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We endow each closed, orientable Alexandrov space (X, d) with an
integral current T of weight equal to 1, 9T = 0 and set(T) = X, in
other words, we prove that (X,d,T) is an integral current space
with no boundary. Combining this result with a result of Li and
Perales, we show that non-collapsing sequences of these spaces with
uniform lower curvature and diameter bounds admit subsequences
whose Gromov-Hausdorff and intrinsic flat limits agree.
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1. Introduction

There exist a wealth of notions for convergence of sequences of Riemannian
manifolds, among them are C*“-convergence (see e.g. [30]) and Gromov-
Hausdorff convergence of metric spaces [6]. More recently, Sormani and
Wenger [38] introduced another notion of convergence, the intrinsic flat
convergence of integral current spaces. This notion is based on the flat dis-
tance between integral currents in Euclidean space developed by Federer
and Fleming in [5], which was subsequently extended to metric spaces by
Ambrosio and Kirchheim [1]. In [38] Sormani and Wenger motivate the in-
troduction of intrinsic flat convergence by the following example: spheres
with increasingly many splines where the total volume of splines decay to
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zero, converge in the intrinsic flat sense to spheres but not in the Gromov-
Hausdorff sense. There are numerous interesting applications of intrinsic flat
convergence, several of them to General Relativity (see e.g. [10], [11], [14],
[15]).

The study of Alexandrov spaces has been largely motivated by the
fact that they are a generalization of Riemannian manifolds with curvature
bounded from below. The relationship between Riemannian and Alexandrov
geometry has been used repeatedly to solve difficult problems in Riemannian
geometry: for example, in Perelman’s solution to Thurston’s Geometrization
conjecture for 3-manifolds, a structure theorem for 3-manifolds that collapse
with a uniform lower curvature bound plays a crucial role (see [25], [26], [27]).

Examples of Alexandrov spaces include limits of Gromov-Hausdorff se-
quences of Riemannian manifolds with sectional curvature bounded from
below, as well as all quotients of Riemannian manifolds with lower curva-
ture bounds under isometric group actions. It is a longstanding conjecture
that not all Alexandrov spaces belong to the closure of the space of Rieman-
nian manifolds with a lower curvature bound (see e.g. [13], [31]). However,
since smooth oriented Riemannian manifolds of finite volume can be viewed
as integral current spaces, it is then natural to ask:

Which Alexandrov spaces can be endowed with integral current structures?

In this paper we begin the study of this question by considering Alexan-
drov spaces without boundary. We will prove the following theorem:

Theorem A. Let (X,d) be a closed, oriented, n-dimensional Alexandrov
space with curvature bounded below by k. There exists an integral current
structure T with weight equal to 1 defined on X such that (X,d,T) is an
n-dimensional integral current space.

Li and Perales [16] study sequences of integral current spaces (X}, d;, Tj)
such that 07} = 0. In the noncollapsing case they prove that if the integral
currents T); have weight 1 and (X}, d;) are Alexandrov spaces with uniform
lower curvature and upper diameter bounds, then the Gromov-Hausdorff
and intrinsic flat limits of the sequence (Xj;,d;,T;) agree.

Theorem 1.1. [16] Let (X;,d;,T;) be n-dimensional integral current spaces
with weight 1 and no boundaries. Suppose that (X;,d;) are Alexandrov spaces
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with nonnegative curvature and diam(X) < D. Then either the sequence con-
verges to the zero integral current space in the intrinsic flat sense

(X;,d;, T;) 50

or a subsequence converges in the Gromov-Hausdorff sense and intrinsic flat
sense to the same space, namely

GH
(Xjk7 djk) — (X7 d)

and
(X, dj,, Tj) = (X,d,T).

The following theorem immediately follows from Theorems A and 1.1.

Theorem B. Let X; be closed oriented n-dimensional Alexandrov spaces
with curvature bounded below by k. Suppose further that diam(X;) < D and
the sequence is non-collapsing. Then the X; can be made into n-dimensional
integral current spaces in a way that a subsequence converges in the intrinsic
flat and Gromov-Hausdorff sense to the same metric space.

We note that the relationship between intrinsic flat limits and Gromov-
Hausdorff limits of sequences has been studied previously. Sormani and
Wenger [39] prove these limits agree for sequences of closed Riemannian
manifolds with nonnegative Ricci curvature, diameter bounded above, and
volume bounded below by a positive constant. For the case of Riemannian
manifolds with boundary, Perales [24] shows that under the same conditions
these limits agree. Munn [21] proves for closed Riemannian manifolds, that
this statement is also true when nonnegative Ricci curvature is substituted
by two sided bounds on the Ricci curvature. Matveev and Portegies then
show that this result extends to sequences of manifolds with an arbitrary
uniform lower bound on Ricci curvature, and that the limiting current is es-
sentially unique [18]. In particular, this tells us that Alexandrov spaces which
arise as limits of sequences of Riemannian manifolds with lower curvature
bounds admit integral current structures.

Organization

This paper is structured as follows. In Section 2, we introduce the tools and
results necessary for the proof of Theorem A. In Section 3, we introduce a
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new definition of orientability in Alexandrov spaces using strainers, which
will allow us to define oriented atlases for our spaces in the sense of Federer
(see Definition 2.3). Finally, in Section 4, we prove Theorem A.
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2. Preliminaries

In this section we gather the definitions and tools we will need to prove
Theorem A. In Subsection 2.1, we present basic materials on orientation in
rectifiable spaces, in Subsection 2.2 we present the material we will need
from Alexandrov geometry, and in Subsection 2.3 we go over the definitions
and basic tools we will need from the theory of Integral Current Spaces.

2.1. Countably H™ rectifiable spaces

In this subsection we establish properties related to orientation of a count-
ably H™ rectifiable space, where H™ denotes the n dimensional Hausdorff
measure. We first recall the definition of such a space.
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Definition 2.1 (Countably H" rectifiable space). Given Borel measur-
able sets A; C R", we say that a metric space X is countably H™ rectifiable
if and only if there exist countably many Lipschitz maps ¢; : A; — X such

that
H" (X \ U %’(Ai)> =0.
i=1

In defining an orientation on a countably H" rectifiable space, we first
need an atlas. We now recall the definition of an atlas for a countably H"
rectifiable space, as given in Federer [4].

Definition 2.2 (Atlas of rectifiable space). For a countably H" rectifi-
able space, X, a bi-Lipschitz collection of charts {A;, {¢;}}, where ¢; : 4; C
R™ — X, is called an atlas of X.

An orientation on a countably H" rectifiable space is now defined via
an oriented atlas as follows.

Definition 2.3 (Oriented atlas). Suppose we have a countably H" rec-
tifiable space X . Then we say that we have an oriented atlas if

det(V(p7 0 ;)) > 0

7

for all overlapping charts almost everywhere on ¢;(A;) N ¢;(A;).

Definition 2.4 (Orientation). An orientation on a countably H" recti-
fiable space X is an equivalence class of atlases where two atlases, {A;, i},
{A;,¢;} are considered to be equivalent if their union is an oriented atlas.

Remark 2.5. Given an orientation, [{A;, p;}], we can choose a represen-
tative atlas, {A;, p;}, such that the charts are pairwise disjoint, ¢;(4;) N
¢;(A4;) =0, and the domains A; are precompact. We call such an oriented
atlas a preferred oriented atlas.

2.2. Alexandrov spaces

Recall that a complete, finite dimensional length space (X, d) is an Alexan-
drov space if it has curvature bounded from below by some k > 0 in the
sense of Alexandrov (see e.g. [2]). Finite dimensional Alexandrov spaces are
known to be locally compact [2]. Furthermore, complete, locally compact,
intrinsic metric spaces are proper, that is, their bounded closed subsets are
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compact (cf. [33]). We also recall that a metric space is first countable. Let
X be an Alexandrov space, then for any x € X and for r € ZT consider the
countable exhaustion of X by metric balls B,.(z). Since X is proper, each ball
endowed with the subspace topology is precompact and first countable and
hence second countable. Furthermore, a metric space is second countable if
and only it it is separable. Hence Alexandrov spaces are separable.

In an Alexandrov space, the unit tangent space to a point is the space of
directions, ¥, which is defined to be the completion of the space of geodesic
directions at x. Observe that X, is itself a compact Alexandrov space with
curvature bounded below by 1. For p,q € X, we will denote the set of all
directions at p corresponding to minimizing geodesics from p to q by 3. If
there is a unique minimizing direction between p and ¢, we will denote it

by 13-

We make the following distinction between types of points in an Alexan-
drov space, based on their space of directions. That is, we call a point x € X
regular if ¥, is isometric to S"~1(1), the (n — 1)-dimensional unit round
sphere, and singular otherwise. We will denote the set of all regular points
in X by Rx and the set of singular points by Sx.

Next we introduce a technical tool for the introduction of a local co-
ordinate system, the so-called strainers, originally defined in [3]. We use
<(p,x,q) to denote the angle at = of the geodesic triangle at A(pzq) C X.
We use <t(i,n) to denote the angle between the two directions p,n € X,
We use <(p,x,q) to denote the comparison angle, that is the angle of the
geodesic triangle A(p:cq) in the simply connected n dimensional Riemannian
manifold with constant sectional curvature equal to x, M.

Definition 2.6 (Strainers). Let X be an Alexandrov space. A point x €
X is said to be (n, §)-strained by the strainer {(a;, b;)};-; C X x X provided
that for all i # j we have

We say B C X is an (n,0)-strained set with strainer {(a;,b;)};—; pro-
vided every point z € B is (n, d)-strained by {(a;, b;)};;.

Following the convention in [2], if 6 < 1/100n, then we call an (n,d)-
strainer an n-strainer.
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Definition 2.7 (Strainer number). [2] The strainer number of an Alexan-
drov space X is the supremum of numbers n such that there exists an n-
strainer in X.

We will denote the set of all (n,d)-strained points of X by Rx(yg). In
general, we will work with the set Ry, ) rather than X itself, as many
properties of X can be expressed in terms of Rx(, ). In particular, Rx, s)
satisfies a number of very useful properties, which we detail below.

The following Theorem from [2] characterizes the set of (n,J)-strained
points.

Theorem 2.8 (10.8.23 in [2]). Let X be an n-dimensional Alexandrov
space. Then for every § > 0 the set of (n,d)-strained points, that is, Rx s,
is an open dense set in X.

Moreover, we can also show that Rx(,s) is path connected and hence
connected, as follows.

Lemma 2.9. The set of (n,d)-strained points, Rx(n5), is path-connected.

Proof. Let z,y € Rx(ns). Consider 7 : [0,1] — X, a geodesic from x to y.
By Theorem 1.1 in [32], it follows that the spaces of directions along the
interior of a geodesic are isometric to each other. Since both x and y are
(n,0)-strained, we can find open neighborhoods around x and y that are
also (n, d)-strained and hence the interior points of v are (n, d)-strained and
the result follows. O

The theorem below shows that the space of directions ¥, at an (n,0d)-
strained point x, is almost isometric to a round sphere.

Theorem 2.10. [3] Let X be a complete (n — 1)-dimensional space with
curvature > 1 which has an (n,d)-strainer {(a;,b;)};—_,. Then for small 6 >
0, X is almost isometric to the unit sphere S"~'(1), that is, there exists a
homeomorphism f : X — S"1(1) such that

17 (r) f(@)| = |rall < 7(8)|rq]

is satisfied for any q,v € X, where 7(8) is a function satisfying lims_,o 7(0) =
0.

In fact, by Corollary 9.6 from [3], upon making ¢ smaller if necessary,
Rx(n,5) consists entirely of interior points.



122 Jaramillo, Perales, Rajan, Searle, and Siffert

Corollary 2.11. [3] Let X be a complete (n — 1)-dimensional space with
curvature > 1 which has an (n, §)-strainer {(a;, b;) };—,. Then, for sufficiently
small § > 0,

1) X has no boundary; and

2) The set of (n,d)-strained points in an n-dimensional Alexandrov space
with curvature bounded below are interior points.

Moreover, for every 6 > 0, the set Rx is contained in the set Rx(, ). In
fact, Rx is the intersection of the (n,d)-strained points, as detailed in the
theorem below.

Theorem 2.12. [2] The set of regular points, Rx, in an Alexandrov spaces
is dense and moreover is an intersection of a countable collection of open
dense sets. More precisely, Rx = NienRx(n,1/4)-

Using the fact that the set of regular points is the intersection of the
sets Rx(n,1/4), the following result is obtained in Otsu and Shioya [23].

Theorem 2.13. /23] Let X be an n-dimensional Alezandrov space. The set
Sx of singular points in X is of Hausdorff dimension <n — 1.

Corollary 2.14. [3] The Hausdorff dimension of X \ Rx(,.s) is less than
or equal ton — 1.

Proof. We have Rx C Rx(n) and thus X \ Rx(, s C Sx. O

For the special case of Alexandrov spaces without boundary there are
better results.

Lemma 2.15. [Remark 10.6.1 in [3]] Let X be an Alexandrov space X
without boundary. Then the set X \ Rx(,s) is of Hausdorff codimension 2
or greater.

For completeness we give the proof.

Proof. Suppose that there exists an (n — 1)-strained point. Since there is
no boundary this point is an interior point. By Corollary 12.8 in [3], any
(n — 1)-strained interior point is also an n-strained point. Recall that if a
(n, d)-strained point exists, then the Hausdorff dimension of X is at least n.
This establishes a contradiction to Corollary 2.14 and thus there exists no
(n — 1)-strained points. O
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Corollary 2.16. The set of singular points, Sx, in an Alerandrov space
without boundary has codimension 2 or greater.

The proof follows in an analogous fashion to that of Corollary 2.14 and
we leave it to the reader.

Now, for each point x € Rx (), there exist bi-Lipschitz maps in a neigh-
borhood of x. If x € Rx these Lipschitz constants can be made arbitrarily
close to 1. In particular, we have the following theorem (see Theorems 10.8.4,
10.8.18 and 10.9.16 in [2]).

Theorem 2.17. [2] If x € X is an n-strained point and n equals the lo-
cal strainer number at x, then x has a neighborhood which is bi-Lipschitz
homeomorphic to an open region in R™. A bi-Lipschitz homeomorphism is
provided by distance coordinates associated with any n-strainer. Moreover
the Lipschitz constants of this map and its inverse are not greater than 500n.

Theorem 2.18. [2] Let n > 1 be an integer and € > 0. Then there is § > 0
such that every (n,d)-strained point in any n-dimensional Alexandrov space
has a neighborhood which is bi-Lipschitz homeomorphic to an open region in
R™. Moreover the Lipschitz constants of this map and its inverse are bounded
byl —€eand1+e.

We can now use Theorem 2.18 to construct an atlas for an Alexandrov
space that will be compatible with the definition of an atlas for a countably
‘H"™ rectifiable space (see Definition 2.2).

Theorem 2.19. Given € > 0, there exists an atlas {A;,{pi}} of X such
that i : Ai = Rx(ns) are bi-Lipschitz with uniform bi-Lipschitz constants
bounded between 1 — € and 1+ €. Furthermore, the images of the @; can be
made to be disjoint.

Proof. Since open subsets of separable metric spaces are separable, it follows
that Ry, s) is separable. Let {zi}ier be a countable, dense collection of
points in Ry, ). Around each z; € Rx(, ), consider an open neighborhood
Uz, C Rx(ns) and a bi-Lipschitz map fz, : Uy, — R", as in Theorem 2.18.
The union U U; covers all of Ry, 5) since the {z;}ier are dense in Rx(n,s)-
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We can now construct a countable collection of maps on the set of (n, §)-
strained points, Rx (). We define ¢; fz,(Uz,) = X by

wi = ol

Setting A1 = fz,(Ug,) and A; = fo,(Ug, \ U;;ll U,,) for i > 1 we obtain Borel
sets and can restrict the ; to these to obtain bi-Lipschitz functions with
disjoint images. Thus we have constructed an atlas, {A;,{¢;}}, which is
countable, whose maps are bi-Lipschitz, whose images are disjoint and such
that the collection {U;} covers Rxy, 4)- O

In order to make sure the charts in an atlas for an Alexandrov space
satisfy the Federer definition of orientability (see Definition 2.3), we will need
to be able to differentiate distance functions. However, in our case, we only
require the directional differentiability of distance functions. In particular,
for f = dist(p, - ), we have

(2'1) dpf(vs) = _?eliﬂl%@}mg> = _<U57ﬂg>'

We also recall the following lemma of Lytchak [17]:

Lemma 2.20. Letf: X - Y andg:Y — Z be Lipschitz maps with f(x) =
y and g(y) = z. If f is differentiable at x and g is differentiable at y, then
go f is differentiable at x with differential Dy(go f) = Dygo Dy f.

Finally, we recall the Bishop and Bishop-Gromov inequalities for Alexan-
drov spaces here, as they will be needed for the proof of Theorem A.

Theorem 2.21 (Bishop inequality). [2/ Let X be an n-dimensional
Alexandrov space of curvature > k, then for every x € X and everyr >0

H™(Br(z)) < Vig(r),

where H™(By(x)) is the n-dimensional Hausdorff measure of the ball of ra-
dius r > 0 centered at x and V,,(r) is the volume of a ball of radius r in the
space form M.
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Theorem 2.22 (Bishop-Gromov inequality). [2/ Let X be an n-dimen-
sional Alexandrov space of curvature > k. Then for every x € X the ratio

H"(B(z))
Vi (1)
s nonincreasing in v. In other words, if R > r > 0, then

H"(Br(z)) _ H"(B:(x))
Ve(R) = Vi(r)

2.3. Integral current spaces

The aim of this subsection is to review the definition of m-dimensional inte-
gral current space as defined by Sormani-Wenger [38]. In order to do so we
review previous definitions given in [1] such as m-dimensional current, m-
dimensional integer rectifiable current and m-dimensional integral current.
Moreover, we list basic results about currents and current spaces.

Let (Z,d) be a metric space. Define D" (Z) to be the collection of (m +
1)-tuples of Lipschitz functions where the first entry function is bounded,
that is,

D™MZ) = {(f,m) = (fim,-- . 7m) |
f,m : Z — R Lipschitz and f is bounded}.

When Z = R™, a basic example of an m-dimensional current there is
[n] : D™(R™) — R where h : A C R™ — Z is an L' function, and [h] is given
by

[h] (f, ) = / hf det (V) da.

ACR™
For easy reference, we begin with a list of notations that will be explained
below:

M, (Z) = {m — dimensional currents on Z},
T (Z) = {m — dimensional integer rectifiable currents on Z},

I, (Z) = {m — dimensional integral currents on Z}.
We note that
Ly (Z) C I (Z) € M (Z).

We are now ready to define an m-dimensional current, its mass, and the
associated operators of boundary, pushforward and restriction.
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Definition 2.23 (Current). Let Z be a complete metric space. A mul-
tilinear functional 7" : D™(Z) — R is called an m-dimensional current if it
satisfies the following:

1) If there is an ¢ such that m; is constant on a neighborhood of {f # 0}
then T'(f,m) = 0.

2) T is continuous with respect to the pointwise convergence of the m; for
Lip(m;) < 1.

3) There exists a finite Borel measure p on Z such that for all (f,7) €
D™ (Z)

57 < [ i /Z fldp.

In the following definitions, Z will always denote a complete metric
space.

Definition 2.24 (Mass). The smallest Borel measure that satisfies Part
(3) in the previous definition is called the mass measure of T' and is denoted
by ||T'|]. The mass of T is given by

M(T) = || (2) = /Z 4|71

Definition 2.25 (Boundary). Let 7' € M,,(Z). The boundary of T, de-
noted by 97T, is the function 9T : D™~ !(Z) — R given by

8T(f7ﬂ-1)"'a7rm—l) :T(]-vaﬂ-lw'-)ﬂ-m—l)'

Remark 2.26. The boundary of a current need not be a current itself.
Indeed, by Remark 2.47 in [38] the following holds: let ¢: K C R™ — Z
be a chart where K is compact and Z a metric space. Then d¢4[1x] is a
current if and only if K has finite perimeter.

Definition 2.27 (Pushforward). Let T'€ M,,(Z) and ¢ : Z — Z' be a
Lipschitz map. The pushforward of T, @4T : D™(Z') — R, is the function
given by

ouT(f,m1,...,mm) =T (fop,mop,...,Tm o).
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Note that, by construction, ¢» commutes with the boundary operator, that
is,

p3(0T) = 0(p4T).
Recall also that in [1] it was proven that the pushforward of a current is a
current, that is, 4T € M,,(Z").

Definition 2.28 (Restriction). Let T€ My(Z) and let w=(g,71,...,Tm)
€ D"™(Z), with m <k (w =g if m =0). The restriction of T to w is the
(k — m)-dimensional current in Z, denoted by T'L w, given by

Tl—w(f7ﬂ-17"'7ﬂ.k*m) :T<fg7T17-"7Tm77T17-'-77Tk7m)-

Definition 2.29 (Integer rectifiable current). Let T' € M,,(Z). We say
that T" is an m-dimensional integer rectifiable current, that is, T' € Z,,, (Z), if
it has a current parametrization, consisting of parametrizations and weight
functions, ({y;},{6:}), satisfying the following conditions.

1) The set of parametrizations ¢; : A; C R™ — Z is a countable collection
of bi-Lipschitz maps such that all A; are precompact Borel measurable
with pairwise disjoint images.

2) The weight functions, 6; € L' (A4;,N), are defined so that the following
equalities hold:

T=) ¢ipl6i] and M(T) =3 M(wigtil).
i=1 i=1

Using the above definition, the mass measure can then be rewritten as

1Tl =) IOl
i=1

The following lemma from [38] gives us criteria for when two m-dimen-
sional integer currents are equal. Before stating the lemma, we need the
following definition for the weight of a current, T'. Let 67 : Z — N U {0} be
the L! function, called the weight of T, given by

(2.2) Or = Z 0; o @z‘_lltpi(Ai)‘
=1

Lemma 2.30. [38] Let T and T' be two m-dimensional integer currents de-
fined on a complete metric space Z with current parametrizations ({¢;}, {0:})
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and ({¢}},{0;}), respectively. Let A; and A, be the domains of the charts o;
and ¢}, respectively. Then T = T" if the following conditions are satisfied.

1) The symmetric difference between Up;(A;) and Ul (AL) has zero m-
dimensional Hausdorff measure.

2) In all overlapping sets we have
det(V(w;l o 90;)) >0 and det(V(gpé’l op;)) > 0.
3) The functions 07 and Op: agree H™ almost everywhere on Z.

Definition 2.31 (Integral current). Let 7' € Z,,(Z). Then we call T
an m-dimensional integral current, that is T € I,,,(Z), provided 0T is an
(m — 1)-dimensional current, that is 97" € M,,,_1(Z).

Recall that the m-dimensional density of a Borel measure p at z € Z is

defined as
B,

r—=0 Wy r™ ’
provided that the limit exists. Here w,, denotes the volume of the unit ball
in R™. We now define the lower density of a Borel measure, which we will
use to define the canonical set of a current. With the canonical set defined,

we will arrive at a definition of an integral current space.

Definition 2.32 (Lower density). The m-dimensional lower density,
O.m (1, 2), of a Borel measure p at z € Z is defined as
B
Oum (i, z) = liminf B (2)

r—0 wpr™

where w,, denotes the volume of the unit ball in R™.

We now define both the canonical set and arrive at a definition of an
integral current space.

Definition 2.33 (Canonical set). Let T' € M,,(Z). The canonical set of
T, denoted by set(T), is defined as

set(T) = {z €Z: liminfw > 0}

r—0 Wmr™

where w,,, denotes the volume of the unit ball in R™.
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In the next lemma we see that the mass measure of an integral current
T is concentrated in set(T).

Lemma 2.34. [1] Let T € I, (Z) with current parametrization ({¢;},{6:}).
Then there is a function

A set(T) = [m™™/2,2™ /wy]

satisfying
Oum ([T, x) = Or(z)A(z),
such that
T = O AH™ L set(T),

where wy, denotes the volume of the unit ball in R™ and O is defined as in
Equation (2.2).

We can now define an integral current space. Recall that this is the
type of space we construct in Theorem A and consider sequences of them in
Theorem B.

Definition 2.35 (Integral current space). Let (Z,d) be a metric space
and T € 1,,(Z). If set (T) = Z then (Z,d, T) is called an m-dimensional in-
tegral current space.

Finally, we give the definition of intrinsic flat distance between two m-
dimensional integral currents as in [38]. This distance together with the
Gromov-Hausdorff distance is used in Li-Perales’s Theorem 1.1 and Theo-
rem B.

Definition 2.36 (Intrinsic flat distance). Let (X;,d;,T;), i = 1,2, be
two m-dimensional integral current spaces. Its intrinsic flat distance is de-
fined as

(2.3) dz((X1,d1,T1), (X2,d2,T2)) = inf{M(U) + M(V)},

where the infimum is taken over all complete metric spaces Z, all isometric
embeddings ¢; : X; — Z and all currents U € I,,, (Z) and V' € 1,41 (Z) that
satisfy

(2.4) 901#(T1) — QOQ#(TQ) =U 4+ 0V.
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Sormani-Wenger proved that dg is a distance in the class of m-integral
current spaces with precompact canonical sets. We recall that

dz((X1,d1,T1), (X2,d2,T2)) =0

if and only if there is an isometry ¢ : X7 — Xy that preserves orientation,
ie, (p#(Tl) = TQ.

In general, the intrinsic flat limit of a sequence of m-dimensional integral
currents can exist without the Gromov-Hausdorff limit having to exist. See
[38] for examples. But when the Gromov-Hausdorff limit exists and the
masses of the currents in the sequence and the masses of their boundaries are
uniformly bounded then the intrinsic flat limit also exists and is contained in
the Gromov-Hausdorff limit (Theorem 3.20 in [38]). Note that the intrinsic
flat limit either has Hausdorff dimension m, or collapses to what is called
the zero integral current space.

2.4. Homology theory of integral currents

We define a Lipschitz k-simplex to be a Lipschitz map o : A¥ — X. Letting
Ck(X) denote the usual group of k-singular chains on X, then C’lf P(X) is
the subgroup of C(X) with basis the singular Lipschitz simplices.

Yamaguchi defines the notion of a locally Lipschitz contractible space in
[40] to be a metric space for which small metric balls are contractible to a
point via a Lipschitz homotopy. It is clear, for example, that Alexandrov
spaces are locally Lipschitz contractible. He then shows that the singular
homology of a locally Lipschitz contractible space, X, is isomorphic to its
Lipschitz homology, that is, HS"8(X;Z) is isomorphic to Hy'?(X; 7).

In [19], Mitsuishi defines an integral current on a locally Lipschitz con-
tractible space as follows. Given a Lipschitz k-simplex f : A¥ — X, we define
the integral k-current [7] € IS (X) to be T = fx[A*], where I denotes the
integral currents on X with compact support. The Z-linear extension

[]: CyP(X) = T (X)

then gives us a chain map and a chain complex on X, denoted by I{(X).
We let H.(I$(X);Z) denote the corresponding homology theory. Theorem
1.3 of [19] (see also Theorem 9.3 in Mitsuishi [20]) proves that

(2.5) H™(X;Z) = HYP(X:7) = H.(I5(X); 2).
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Recalling that a closed Alexandrov space, X, is orientable if for every
re X, H"(X,X \ {z}) - H"(X) = Z is an isomorphism (see, for example,
Harvey and Searle [9]). Theorem 1.8 of [20] shows that for a closed, ori-
entable Alexandrov space various notions of orientability are equivalent and
that, in particular, H, (X) = Z. Combining this with a result of [1] showing
that Im(0k1) is trivial for £ = n, and the isomorphism (2.5), the following
theorem from [20] is proven.

Theorem 2.37. [20] Let X be an n-dimensional closed, orientable Alexan-
drov space. Then,

{Tel,(X)|oT =0} = H,(I,(X);Z) 2 H"™(X;7) = 7.
In particular, there is a non-trivial integral n-current on X.

3. Orientation of Alexandrov spaces via strainers

The goal of this section is to prove that on an n dimensional oriented Alexan-
drov space without boundary, we can construct an oriented atlas on the set
of (n,d)-strained points, Rx , 5), in the countably H" rectifiable space sense.
This is done using the bi-Lipschitz homeomorphisms of Theorem 2.17. Since
Rx(n,s) is open and dense in X, this will give us an oriented atlas of X in
the countably H" rectifiable space sense.

3.1. Defining a topological orientation on Rx ,,s)

We recall the definition of an orientation for a topological space.

Definition 3.1 (Z Orientation system). A Z orientation system for a
topological manifold X consists of the following two elements:

1) An open cover {U;} of X;
2) For each i, a local orientation o; € H, (X, X \ U;) of X along U; such
that if z € U; N Uj, then
(o) = 15 (@5),
where
o H (X, X\U) = Hy(X, X \ )

is the canonical homomorphism induced by inclusion.
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Definition 3.2 (Z-orientable). We will say a space X is orientable in the
topological sense, if it has a Z orientation system.

In order to talk about orientability for Alexandrov spaces, we must
first understand what non-orientability means. We distinguish between two
important cases: we call an Alexandrov space locally orientable if every
point has an orientable neighborhood, and locally non-orientable otherwise.
Alexandrov spaces are unlike manifolds in that they can have arbitrarily
small neighborhoods which do not admit an orientation (see Petrunin [32]).
In particular, if z € X has a non-orientable space of directions X, then no
neighborhood of x is orientable. We call such a space locally non-orientable.
Equivalently, we see that a point is locally orientable if its space of directions
Y. is orientable.

On compact Alexandrov spaces, one uses singular cohomology with in-
teger coefficients (cf. Grove, Petersen [7]) to study orientability. It is easy
to see by excision and Perelman’s Stability theorem [28] (see also [12]), that
H™(X,X \ {z}) 2 H"1(,). Thus, if H""1(3,) = Z, then we say that X
is locally orientable at x, and a choice of generator for H"~1(X,) is called a
local orientation at x. Using Theorem 2.10, the following Lemma is imme-
diate.

Lemma 3.3. Letx € X be an (n, d)-strained point with strainer {(a;, b;) };—,
for a point x € X. Then for sufficiently small 6 > 0, Rx s is locally ori-
entable at x.

We define orientability of a closed Alexandrov space, X, in terms of the
existence of a fundamental class, that is, X is orientable if for every z € X,
H"(X, X\ {z}) = H"(X) = Z is an isomorphism. Recently, Mitsuishi [20]
has shown that closed, orientable Alexandrov spaces satisfy Poincaré Dual-
ity, so we can equivalently define orientability via a top class in homology.
With this definition of orientability, we can then show that Rx(, s) is ori-
entable.

Lemma 3.4. Let X be an n-dimensional Alexandrov space. Given § > 0,
if X is orientable in the topological sense, then Rx (y, 5) 15 also orientable in
the topological sense.

Proof. Recall first that Ry, s) is open and dense in X. If X is orientable in
the sense of Definition 3.2, then we have an open cover {U;} of X such that
the local orientations coincide in the intersection of any two of the sets in
the cover. O
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Remark 3.5. Note that in [9], Harvey and Searle show that an Alexandrov
space is orientable if and only X (") the top stratum, itself a topological
manifold, is orientable. We have shown that if X is orientable, then Ry, sy C
X (") ig also orientable. In fact, our proof of Lemma 3.4 shows that if X% is
orientable then Ry, s) is. However, the reverse implication seems difficult
to prove directly, since X (™) \ R X (n,5) May not even be a CW complex.

We now show that a topological orientation on an Alexandrov space X
without boundary induces an orientation in the sense of Federer.

Theorem 3.6. Given an n-dimensional Alexandrov space X without bound-
ary, oriented in the topological sense, then the set Rx(, 5) is oriented in the
sense of countably H"™ rectifiable spaces, that is, there exists a bi-Lipschitz
collection of charts {A;, {¢i}}, where p; : A; CR™ — Rx(ns) such that

det(V(e; ' o)) >0

7

for all overlapping charts almost everywhere on p;j(A;) N i(A;).

Before we begin the proof of Theorem 3.6, we need Lemma 1.4 from [36],
which shows us that a strainer is very close to being orthogonal.

Lemma 3.7. [36] Let B C X be (l,0)-strained by {(ai,bi)}lizl. For any
x € B and i # 7,

=0 < <(a;,x,b) <, 5 —0 < <(aj,z,b;) < 5+ 26, and
%—5<<[(b7;,l‘,bj)< g+25, %—5<<Z(a¢,x,aj) < g+25.

Moreover, the same result holds for the comparison angles.

The following lemma allows us to create the required charts for the proof
of Theorem 3.6.

Lemma 3.8. Forz € Rx(,s) and € >0, let {(a;, b;)}i_y and {(c;, di)}iy
be (n,0)-strainers for a neighborhood U, C X of x. Let

Ga, P Up - [an

be given, as in Theorem 2.19 by

da(y) = (dist(a1,y),. .., dist(an,y))
and  ¢.(y) = (dist(c1,y),...,dist(cn, y)),
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where y € U, and the bi-Lipschitz constants of ¢ and ¢. are bounded be-
tween 1 —e and 1+ €. Then

1) The transition functions

$a © ‘bgl : dc (Uz) — ¢a (Uﬂc>
¢ o @b;l : Qa (U:L“) — Qe (U:L“)

are differentiable almost everywhere.

2) If v € ¥, is a direction where both ¢, and ¢. are differentiable and
orientation preserving as in Part (2), then the change of basis matriz,
M, of d ((;Sa ) (ﬁc_l) with respect to the standard basis satisfies

1—7(9) <det(M) <1+ 7(0),

where T(6) is a function satisfying lims_,o 7(6) = 0.

3) If Rx(n,s) is oriented, then after possibly interchanging a1 with by, ¢,
1S orientation preserving.

Proof. Note first that by Theorem 5.4 in [3] (cf. Theorem 10.8.18 of [2]) both
¢q and ¢. are bi-Lipshitz and hence differentiable almost everywhere and
we obtain Part (1).

To prove Part (2), recall from Definition 11.3 in [3] that the component
functions (¢,); and (¢.),; of ¢, and ¢. are directionally differentiable almost
everywhere. By definition of the derivative of a distance function (see Dis-
play 2.1), it follows that the ith components of the directional derivatives of
¢q and ¢. are given almost everywhere by

Dv ((ba)i = - COS(<( gi’ U)) and DU (¢C)z = - COS(<I( i’}’v)),
(cf. Example 11.4 in [3]).

Further, it follows from the definition of the directional derivative that
for almost every y € U, we have

(d¢a)y (ﬁzl) = —€;.
Note then that

d($a 0 bc .y (ei) = [cos <My, 45)], ; (e,



Alexandrov spaces with integral current structure 135

and hence

M = [cos <( Z”,ﬂzj)]m.

However, by the last inequality of Lemma 3.7, we have for every y € U,
and for ¢ # j

[« (g 097) - 5| <20 and |« (g ng) - 2| <26

Thus, we may choose oriented, orthonormal bases, {v;} ;, and {w;}}" ,, for
R"™ O ¥, such that

|<t(fry)®, vi)| <20 and [<(fiy’, wi)| < 29,

noting that the vectors v; and w; need not all be elements of ¥,. The change
of basis matrix from {v;}!" ; to {w;}}",, with respect to the standard basis
in R", is given by [cos <(v;, wy)]; ; and has determinant 1.

Applying the triangle inequality twice, we have
<y’ 5) — <<(vi, wy)] < 46.

Hence
1—7(0) <det(M) <1+ 7(9)

and Part (2) is proven.
We now prove Part (3). Note by Lemma 3.7 , it follows that

(3.1) T —20 — <Pyt hy) < <(ﬂgl,ﬂzj) <446 — <a(fyt y)-

Since we have a consistent top class at every point, we have a global
orientation on X. If the orientation induced by the map ¢, coincides with
the global orientation, we do not change the map ¢,. If it is not, then by
interchanging a; with by, it follows immediately by Inequality 3.1 that the
newly defined ¢, will be orientation preserving. O

Lemma 3.9. Let X be an Alexandrov space. Given § > 0 as in Theorem
2.10, if X s oriented in the topological sense, then on Rx(,s) there exist
charts {(Ui, ¢i)} given by strainers {a;, b;} such that at almost every point
of U; N Uj,

det(V(gio¢; 1)) > 0.

That is, there exists an oriented atlas on X satisfying Definition 2.3.



136 Jaramillo, Perales, Rajan, Searle, and Siffert

Proof. For each p € Rx(y ), there exists U, and {(a;, b;)}j-;, an (n,d)-
strainer for U,. By Part (3) of Lemma 3.8, we may choose each ¢, to be
orientation preserving. Then {(U,, qﬁp)}pe R ns) is an orientation preserving
atlas for X.

Let U, N Uy # 0 for p, ¢ € Rx(n5), where {(a;, b;)}j—; and {(c;, di)},
are the corresponding (n, §)—strainers, respectively, for U, and U,. By Part
(2) of Lemma 3.8, It follows that

det(V(éy 0 67 1) > 0,

wherever it is defined. Since p and ¢ were arbitrarily chosen, the result
follows. a

4. The proof of Theorem A

In this section, we assume that (X, d) is an orientable, n-dimensional closed
Alexandrov space with curvature bounded below by k. We will construct
a n-dimensional integral current structure T' of weight 1 on (X, d) in two
steps. First, we define a n-dimensional integer rectifiable current structure
T on (X,d). Second, we prove that (X,d,T) is indeed an n-integral current
space, by showing that 9T = 0 and that set(T) = X. See Theorem 4.6 and
Corollary 4.8.

4.1. Construction of an integer rectifiable current on (X, d)

In this subsection, we complete the first step of the proof of Theorem A
by proving Theorem 4.1 below. That is, we will construct a n-dimensional
integer rectifiable current 7' on X. To do so, we utilize the existence of charts
for points that are (n, €)-strained as described in Section 2.

Theorem 4.1. Let (X,d) be a n-dimensional oriented Alezandrov space
with curvature bounded below by k and diameter bounded above by D. Then
there exists a n-dimensional integer rectifiable current space (X,d,T) with
weight 1, that is, Op = 1. Moreover, T is unique in the sense of Lemma 4.5.

The proof of Theorem 4.1 follows once we have proven the following four
lemmas.
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Lemma 4.2. Let (X,d) be a n-dimensional oriented Alezandrov space with
curvature bounded below by k. Then T : D™(X) — R given by

Z 0iulbs] = Z Pig[Ai]

18 a multi-linear functional, where ¢; : A; — X are bi-Lipchitz maps with
mutually disjoint images and A; C R™ are Borel sets, as constructed in The-
orem 2.19.

Proof. By Theorem 2.19, there exist a countable collection of bi-Lipschitz
maps @; : A; — X with A; C R™ precompact Borel measurable subsets.

On each A;, define the weight function 6; : A; — N by 6; = 14, where
14, denotes the indicator function on A;. Set [A;] = [14,] as in Example
2.17 of [38], that is [A;] : D"(R") — R

[AJ(f, sy mn) = /A‘CRH fdet (V) dL™.

Then define T as follows:
T=> ouslbil = vislAl.
i=1 i=1

The first step consists in proving T'(f, ) € R for (f,n) € D"(X), that
is, T'(f, ) is finite.
Note that for each j € N we know that T := @;x[A;] : D"(p;(A4;)) = R is
a current. Thus, by (3) in Definition 2.23, there exists a finite Borel measure
f; such that

(. mi< [[Lintr) [ 1fld
i=1 ©;i(4;5)

FASEY

The preceding inequality in particular holds true for the mass measure ||7}||
of Tj.
By the triangle inequality we thus get

IT(f,mI< Y ITi(fm) < ) (HLip(m)> /
j=1 7j=1 \i=1

|1l T
©;(A;5)
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Hence

(4.1) T(f,m)|< (HLip(m)) 1 £lloe > I1T511(05 (A7)
i=1 j=1

We now proceed by proving that the right hand side of the above in-
equality is finite. Note

(4.2) 102065111 < Lip(e;)" @54 11,1l
= Lip(p;)" @4 (L") = Lip(p;)"pju(H"),

and
pin(H")(j(45)) = H"(A;).
Since ¢; is bi-Lipschitz, we have
H"™(A;) < Lip(e; )" H" (05 (A4))-

Consequently, by Equation (4.2) we have

154005011 (#5(A;)) < Lip(w;)" Lip(w; )" H"(0;(A4;)).

Finally, we get

ZII%#[[H 1(5(A Z ip(;)” Lip(; )" H" (105 (4;))
J=1 Jj=1
) Z H'(54(4,)
= c(n)H"(Up;(4;))
< ¢(n)H"(X)
<C(n,k,D),

where c¢(n) = Lip(¢;)" Lip((pj_l)" is a constant depending only on n by The-
orem 2.19 and C(n, k, D) is a constant depending only on the dimension n,
the curvature bound s and the diameter bound D given by Bishop Volume
Comparison Theorem 2.22. Combining the preceding inequality with (4.1)
we get that T'(f, ) is finite.

Finally, the multilinearity of T" follows from the fact that each summand,
iz A;], is multilinear. O
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We now prove that T is indeed a current.

Lemma 4.3. The multilinear functional T defined as in Lemma 4.2 is a
current.

Proof. We must verify that Definition 2.23 is satisfied. Property (1) in Defi-
nition 2.23 follows easily. Indeed, if there exists a neighborhood on which ;

is constant, then since p;4[A;] is a current we have ;[ A;](f,7) = 0 for all
i € N. Hence, T'(f,m) = 0.

Next we show property (2) in Definition 2.23. We have to prove that
lim; oo T(f, 78, ..., 7o) =T(f, 71, ..., m), whenever 7k converges pointwise
to 7 in X, where Lip(7 J) < C for some constant C'. By the above consid-
erations we know that > 72, |T;(f, mi ..., 7m)|< 0o, consequently the sum
Z] L Ti(fomh, ... wh) converges absolutely. Since Tj is a current, for each
j € Nwe have lim;_,o0 Tj(f, 7t, ..., %) = T;(f, ™1, ..., 7). We thus can com-
mute the infinite sum and the limit and hence obtain the claimed equality

lim T(f,n%,... ") = lim ZT (f, 7t ..., ob)
1—00 1— 00
oo
1—00
j=1
o0
:ZTj(f,ﬂ'l,...,T(‘n) =T(f,m1,...,Tp).
j=1

Finally, we show property (3) in Definition 2.23. By the above consider-
ations we have

7(f,m)|< ST 4w [[inm) [ 17ldus.
j=1 ® j)

=1 J

We define p = Z 1 M, which defines a finite Borel measure on X since the
sets p;(A;) are dlsJ01nt Thus we get

7(f,m)|< YT (4, m)1< [[ in(e) [ I51dn
j=1 i=1 X

and hence (3) is established. Thus T is a current. O
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Lemma 4.4. The current T as defined in Lemma 4.3 is an integer rectifi-
able current.

Proof. We have to check that T satisfies the conditions of Definition 2.29.
By Lemma 4.3, it suffices to show that M(T') = 372 M(T}). Since we have

1T (A5)) = T3]l (p (A7) for all j € N, we get

M(T) = [T (U, (A ZIITII pi(A

[e.e]

iuw% ZM

where we used that the sets p;(A;) are disjoint. It follows

[e. 9]

T) =) M(I})
j=1

Lemma 4.5. Suppose that T and T" are two integer rectifiable currents de-
fined on (X, d) with current parametrizations ({pi},{14,}) and ({¢;},{1a:})
constructed using the (n,d)-strained points as described in Theorem 2.19.

Assume that these two atlases belong to the same mazimal oriented atlas of
Rx(ns)- Then T =T'.

0

Proof. We apply Lemma 2.30 to prove that T equals T".

Since Rx (n,5) C Upi(A;) C X and Ry, 5y C Ugpj(A]) C X, it follows that
the symmetric difference between Up;(A;) and Uy} (A}) is actually contained
in Sx. Therefore, by Theorem 2.13, the symmetric difference has zero n-
dimensional Hausdorff measure.

Furthermore, since {(A;, i)} and {(A}, ¢})} are contained in the same
maximal oriented atlas, it follows that

det(V(g; o)) >0 and  det(V (g} op;)) > 0.
Finally,
=Y tiop @)y (@) =1
and =

Or (x Z 0; 0 ¢ (@)l ap (2) = 1
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for all z € Rx(n,d). Thus by Lemma 2.30, T = T". O

4.2. (X,d,T) is an integral current space

In this subsection we prove that (X, d,T) is a n-dimensional integral current
space. In order to do this, we first prove that 9T = 0. We accomplish this by
showing that the integral current 7" defined on X, for which 977 = 0 as in
Mitsuishi [20] is, in fact, equal to the integer rectifiable current we define in
Theorem 4.6 below. We then prove that set(T) = X in Corollary 4.8. With
these two steps, we have completed the proof of Theorem A.

Theorem 4.6. Let (X,d) be an n-dimensional closed Alexandrov space, T
the n-current defined in Theorem 4.1 and T' the n-current that generates the
group {S € I, (X)|9S = 0} = Z from Theorem 2.37. Then, either T =T" or
T = —T'. Hence, 0T = 0.

Proof. We will prove the theorem using Lemma 2.30. Recall, that by defini-
tion we have

) N
T=> ¢iglA] and T' =) fiu[A"].
i=1 i=1
We first prove Condition 1 of Lemma 2.30. By the definitions of T" and T”,
Rxms) C U2, ¢i(4;) and X = UXY, fi(A™), respectively. Then we have
Uy fi(A™) AUZ, @i Ai)

= U Fi(A")\ Ui (Ag) U2 iei(Ai) \ U, fi(A™)
cX \ RX(n,&)-

By Theorem 2.13, H™(X \ Rx(,5)) = 0. Hence,
H' (UL, fi(A™) A UZ, @i(A)) =0,

which establishes the first item of Lemma 2.30.
Next we prove Condition 2 of Lemma 2.30. We must show that 7" and
T’ have the same orientation, that is, in all overlapping sets we have

det(V(p; 1o f)) >0 and det(V(f og;)) > 0.

3 (2
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The orientation on 7" is given by a generator of H,(X;Z) and by Lemma 3.4
this provides us with an orientation on Ry, 5y = U2, ¢i(Ai) N SN fislA™]
It then follows by Lemma 3.9 that it defines an orientation on both (X, d, T)
and (X,d,T") as desired.

Finally, we prove Condition 3 of Lemma 2.30. By definition of T, 67 = 1
on U2, ¢;(A;) which has full measure in X. Now, since

{S €1, (X)[0S =0} = Ho(X; 2),

the restriction f;| o is injective. Then,
An

N N
=1 on |J (A" =x\ [ fi(0a").
i=1

i=1

Since JA™ has (n — 1)- Hausdorff dimension, then its n-Hausdorff measure
equals zero. Since the f; are Lipschitz maps, then H™(Y, fi(dA")) =0
Hence, 07: equals 1 almost everywhere in X. Hence, 67 = 07 almost every-
where.

Thus, T' = T’, and the result follows. O

In the next lemma we show that the regular points of X are contained
in set(T). The subsequent corollary shows set(T) = X.

Lemma 4.7. Let (X,d) be a n-dimensional Alexandrov space with curva-
ture bounded below by k. Let T be an integer current structure on X defined
as in Proposition 4.1. Let p € Rx(n ), then the following hold.

1) The point p is contained in set(T). That is, the n-dimensional lower
density of | T|| at p is positive.

2) The density of ||T|| at a regular point p is equal to 1.

Proof. From the definition of set(T) we have to prove that

po e 1T )

r—0 Wpr™

> 0.
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Since p is a (n, §)-strained point of X, Theorem 2.17 states that there is
a neighborhood U, of p and a bi-Lipschitz map

[:U, =W CR"
such that

(4.3) Lip(f)~'d(xz,y) < d(f(z), f(y)) < Lip(f)d(z,y),

for all z,y € Up.

Given ¢ : Y — Z a Lipschitz map and S an n-dimensional current de-
fined on Y it follows from Inequality (2.4) in [1] that

(4.4) P51 = (Lip(e)) ™[4 S|l

Let ro € R be such that B, (p) C U,. Applying Inequality 4.4 to the
function f and T, for any r < rg we have

IT(I(Br(p)) = f4lITI(f(Br(p))) = Lip(f) " [ /4TI (f (Br(p)))-

Using Inequality 4.3, we obtain

BrLip(f)—l(f(p)> - f(BT(p))

Then

IfT(I(f (Br(p) = [ f#TI(ByLip(f)- (f(p))) = wnr™ Lip(f) ™",

where the equality comes from U, C |J;2; ¢i(A;) which gives | f4T| = L"
in f(U,). Putting together the last two inequalities we obtain

(4.5) ITI(B,(p)) > wn Lip(f) 2"

We conclude that

fo o ITIB )

r—0 Wpr™

> Lip(f)™®" > 0.

Thus p € set(T) and so Part (1) is established.
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We now prove Part (2). Using once again Inequality 4.3, we obtain

f(Br(p)) C BrLip(f)(f(p))'

We apply (4.4) with ¢ = f~! and S = f4T. Since (f~!)xfuT =T we thus
get

(4.6) 1T (Br(p)) < Lip(f)~" [l £ TII(f (B (p)))

= Lip(f) "wpr™ Lip(f)" = wyr™.

Since p is a regular point, Lip(f) can be made arbitrarily close to 1 in
Inequality (4.5). Then, by Inequalities (4.5) and (4.6) we get,

1o 1B )

r—0 Wpr™

=1.

Hence the density of || T at p is equal to 1. O

Corollary 4.8. Let (X,d) be an n-dimensional Alexandrov space with cur-
vature bounded below by k. Let T be the integer current previously defined
on X. Then X = set(T).

Proof. This proof follows almost exactly the last part of the proofs given
in Theorem 7.1 [39] and Theorem 0.1 [16], where is shown that under cer-
tain conditions the Gromov-Hausdorff limit and the intrinsic flat limit of a
sequence agree.

By Lemma 2.34, for x € X we have
(4.7) IT(B, (z)) = /B A" (D),

where 67 : set(T) — N U {0} is an integrable function with 67 > 0 in set(T)
and A : set(T) — R is a non-negative integrable function that satisfies A >
n~"/2. Using this last inequality and 67 = 1 we obtain

(48) ITN(B,(2)) > n"/>H"(B, () Nset(T)).

Furthermore, by Lemma 4.7 we know Rx C set(T) C X. Therefore,
H"(set(T) \ Rx) = 0 and thus we obtain

(4.9) (B, (z) Nset(T)) = H*(Bx(x) N Rx) = H(Bx (x)).
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Then by Equation (4.8) and Equation (4.9) we get

ITU(B () o n="2H"(Br(x))

wpr™ - Wnr™

(4.10)

For x > 0, using the Bishop-Gromov volume comparison theorem for
Alexandrov spaces, Theorem 2.22, we have for R > r > 0:

H™(B,(x)) > r"H"(X)/R".

—n/27,.ann(X)

It follows that liminf, o | T]|(By(z))/war™ > = o > 0.

For k < 0, using once more the Bishop-Gromov volume comparison (The-
orem 2.22) with R > r > 0, we have:

H"(Br(x))

"(Br(z)) = —— 5 Vel(r),

w5, (@) > T )

where V,.(r) and V. (R) denote respectively the volumes of the r-ball and
the R-ball in the space form M. Thus, from inequality (4.10) we get

ITI(Br(2)) o —nj2H"(Br(z)) Vi(r)

wp ™ - Vi(R)  wpr™’

Now, Vi(r) > Vo(r) = w,r™ by Bishop’s Inequality (see Theorem 2.21). It
follows that

"(B
“P%WTM&uwmwﬂZn%ﬂHéM§ﬁ>>a
This shows that X C set(T). 0

I am not aware of any paper with this result. By the papers we know the
regular part has some regularity but might not be smooth. We can just say
that when the Alex space happens to be also a manifold then the conclusion
of our remark holds.

Remark 4.9. The current we have constructed is canonical in the sense
that if the Alexandrov space, X, consists only of regular points, that is, if
it is a smooth manifold, then our current T'(w) = [ w coincides with the
current generally endowed to manifolds in the literature (integration of top
forms over the manifold).
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Remark 4.10. The current we have constructed is canonical in the sense
that if the Alexandrov space, X, consists only of regular points, that is, if it
is a smooth manifold, then A =1 and the current T'(w) = [, w has weight
equal to 1. Hence, ||T'|| = H" = L™ = Volx.
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