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Continuous Profit Maximization: A Study of
Unconstrained Dr-Submodular Maximization

Jianxiong Guo and Weili Wu , Senior Member, IEEE

Abstract— Profit maximization (PM) is to select a subset of
users as seeds for viral marketing in online social networks,
which balances between the cost and the profit from influence
spread. We extend PM to formulate a continuous PM under the
general marketing strategies (CPM-MS) problem, whose domain
is on integer lattices. The objective function of our CPM-MS
is dr-submodular, but nonmonotone. It is a typical case of
unconstrained dr-submodular maximization (UDSM) problem,
and taking it as a starting point, we study UDSM systematically
in this article, which is very different from those studied by
existing researchers. First, we introduce the lattice-based double
greedy algorithm, which can obtain a constant approximation
guarantee. However, there is a strict and unrealistic condition
that requiring the objective value is nonnegative on the whole
domain or else no theoretical bounds. Thus, we propose a lattice-
based iterative pruning technique. It can shrink the search space
effectively, thereby greatly increasing the possibility of satisfying
the nonnegative objective function on this smaller domain without
losing approximation ratio. Then, to overcome the difficulty
to estimate the objective value of CPM-MS, we adopt reverse
sampling strategies and combine it with lattice-based double
greedy, including pruning, without losing its performance but
reducing its running time. The entire process can be considered as
a general framework to solve the UDSM problem, especially for
applying to social networks. Finally, we conduct experiments on
several real data sets to evaluate the effectiveness and efficiency
of our proposed algorithms.

Index Terms— Approximation algorithm, continuous profit
maximization (PM), dr-submodular maximization, integer lattice,
sampling strategies, social networks.

I. INTRODUCTION

O
NLINE social networks (OSNs) were becoming more
and more popular to exchange ideas and make friends

gradually in recent years and accompanied by the rise of a
series of social giants, such as Twitter, Facebook, Wechat, and
LinkedIn. People tended to share what one sees and hears and
discuss some hot issues on these social platforms instead of
traditional ways. Many companies or advertisers exploited to
spread their products, opinions, or innovations. By offering
those influential users free or discounted samples, information
can be spread across the whole network through word-of-
mouth effect [1], [2]. Inspired by that, the influence maximiza-
tion (IM) problem [3] was formulated, which selects a subset
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of users (seed set) to maximizing the expected follow-up
adoptions (influence spread) for a given information cascade.
In this Kempe et al.’s seminal work [3], IM was defined on
the two basic discrete diffusion models, independent cascade
model (IC-model) and linear threshold model (LT-model), and
these two models can be generalized to the triggering model.
Then, they proved that the IM problem is NP-hard and obtain
a (1 − 1/e)-approximation [4] under the IC/LT-model by use
of a simple hill-climbing in the framework of monotonicity
and submodularity.

Since this seminal work, a plenty of related problems based
on IM that were used for different scenarios have emerged
[5], [6]. Among them, profit maximization (PM) [7]–[11]
is the most representative and widely used one. Consider
viral marketing for a given product, and the gain is the
influence spread generated from our selected seed set in a
social network. However, it is not free to activate those users
in this seed set. For instance, in a real advertisement scenario,
discounts and rewards are usually adopted to improve users’
desire to purchase and stimulate consumption. Thus, the net
profit is equal to the influence spread minus the expense of
seed set, where more incentives do not imply more benefit.
Tang et al. [9] proved that the objective function of PM is
submodular, but not monotone. Before this, Kempe et al. [12]
proposed the generalized marketing instead of the seed set.
A marketing strategy is denoted by x ∈ Z

d
+ where the user

u will be activated as a seed with probability hu(x). Thus,
the seed set is not deterministic, but activated probabilistically
according to a marketing strategy. In this article, we propose a
continuous PM under the general marketing strategies (CPM-
MS) problem, which aims to choose the optimal marketing
vector x∗ � b such that the net profit can be maximized.
Each component x(i) ∈ x stands for the investment to mar-
keting action Mi . Actually, in order to promote their products,
a company often adopts multiple marketing techniques, such as
advertisements, discounts, cashback, and propagandas, whose
effects are different to customers at different levels. Therefore,
CPM-MS is much more generalized than traditional PM.

After formulating our CPM-MS problem, we discuss its
properties first. We show that the CPM-MS problem is
NP-hard, and given a marketing vector x, it is #P-hard to
compute the expected profit exactly. Because of the difficulty
to compute the expected profit, we give an approximate
method that needs to run Monte Carlo (MC) simulations on a
constructed graph. Then, we prove that the objective function
of CPM-MS problem is dr-submodular, but not monotone.
Extended from set function to vector function on integer
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lattice, the dr-submodularity has a diminishing return prop-
erty. For the unconstrained submodular maximization (USM),
Buchbinder et al. [13] proposed a randomized double greedy
algorithm that can achieve a tight (1/2)-approximation ratio.
To our CPM-MS problem, we are able to consider it as a
case of unconstrained dr-submodular maximization (UDSM)
inspired by USM. Here, we introduce a lattice-based double
greedy algorithm for the UDSM, and a (1/2)-approximation
can be obtained as well if the objective value is nonnegative.
The marketing vector x is defined on 0 � x � b, and thus,
this approximation can be guaranteed only when the sum of
objective values on 0 and b is not less than zero, which is
hard to be satisfied in the real applications. Imagine to offer
all marketing actions full investments, is it still profitable? The
answer is no. To overcome this defect, we design a lattice-
based iterative pruning technique. It shrinks the searching
space gradually in an iterative manner, and then, we initialize
our lattice-based double greedy with this smaller searching
space. The objective values on this smaller space are very
likely to be nonnegative, thereby increasing the applicability
of our algorithm’s approximation. Even if we can use MC
simulations to estimate the expected profit, its time complexity
is too high. Here, based on the reverse influence sampling
(RIS) [14]–[17], we design an unbiased estimator for the profit
function, which can estimate the objective value of a given
marketing vector accurately. Next, we take this estimator as
our new objective function, combine with lattice-based pruning
and double greedy algorithm, and propose the DG-IP-RIS
algorithm eventually. It guarantees to obtain a (1/2 − ε)-
approximation under a weak condition, whose time complexity
is improved significantly. Finally, we conduct several experi-
ments to evaluate the superiority of our proposed DG-IP-RIS
algorithm to other heuristic algorithms and compare their
running times, which supports the effectiveness and efficiency
of our approaches strongly.

Organization: Section II discusses the related work.
Section III formulates our main problem. The properties
and computability of our CPM-MS problem are presented
in Section IV. Section V is the main contributions, includ-
ing lattice-based double greedy and pruning algorithms.
Section VI analyzes the time complexity and designs speedup
algorithms based on sampling strategies. Experiments and
discussions are presented in Section VII, and finally, Section
VIII draws the conclusion.

II. RELATED WORK

A. Influence Maximization

Kempe et al. [3] formulated IM to a combinatorial opti-
mization problem. Given a seed set, Chen et al. [18], [19]
proved that computing its exact influence spread under the
IC-model and LT-model, respectively, are #P-hard, and they
designed two heuristic algorithms that can solve IM problem
under the IC-model [18] and LT-model [19], which reduces
the computation overhead effectively. Borgs et al. [14] took
RIS to estimate the influence spread first, and subsequently,
a lot of researchers utilized RIS to design efficient algorithms
with (1 − 1/e − ε)-approximation. Tang et al. [15] proposed

TIM/TIM+ algorithms, which were better than Brogs et al.’s
IM method regardless of accuracy and time complexity. Then,
they developed a more efficient algorithm, IMM [16], based on
martingale analysis. Nguyen et al. [20] designed SSA/D-SSA
and claimed it reduces the running time significantly without
losing approximation ratio, but still be doubted by other
researchers. Recently, Tang et al. [17] created an OPIM-C,
which can be terminated at any time and get a solution with
its approximation guarantee.

B. Profit Maximization

Domingos and Richardson [1] and Richardson and
Domingos [2] studied viral marketing systematically first.
Lu and Lakshmanan, [7] distinguished between influence and
actual adoption and designed a decision-making process to
explain how to adopt a product. Zhang et al. [8] studied
the problem of distributing a limited budget across multiple
products such that maximizing total profit. Tang et al. [9]
analyzed and solved the USM problem by double greedy
algorithm thoroughly with PM as background and proposed
iterative pruning technique, which is different from our prun-
ing process, because our objective function is defined on
the integer lattice. Tong et al. [10] considered the coupon
allocation in the PM problem and designed efficient random-
ized algorithms to achieve (1/2 − ε)-approximation with high
probability. Guo et al. [11] proposed a budgeted coupon prob-
lem whose domain is constrained and provided a continuous
double greedy algorithm with a valid approximation.

C. (Dr-)Submodular Maximization

The PM problem is submodular but not monotone, which
is a case of USM problem [13], [21]. Feige et al. [21]
pointed out that there is no approximate solution
existing unless giving a nonnegative objective function,
and they developed a deterministic local search which
(1/3)-approximation and a randomized local search
with (2/5)-approximation for maximizing nonnegative
submodular function. Buchbinder et al. [13] optimized it to
(1/2)-approximation further with much lower computational
complexity by a randomized double greedy algorithm.
Enlightened by the diminishing return on set function,
Soma and Yoshida [22], [23] created a new concept that is
dr-submodularity defined on integer lattice. Bian et al. [24]
studied to maximize the nonmonotone continuous dr-
submodular function under general down-closed convex
constraints used in social networks, and Chen et al. [25]
proposed a continuous IM problem and designed an
efficient (1 − 1/e − ε)-approximate algorithm by use of its
monotonicity and dr-submodularity. Guo et al. [26] designed
a sandwich approximation framework to solve a monotone
non-dr-submodular maximization problem.

When the nonnegativity of objective function in our
CPM-MS problem cannot be satisfied, it is hard to maximize
a nonmonotone dr-submodular function with an acceptable
approximation. The hardness is how to design an effective
method to satisfy the nonnegativity as much as possible. Thus,
we propose the latticed-based double greedy algorithm and
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pruning techniques, whose process and mathematical induction
are different from [9] and [27] because set functions and vector
functions have different characteristics. Vector functions are
more common but more complex. Then, we improve their
scalability by using RIS to estimate objective values. This is
the summary of our contribution.

III. PROBLEM FORMULATION

In this section, we provide some preliminaries to the rest of
this article and formulate our continuous PM under the general
marketing strategies (CPM-MS).

A. Influence Model

An OSN can be abstracted as a directed graph G = (V , E),
where V = {v1, v2, . . . , vn} is the set of n nodes (users)
and E = {e1, e2, . . . , em} is the set of m edges (relationship
between users). We default |V | = n and |E | = m given
G = (V , E). For each directed edge (u, v) ∈ E , we say that
v is an outgoing neighbor of u and u is an incoming neighbor
of v. For any node u ∈ V , let N−(u) denote its set of incoming
neighbors and N+(u) denote its set of outgoing neighbors.
In the process of influence diffusion, we consider that a user
is active if she accepts (is activated by) the information cascade
from her neighbors or she is selected as a seed successfully.
To model the influence diffusion, Kempe et al. [3] proposed
two classical models, IC-model and LT-model.

Let S ⊆ V be a seed set and Si ⊆ V be the set of all
active nodes at time step ti . The influence diffusion initiated
by S can be represented by a discrete-time stochastic process.
At time step t0, all nodes in S are activated, so we have
S0 := S. Under the IC-model, there is a diffusion probability
puv ∈ (0, 1] associated with each edge (u, v) ∈ E . We set
Si := Si−1 at time step ti (t ≥ 1) first; then, for each
node u ∈ Si−1\Si−2, activated first at time step ti−1, it have
one chance to activate each of its inactive outgoing neighbor
v with probability puv . We add v into Si if u activates v

successfully at ti . Under the LT-model, each edge (u, v) ∈ E

has a weight buv , and each node v ∈ V has a threshold θv

sampled uniformly in [0, 1] and
∑

u∈N−(v) buv ≤ 1. We set
Si := Si−1 at time step ti (t ≥ 1) first; then, for each inactive
node v ∈ V \Si−1, it can be activated if

∑
u∈Si−1∩N−(v) buv ≥ θv .

We add v into Si if v is activated successfully at ti . The
influence diffusion terminates when no more inactive nodes
can be activated. In this article, we consider the triggering
mode, where IC-model and LT-model are its special cases.

Definition 1 (Triggering Model [3]): Each node v selects a
triggering set Tv randomly and independently according to a
distribution Dv over the subsets of N−(v). We set Si := Si−1

at time step ti (t ≥ 1) first; then, for each inactive node v ∈

V \Si−1, it can be activated if there is at least one node in Tv

activated in ti−1. We add v into Si if v is activated successfully
at ti . The influence diffusion terminates when no more inactive
nodes can be activated.

From above, a triggering model can be defined as
� = (G,D), where D = {Dv1,Dv2 , · · ·Dvn

} is a set of
distribution over the subsets of each N−(vi ).

B. Realization

For each node v ∈ V , under the IC-model, each node u ∈

N−(v) appears in v’s random triggering set Tv with probability
puv independently. Under the LT-model, at most one node
can appear in Tv ; thus, for each node u ∈ N−(v), Tv = {u}

with probability buv exclusively and Tv = ∅ with probability
1−

∑
u∈N−(v) buv . Now, we can define the realization (possible

world) g of graph G under the triggering model � = (G,D),
that is, the following holds.

Definition 2 (Realization): Given a directed graph G =

(V , E) and triggering model � = (G,D), a realization g =

{Tv1 , Tv2 , . . . , Tvn
} of G is a set of triggering set sampled from

distribution D, denoted by g ∼ �. For each node v ∈ V ,
we have Tv ∼ Dv .

If a node u appears in v’s triggering set, u ∈ Tv , we say
that edge (u, v) is live or else edge (u, v) is blocked. Thus,
realization g can be regarded as a subgraph of G, which is
the remaining graph by removing these blocked edges. Let
Pr[g|g ∼ �] be the probability of realization g of G sampled
from distribution D, that is

Pr[g|g ∼ � ] =

n∏

i=1

Pr
[
Tvi

∣∣Tvi
∼ Dvi

]
(1)

where Pr[Tvi
|Tvi

∼ Dvi
] is the probability of Tvi

sam-
pled from Dvi

. Under the IC-model, Pr[Tv |Tv ∼ Dv ] =∏
u∈Tv

puv

∏
u∈N−(v)\Tv

(1 − puv), and under the LT-model,
Pr[Tv = {u}|Tv ∼ Dv ] = buv for each u ∈ N−(v) and
Pr[Tv = ∅|Tv ∼ Dv ] = 1 −

∑
u∈N−(v) buv deterministically.

Given a seed set S ⊆ V , we consider I�(S) as a random
variable that denotes the number of active nodes (influence
spread) when the influence diffusion of S terminates under the
triggering model � = (G,D). Then, the number of nodes that
are reachable from at least one node in S under a realization
g, g ∼ �, is denoted by Ig(S). Thus, the expected influence
spread σ�(S), that is

σ�(S) = Eg∼�

[
Ig(S)

]
=

∑

g∼�

Pr[g] · Ig(S) (2)

where it is the weighted average of influence spread under
all possible graph realizations. The IM problem aims to find
a seed set S, such that |S| ≤ k, to maximize the expected
influence spread σ�(S).

Theorem 1 [3]: Under a triggering model � = (G,D), the
expected influence spread σ�(S) is monotone and submodular
with respect to seed set S.

C. Problem Definition

Under the general marketing strategies, the definition of IM
problem will be different from above [3]. Let Z

d
+ be the collec-

tion of nonnegative integer vector. A marketing strategy can be
denoted by a d-dimensional vector x = (x1, x2, . . . , xd) ∈ Z

d
+,

and we call it “marketing vector.” Each component x(i) ∈ Z+,
i ∈ [d] = {1, 2, . . . , d}, means the number of investment
units assigned to marketing action Mi . For example, x(i) = b

tells us that marketing strategy x assigns b investment units
to marketing action Mi . Given a marketing vector x, the
probability that node u ∈ V is activated as a seed is denoted
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by the strategy function hu(x), where hu(x) ∈ [0, 1]. Thus,
unlike the standard IM problem, the selection of seed set is
not deterministic but stochastic. Given a marketing vector x,
the probability of seed set S sampled from x, that is

Pr[S|S ∼ x] =
∏

u∈S

hu(x) ·
∏

v∈V \S

(1 − hv(x)) (3)

where Pr[S|S ∼ x] is the probability that exactly nodes in S

are selected as seeds, but not in S are not selected as seeds
under the marketing strategy x, because each node is select
as a seed independently. Thus, the expected influence spread
µ�(x) of marketing vector x under the triggering model
�(G,D) can be formulated, that is

µ�(x) =
∑

S⊆V

Pr[S|S ∼ x] · σ�(S) (4)

=
∑

S⊆V

σ�(S) ·
∏

u∈S

hu(x) ·
∏

v∈V \S

(1 − hv(x)). (5)

As we know, benefit is the gain obtained from influence
spread and cost is the price required to pay for marketing
strategy. Here, we assume that each unit of marketing action
Mi , i ∈ [d], is associated with a cost ci ∈ R+. Then, the total
cost function c : Z

d
+ → R+ can be defined as c(x) =

∑
i∈[d] ci ·

x(i). For simplicity, we consider the expected influence spread
as our benefit. Thus, the expected profit f�(x) we can obtain
from marketing strategy x is the expected influence spread of
x minus the cost of x, that is

f�(x) = µ�(x) − c(x) (6)

where c(x) =
∑

i∈[d] ci · x(i). Therefore, the continuous PM
under the CPM-MS problem is formulated as follows.

Problem 1 (CPM-MS): Given a triggering model � =

(G,D), a constraint vector b ∈ Z
d
+, a strategy function

hu : Z
d
+ → [0, 1] for each user u ∈ V , and a cost function

c : Z
d
+ → R+, the CPM-MS problem aims to find an optimal

marketing vector x∗ � b that maximizes its expected profit
f�(x), that is, x∗ ∈ arg maxx�b f�(x).

IV. PROPERTIES OF CPM-MS

In this section, we introduce the submodularity on integer
lattice and then analyze the submodularity and computability
of our CPM-MS problem.

A. Submodularity on Integer Lattice

Generally, defined on set, a set function α : 2V → R is
monotone if α(S) ≤ α(T ) for any S ⊆ T ⊆ V and submodular
if α(S)+α(T ) ≥ α(S ∪ T )+α(S ∩ T ). The submodularity of
set function implies a diminishing return property, and thus,
α(S ∪ {u}) − α(S) ≥ α(T ∪ {u}) − α(T ) for any S ⊆ T ⊆ V

and u /∈ T . These two definitions of submodularity on set
function are equivalent. Defined on integer lattice, a vector
function β : Z

d
+ → R is monotone if β(s) ≤ β(t) for any

s � t ∈ Z
d
+ and submodular if β(s)+β(t) ≥ β(s∨ t)+β(s∧ t)

for any s, t ∈ Z
d
+, where (s ∨ t)(i) = max{s(i), t(i)} and

(s ∧ t)(i) = min{s(i), t(i)}. Here, s � t implies s(i) ≤ t(i)

for each component i ∈ [d]. Besides, we consider that a vector
function is diminishing return submodular (dr-submodular) if

β(s + ei)−β(s) ≥ β(t + ei )−β(t) for any s � t and i ∈ [d],
where ei ∈ Z

d
+ is the i th unit vector with the i th component

being 1 and others being 0. Different from the submodularity
for a set function, for a vector function, β is submodular,
which does not mean that it is dr-submodular, but the opposite
is true. Thus, dr-submodularity is stronger than submodularity
generally.

Lemma 1: Given a set function α : 2V → R and a vector
function β : Z

d
+ → R, they satisfy

β(x) =
∑

S⊆V

α(S) ·
∏

u∈S

hu(x) ·
∏

v∈V \S

(1 − hv(x)). (7)

If α(·) is monotone and submodular and hu(·) is monotone
and dr-submodular for each u ∈ V , then β(·) is monotone and
dr-submodular.

Proof: It is an indirect corollary that has been implied by
the proof process in [12, Sec. 7] and [26]. �

Theorem 2: Given a triggering model � = (G,D), the
profit function f�(·) is dr-submodular, but not monotone.

Proof: From Lemma 1, Theorem 1, and (5), we have
known that the expected influence spread µ�(·) is monotone
and dr-submodular because σ�(·) is monotone and submod-
ular. Thus, we have f�(x + ei) − f�(x) = µ�(x + ei ) −

µ�(x) − ci ≥ µ�(y + ei) − µ�(y) − ci = f�(y + ei) − f�(y)

iff x � y ∈ Z
d
+. Thus, f�(·) is dr-submodular. �

B. Computability

Given a seed set S ⊆ V , it is #P-hard to compute the
expected influence spread σ�(S) under the IC-model [18] and
the LT-model [19]. Assume that a marketing vector x ∈ {0, 1}n

and hu(x) = x(u) for u ∈ V where user u is a seed
if and only if x(u) = 1. According to (4), the expected
influence spread µ�(x) is equivalent to σ�(S) in which S =

{u ∈ V : x(u) = 1}. Thereby, given a marketing vector x,
computing the expected influence spread µ�(x) is #P-hard
as well under the IC-model and LT-model. Subsequently,
a natural question is how to estimate the value of µ�(x)

given x effectively. To estimate µ�(x), we usually adopt MC
simulations. However, it is inconvenient for us to use such a
method here because the randomness comes from two parts:
one is from the seed selection, and the other is from the process
of influence diffusion. Therefore, we require to design a more
simple and efficient method.

First, we are able to establish an equivalent relationship
between σ�(·) and µ�(·). Given a social network G = (V , E)

and a marketing vector x ∈ Z
d
+, we create a constructed graph

G̃ = (Ṽ , Ẽ) by adding a new node ũ and a new directed edge
(̃u, u) for each node u ∈ V to G. Take IC-model for instance,
and the diffusion probability for this new edge (̃u, u) can be
set as pũu = hu(x). Then, we have

µ(x|G) = σ
(
Ṽ − V |G̃

)
− |V | (8)

where µ(·|G) and σ(·|G̃) imply that we compute them under
the graph G and the constructed graph G̃.

Theorem 3: Given a social network G = (V , E) and a
marketing vector x ∈ Z

d
+, the expected influence spread

µ�(x) can be estimated with (γ, δ)-approximation by MC
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simulations in O(((m + 3n)n2 ln(2/δ))/(2(γ
∑

u∈V hu(x))2))

running time.
Proof: As mentioned above, we can compute σ(Ṽ −V |G̃)

on the constructed graph instead of µ(x|G) on the original
graph. Let S = Ṽ −V , and the value of σ�(S) can be estimated
by MC simulations according to (2). Based on Hoeffding’s
inequality, we can note that

Pr
[
|σ̂�(S) − σ�(S)| ≥ γ (σ�(S) − n)

]
≤ 2e

−2r
(

γ (µ�(S)−n)
n

)2

where r is the number of MC simulations and σ�(S) −

n ≤ n. We have σ�(S) − n ≥
∑

u∈V hu(x), and to achieve
a (γ, δ)-estimation, the number of MC simulations r ≥

(n2 ln(2/δ))/(2(γ
∑

u∈V hu(x))2). For each iteration of sim-
ulations in the constructed graph, it takes O(m + 3n) running
time. Thus, we can obtain a (γ, δ)-approximation of µ�(x)

in O(((m + 3n)n2 ln(2/δ)/(2(γ
∑

u∈V hu(x))2)) running time.
�

Based on Theorem 3, we can get an accurate estimation
for the objective function f�(x), shown as (6), of CPM-MS
problem by adjusting the parameter γ and δ definitely.

V. ALGORITHMS DESIGN

From Section IV, we have known that the objective function
of CPM-MS is dr-submodular, but not monotone. In this
section, we develop our new methods based on the double
greedy algorithm [13] for our CPM-MS and obtain an optimal
approximation ratio.

A. Lattice-Based Double Greedy

For nonnegative submodular functions,
Buchbinder et al. [13] designed a double greedy algorithm to
get a solution for the USM problem with a tight theoretical
guarantee. Under the deterministic setting, the double greedy
algorithm has a (1/3)-approximation, while it has a (1/2)-
approximation under the randomized setting. Extending from
set to integer lattice, we derive a revised double greedy
algorithm that is suitable for dr-submodular functions,
namely UDSM problem. We adopt the randomized setting,
and the lattice-based double greedy algorithm is shown in
Algorithm 1. We omit the subscript of f�(·), denote it by
f (·) from now on.

Here, we denote by f (ei |x) = f (x + ei ) − f (x), the
marginal gain of adding component i ∈ [d] by 1. Generally,
this algorithm is initialized by [0, b], and for each component
i ∈ [d], we increase x(i) by 1 or decrease y(i) by 1 until they
are equal in each inner (while) iteration. The result returned
by Algorithm 1 has x = y. Then, we have the following
conclusion, which can be inferred directly from the double
greedy algorithm in [13].

Theorem 4: For our CPM-MS problem, if we initialize
Algorithm 1 by [0, b] and f (0) + f (b) ≥ 0 is satis-
fied, the marketing vector x◦ returned by Algorithm 1 is a
(1/2)-approximate solution such that

E
[

f (x◦)
]

≥ (1/2) · max
x�b

f (x). (9)

Here, f (x) ≥ 0 for any x � b is equivalent to say f (0) +

f (b) ≥ 0, namely f (b) ≥ 0 because of f (0) = 0, which is a
natural inference from the dr-submodularity.

Algorithm 1 Lattice-BasedDoubleGreedy

Input: f : Z
d
+ → R, [s, t] where s � t ∈ Z

d
+

Output: x ∈ Z
d
+

1: Initialize: x ← s, y ← t

2: for i ∈ [d] do

3: while x(i) < y(i) do

4: a ← f (ei |x) and b ← f (−ei | y)

5: a0 ← max{a, 0} and b0 ← max{b, 0}

6: r ← Uniform(0, 1)

7: (Note: we set a0/(a0 + b0) = 1 if a0 = b0 = 0)
8: if r ≤ a0/(a0 + b0) then

9: x ← x + ei and y ← y

10: else

11: y ← y − ei and x ← x

12: end if

13: end while

14: end for

15: return x(= y)

B. Lattice-Based Iterative Pruning

According to Theorem 4, the approximation is based on an
assumption that f (0) + f (b) ≥ 0. This is almost impossible
in many real applications. It means that we are able to
gain profit if giving all marketing actions full investments,
which is ridiculous for viral marketing. However, a valid
approximation ratio cannot be obtained by using Algorithm 1
when f (b) < 0 exists. To address this problem, Tang et al. [9]
proposed a groundbreaking techniques, called iterative prun-
ing, to reduce the search space such that the objective is
nonnegative in this space and without losing approximation
guarantee. However, their techniques are designed for set
functions, and they cannot be applied to vector functions
directly. A set can be regarded as a {0, 1}-vector, which is
more convenient to handle. For the integer lattice domain,
we have to consider each component repeatedly and handle
boundary conditions carefully. Thus, we develop an iterative
pruning technique suitable for dr-submodular functions in this
section, which is a nontrivial transformation from set to integer
lattice.

Given a dr-submodular function f (x) defined on x � b,
we have two vectors g1 and h1 such that: 1) g1(i) = 0 if
f (ei |b−b(i)ei) ≤ 0 or else g1(i) = max{k : f (ei |b−b(i)ei +

(k − 1)ei ) > 0} for k ∈ {1, . . . , b(i)} and 2) h1(i) = 0 if
f (ei |0) < 0 or else h1(i) = max{k : f (ei |0 + (k − 1)ei ) ≥ 0}

for k ∈ {1, . . . , b(i)}.
Lemma 2: We have g1 � h1.

Proof: For any component i ∈ [d], we have f (ei |b −

b(i)ei + g1(i)ei ) ≤ 0, but f (ei |b−b(i)ei +(g1(i)−1)ei) > 0,
and f (ei |0 + h1(i)ei) < 0, but f (ei |0 + (h1(i) − 1)ei) ≥

0. Because of dr-submodularity, it satisfies f (ei |b − b(i)ei +

h1(i)ei) ≤ f (ei |0 + h1(i)ei) < 0. Thus, (g1(i) − 1) < h1(i)

and g1(i) ≤ h1(i). Subsequently, g1 � h1. �

Then, we define a collection denoted by π1 = [g1, h1] that
contains all the marketing vectors x that satisfies g1 � h1.
Apparently, π1 is a subcollection of [0, b].
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Algorithm 2 Lattice-BasedPruning

Input: f : Z
d
+ → R, b ∈ Z

d
+

Output: πt = [gt , ht ]

1: Initialize: gt ← 0, ht ← b

2: Initialize: t ← 0
3: while gt 6= gt−1 or ht 6= ht−1 do

4: for i ∈ [d] do

5: if gt (i) = ht (i) then

6: gt+1(i) ← gt (i)

7: ht+1(i) ← ht(i)

8: Continue
9: end if

10: if f (ei |ht − ht (i)ei + gt(i)ei ) ≤ 0 then

11: gt+1(i) ← gt(i)

12: else

13: gt+1(i) ← gt (i) + max{k : f (ei |ht − ht(i)ei +

gt(i)ei + (k − 1)ei ) > 0}, k ∈ {1, . . . , ht (i) − gt (i)}

14: end if

15: if f (ei |gt) < 0 then

16: ht+1(i) ← ht (i)

17: else

18: ht+1(i) ← gt (i)+max{k : f (ei |gt +(k −1)ei ) ≥ 0},
k ∈ {0, . . . , ht(i) − gt(i)}

19: end if

20: end for

21: t ← t + 1
22: end while

23: return πt = [gt , ht ]

Lemma 3: All optimal solutions x∗ that satisfy f (x∗) =

maxx�b f (x) are contained in the collection π1 = [g1, h1],
i.e., g1 � x∗ � h1 for all x∗.

Proof: For any component i ∈ [d], we consider any vector
x with x(i) < g1(i) and have f (ei |x) ≥ f (ei |b − b(i)ei +

x(i)ei) > 0 because of dr-submodularity. Thereby, x + ei has
a larger profit than x for sure, so the i th component of the
optimal marketing vector x∗ at least equals x(i) + 1, which
indicates that x∗(i) ≥ g1(i). On the other have, consider
x(i) ≥ h1(i), and we have f (ei |x) ≤ f (ei |0 + x(i)ei) < 0.
Thereby, x + ei has a less profit than x for sure, so the i th
component of the optimal marketing vector x∗ at most equals
x(i), which indicates that x∗(i) ≤ h1(i). Thus, g1 � x∗ � h1.

�

From above, Lemma 3 determines a range for the optimal
vector, thus reducing the search space. Then, the collection
π1 = [g1, h1] can be pruned further in an iterative manner.
Now, the upper bound of the optimal vector is h1, i.e., x∗ �

h1; hereafter, we are able to increase g1 to g2, where g2(i) =

g1(i) if f (ei |h1 − h1(i)ei + g1(i)ei) ≤ 0 or else g2(i) =

g1(i) + max{k : f (ei |h1 − h1(i)ei + g1(i)ei + (k − 1)ei ) >

0} for k ∈ {1, . . . , h1(i) − g1(i)}. The lower bound of the
optimal vector is g1, i.e., x∗ � g1, and similarly, we are able
to decrease h1 to h2, where h2(i) = h1(i) if f (ei |g1) < 0
or else h2(i) = g1(i) + max{k : f (ei |g1 + (k − 1)ei ) ≥ 0}

for k ∈ {1, . . . , h1(i) − g1(i)}. In this process, it generates a
more compressed collection π2 = [g2, h2] than π1. We repeat

this process iteratively until gt and ht cannot be increased
and decreased further. The Lattice-basedPruning algorithm is
shown in Algorithm 2. The collection returned by Algorithm 2
is denoted by π◦ = [g◦, h◦].

Lemma 4: All optimal solutions x∗ that satisfy f (x∗) =

maxx�b f (x) are contained in the collection π◦ = [g◦, h◦]

and gt � gt+1 � g◦ � x∗ � h◦ � ht+1 � ht holds for all x∗

and any t ≥ 0.
Proof: First, we show that the collection generated in

current iteration is a subcollection of that generated in previous
iteration, namely gt � gt+1 � ht+1 � ht . We prove it by
induction. In Lemma 2, we have shown that g0 = 0 � g1 �

h1 � h0 = b. For any t > 1, we assume that gt−1 � gt �

ht � ht−1 is satisfied. Given a component i ∈ [d], for any
q ≤ gt (i), we have f (ei |ht−1 − ht−1(i)ei + (q − 1)ei ) > 0.
Because of the dr-submodularity, we have f (ei |ht − ht(i)ei +

(q − 1)ei) ≥ f (ei |ht−1 − ht−1(i)ei + (q − 1)ei ) > 0, which
indicates gt � gt+1. Similarly, for any q ≤ ht+1(i), we have
f (ei |gt − gt (i)ei + (q − 1)ei ) ≥ 0. Because of the dr-
submodularity, we have f (ei |gt−1 − gt−1(i)ei + (q − 1)ei) ≥

f (ei |gt − gt(i)ei + (q −1)ei ) ≥ 0, which indicates ht+1 � ht .
Moreover, for any q ≤ gt+1(i), we have f (ei |ht − ht(i)ei +

(q −1)ei ) > 0. Due to gt � ht and dr-submodularity, we have
f (ei |gt −gt (i)ei +(q−1)ei ) ≥ f (ei |ht −ht (i)ei +(q−1)ei) >

0, which indicates gt+1 � ht+1. Thus, we conclude that
gt � gt+1 � ht+1 � ht holds for any t ≥ 0.

Then, we show that any optimal solutions x∗ are contained
in the collection π◦ = [g◦, h◦] returned by Algorithm 2,
namely g◦ � x∗ � h◦. We prove it by induction. In Lemma 3,
we have shown that g1 � x∗ � h1. For any t > 1, we assume
that gt � x∗ � ht is satisfied. Given a component i ∈ [d], for
any q ≤ gt+1(i), we have f (ei |ht − ht (i)ei + (q − 1)ei) > 0.
Because of the dr-submodularity, we have f (ei |x

∗ − x∗(i)ei +

(q −1)ei) ≥ f (ei |ht − ht(i)ei +(q −1)ei) > 0, which implies
that x∗(i) ≥ q . Otherwise, if x∗(i) < q , we have f (ei |x

∗) >

0, which contradicts the optimality of x∗, and thus, x∗ � gt+1.
Similarly, for any q > ht+1(i), we have f (ei |gt − gt(i)ei +

(q − 1)ei ) < 0. Because of the dr-submodularity, we have
f (ei |x

∗−x∗(i)ei +(q−1)ei) < f (ei |gt −gt(i)ei +(q−1)ei) <

0, which implies x∗(i) < q . Otherwise, if x∗(i) ≥ q , we have
f (ei |x

∗ − x∗(i)ei + (q − 1)ei ) < 0, which contradicts the
optimality of x∗, thus x∗ � ht+1. Thus, we conclude that
gt+1 � x∗ � ht+1 holds for any t ≥ 0, and g◦ � x∗ � h◦.
The proof of lemma is completed. �

Lemma 5: For any two vectors x, y ∈ Z
d
+ with x � y and

a dr-submodular function f : Z
d
+ → R, we have

f (y) = f (x) +

d∑

i=1

z(i)∑

j=1

f

(
ei |x +

i−1∑

k=1

z(k)∑

l=1

ek +

j−1∑

l=1

ei

)
(10)

where we define z(i) = y(i) − x(i).
To understand Lemma 5, we give a simple example here. Let

vector x and y be x = (1, 1), y = (2, 3), and subsequently,
we can see x � y and z = (1, 2). From the definition of
(10), we have f (x)+ f (e1|x)+ f (e2|x + e1)+ f (e2|x + e1 +

e2) = f (x + e1 +2e2) = f (y), which reflects the essence and
correctness of Lemma 5 definitely.
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Lemma 6: f (gt) and f (ht ) are monotone nondecreasing
with the increase of t .

Proof: We prove that f (gt) ≤ f (gt+1) and f (ht) ≤

f (ht+1). Given a component i ∈ [d], for any q ≤ gt+1(i),
we have f (ei |ht − ht(i)ei + (q − 1)ei) > 0. Because of the
dr-submodularity, we have f (ei |gt+1−gt+1(i)ei +(q−1)ei ) ≥

f (ei |ht −ht (i)ei +(q−1)ei ) > 0, where gt+1 � ht . According
to the Lemma 5, that is

f
(
gt+1

)
= f

(
gt

)
+

d∑

i=1

zt (i)∑

j=1

f

(
ei |gt +

i−1∑

k=1

zt (k)∑

l=1

ek +

j−1∑

l=1

ei

)

≥ f
(
gt

)
+

d∑

i=1

zt (i)∑

j=1

f

(
ei |gt+1 − zt(i)ei +

j−1∑

l=1

ei

)

(11)

where zt (i) = gt+1(i) − gt(i). The inequality (11) is estab-
lished since its dr-submodularity, that is, gt+

∑i−1
k=1

∑zt (k)
l=1 ek �

gt+1 − zt(i)ei definitely. Besides, since f (ei |gt+1 − zt (i)ei +∑ j−1
l=1 ei ) > 0, we have f (gt+1) ≥ f (gt). Similarly, for any

q > ht+1(i), we have f (ei |gt − gt (i)ei + (q − 1)ei ) <

0. Because of the dr-submodularity, we have f (ei |ht+1 −

ht+1(i)ei + (q − 1)ei ) ≤ f (ei |gt − gt (i)ei + (q − 1)ei) < 0,
where gt � ht+1. According to Lemma 5, that is, f (ht ) =

= f (ht+1) +

d∑

i=1

zt (i)∑

j=1

f

(
ei |ht+1 +

i−1∑

k=1

zt (k)∑

l=1

ek +

j−1∑

l=1

ei

)

≤ f (ht+1) +

d∑

i=1

zt (i)∑

j=1

f

(
ei |ht+1 +

j−1∑

l=1

ei

)
(12)

where zt (i) = ht (i) − ht+1(i). The inequality (12)
is established since its dr-submodularity, that is, ht+1 +∑i−1

k=1

∑zt (k)
l=1 ek � ht+1 definitely. Besides, since f (ei |ht+1 +∑ j−1

l=1 ei ) < 0, we have f (ht+1) ≥ f (ht). �

At this time, we can initialize x and y with x ← g◦ and
y ← h◦ instead of starting with x ← 0 and y ← b in
Algorithm 1, where the search space required to be checked
is reduced to [g◦, h◦]. Then, we are able to build the
approximation ratio for our revised lattice-based double greedy
algorithm.

Lemma 7: If we initialize Algorithm 1 by [g◦, h◦], the
solution x◦ returned by Algorithm 1 satisfies

E
[

f (x◦)
]

≥
f
(
(x∗ ∨ g◦) ∧ h◦

)
+ 1

2 ·
(

f (g◦) + f
(
h◦

))

2
.

(13)

Proof: It can be extended from the proof in
[13, Lemma 3.1]. This procedure is complicated, so we omit
here because of space limitation. �

C. Time Complexity

First, we assume that there is a value oracle for computing
the marginal gain of increasing or decreasing component
i ∈ [d] by 1. If we initialize x ← 0 and y ← b at the begin-
ning of lattice-based double greedy algorithm (Algorithm 1),
we have to take 2 ·

∑d
i=1 b(i) times together for checking each

component whether to increase or decrease it by 1. Consider
shrinking collection [0, b] to [g◦, h◦] by applying lattice-based
iterative pruning (Algorithm 2) first, and we use it to initialize
x and y at the beginning of Algorithm 1 and then running
Algorithm 1. For each component i ∈ [d], we check its
marginal gain g◦(i) + (b(i) − h◦(i)) times in the iterative
pruning, and thus, totally

∑d
i=1(g◦(i) + (b(i)− h◦(i))) times.

Then, we are required to check 2·
∑d

i=1(h◦(i)− g◦(i)) times in
subsequent double greedy initialized by [g◦, h◦]. Combining
together, we have to check

∑d
i=1(b(i) + h◦(i) − g◦(i)) ≤

2 ·
∑d

i=1 b(i) times. Hence, the time complexity is O(kbk1).
Theorem 5: For our CPM-MS problem, if we initialize

Algorithm 1 by [g◦, h◦] and f (g◦) + f (h◦) ≥ 0 is satisfied,
the marketing vector x◦ returned by Algorithm 1 is a (1/2)-
approximate solution in O(kbk1) running time.

Proof: Based on Lemma 4, we have g◦ � x∗ � h◦, and
hence, (x∗ ∨ g◦)∧ h◦ = x∗. If f (g◦)+ f (h◦) ≥ 0, we can get
that E[ f (x◦)] ≥ (1/2) · ( f (x∗) + (1/2)( f (g◦) + f (h◦))) ≥

(1/2) · f (x∗) = (1/2) · maxx�b f (x). �

From Theorem 5, it enables us to obtain the same approx-
imation ratio by applying the lattice-based double greedy
algorithm initialized by using iterative pruning if we have
f (g◦) + f (h◦) ≥ 0. According to Lemma 6, this is f (0) +

f (b) = f (g0) + f (h0) ≤ f (g1) + f (h1) ≤ · · · ≤ f (g◦) +

f (h◦). To achieve this condition f (g◦) + f (h◦) ≥ 0 is much
easier than f (0) + f (b) ≥ 0. Therefore, the applications of
Algorithm 1 with a theoretical bound are extended greatly by
the technique of lattice-based iterative prunning.

VI. SPEEDUP BY SAMPLING TECHNIQUES

However, to compute the marginal gain of profit is a
time-consuming process, and the running time is given by
Theorem 3, which is not acceptable in a large-scale social
graph as well as a large searching space. In this section,
we discuss how to reduce their running time by sampling
techniques.

A. Sampling Techniques

To overcome the #P-hardness of computing the objective
f (·), we borrow from the idea of RIS [14]. In the beginning,
consider traditional IM problem, and we need to introduce
the concept of reverse reachable set (RR-set) first. Given
a triggering model � = (G,D), a random RR-set can be
generated by selecting a node u ∈ V uniformly and sampling
a graph realization g from �, and then collecting those nodes
can reach u in g. RR-sets rooted at u is the collected nodes that
are likely to influence u. A larger expected influence spread
a seed set S has, the higher the probability that S intersects
with a random RR-set is. Given a seed set S and a random
RR-set R, we have σ(S) = n · Pr[R ∩ S 6= ∅].

Extended to the lattice domain, given a marketing vector
x, its expected influence spread under the triggering model �

can be denoted by µ(x) = n · ER[1 −
∏

u∈R(1 − hu(x))] [25].
Let R = {R1, R2, . . . , Rθ } be a collection of random RR-sets
generated independently, and we have

f̂ (R, x) =
n

θ
·
∑

R∈R

(
1 −

∏

u∈R

(1 − hu(x))

)
− c(x) (14)
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Algorithm 3 DG-IP-RIS

Input: f̂ : R × Z
d
+ → R, b ∈ Z

d
+, (ε1, ε2, ε3), δ

Output: x̂ ∈ Z
d
+

1: Initialize: θ1 define on (16)
2: O PT ← OptEstimation( f̂ , b, θ1)

3: Initialize: θ2, θ3 defined on (17) (18)
4: θ ← max(θ1, θ2, θ3)

5: Generate a collection of random RR-sets R with |R| = θ

6: [ ĝ◦, ĥ
◦
] ← Lattice-basedPruning( f̂ (R, ·), b)

7: x̂ ← Lattice-basedDoubleGreedy( f̂ (R, ·), [ ĝ◦, ĥ
◦
])

8: return x̂

that is an unbiased estimator of f (x). From here, the vector x

that maximizes f̂ (R, x) will be close to the optimal solution
intuitively and more and more close with the increase of
|R|. Similar to f (x), fix the collection R and f̂ (R, x)

is dr-submodular, but not monotone as well. By Theorem
5, Algorithm 1 offers a (1/2)-approximation if f̂ (R, g◦) +

f̂ (R, h◦) ≥ 0 is satisfied after the process of pruning.
Now, we begin to design our algorithm based on the idea of

reverse sampling. First, we need to sample the enough number
of random RR-sets so that its estimation to the objective
function is accurate. Let ε1, ε2, and ε3 be three adjustable
parameters, where they satisfy

ε2 + (1/2) · ε3 = ε (15)

where ε1, ε2, and ε3 > 0. Then, we can set that

θ1 =

√√√√n2 · ln
(

3δ ·
∏d

i=1(b(i) + 1)
)

2ε2
1

(16)

θ2 =
n
(
2n + ε2

2 · OPT
)
· ln

(
3δ ·

∏d
i=1(b(i) + 1)

)

ε2
2 · OPT2 (17)

θ3 =
2n2 · ln(3δ)

ε2
3 · OPT2 (18)

where the OPT is the lower bound of the optimal objective
f (x∗). The algorithm that combining double greedy with
reverse sampling and iterative pruning, called DG-IP-RIS
algorithm, is shown in Algorithm 3.

In DG-IP-RIS algorithm, we estimate the number of random
RR-sets θ in line 4 and then generate a collection R of random
RR-sets with the size of θ . The objective f̂ (R, ·) is computed
based on this R, from which we are able to get a solution
by iterative pruning and double greedy algorithm. In the first
step, we require to compute a lower bound of optimal value
f (x∗), which is shown in Algorithm 4. Here, we increase
the component by 1 with the largest marginal gain at each
iteration until there is no component having positive marginal
gain. After the while loop, we can obtain a vector x and set
OPT ← f̂ (R, x) − 2ε1 because Pr[| f̂ (R, x) − f (x)| ≤ ε1] is
satisfied with a high probability under the setting of θ1. Like
this, we have OPT > 0 as well because the largest marginal
gain should be greater than 0 due to the dr-submodularity or
else the definition of our problem is not valid and meaning-

Algorithm 4 OptEstimation

Input: f̂ : R × Z
d
+ → R, b ∈ Z

d
+, θ1

Output: O PT

1: Initialize: x ← 0, t ← 0
2: Generate a collection of random RR-sets R with |R| = θ1

3: while t <
∑d

i=0 b(i) do

4: i∗ ← arg maxi∈[d],x(i)<b(i) f̂ (ei |R, x)

5: if f̂ (ei∗ |R, x) ≤ 0 then

6: Break
7: end if

8: x ← x + ei∗ , t ← t + 1
9: end while

10: O PT ← f̂ (R, x) − 2ε1

11: return O PT

less. For convenience, given a random RR-set R, we denote
p(R, x) = 1 −

∏
u∈R(1 − hu(x)) in subsequent proof.

Lemma 8: The OPT returned by Algorithm 4 satisfies
f (x∗) ≥ OPT with at least 1 − 1/(3δ) probability.

Proof: For any marketing vector x, we want to obtain
Pr[| f̂ (R, x) − f (x)| ≥ ε1] ≤ 1/(3δ ·

∏d
i=1 b(i)). By the addi-

tive form of Chernoff–Hoeffding inequality, it is equivalent to
compute, that is

Pr

[∣∣∣∣
1

θ1

∑
p(Ri , x) −

µ(x)

n

∣∣∣∣ ≥
ε1

n

]
≤ exp

(
−

2θ2
1 ε2

1

n2

)
.

When θ1 is defined as (16), we have 1/(3δ ·
∏d

i=1(b(i) +

1)) = exp(−2θ2
1 ε2

1/n2) definitely. By the union bound, the
above relationship holds for the x0 generated in line 10 of
Algorithm 3 with a probability less than 1/(3δ). �

Remark 1: Given a marketing vector x � b, for each
component i ∈ [d], the possible values of x(i) are
{0, 1, 2, . . . , b(i)}, and thus, the number of possible values
for x(i) is b(i) + 1. Thereby, the total number of possible
combinations for vector x is

∏d
i=1(b(i) + 1), which explains

why the union bound in the previous lemma happened.
Lemma 9 (Chernoff Bounds [28]): Given a collection Z =

{Z1, Z2, . . . , Zθ }, each Z i ∈ [0, 1] is an independent identi-
cally distributed (i.i.d.) random variable with E[Z i ] = ν, and
we have

Pr

[
θ∑

i=1

Z i ≥ (1 + γ ) · νθ

]
≤ exp

(
−

γ 2 · νθ

2 + γ

)
(19)

Pr

[
θ∑

i=1

Z i ≤ (1 − γ ) · νθ

]
≤ exp

(
−

γ 2 · νθ

2

)
(20)

where we assume that γ > 0.
Lemma 10: Given a collection R with |R| = θ2, for any

marketing vector x � b, it satisfies f̂ (R, x) − f (x) < ε2 ·

f (x∗) with at least 1 − 1/(3δ) probability.
Proof: For any marketing vector x, we want to obtain

Pr[ f̂ (R, x) − f (x) ≥ ε2 · f (x∗)] ≤ 1/(3δ ·
∏d

i=1(b(i) + 1)).
By the Chernoff bound, defined as (19), it is equivalent to
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compute, that is

Pr

[∑
p(Ri , x) ≥

(
1 +

ε2 f (x∗)

µ(x)

)
·
µ(x)θ2

n

]

≤ exp

⎛
⎜⎝−

(
ε2 f (x∗)

µ(x)

)2
·

µ(x)θ2

n

2 +
ε2 f (x∗)

µ(x)

⎞
⎟⎠. (21)

From Lemma 9 and µ(x) ≤ n, we have

(21) ≤ exp

(
−

θ2 · ε2
2 · OPT2

n ·
(
2n + ε2 · OPT

)
)

≤
1

3δ ·
∏d

i=1(b(i) + 1)
.

By the union bound, the above relationship holds for any
x � b with at most 1/(3δ) probability. �

Lemma 11: Given a collection R with |R| = θ3, for an
optimal solution x∗, it satisfies f̂ (R, x∗)− f (x∗) > −ε3· f (x∗)

with at least 1 − 1/(3δ) probability.
Proof: For an optimal solution x∗, we want to obtain

Pr[ f̂ (R, x∗) − f (x∗) ≤ −ε3 · f (x∗)] ≤ 1/(3δ). By the
Chernoff bound, defined as (20), it is equivalent to compute,
that is

Pr

[∑
p
(
Ri , x∗

)
≤

(
1 −

ε3 f (x∗)

µ(x∗)

)
·
µ(x∗)θ2

n

]

≤ exp

⎛
⎜⎝−

(
ε3 f (x∗)

µ(x∗)

)2
· µ(x∗)θ3

n

2

⎞
⎟⎠. (22)

From Lemma 9 and µ(x) ≤ n, we have

(22) ≤ exp

(
−

θ3 · ε2
3 · OPT2

2n2

)
≤

1

3δ
.

The above relationship holds for the optimal solution x∗

with at most ≤ 1/(3δ) probability. �

B. Time Complexity

First, we consider the running time of Algorithm 3.
Given a collection R with |R| = θ = max{θ1, θ2, θ3},
we have θ = O(n2). To compute f̂ (R, ·), it takes
O(θn) time, and to generate a random RR-set, it takes
O(m) times. Thus, the time complexity of Algorithm 3
is O(mθ + kbk1 · nθ) = O((m + n)n2). Besides, this running
time can be reduced further. Look at the forms of (16)–(18),
θ1 is apparently less than θ2 and θ3. Therefore, we are able
to select the remaining two parameters (ε2, ε3) such that
(ε2, ε3) = arg minε2+(1/2)·ε3=ε max{θ2, θ3}.

Let x̂◦ be the result returned by Algorithm 3. If f̂ (R, x̂◦)

and f̂ (R, x∗) are accurate estimations to f (x̂◦) and f (x∗),
we can say that this solution x̂ has an effective approximation
guarantee, which is shown in Theorem 6.

Theorem 6: For our CPM-MS problem, if it satisfies
f̂ (R, ĝ◦)+ f̂ (R, ĥ

◦
) ≥ 0, for any ε ∈ (0, 1/2) and δ > 0, the

marketing vector x̂◦ returned by Algorithm 3 is a (1/2 − ε)-
approximation solution with at least 1 − 1/δ probability in
O((m + n)n2) running time.

Proof: Based on Lemma 10, f̂ (R, x̂◦) − f (x̂◦) < ε2 ·

f (x∗) holds with at least 1 − 1/(3δ) probability, and on
Theorem 5, we have f̂ (R, x̂◦) ≥ (1/2) · f̂ (R, x∗). Thus,

TABLE I

DATA SETS STATISTICS (K = 103)

f (x̂◦) ≥ f̂ (R, x̂◦)−ε2 · f (x∗) ≥ (1/2) · f̂ (R, x∗)−ε2 · f (x∗).
By Lemma 11, f̂ (R, x∗) − f (x∗) > −ε3 · f (x∗) holds with
at least 1 − 1/(3δ) probability, and thus, we have f (x̂◦) ≥

(1/2 − (ε2 + 1/2 · ε3)) · f (x∗) = (1/2 − ε) · f (x∗). Combined
with that f (x∗) ≥ OPT holds with 1 − 1/(3δ), by the union
bound, (23) holds with at least 1 − 1/δ probability. �

VII. EXPERIMENTS

In this section, we carry out several experiments on dif-
ferent data sets to test the efficiency of DG-IP-RIS algorithm
(Algorithm 3) and its effectiveness compared to other heuristic
algorithms. All of our experiments are programmed by python
and run on Windows machine. There are four data sets used
in our experiments.

1) NetScience [29]: A coauthorship network, coauthorship
among scientists to publish papers about network sci-
ence.

2) Wiki [29]: A who-votes-on-whom network, which come
from the collection Wikipedia voting.

3) HetHEPT [30]: An academic collaboration relationship
on high-energy physics area.

4) Epinions [30]: A who-trust-whom OSN on Epin-
ions.com, a general consumer review site. The statistics
information of these four data sets is represented in
Table I. For undirected graph, each undirected edge is
replaced with two reversed directed edges.

A. Experimental Settings

We test different algorithms based on the IC-/LT-model. For
the IC-model, the diffusion probability puv for each (u, v) ∈ E

is set to the inverse of v’s in-degree, i.e., puv = 1/|N−(v)|,
and for the LT-model, the weight buv = 1/|N−(v)| for each
(u, v) ∈ E is set as well, which are adopted by previous studies
of IM widely [3], [14]–[16], [20]. Then, we need to consider
our strategy function, that is

hu(x) = 1 −
∏

i∈[d]

x(i)∏

j=1

(
1 − η j−1 · rui

)
(23)

where η ∈ (0, 1) is an attenuation coefficient and rui ∈ [0, 1]

for u ∈ V and i ∈ [d], where a unit of investment to marketing
action Mi activates user u to be a seed with the probability
rui , and each activation is independent. Here, we define vector
ru = (ru1, ru2, . . . , rud).

We assume that there are five marketing action totally,
namely x = (x1, x2, . . . , x5) and d = 5, and b =

{5}d . Thus, x(i) ≤ 5 for each i ∈ [5]. Besides, we set
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TABLE II

PARAMETERS SETTING FOR ALGORITHMS THAT ADOPT

SPEEDUP BY SAMPLING TECHNIQUES

η = 0.8, {ru1, ru3} is sampled from [0, 0.1], and {ru2, ru4, ru5}

is sampled from [0, 0.05] uniformly. Apparently, hu(x) is
monotone and dr-submodular with respect to x. For example,
consider a marketing vector x = (1, 3, 0, 0, 2) and a node
u with ru = (0.1, 0.04, 0.08, 0, 0.05), and we have hu(x) =

1−[(1−0.1)][(1−0.04)(1−0.8×0.04)(1−0.82×0.04)][(1−

0.05)(1−0.8×0.05)] = 0.257 definitely. For the cost function
c, we adopt a uniform cost distribution. The cost ci for a unit
of marketing action Mi , i ∈ [d], is set as ci = λ·n/kbk1, where
λ ≥ 0 is a cost coefficient. The cost coefficient λ defined above
is used to regulate the effect of cost on objective function. For
example, f (·) is monotone dr-submodular if λ = 0. When we
set λ = 1, it implies f (b) = 0 if all users in a given social
network can be influenced by full marketing vector b or else
this profit is negative. If λ > 1, we have f (b) < 0 definitely.

In addition, the number of MC simulations for each estima-
tion to profit function is 2000. For those algorithms that adopt
speedup by sampling techniques, the parameters setting of four
data sets is shown in Table II. Next, we denote that “XXX”
is achieved by MC simulations, but “XXXS” is achieved with
speedup by sampling techniques. The algorithms we compare
in this experiment are shown as follows.

1) DG(S): Lattice-based double greedy feed with [0, b].
2) DGIT(S): Lattice-based double greedy feed with the

collection returned by lattice-based iterative pruning.
3) Greedy(S): Select the component with maximum mar-

ginal gain until no one has positive gain.
4) Random: Select the component randomly until reaching

negative marginal gain.

B. Experimental Results

Figs. 1 and 2 show the expected profit and running
time produced by different algorithms under the IC-model
and LT-model, respectively. From the left columns of
Figs. 1 and 2, the expected profits decrease with the increase
of cost coefficient, which is obvious because a larger cost
coefficient implies a larger cost for a unit of investment. Its
trend is close to the inverse proportional relationship, namely
f ∝ (1/λ). Then, the expected profits achieved by DG,
DGIT, DGS, and DGITS(DG-IP-RIS) only have very slight
even negligible gaps. By comparing the performance between
DG and DGS (between DGIT and DGITS), it can show that
speedup by sampling techniques is completely effective, which
can estimate the objective function accurately. By compar-
ing the performance between DG and DGIT (between DGS
and DGITS), it can prove that the optimal solution lies in

Fig. 1. Performance and running time comparisons among different algo-
rithms under the IC-model. (a) NetScience, Performance. (b) NetScience,
Time (s). (c) Wiki, Performance. (d) Wiki, Time (s). (e) HetHEPT, Per-
formance. (f) HetHEPT, Time (s). (g) Epinions, Performance. (h) Epinions,
Time (s).

the shrinked collection returned by iterative pruning because
DGIT does not make the performance of original DG worse.
It means that the expected profit will not be reduced at least if
we initial double greedy with the shrinked collection returned
by iterative pruning. However, doing such a thing can provide
a theoretical bound, so as to avoid some extreme situations.
In addition, even if Greedy(S) gives a satisfactory solution in
our experiment, there are still some exceptions, for example,
in Figs. 1(c) and 2(g). It happens in some positions with larger
cost coefficients.

From the right columns of Figs. 1 and 2, the trend of
running time with cost coefficient is a little complex, but
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Fig. 2. Performance and running time comparisons among different algo-
rithms under the LT-model. (a) NetScience, Performance. (b) NetScience,
Time (s). (c) Wiki, Performance. (d) Wiki, Time (s). (e) HetHEPT, Per-
formance. (f) HetHEPT, Time (s). (g) Epinions, Performance. (h) Epinions,
Time (s).

there are two apparent characteristics. First, by comparing
between DG and DGS (between DGIT and DGITS or between
Greedy and GreedyS), we can see that their running times
are reduced significantly by our sampling techniques. Here,
in order to test the running time of different algorithms, we do
not use parallel acceleration in our implementations. Generally
speaking, the running times of algorithms implemented by
sampling do not exceed 10% of the corresponding algorithms
implemented by MC simulations in average. Second, look
at DGS and DGITS, their running times increase with the
increase of cost confidence. This is because the lower bound of
optimal solution returned by Algorithm 4 will be smaller and

TABLE III

SUM OF INITIALIZED OBJECTIVE VALUE UNDER THE IC-MODEL

TABLE IV

SUM OF INITIALIZED OBJECTIVE VALUE UNDER THE LT-MODEL

smaller as cost efficient grows, resulting in a larger θ2 and θ3.
Hence, the number of random RR-sets needed to be generated
and searched will increase certainly. Third, by comparing
between DGS and DGITS, their running times are roughly
equal, as shown in Figs. 1(f) and (h) and 2(f) and (h). It infers
that initializing by iterative pruning will not increase the time
complexity actually, which is very meaningful.

Tables III and IV show the effect of lattice-based iterative
prunning on the sum of initialized objective values under the
IC-model and LT-model, where we denote A = f (0) + f (b)

and B = f (g◦)+ f (h◦) for convenience. When cost coefficient
λ ≥ 1, A < 0 in all cases, and thus, there is no approximation
guarantee if we run double greedy algorithm feed with [0, b]

directly. However, with the help of iterative prunning, B ≥ 0
holds for most of cases. Like this, our DGIT(S) algorithm is
able to offer a (1/2 − ε)-approximate solution according to
Theorems 5 and 6.

VIII. CONCLUSION

In this article, we propose the continuous PM problem
first, and based on it, we study unconstrained dr-submodular
problem further. For UDSM problem, lattice-based double
greedy is an effective algorithm, but there is not approximation
guarantee unless all objective values are nonnegative. To solve
it, we propose lattice-based iterative pruning and derive it
step-by-step. With the help of this technique, the possibility
of satisfying nonnegative is enhanced greatly. Our approach
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can be used as a flexible framework to address the UDSM
problem. Then, back to the CPM-MS problem, we design a
speedup strategy by using sampling techniques, which reduces
its running time significantly without losing approximation
guarantee. Eventually, we evaluate our proposed algorithms on
four real networks and the results validate their effectiveness
and time efficiency thoroughly.
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