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Abstract: We describe a novel variant of the driven molecular dynamics (DMD) method derived 
for probing Raman active vibrations. The method is an extension of the conventional µ-DMD 
formulation for simulating IR activity by means of coupling an oscillating electric field to the 
molecule’s dipole moment, µ, and inducing absorption of energy via tuning the field to a resonant 
frequency. In the present work, we modify the above prescription to invoke Raman activity by 
coupling two electric fields, i.e., a “Pump” photon of frequency wP and a Stokes photon of 
frequency wS to the molecule’s polarizability tensor, a, with the difference in the frequencies of 
the two photons w = wP - wS corresponding to the Stokes Raman shift. If a particular w is close to 
a Raman active vibrational frequency, energy absorption by the molecule ensues. Varying w over 
the desired frequency range allows identifying and assigning all Raman active vibrational modes, 
including anharmonic corrections, in the range by means of trajectory analysis. We show that only 
one element of the full polarizability tensor, and its nuclear derivative, is needed for an a-DMD 
trajectory, making this method well suited for ab initio dynamics implementation. Numerical 
results using first-principles calculations are presented and discussed for the vibrational 
fundamentals, combination bands, overtones of H2O, CH4, and the C20 fullerene. 
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1. Introduction 

 Driven molecular dynamics (DMD) has recently become a powerful tool for calculating 

and assigning infrared (IR) spectra. Its robustness is a direct consequence of DMD’s formulation, 

where an external time-dependent driving potential 𝜇 ∙ 𝜀(𝑡) is added to the Hamiltonian (𝜇 is the 

dipole and 𝜀(𝑡) is the electric field), and resonant energy absorption is duly invoked by choosing 

the field’s frequency close to a system’s vibrational frequency. This was first aptly demonstrated 

in single and double-laser IR multiphoton absorption (MPA) simulations of diatomics. [1-5] More 

recently, it has been demonstrated on polyatomic molecules, as well as peptides and small proteins, 

that DMD can routinely identify fundamentals, combination bands, overtones, and their 

anharmonic shifts by the effort of propagating classical trajectories. [6-14] Particularly attractive 

features of the dipole-driven MD, or µ-DMD, include the capability for assignment of vibrational 

spectra [15] and a straightforward way to design pump-probe ‘virtual’ 2D experiments. [9] 

Additionally, Fermi-like resonances have been observed, [10,14] and IR peaks arising due to 

strong non-linearity of the dipole moment in shared-proton systems have been described. [12] 

Furthermore, the ability of DMD to sample the low frequency parts of vibrational spectra, i.e. in 

the far IR and terahertz regimes, can be especially useful in studies of biological macromolecules 

and liquid phase simulations, as was demonstrated by bond-driving a water solvated dialanine. 

[16] Yet despite these attractive characteristics of DMD, so far only dipole active vibrational 

spectra, i.e. linear and 2D-IR, have been studied rigorously. In the present paper, we extend the 

formalism of DMD to electric field-polarizability interaction, calling it a-DMD, and demonstrate 

its applicability to calculating vibrational Raman activities on real systems. 

 Recent work on N2H+…OC shows that it is possible to carry out µ-DMD simulations 

directly using ab initio potential energy and dipole moment surfaces, PES and DMS respectively, 
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and their derivatives, without making approximations beyond the level of electronic structure 

theory for these quantities. [14] This may potentially be particularly important for a-DMD 

simulations, since accurate ab initio level analytical representation of a polarizability tensor 

surface for a generic polyatomic molecule or cluster is expected to be more challenging than, for 

instance, that of potential energy or dipole moment surfaces, as is done using the invariant 

polynomial approach. [17] In fact, in the literature, the presently used analytical treatment of 

molecular polarizability is based mainly on empirical models. [18-21] Substantially more 

advanced and practically successful treatments of the polarizability tensor at a high ab initio level, 

using truncated many-body expansions of monomer interactions, have been employed in the 

special case of liquid water. [22,23] Plane wave DFT direct molecular dynamics simulations have 

been carried out for calculating polarizability-polarizability correlation functions and Raman 

spectra in liquid and solid phases using analytical methods for the polarizability tensor, [24-27] 

however, a post SCF/non-DFT calculation of the full polarizability tensor at a molecular 

configuration along the trajectory requires at least six additional dipole calculations, for example 

by electric field finite-differences method. For some non-variational electronic structure methods, 

e.g., MP2, CCSD, etc., a dipole calculation also requires evaluation of the energy gradient, making 

direct ab initio trajectory calculations using these highly accurate methods computationally quite 

inefficient. However, as we will show below, to propagate an a-DMD trajectory “on the fly” using 

a generic electronic structure method, only two additional energy gradient calculations per time 

step are required, allowing this method to scale identically to µ-DMD. 

 As is the case with µ-DMD, all Raman active transitions beyond the usual fundamentals 

can be detected with a-DMD by scanning or gauging, over the driving frequency. Namely, 

combination bands and overtones can be captured within the usual classical limit, while purely 
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quantum effects, such as tunneling, energy and angular momentum quantization obviously cannot. 

Additionally, diagonal anharmonicities and anharmonicities resulting from mode interactions can 

be readily described. We note, however, that unlike the conventional MD approaches to calculating 

spontaneous Raman scattering spectra using polarizability-polarizability correlation functions, 

[28] a-DMD uses both the incident (Pump) and scattered (Stokes) lights as input to induce 

absorption of energy by driving the molecule at the difference frequency. Thus, in the present 

calculations, we do not measure ‘exact’ depolarization ratios as is done in MD simulations or a 

normal mode analysis. [29] However, we do examine the molecule’s dynamical response to the 

driving fields in the two polarization regimes: parallel and perpendicular. A driven trajectory yields 

characteristic atomic displacements at resonant frequencies, similar to normal modes, [7,9,15] 

which contain full information about the vibrational motion. In short, in a-DMD, one not only 

generates a spectrum as one does from the correlation function methods, [24-27] but also assigns 

it using simple trajectory analysis. 

 The rest of the paper presents a detailed theoretical derivation of the method followed by 

several numerical examples to demonstrate the “proof of principle” of a-DMD. We continue the 

presentation by demonstrating DMD-induced Raman activity on a small, quasi-spherical fullerene, 

C20. Perspective facility of a-DMD in designing mixed pump-probe virtual experiments, including 

Raman-Raman, Raman-IR and IR-Raman types, is briefly explored in the Conclusions. Additional 

theoretical support of the underlying theory and methodology is provided in the Supplementary 

Information (SI). 
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2. Theory 

 In molecular dynamics driven by an electric field, the system Hamiltonian H0, which 

represents the ‘internal’ system energy, is appended with a time-dependent ‘external’ energy term, 

																																						𝐻(𝐩, 𝐪, 𝑡) = 𝐻!(𝐩, 𝐪) +𝑊(𝐪, 𝑡)																																											(1) 

where p and q are the conjugate momenta and coordinates, i.e., 3N Cartesians for N atoms. In a 

weak electric field regime, [30] the external energy may be written out in the order of electric field 

𝜀 powers 

																																						𝑊(𝐪, 𝑡) = 𝑊"(𝐪, 𝑡) +𝑊#(𝐪, 𝑡) + ⋯																																			(2) 

where the first-order contribution is the dipole-field energy, 

																																												𝑊"(𝐪, 𝑡) = 𝜇(𝐪) ∙ 𝜀(𝑡)																																																						(3) 

the second-order contribution is the induced dipole-field energy, i.e., the polarizability, 

																																						𝑊#(𝐪, 𝑡) =
1
2 𝜀
(𝑡) ∙ 𝛂(𝐪) ∙ 𝜀(𝑡)																																													(4) 

etc. [31] 

 It has been shown extensively in several recent publications that driving the molecule with 

the dipole term (W1) produces energy absorption at resonant frequencies and allows one to 

construct a complete IR spectrum of the molecule. [10-14] Moreover, the recorded vibrational 

motions at the resonant driving frequencies provide characteristic signatures that can be used to 

make unambiguous assignments. Namely, taking the electric field as a sinusoidal wave and 

substituting it into Eq. 3 yields the well-known expression for the dipole-field driven energy term, 

																																											𝑊"(𝐪, 𝑡) = |𝜀|𝜇$(𝐪) cos(𝜔𝑡 + 𝜙)																																													(5) 

where the scalar 𝜇$ is the full dipole’s projection on the electric field unit vector. (Note that the 

choice of phase is arbitrary and is usually taken as f = 0 or ±p/2.) [2-5,13,14] Below, we consider 

a similar approach to driving a molecule while using the induced dipole term (W2) and with two 
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independent field vectors, as input, oscillating at different frequencies. One field acts as a pump 

photon, and the other acts as a probe photon, in a manner formally similar to a stimulated Raman 

scattering process. Such an approach based on a pump-probe light driven harmonic oscillator has 

been discussed previously in time-resolved studies of molecular vibrations and in studies of 

vibrational dynamics of liquids and solids. [32,33] 

 

 

Scheme 1. A DMD interpretation of a stimulated (Pump-Stokes) Raman scattering experiment for 
a fictitious 2-level molecule, in the initial vibrational state v=0 and with wP the Pump light 
frequency and wS the Stokes light frequency (blue and read arrows). When the difference in Pump-
Stokes frequencies wP - wS corresponds to the fundamental vibrational transition frequency (green 
arrow), v=0 → v=1, stimulated Raman excitation occurs by the process of resonantly driving the 
molecule at w. 
 

 In a two-field stimulated Raman scattering experiment, in a classical setting, we assume 

the initial state of the molecule is the equilibrium geometry with zero initial velocities, which 

corresponds to the quantum ground vibrational state v=0. Therefore, we consider a Stokes shift 

scenario, depicted in Scheme 1, with a Pump field of frequency wP and a Stokes field of frequency 

wS. Treating the Pump and Stokes photons as plane polarized light, i.e., using plane waves, the 

total electric field interacting with the system is given by [33,34] 
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																																			𝜀(𝑡) =
1
2 >𝜀%𝑒

&'()!*+,!) + 𝜀.𝑒&'()"*+,")@ + c. c.																											(6) 

where 𝜀% = 𝜀%𝜀%̂ and 𝜀. = 𝜀.𝜀.̂ are the field polarization vectors. Substituting Eq. 6 into Eq. 4, the 

induced dipole-field energy becomes, 

											𝑊#(𝐪, 𝑡) =
𝜀%𝜀.
2 α%.(𝐪) cos(𝜔𝑡 + Δ𝜙) + 𝑂(2𝜔%, 2𝜔., 𝜔% + 𝜔.) + 𝑐𝑜𝑛𝑠𝑡.											(7) 

where 𝜔 = 𝜔% − 𝜔. is the Stokes shift frequency, and Δ𝜙 = 𝜙% − 𝜙. is the phase shift between 

the Pump and Stokes fields. The leading term in Eq. 7 oscillates at a vibrational frequency of the 

molecule, by definition, is the Stokes shift. The second term is a combination of three waves, each 

oscillating at a vibrationally non-contributing sum-frequency. They may be omitted since by 

design: 2𝜔% ≈ 2𝜔. ≈ 𝜔% + 𝜔. ≫ 𝜔. The third term is the time-independent field-molecule 

interaction energy related to Rayleigh scattering activity. In the perpendicular field alignment 

regime, the constant term is expected to play a role in causing rotational excitation,  but is presently 

not retained in the simulations and is subject of further investigation (see SI for more details). 

 For convenience, the Pump-Stokes phase shift is set to zero to make the two fields in-phase, 

and further, without loss of generality we require 𝜀% = 𝜀. = 𝜀!, leading to a computationally 

facilitated expression for the stimulated Raman excitation energy, 

																									𝑊#(𝐪, 𝑡) ≈
𝜀!#

2 α%.
(𝐪) cos(𝜔𝑡)																																(8) 

In Eqs. 7 and 8, α%.(𝐪) is an element of the full polarizability tensor a(q), introduced in Eq. 4, 

coupling the Pump and Stokes polarizations, which may be set either parallel or perpendicular to 

each other. It is obvious from the above that for two given polarization vectors, the Pump 𝜀%̂ and 

the Stokes 𝜀.̂, the scalar quantity α%.(𝐪) completely determines the molecule’s interaction with 

the field. In other words, the full polarizability tensor is not needed for the direct dynamics. Thus, 

for a-DMD simulations, we find it useful to denote the scalar quantity α%.(𝐪) as the Polarizability 
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Tensor Surface (PTS), a 3N-6 dimensional function, in the same manner as potential energy 

surface (PES) and dipole moment surface (DMS) are used in the conventional MD. 

 We proceed with writing out Hamilton’s equations of motion for the propagation of 

trajectories. Of interest is the differential equation for the momentum, 

																											𝐩̇ = −
𝜕𝐻
𝜕𝐪 = −∇𝑉(𝐪) −

𝜀!#

2 ∇α%.
(𝐪) cos(𝜔𝑡)																																(9)	

where V(q) is the internal potential energy, i.e., the PES. The derivative of the PTS, which we refer 

to as the driving force (DF), is responsible for vibrational Raman activity in the molecule. [29] As 

was pointed out for the case of µ-DMD above, exemplified by Eq. 5, the DF excites both 

vibrational and rotational motions due to the space fixed orientation of the electric field. [14] Thus, 

in addition to the total energy, a-DMD also leads to non-conservation of the total angular 

momentum during a trajectory, normally a constant of motion, which requires a careful choice of 

time integration step. It is important to emphasize that the form of Eq. 9 has been used for 

elucidating the nature of coherent optical phonons in time-resolved experiments, identifying the 

polarizability gradient term as cause for “stimulated Raman excitation”. [35] While others, for 

instance, have used a differential equation identical to Eq. 9, but with a damping term, for deriving 

the time evolution of an ensemble vibrational coordinate in a stimulated Raman scattering setting. 

[32] 

 The DF is evaluated in the same manner as the derivative of the dipole moment, discussed 

previously, [14] namely, by direct numerical differentiation of the electronic energy gradient. For 

parallel/antiparallel Pump-Stokes polarization, with 𝜀%̂ ∙ 𝜀.̂ = ±1, 

																																					∇α%% = ±
𝜕#𝑔

𝜕𝜀%̂𝜕𝜀%̂
≈ ±

𝑔(𝜆𝜀%̂) + 𝑔(−𝜆𝜀%̂) − 2𝑔(0)
𝜆# 																								(10𝑎) 

and for perpendicular polarization, with 𝜀̂ ∙ 𝜀̂/ = 0, 
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	∇α%. =
𝜕#𝑔
𝜕𝜀%̂𝜕𝜀.̂

≈
𝑔(𝜆𝜀%̂, 𝜆𝜀.̂) + 𝑔(−𝜆𝜀%̂, −𝜆𝜀.̂) − 𝑔(−𝜆𝜀%̂, 𝜆𝜀.̂) − 𝑔(𝜆𝜀%̂, −𝜆𝜀.̂)

4𝜆# 								(10𝑏)	

where 𝑔(𝜆𝜀̂, 𝜆𝜀′̂) ≡ ∇𝑉(𝜆𝜀̂, 𝜆𝜀′̂) is the electronic energy gradient with one or two applied electric 

fields, and l is an electric field differential (in practice ~30 mV/bohr). In the (anti)parallel and 

perpendicularly polarized a-DMD, two and four additional energy gradient calculations are 

required, respectively, to propagate Eq. 9 by one time step. 

 A typical ab initio calculation thus requires (i) a molecular structure at equilibrium and (ii) 

a choice of a single field unit vector 𝜀%̂ (parallel/antiparallel polarization) or two orthogonal unit 

vectors 𝜀%̂ and 𝜀.̂ in the laboratory frame. We note that it is often reasonable to evaluate the DF-

PTS at a lower level of theory than the PES and its gradient to avoid computational bottlenecks, 

as is commonly done in similar applications. [14,36] 

 Given the formal similarity of the energy terms in Eqs. 5 and 8, we interpret Raman activity 

as molecule’s absorption of the two-field energy, just as we interpret IR activity as energy 

absorption in a single field µ-DMD simulation. That is, resonant frequencies w are identified by 

measuring the internal energy as a function of time, [7] 

																																														𝐼01213(𝜔) =
1
𝜏 _d𝑡

4

!

𝐻!(𝐩(𝑡; 𝜔), 𝐪(𝑡; 𝜔))																																				(11) 

which is expected to increase sharply on resonance and oscillate off resonance (see SI). In other 

words, in the a-DMD simulations, spectra are recovered by measuring energy absorption at the 

frequencies corresponding to the Stokes shifts. A plot of IRaman vs. w is a representation of the 

spectrum, with each of the resonances (peaks) described by its corresponding trajectory values 

q(t;w). 
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Figure 1. Direct a-DMD trajectory analysis for the Raman active H2O fundamental frequencies 
n1(A1)=1677cm-1,  n2(A1)=3852 cm-1, and  n3(B2)=3971 cm-1.  Average absorbed energies are in  
cm-1, symmetry-adapted coordinates s1 and s2 in Å, and s3 in degrees. The intensity of the electric 
field is 500 mV/bohr. The level of theory is MP2/cc-PVDZ. 
 

3. Computational details 

The simulations presented for H2O and CH4 were carried out at the MP2/cc-pVDZ level of theory, 

sufficient for demonstration purposes and for emphasizing general applicability of the ab initio 

DMD. The simulations of C20 are, however, much more time consuming, and thus a less 

computationally demanding level of theory was chosen, namely B3LYP/6-31G(d). All geometry 

optimization, normal mode analysis, and IR intensities reported in this work were completed using 

the MOLPRO-2019.2 program [37-39], while Raman intensities were determined using the 

Gaussian 16 program [40]. All DMD trajectory calculations were performed using an external 

velocity-Verlet time integrator coupled to MOLPRO-2019.2 as the “on the fly” generator of the 

energy, gradient, and polarizability derivatives. We used the integration time step of 0.5 fs which 

in the past gave very reliable results [13,14]. To ensure accurate evaluation of Eq. 10, we use a 

small field differential (0.001 a.u.), which also requires that tight convergence on the electronic 
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wavefunction, i.e., Kohn-Sham SCF orbitals, is imposed. It was found that whereas a 10-8 Hartree 

threshold on the SCF energy is sufficient for obtaining fully converged dipole derivatives (∇𝜇$) 

and PTS elements (α$$#) for all the systems considered presently, a 10-12 Hartree threshold was 

necessary to produce converged polarizability derivatives (∇α$$#) for C20.  

Presently, we run simulations in the parallel Pump-Stokes polarization regime. We analyze 

and plot the coordinates, driving forces, absorbed energy, etc. for the various X,Y,Z orientations 

of the electric field. To facilitate the assignment of spectral features, we use symmetry-adapted 

coordinates for H2O and CH4 (Eq. S4-1, S4-2 in SI), and defined the average distance of the C 

atoms to the center of mass 〈𝑅(𝑡)〉 and its fluctuation  ∆𝑅(𝑡) = f〈𝑅#(𝑡)〉 − 〈𝑅(𝑡)〉#	 for C20. A 

partial Raman spectrum of C20 was scanned, and the absorbed internal energy plotted as a function 

of frequency (Eq. 11) to identify resonant frequencies.  

 
Figure 2. Direct a-DMD trajectory analysis of three of the Raman active CH4 fundamental 
frequencies n1(T2)=1338 cm-1, n3(A1)=3082 cm-1, and n4(T2)=3233 cm-1. The absorption energies 
are in cm-1, symmetry-adapted coordinates, s1 and s4 in Å, and s7 in degrees. The intensity of the 
electric field is 500 mV/bohr. The level of theory is MP2/cc-PVDZ. 
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4. Results and Discussion 

Tables S1-S3 summarize the harmonic vibrational frequencies, IR and Raman activities, and 

additional data can also be found in the SI. Direct DMD simulations for H2O and CH4 were carried 

out for the fundamental frequencies, an overtone, and a combination band to demonstrate the mode 

assignment procedure. Since the dipole driving force is linear (Eq. 3) while the polarizability 

driving force is quadratic in field (Eq. 4), the field magnitude in a-DMD simulation should be 

stronger compared to µ-DMD to achieve comparable absorption of energy at the same resonant 

frequency (see also S.2 of the SI). After some exploration, the field strengths were set to 500 and 

100 mV/bohr for a-DMD and µ-DMD, respectively. For an illustration, one may refer to Figure 

S2 which compares energy absorption regimes of Raman (a-DMD) versus IR (µ -DMD) for H2O. 

 For water, all three fundamentals are IR and Raman active, which provides a good test for 

relative comparison of the two driving regimes. In a-DMD the two O-H stretching modes 

(n2=3852 cm-1 and n3=3971 cm-1) absorb significant amounts of energy, compared to a much 

weaker absorption in the bending mode (n1=1677 cm-1), as seen in Figure 1. For comparison, in µ-

DMD, the asymmetric stretch and the bending mode both absorb, while the symmetric stretch is 

barely active (Figure S2). This is fully consistent with the quantum mechanical double harmonic 

approximation result. Details of the time evolution of the symmetry-adapted coordinates (s1 

symmetric stretch, s2 asymmetric stretch, and s3 bending) can be seen in Figure S3 of the SI. 
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Figure 3. Direct Raman a-DMD trajectory analysis of the CH4 overtone frequency 2n1=2677     
cm-1 and combination band n2+n3=4647 cm-1.  The absorption energies are in cm-1, symmetry-
adapted coordinates, s1 in Å, s2  and s7 in degrees. The intensities of the electric field are 1.5 V/bohr 
and 2.0 V/bohr, respectively. The level of theory is MP2/cc-PVDZ. 
 

 Similar coordinate analysis was carried out for some of the CH4 fundamental modes; their 

resonant energy absorption is recorded in Figure 2. One can see evident excitation of the symmetry 

coordinate corresponding to its normal mode. We also examined two non-fundamental 

frequencies, one corresponding to the umbrella bending overtone 2n1=2677 cm-1 and the other to 

a combination band consisting of bending and symmetric stretch modes, n2 + n3 =4647 cm-1 

(Figure 3).  While these transitions are forbidden in the double harmonic limit, to excite them in 

a-DMD we used a Pump field of stronger intensity so as to induce appreciable non-linear, i.e., 

non-harmonic effects in both the potential and the polarizability functions. The energy profiles for 

these highly non-harmonic bands display certain time delays for energy absorption, 4 and 8 ps for 

the overtone and the combination band, respectively, before setting into resonances. This behavior 

at non-fundamental resonances is related to the non-linear terms in the polarizability. It has been 
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discussed in our previous work [13, 14] and is also addressed in Section S.3 of the SI. The large 

amplitude oscillations of the symmetry-adapted stretching s1 and bending s2 coordinates confirm 

the assignment of the combination band as n2 +n3 (Figure 3), while the 2n1 overtone is properly 

characterized by a strongly increasing activity in the s7 bending coordinate. 

 
Figure 4. An illustration of the a-DMD facility as a Raman spectrum generating tool, here applied 
to C20 in the parallel regime at the B3LYP/6-31G(d) level of theory. The absorbed energies were 
recorded after 1.25 and 2.5 ps, respectively, and plotted as functions of the driven frequency with 
a resolution gauge of 25 cm-1. The intensity of the electric field is 500 mV/bohr. The Raman-active 
frequencies in the double harmonic approximations are marked by blue sticks. 
 

For the purposes of demonstrating the present first-principles based a-DMD approach to 

activating Raman modes in large polyatomics and clusters, we choose the smallest size carbon 

cluster that can form a closed fullerene molecule. Namely, C20 has been the subject of a number 

of theoretical studies at the level of density functional theory where it was shown that it can form 

multiple isomers of various shapes, including ring, bowl or cage [41-47]. The predicted relative 

stabilities of these isomers, however, appear to be quite sensitive to both the density functional and 

the basis set [45-47]. In the present work, we use the B3LYP functional, as it has produced the 

most consistent results for the fullerene, in conjunction with the 6-31G(d) orbital basis, with the 

polarization functions added for a proper description of the polarizability tensor. Tables S3 and S4 
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in the SI show the harmonic frequencies, IR, Raman intensities, and the XYZ coordinates of the 

optimized structure of C20. We scanned the spectrum using the parallel Pump-Stokes alignment in 

the range from 400 cm-1 to 900 cm-1 with a 25 cm-1 gauge (a uniform frequency step). The spectrum 

is summarized in Figure 4, and the corresponding characteristic motion vectors and absorption 

profiles are shown in Figures S4-S5 in the SI.  Clearly identifiable are the resonances at 450, 525, 

625, and 828 cm-1 measured after 1.25 ps of exposure to the Pump field. The most Raman active, 

and by symmetry IR inactive, is the “breathing” mode at 828 cm-1, also predicted as the most 

Raman active in the double-harmonic limit. Coordinate analysis, Figure 5, for this mode shows a 

well marked increase with time in the average sphere radius 〈𝑅(𝑡)〉 with a nearly constant radius 

fluctuation ∆𝑅(𝑡). Note also the steady increase in the polarizability, along with the energy profile 

(Figure S5), which indicates a ‘clean’ resonance with no detuning. The three other resonances are 

non-breathing type distortion modes, as is visible from the coordinate profiles in Figure 5, and all 

have much weaker Raman activity. Their polarizability and energy profiles indicate an initially 

clean absorption up to ~1 ps followed by a slowdown as the trajectory samples the non-harmonic 

parts of the potential and slightly detunes from the Pump frequency. All these resonances become 

more pronounced, while also acquiring anharmonic shifts, with a longer Pump field exposure time 

(2.5 ps). Such a systematic improvement in resolution was discussed previously by some of us in 

other applications [7]. This is especially noticeable for the peak near 450 cm-1, a weakly Raman 

active mode, which becomes clearly identifiable only at the longer driving time and red-shifts from 

its harmonic frequency by ~30 cm-1.
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Figure 5. Average displacements, 〈𝑅(𝑡)〉 − 〈𝑅(0)〉 (in black), atomic fluctuations,  ∆𝑅(𝑡) =
f〈𝑅(𝑡)#〉 − 〈𝑅(𝑡)〉# (in red), and polarizability along the C20 a-DMD B3LYP/ 
6-31G(d) trajectories for the most Raman active frequencies. The intensity of the electric field is 
500 mV/bohr.  
 

5. Concluding remarks 

 The DMD method described in the present paper is a first-time demonstration of the use of 

driven first-principles classical trajectories to stimulate Raman activity in molecules. We use two 

oscillating electric field vectors: a Pump with frequency wP and a Stokes probe with frequency wS, 

couple them to the molecule’s polarizability and tune the Raman shift frequency w = wP - wS to 

locate resonant vibrational excitations. A full Raman spectrum, including anharmonicities, 

combination bands, and overtones, can be constructed in this way, and what is particularly 

important, the resonances can be readily assigned to the corresponding molecular vibrations using 

the propagated trajectories. We also show that only one element of the full polarizability tensor, 

along with its nuclear derivative, is needed for an a-DMD trajectory, making this method suitable 
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for high-level ab initio molecular dynamics implementation, along with the already established 

direct ab initio dipole driven DMD approach. The theoretical foundation of the present method 

does not rely on any approximations beyond the electronic structure theory, i.e., the separation of 

nuclear and electronic motion, degree of electron correlation, basis set, etc. Numerical calculations 

performed at the MP2/cc-pVDZ and B3LYP/6-31G(d) levels of theory for H2O, CH4 and C20, 

respectively, clearly demonstrate that the molecules absorb vibrational energy from the Pump field 

at fundamental frequencies, overtones, and combination bands. Application of a-DMD to other 

bulky and condensed and solid phase systems, such as transition metal clusters, carbon nanotubes 

and nanosheets, liquids, etc., for which the polarizability tensor is not readily available from the 

established models but may be calculated reasonably fast “on-the-fly”, can provide valuable 

information about their vibrational structure in the Raman regime beyond the double harmonic 

approximation. For such systems, a-DMD should efficiently complement the existing direct plane 

wave DFT polarizability-polarizability correlation function approaches as a tool for spectra 

characterization. 

 It is also instructive to briefly explore the exciting possibility of studying energy flow 

dynamics by locating and “pumping”, for example, a Raman active mode, such as the 828 cm-1 

mode in C20, and “probing” for IR activity in the prepared state.  One may thus suggest novel 

computational techniques in designing 2-dimensional spectroscopy, for which experimental 

techniques already exist, [48] namely, pump-probe mixed IR-Raman, Raman-IR, Raman-Raman 

virtual experiments on determination of vibrational energy flow between IR and Raman active 

modes. 
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S1: The stimulated Raman energy term 
Here we examine the stimulated Raman energy, Eq. 8, by expanding and reordering the 

corresponding cosine terms while setting 𝜙P = 𝜙S = 0 for compactness, 

 

𝑊2(𝐪, 𝑡) =
𝜀P

2

4
αPP(𝐪) cos(2𝜔P𝑡) +

𝜀S
2

4
αSS(𝐪) cos(2𝜔S𝑡) +

𝜀P𝜀S

2
αPS(𝐪) cos((𝜔P + 𝜔S)𝑡)

+
𝜀P𝜀S

2
αPS(𝐪) cos((𝜔P − 𝜔S)𝑡) +

𝜀P
2

4
αPP(𝐪) +

𝜀S
2

4
αSS(𝐪)                         (S1 − 1) 

 

On the right-hand-side, the leading three terms are the vibrationally non-contributing waves 

resulting from sum-frequency mixing. While computationally possible to include them in the 

calculations by setting 𝜔P and 𝜔S to the laser frequencies used in a typical SRS experiment, their 

numerical contribution to the equations of motion, Eq. 9, will be negligible compared to the Stokes 

frequency term. Thus, these terms are neglected. The fourth term is the dominantly contributing 

Stokes-shifted vibrationally-resonant driving term. The last two terms appear as non-driving 

contributions to the induced-dipole-field energy and may actually be interpreted as the Rayleigh 

scattering components of the Pump and Stokes fields. In the parallel alignment regime, P=S, and 

the constant terms may be incorporated into the vibrationally resonant driving term. Their 

contribution to the internal energy of the molecule (Eq. 11), compared to any finite Stokes-shift 

vibrational frequency , occurs indirectly by perturbing the oscillator motion and will also be 

negligible. However, in the perpendicular alignment regime, they form a standalone term that 

theoretically should contribute to rotational energy absorption. Other cases when the Rayleigh 

terms can be important include driven systems with many very low frequency phonon-type 

vibrational modes, as those present in biological macromolecules, polymers or liquids. The exact 

contribution of the Raleigh terms will be examined in a future work.  
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S2: A 1-D harmonic oscillator with a linear polarizability term 

For a harmonic oscillator of mass m in 1-D, the potential energy is 

                                                𝑉(𝑥) =
1

2
𝑚𝜔0

2𝑥2                                                             (S2 − 1) 

where 𝜔0 is the characteristic frequency. Expanding the polarizability in a Taylor series around 

the minimum energy point 

                                                α(𝑥) = α0 + α1𝑥 +
1

2
α2𝑥2 + ⋯                                  (S2 − 2) 

and keeping the two leading terms defines the so-called double harmonic approximation for Raman 

spectra, which is also the double-harmonic definition for the dipole moment function and the 

resulting dipole (infrared) spectra. Substitution of Eq. S2-2 into Eq. 9 leads to a second-order linear 

differential equation for the coordinate, 

                                               𝑥̈ + 𝜔0
2𝑥 = 𝛾 cos(𝜔𝑡 + 𝜃)                                             (S2 − 3) 

where 𝛾 = −𝜀0
2𝛼1/2𝑚. If the driving frequency 𝜔 coincides with the characteristic frequency 𝜔0, 

this equation has the following solution, 

        𝑥(𝑡) = (
𝛾𝑡

2𝜔0
+ 𝐴) sin(𝜔0𝑡 + 𝜃) + (

𝛾

4𝜔0
2 + 𝐵) cos(𝜔0𝑡 + 𝜃)                   (S2 − 4.1) 

and the momentum, 

𝑝(𝑡) = 𝑚 (
𝛾

4𝜔0
− 𝜔0𝐵) sin(𝜔0𝑡 + 𝜃) + 𝑚 (

𝛾𝑡

4
+ 𝜔0𝐴) cos(𝜔0𝑡 + 𝜃)        (S2 − 4.2) 

with A and B defined by the initial conditions. For a specific case with the system initially at rest, 

as considered in the numerical calculations in the present work, and setting 𝜃 = 0 , as required by 

Eq. 8, the coordinate and momenta become, respectively, 

                                                      𝑥(𝑡) =
𝛾𝑡

2𝜔0
sin 𝜔0𝑡                                                (S2 − 5.1) 
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and 

                                                    𝑝(𝑡) =
𝑚𝛾𝑡

2
cos 𝜔0𝑡 +

𝑚𝛾

2𝜔0
sin 𝜔0𝑡                    (S2 − 5.2) 

Using Eqs. S2-5 and Eq. 11, the average absorbed internal energy as a function of time is 

                           ⟨𝐻0(𝑡)⟩ =
1

𝑡
∫ 𝑑𝑡′

𝑡

0

(
𝑝2(𝑡′)

2𝑚
+

𝑚𝜔0
2𝑥2(𝑡′)

2
)                             (S2 − 6) 

and after the integration and some manipulation, it simplifies to 

                          ⟨𝐻0(𝑡)⟩ = 𝐸0
(𝛼)

𝜔0
2𝑡2[1 + 3sinc2(𝜔0𝑡)]                                   (S2 − 7) 

with the characteristic polarizability energy 

                                                𝐸0
(𝛼)

=
𝜀0

4𝛼1
2

96𝑚𝜔0
2                                                        (S2 − 8.1) 

Similarly, for dipole driving, with 𝛾 = −𝜀0𝜇1/𝑚, the characteristic dipole energy is 

                                                𝐸0
(𝜇)

=
𝜀0

2𝜇1
2

24𝑚𝜔0
2                                                        (S2 − 8.2) 

where 𝜇1 is the dipole derivative. 

 In a resonant steady state, with 𝑡 ≫ √3/𝜔0, the oscillating term in the square brackets of 

Eq. S2-7 is much smaller than the unity, and hence the internal energy increases quadratically with 

time as 

                                              ⟨𝐻0(𝑡)⟩ ≈ 𝐸0
(𝛼)

𝜔0
2𝑡2                                                (S2 − 9) 

Equations S2-7 - S2-9 have two implications for resonantly driving a generic polyatomic molecule 

in either Raman or infrared (dipole driven) regimes: (i) steady state conditions are reached slower 

at lower frequencies, i.e. one needs longer driving times at lower frequency fundamentals than at 

higher ones to identify a resonance, and (ii) the response of the molecule to the incident Raman 

field is much more sensitive to the field strength than that of the dipole field, that is, in DMD 
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simulations one will always need much stronger electric fields to induce Raman active resonances 

than dipole active resonances, both in the form of energy absorption. 

 

S.3: 1-D and 2-D harmonic oscillators with a quadratic polarizability term 

It is instructive to examine the role of the higher order terms in Eq. S2-2. Assuming the quadratic 

term while neglecting the linear term results in the following equation for the coordinate 

                                               𝑥̈ + (1 −
𝛾

𝜔0
2 cos(𝜔𝑡)) 𝜔0

2𝑥 = 0                                             (S3 − 1) 

where 𝛾 = −𝜀0
2𝛼2/2𝑚. This is a case of a parametric oscillator, i.e., one with a variable 

characteristic frequency, 0(t), and one that has the solutions in terms of Mathieu’s functions [1] 

                                          𝑥(𝑡) = 𝐴1Ce (
𝜔0

𝜔
, 𝛾, 𝑡) + 𝐴2Se (

𝜔0

𝜔
, 𝛾, 𝑡)                               (S3 − 2) 

with the coefficients A1, A2 determined by the initial conditions. Eq. S3-2 is convergent for all 

values of t except in the special, resonant case where the field frequency is 𝜔 = 2𝜔0, 

corresponding to the overtone excitation. At such a resonance, the coordinate and the internal 

energy increase exponentially with t, unlike linearly and quadratically, respectively, at a 

fundamental resonance. In other words, classically driving the molecule at an overtone frequency 

will result in a resonant absorption as long as 𝛼2, and similarly 𝜇2 in dipole driving, are non-zero. 

This is demonstrated graphically in Figure S1 where we show a parallel Pump-Stokes polarization 

calculation of H2 at the overtone frequency 2𝜔0. As can be seen, following an initial delay of ~0.5 

ps, the energy begins to increase rapidly at an exponential rate. The ‘pre-resonance' delay time is 

determined by polarizability’s second derivative, 𝛼2, an intrinsic molecular property, and much 

more sensitively by the field strength 𝜀0, an external tunable parameter. 
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Figure S1. The potential energy V of a 1-D harmonic oscillator driven by a Pump electric field of 
the frequency corresponding to the first overtone and coupled to quadratic polarizability (see Eq. 
8): 𝑊2(𝑥, 𝑡) = 𝜀0

2𝛼2𝑥2 cos(2𝜔0𝑡) /4. In this example, the represented system is H2, calculated at 
the MP2/cc-pVDZ level of with the following parameters: 0=4502 cm-1, 2=-4.166 a.u.,  
0=1 V/bohr. (The solution and graphics are generated with the Mathematica software. [2]) 
 

 We now consider a simple case of coupled excitations using a two-dimensional harmonic 

oscillator, 

                                                𝑉(𝑥, 𝑦) =
1

2
𝑚(𝜔1

2𝑥2 + 𝜔2
2𝑦2)                                              (S3 − 3) 

with the characteristic frequencies 1 and 2, and the corresponding polarizability function, 

                      α(𝑥, 𝑦) = α0 + α𝑥𝑥 + α𝑦𝑦 +
1

2
α𝑥𝑥𝑥2 +

1

2
α𝑦𝑦𝑦2 + α𝑥𝑦𝑥𝑦 + ⋯            (S3 − 4) 

We have shown above that x, y (1 in 1-D) are responsible for the fundamental resonances 

(=0), while xx and yy (2 in 1-D) are responsible for the double excitations, i.e. overtones 

(=20). If we retain only the xy term from Eq. S3-4 and write out the equations of motion, we 

obtain a set of coupled ODEs, 

                                                       𝑥̈ + 𝜔1
2𝑥 − 𝛾 cos(𝜔𝑡) 𝑦 = 0                                        (S3 − 5.1) 

                                                       𝑦̈ + 𝜔2
2𝑦 − 𝛾 cos(𝜔𝑡) 𝑥 = 0                                        (S3 − 5.2) 
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with 𝛾 = −𝜀0
2𝛼𝑥𝑦/2𝑚. A unitary transformation may decoupled these equations to variables (u,v) 

by solving the secular equation, for each of its eigenvalues 𝜆𝑗 , 𝑗 = 1,2, 

                                  (
0 −𝛾 cos(𝜔𝑡)

−𝛾 cos(𝜔𝑡) 𝜔2
2 − 𝜔1

2 ) (
𝑐𝑗1

𝑐𝑗2
) = 𝜆𝑗 (

𝑐𝑗1

𝑐𝑗2
)                                  (S3 − 6) 

Now, by the construction of the driving force term, α(𝑥, 𝑦) ≡ α𝑥𝑦𝑥𝑦, neither the fundamentals nor 

the overtones can be excited in Eqs. S3-5; thus, it is sufficient to demonstrate the occurrence of a 

combination resonance by setting 1=2=0 (while also greatly simplifying the solution of S3-5, 

S3-6). With this choice, the transformation matrix is time-independent, i.e., 𝑢 = (𝑥 − 𝑦) √2⁄  

and 𝑣 = (𝑥 + 𝑦) √2⁄ . The de-coupled system of ODEs is 

                                                       𝑢̈ + 𝜔0
2𝑢 + 𝛾 cos(𝜔𝑡) 𝑢 = 0                                        (S3 − 7.1) 

                                                       𝑣̈ + 𝜔0
2𝑣 − 𝛾 cos(𝜔𝑡) 𝑣 = 0                                        (S3 − 7.2) 

with the solutions appearing in the form of Eq. S3-2; back-transformation to (x,y) is trivial from 

here. Therefore, as argued above, both oscillators exhibit resonant behavior at the external field 

frequency 𝜔 = 2𝜔0, corresponding here to the 1+2 combination band rather than to one of the 

overtones. We note that this resonance occurs even in the absence of an explicit coupling term 

between x and y, as given by Eq S3-3. Thus, driving a polyatomic molecule at a frequency of a 

combination band of any two fundamentals is also a form o parametric oscillator resonance. This 

proves that the polarizability term α𝑥𝑦, and the corresponding dipole term μ𝑥𝑦, are responsible for 

exciting combination bands in classical DMD. 
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S.4. Details of Calculations 
 

Table S1. H2O Harmonic vibrational frequencies (in cm-1), IR intensities (km/mol), and Raman 
intensities (Å4/amu) calculated at the MP2/cc-pVDZ level of theory. 
Label Frequency IR intensity Raman intensity 

1(A1)  1677 57.0 5.8 

2 (A1) 3852 6.6 68.3 

3 (B2) 3971 32.6 33.8 

 
The symmetry-adapted coordinates for H2O are 
𝑠1(𝐴1) = 2−

1

2(Δ𝑟1 + Δ𝑟2) 

𝑠2(𝐵2) = 2−
1

2(Δ𝑟1 − Δ𝑟2)) 

𝑠3(𝐴1) = Δ𝛼12          (S4-1) 

where Δ𝑟𝑖 indicate the O-Hi bond length fluctuations and Δ𝛼𝑖𝑗 indicate the Hi-O-Hj angle 
fluctuations. 
 

 

Figure S2. An -DMD (a) and -DMD (b) energy absorption comparison of the H2O fundamental 
modes 1(A1)=1677cm-1,  2(A1)=3852 cm-1, and  3(B2)=3971 cm-1. The intensity of the electric 
field was 500 and 100 mV/bohr, respectively. The level of theory is MP2/cc-PVDZ. 
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Figure S3. Direct -DMD trajectory analysis for the IR active H2O fundamental frequencies 
1(A1)=1677 cm-1,  2(A1)=3852 cm-1, and  3(B2)=3971 cm-1.  Average absorbed energies are in  
cm-1, symmetry-adapted coordinates s1 and s2 in Å, and s3 in degrees. The intensity of the electric 
field was 100 mV/bohr. 
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Table S2. The CH4 Harmonic vibrational frequencies (in cm-1), IR intensities (km/mol), and 
Raman intensities (Å4/amu) calculated at the MP2/cc-pVDZ level of theory. 
Label Frequency IR intensity Raman intensity 

1 (T2)  1338 11.5 1.2 

2 (E) 1565 0.0 21.0 

3 (A1) 3082 0.0 144.4 

4 (T2)  3233 17.0 59.9 

 
The symmetry-adapted coordinates for CH4 are [3] 
𝑠1(𝐴1) = 4−

1

2(Δ𝑟1 + Δ𝑟2 + Δ𝑟3+ Δ𝑟4) 

𝑠2(𝐸) = 12−
1

2(2Δ𝛼23 + 2Δ𝛼45 − Δ𝛼25 − Δ𝛼34 − Δ𝛼35 − Δ𝛼24) 

𝑠3(𝐸) = 4−
1

2(Δ𝛼25 + Δ𝛼34 − Δ𝛼35 − Δ𝛼24)   

𝑠4(𝑇2) = 4−
1

2(Δ𝑟1 − Δ𝑟2 + Δ𝑟3 −  Δ𝑟4)   

𝑠5(𝑇2) = 4−
1

2(−Δ𝑟1 + Δ𝑟2 + Δ𝑟3 − Δ𝑟4) 

𝑠6(𝑇2) = 4−
1

2(Δ𝑟1 + Δ𝑟2 − Δ𝑟3 − Δ𝑟4)   

𝑠7(𝑇2) = 2−
1

2(Δ𝛼25 − Δ𝛼34)  

𝑠8(𝑇2) = 2−
1

2(Δ𝛼35 − Δ𝛼24)     

𝑠9(𝑇2) = 2−
1

2(Δ𝛼23 − Δ𝛼54)         (S4-2) 
 
where 1,2,3,4 subscripts denote hydrogens, Δ𝑟𝑖 indicates the C-Hi bond length fluctuation and 
Δ𝛼𝑖𝑗 indicates the Hi-C-Hj angle fluctuation. 
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Table S3. C20 (Ci symmetry) harmonic vibrational frequencies (in cm-1), IR intensities (km/mol), 
and Raman intensities (Å4/amu) calculated at the B3LYP/6-31G(d) level of theory. 

Freq IR int.  Freq Raman int. 

508 20.2  68 20.2 

545 0.0  81 20.0 

571 0.1  309 0.0 

571 0.2  477 41.8 

604 0.2  478 41.3 

606 3.2  530 22.1 

608 3.0  629 14.1 

633 2.8  631 13.7 

634 3.0  723 0.0 

640 1.4  761 0.2 

723 36.6  775 0.9 

723 37.2  775 0.9 

892 19.5  829 83.9 

923 5.6  1009 4.3 

924 5.4  1010 4.3 

1091 6.9  1129 4.2 

1166 1.2  1130 4.5 

1166 1.1  1177 2.0 

1174 0.0  1232 4.9 

1208 6.2  1237 0.0 

1208 6.9  1295 4.2 

1256 2.0  1297 3.3 

1289 4.1  1315 4.7 

1290 3.3  1317 5.5 

1352 0.1  1420 15.8 

1362 96.5  1443 15.0 

1364 97.0  1444 15.1 
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Table S4. XYZ coordinates (Å) for the C20 Ci minimum, calculated with B3LYP/6-31G(d).  

 Atom              X                             Y                                Z 
_____________________________________________________ 
 C          1.9571458647       -0.0033079274       -0.7023708720 
 C          1.9570258915        0.0041158301        0.7027334273 
 C         -1.9570258915       -0.0041158301       -0.7027334273 
 C         -1.9571458647        0.0033079274        0.7023708720 
 C          0.0003224516       -0.7513029918       -1.8312161769 
 C         -0.0000217048       -0.6926756872        1.8153973200 
 C          0.0000217048        0.6926756872       -1.8153973200 
 C         -0.0003224516        0.7513029918        1.8312161769 
 C         -0.7583182954       -1.9361178192       -0.0360970821 
 C         -0.7591245359        1.9358041090        0.0359573441 
 C          0.7591245359       -1.9358041090       -0.0359573441 
 C          0.7583182954        1.9361178192        0.0360970821 
 C          1.1979971467       -1.2300241810       -1.1693292005 
 C          1.1732602928        1.1479543054       -1.1072440672 
 C          1.1735349864       -1.1474682310        1.1074593705 
 C          1.1972744660        1.2305179128        1.1695490126 
 C         -1.1972744660       -1.2305179128       -1.1695490126 
 C         -1.1735349864        1.1474682310       -1.1074593705 
 C         -1.1732602928       -1.1479543054        1.1072440672 
 C         -1.1979971467        1.2300241810        1.1693292005 
___________________________________________________ 
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a) 477 cm-1 

 

 
   

b) 530 cm-1 
 

 
 

c) 629 cm-1 
 

 
d) 828 cm-1 

 
 
Figure S4. C20 normal modes vectors for some Raman active modes in the range from 400 to 
900 cm-1. 
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Figure S5. Average absorbed energies (in cm-1) along the C20 -DMD B3LYP/ 
6-31G(d) trajectories for most Raman active frequencies. The intensity of the electric field was 
500 mV/bohr.  
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