 determined by the initial conditions. Eq. S3-2 is convergent for all
values of ¢ except in the special, resonant case where the field frequency is w = 2w,
corresponding to the overtone excitation. At such a resonance, the coordinate and the internal
energy increase exponentially with ¢, unlike linearly and quadratically, respectively, at a
fundamental resonance. In other words, classically driving the molecule at an overtone frequency
will result in a resonant absorption as long as a,, and similarly y, in dipole driving, are non-zero.
This is demonstrated graphically in Figure S1 where we show a parallel Pump-Stokes polarization
calculation of Hz at the overtone frequency 2w,. As can be seen, following an initial delay of ~0.5
ps, the energy begins to increase rapidly at an exponential rate. The ‘pre-resonance' delay time is

determined by polarizability’s second derivative, a,, an intrinsic molecular property, and much

more sensitively by the field strength €,, an external tunable parameter.
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Figure S1. The potential energy ¥ of a 1-D harmonic oscillator driven by a Pump electric field of
the frequency corresponding to the first overtone and coupled to quadratic polarizability (see Eq.
8): W, (x,t) = e3a,x? cos(2wyt) /4. In this example, the represented system is Ha, calculated at
the MP2/cc-pVDZ level of with the following parameters: mo=4502 cm’!, o2=-4.166 a.u.,
€0=1 V/bohr. (The solution and graphics are generated with the Mathematica software. [2])

We now consider a simple case of coupled excitations using a two-dimensional harmonic

oscillator,
1
V(ix,y) = Em(a)fxz + wiy?) (S3—13)
with the characteristic frequencies 1 and w2, and the corresponding polarizability function,

1 1
a(x,y) = og + ax + o,y + EOL,mx2 + anyyz + ey xy + o (S3 —4)

We have shown above that ax, oy (a1 in 1-D) are responsible for the fundamental resonances
(0w=wmo), while axx and ayy (02 in 1-D) are responsible for the double excitations, i.e. overtones
(0=2wo). If we retain only the axy term from Eq. S3-4 and write out the equations of motion, we
obtain a set of coupled ODEs,

¥+ w?x —y cos(wt)y =0 (S3-15.1)

y+ wiy —ycos(wt) x =0 (S3—5.2)



with y = —&§a,,/2m. A unitary transformation may decoupled these equations to variables (u,v)

by solving the secular equation, for each of its eigenvalues 4;,j = 1,2,

(—y co(l(wt) _Z)gco—S(wwft)) (21) =4 (2 ) (S3-6)

Now, by the construction of the driving force term, a(x,y) = a,,xy, neither the fundamentals nor
the overtones can be excited in Eqs. S3-5; thus, it is sufficient to demonstrate the occurrence of a
combination resonance by setting ®i=w2=wo (while also greatly simplifying the solution of S3-5,
S3-6). With this choice, the transformation matrix is time-independent, i.e., u = (x — y)/v2
and v = (x + y)/v/2. The de-coupled system of ODEs is

il + wiu + y cos(wt) u =0 (S3—-7.1)

¥+ wiv —y cos(wt) v =0 (S3—-7.2)
with the solutions appearing in the form of Eq. S3-2; back-transformation to (x,y) is trivial from
here. Therefore, as argued above, both oscillators exhibit resonant behavior at the external field
frequency w = 2w, corresponding here to the ®i+w2 combination band rather than to one of the
overtones. We note that this resonance occurs even in the absence of an explicit coupling term
between x and y, as given by Eq S3-3. Thus, driving a polyatomic molecule at a frequency of a
combination band of any two fundamentals is also a form o parametric oscillator resonance. This
proves that the polarizability term ay,,, and the corresponding dipole term p,,, are responsible for

exciting combination bands in classical DMD.



S.4. Details of Calculations

Table S1. H>O Harmonic vibrational frequencies (in cm™'), IR intensities (km/mol), and Raman
intensities (A*amu) calculated at the MP2/cc-pVDZ level of theory.

Label Frequency IR intensity = Raman intensity
Vi(A1) 1677 57.0 5.8
v2 (A1) 3852 6.6 68.3
v3(B2) 3971 32.6 33.8

The symmetry-adapted coordinates for H2O are
1
Sl(Al) = Z—E(Arl + Arz)
1
$2(Bz) = 2 2(Ary — Ary))
s3(41) = Aayy (54-1)

where Ar; indicate the O-Hi bond length fluctuations and Ae;; indicate the Hi-O-H; angle
fluctuations.
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Figure S2. An a-DMD (a) and 4-DMD (b) energy absorption comparison of the H20O fundamental
modes vi(A1)=1677cm!, v2(A1)=3852 cm™!, and v3(B2)=3971 cm!. The intensity of the electric
field was 500 and 100 mV/bohr, respectively. The level of theory is MP2/cc-PVDZ.
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Figure S3. Direct -DMD trajectory analysis for the IR active H2O fundamental frequencies
Vi(A1)=1677 cm!, v2(A1)=3852 cm’!, and v3(B2)=3971 cm™!. Average absorbed energies are in
cm’!, symmetry-adapted coordinates si and s2 in A, and s3 in degrees. The intensity of the electric
field was 100 mV/bohr.



Table S2. The CHs Harmonic vibrational frequencies (in cm™), IR intensities (km/mol), and
Raman intensities (A*amu) calculated at the MP2/cc-pVDZ level of theory.

Label Frequency IR intensity = Raman intensity
vi(T2) 1338 11.5 1.2
v2(E) 1565 0.0 21.0
v3(Ar) 3082 0.0 144.4
v4(T2) 3233 17.0 59.9

The symmetry-adapted coordinates for CHa4 are [3]

s1(4,) = 4_%(Ar1 + Ar, + Arg+ Ary)

s,(E) = 12_%(2Aa23 + 20aus — Aays — Aagy — Aazs — Aayy)

s3(E) = 4_%(A“zs + Aazy — Aazs — Aayy)

S4(Ty) = 4_§(Ar1 — Ary, + Ary — Ary)

ss(T,) = 4_%(—Ar1 + Ar, + Ary — Ary)

se(Ty) = 4_%(Ar1 + Ary, — Ar; — Ary)

57(Ty) = 272 (Batys — Adtsy)

sg(T2) = 2_%(A0‘35 — Aaryy)

S9(T2) = 2 2(Aays — Aarsy) (54-2)

where 1,2,3,4 subscripts denote hydrogens, Ar; indicates the C-Hi bond length fluctuation and
Aa;j indicates the Hi-C-Hj angle fluctuation.
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Table S3. C2o (Ci symmetry) harmonic vibrational frequencies (in cm™), IR intensities (km/mol),
and Raman intensities (A*/amu) calculated at the B3LYP/6-31G(d) level of theory.

Freq IR int. Freq Raman int.
508 20.2 68 20.2
545 0.0 81 20.0
571 0.1 309 0.0
571 0.2 477 41.8
604 0.2 478 41.3
606 3.2 530 22.1
608 3.0 629 14.1
633 2.8 631 13.7
634 3.0 723 0.0
640 1.4 761 0.2
723 36.6 775 0.9
723 37.2 775 0.9
892 19.5 829 83.9
923 5.6 1009 43
924 54 1010 4.3
1091 6.9 1129 4.2
1166 1.2 1130 4.5
1166 1.1 1177 2.0
1174 0.0 1232 4.9
1208 6.2 1237 0.0
1208 6.9 1295 4.2
1256 2.0 1297 33
1289 4.1 1315 4.7
1290 33 1317 5.5
1352 0.1 1420 15.8
1362 96.5 1443 15.0
1364 97.0 1444 15.1
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Table S4. XYZ coordinates (A) for the C20 Ci minimum, calculated with B3LYP/6-31G(d).

Atom X Y Z

C 1.9571458647  -0.0033079274  -0.7023708720
C 1.9570258915 0.0041158301 0.7027334273
C -1.9570258915 -0.0041158301 -0.7027334273
C -1.9571458647 0.0033079274 0.7023708720
C 0.0003224516  -0.7513029918 -1.8312161769
C -0.0000217048 -0.6926756872 1.8153973200
C 0.0000217048 0.6926756872  -1.8153973200
C -0.0003224516 0.7513029918 1.8312161769
C -0.7583182954  -1.9361178192  -0.0360970821
C -0.7591245359 1.9358041090 0.0359573441
C 0.7591245359  -1.9358041090  -0.0359573441
C 0.7583182954 1.9361178192 0.0360970821
C 1.1979971467  -1.2300241810  -1.1693292005
C 1.1732602928 1.1479543054  -1.1072440672
C 1.1735349864  -1.1474682310 1.1074593705
C 1.1972744660 1.2305179128 1.1695490126
C -1.1972744660  -1.2305179128 -1.1695490126
C -1.1735349864 1.1474682310  -1.1074593705
C -1.1732602928 -1.1479543054 1.1072440672
C -1.1979971467 1.2300241810 1.1693292005
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Figure S4. C20 normal modes vectors for some Raman active modes in the range from 400 to
900 cm’.
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Figure S5. Average absorbed energies (in cm') along the C a-DMD B3LYP/
6-31G(d) trajectories for most Raman active frequencies. The intensity of the electric field was
500 mV/bohr.
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