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Abstract—In the past decade, influence maximization becomes
one of the fundamental problems in online social networks. It has
popular applications such as viral marketing and rumor blocking.
This problem asks for some influential users to maximize the
expected followers. Unlike traditional influence maximization, we
discuss the problem of influence towards a special target user
in this paper. We define the targeted activation probability
maximization problem, which aims at finding k intermediate users
so that a given target user is more likely to be influenced by the
start user. Motivated by the need for modeling the diffusion
process from one user to another, we propose the Targeted Linear
Threshold (TLT) model and Targeted Independent Cascade (TIC)
model. We prove that the problem is NP-hard, computation of
the objective function is #P-hard, and the objective functions are
non-submodular. Moreover, the objective function in the TLT
model is an upper bound of that in the TIC model. Based on the
sandwich approximation strategy, we obtain their data-dependent
approximate solutions. Finally, we use three real datasets to
evaluate the effectiveness of our algorithms. The experimental
results indicate that our methods can effectively increase the
activation probability of the target user.

Index Terms—Online social networks, targeted activation
probability, data-dependent approximate solutions.

I. INTRODUCTION

IN recent decades, online social networks acted as an infor-

mation service platform have been developed quickly. There

are 4.54 billion users, including 3.725 billion active social

media users, by the end of December 2019 [1]. Each user can

make friends, promote products, and so on across these net-

works. Due to its essential applications in economics and epide-

miology, a large number of researchers have studied the

problem of information diffusion in social networks. A formal

study can be traced back to the Influence Maximization (IM)

problem [2], which asks for some initial users so as to maximize

the followers influenced by these initial users. The authors also

proposed two classic models, namely, Independent Cascade

(IC) and Linear Threshold (LT) models. Since then, there are

considerably related researches based on the twomodels.

Given an information diffusion model, the traditional IM

problem mainly considers maximizing the number of users who

adopt the information. However, one may only focus on whether

one or more given influential users adopt the information [3]–

[5]. To the best of our knowledge, Yang et al. [3] first studied the

influence towards a target user and proposed the Acceptance

Probability Maximization (APM) problem. More specifically, a

start user wants to make friends with a target user. The APM

problem is to find some intermediate users and send invitations

to them step by step so that the target user can become a friend

of the start user with the maximum probability. The authors [3]

mainly discussed it under an approximate IC model. Different

from the IM problem, the initial users are given in the APM

problem. That is, both the start user and his/her friends are con-

sidered as the initial users. Moreover, only the selected inter-

mediate users can be activated (i.e., the adaptor of the

invitation) in the diffusion process. Following this line, Chen

et al. [6] further considered this problem and extended it to the

directed acyclic graphs. Yuan et al. [7] considered a con-

strained active friending problem in the LT model.

In this paper, we study a similar problem, and the following

scenario drives our problem. A young scholar wants to send a

conference invitation to a mathematician. Due to lacking

mutual friends, he can not directly send this invitation or be

more likely to be rejected if he sends it directly. Therefore, he

hopes that his friends can help him send the invitation, and

then his friends send the invitation to their friends and so on.

Finally, the mathematician can accept this invitation. Assume

that his friends will definitely help him send the invitation and

the friends of his friends will help send this invitation with a

certain probability. There is a network platform that can pro-

vide a recommendation list to assist this young scholar. Given

the limited budget, which users should be included in this rec-

ommendation list to maximize the acceptance probability of

the mathematician? We call this problem the Targeted Activa-

tion Probability Maximization (TAPM) problem.

The main difference between our problem and the traditional

APM problem are as follows. On the one hand, the diffusion

process in the APM problem is approximated by the maximum

influence path. And our diffusion process is considered in the

general graph. On the other hand, the start user will build a new

friendship with the intermediate users at each step for the APM
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problem, hoping the target can accept the friending invitation

when they have sufficient mutual friends. However, the TAPM

problem does not need to make friends with intermediate users

iteratively. Our goal is to maximize the target user’s acceptance

probability according to the word-of-mouth effect among the

start user, his friends, and these selected intermediate users.

This paper studies the TAPM problem in the Targeted Inde-

pendent Cascade (TIC) and Targeted Linear Threshold (TLT)

models. It is hard to handle since the NP-hardness of the prob-

lem and non-submodularity of the objective function in the

above models. To address it, we devise the approximation

algorithms with the data-dependent ratio. Our main contribu-

tions can be concluded as follows.

1) We consider a novel Targeted Activation Probability

Maximization (TAPM) problem, which focuses on the

influence towards a given user on general graphs. Two

diffusion models, namely the Targeted Linear Thresh-

old (TLT) model and Targeted Independent Cascade

(TIC) model, are proposed. We show that our problem

is NP-hard, and the computation of the objective func-

tion is #P-hard under the above two models.

2) We prove that the objective function is supermodular

under the TLT model. And it is neither submodular

nor supermodular under the TIC model. For the two

models, we devise the unbiased estimator for the

objective function, respectively. Then, the submodular

lower bounds follow. Moreover, we prove that the

function in the TLT model is an upper bound for that

in the TIC model. Using the Sandwich Approximation

method, we obtain their approximate solutions with

the data-dependent performance.

3) Finally, in three real-world networks, we use the experi-

mental results to support the correctness and the superi-

ority of our methods.

The following paper is arranged as follows. We review the

related works in Section II. We introduce the problem defini-

tion and diffusion models in Section III. Sections IV presents

our approximation algorithms under the TLT and TIC models,

respectively. Furthermore, we perform the experiments in

Section V. Finally, our work is concluded in Section 6. For

ease of reference, we list the important definitions of variables

that are frequently used in Table I.

II. RELATED WORK

With the rapid development of internet technology, online

social networks play an important role in our daily life. Hence-

forth, it attracts many researchers to study related problems in

online social networks. Generally, we use a graph structure to

describe the social network. Some novel methods are proposed

to represent relationships among users in reality [8], [9].

Besides, motivated by its applications such as marketing, there

has been extensive research [10], [11]. For instance, Si et al.

[12], [13] explore the relationships among users’ interests and

applications. Mao et al. [14] proposed some methods to iden-

tify influential users for brand communication.

A. Influence Maximization

Among these studies, the influence maximization is a key

issue in online social network. The influence maximization

problem asks for k initial users such that the followers influ-

enced by these users can be maximized in the social network

[2], [15]. This problem is NP-hard and the computation of the

objective function is #P-hard [16], [17]. Fortunately, the tradi-

tional greedy can give a ð1� 1=eÞ approximate solution since

the objective function is non-negative, monotone non-decreas-

ing and submdoular [18]. Here, a set function f : 2V ! Rþ is

submodular if and only if fðS [ fvgÞ � fðSÞ � fðT [ fvgÞ �
fðT Þ for any T � S � V and v 2 V n S. f is monotone non-

decreasing if and only if fðT Þ � fðSÞ for any T � S.
However, it takes a lot of time to compute the influence

spread at each iteration using the naive greedy algorithm. To

be feasible in large-scale social networks, Leskovec et al. pro-

posed the cost-effective lazy forward algorithm [19] and Chen

et al. proposed degree discount heuristics [20]. Recently,

Borgs et al. achieved a theoretical breakthrough based on the

reverse influence sampling [21]. The time complexity of their

algorithm is Oðk‘2ðmþ nÞlog 2n="3Þ under the IC model,

where n and m are the sizes of nodes and edges, respectively.

Besides, their method can guarantee a ð1� 1=e� "Þ-approxi-
mate solution with at least 1� n‘ probability. Although it has

a strong theoretical guarantee, there still are some rooms to

improve its efficiency. Following this line, some researchers

devised more efficient algorithms [22]–[25].

B. Non-submodular Influence Maximization

Nowadays, many researchers focus on the information-

related problems [26]–[31]. Such an extension of the influence

maximization have been studied [28], [29], [32]. In most cases,

these problems will lack submodularity. For instance, Chaoji

et al. studied the content spread in social networks [28] and

Wang et al. proposed activity maximization problem [29].

Non-submodular influence maximization will no longer

have the approximation guarantee using the traditional greedy

algorithm and other improved schemes. To the best of our

knowledge, there are the following three methods for non-sub-

modular optimization.

1) Global approximation: For any set function, researchers

found that it can be written as the difference between

TABLE I
IMPORTANT NOTATIONS SHOWED IN THIS PAPER
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two submodular functions [33]. Based on this idea,

some algorithms, such as Submodular-Supermodular

[33] and Modular-Modular algorithms [34], are derived.

These algorithms always give an approximation of the

local optimum.

2) Parameterized method: Some researchers solved the

non-submodular problem from the view of supermodular

degree [35], [36]. The supermodular degree of an ele-

ment u 2 V by a set function f is define to be jDþf ðuÞj
[35], where

Dþf ðuÞ ¼fv 2 V j9S � V : fðS [ fv; ugÞ

� fðS [ fvgÞ > fðS [ fugÞ � fðSÞg:

The supermodular degree of f is

Dþf ¼ max
u2V
jDþf ðuÞj:

Besides, some strategies based on curvature [37], [38]

are also proposed. These methods can provide strong

theoretical guarantees. However, they are hard to apply

to practical problems.

3) Sandwich approximation: Recently, Lu et al. [39] pro-

posed the Sandwich Approximation strategy, which can

carry out a data-dependent approximate solution based

on their submodular lower and upper bounds. More spe-

cifically, the method devises the solutions for the original

function, lower bound, and upper bound, respectively. It

then returns the solution, which can maximize the origi-

nal objective function as the final result.

C. Targeted Influence Maximization

As an extension of the influence maximization, the problem

of influence towards a special target user plays a role in social

networks.

Yang et al. [3] are first among the researchers who explored

this issue, and they defined Acceptance Probability Maximiza-

tion (APM) problem. For general networks, they showed that

the problem is NP-hard, and computing the objective function

is #P-hard in the IC model. Then, they modeled an approximate

ICmodel and proposed Selective Invitation with Tree Aggrega-

tion (SITA) and In-Node Aggregation (SITINA). Notice that

these algorithms are based on the tree, and SITA is not a poly-

nomial-time algorithm. Following them, Chen et al. considered

the Target Influence Maximization [6], where the goal is to let

a boy become a friend of a girl by making new friends influence

this girl. In their work, two polynomial-time approximation

algorithms are proposed when assuming the network is a

directed acyclic graph. Yuan et al. [7] then studied a con-

strained active friending in the LT model. From the view of

super-differentials, they devised the approximation algorithms.

Furthermore, the problem can be converted into one minimum

version to find the minimum size of friending innovations so

that the acceptance probability can exceed a given threshold.

Tong et al. [40] studied the minimum version and presented an

approximation algorithm in the LT model for general graphs.

In this paper, wemainly study the targeted activation probabil-

ity maximization problem, which aims at finding k intermediate

users so that a given target user is more likely to be influenced by

the start user. Since the problem is non-submodular, we design

the methods using the Sandwich strategy. The proposed algo-

rithms can not only produce a data-dependent approximate

solution but also apply to large-scale social networks.

III. SYSTEM MODEL AND DEFINITIONS

A. Targeted Activation Probability Maximization Problem

Generally, a social network is described as a directed graph.

Given a graph G ¼ ðV;EÞ with jV j ¼ n and jEj ¼ m, V
denotes the users and E represents the relationship between

users, respectively. The weight wuv 2 ½0; 1� on each directed

edge euv means the social influence possibility of u upon v. Let
N inðuÞ ¼ fvjevu 2 Eg, NoutðuÞ ¼ fvjeuv 2 Eg and NðuÞ ¼
NoutðuÞ [ fug, respectively. Since each weight can be normal-

ized such that its sum is not more than 1, we suppose thatP
v2NinðuÞ wvu � 1 for each node u 2 V . Given a start node s

and a target node t, the Targeted Activation ProbabilityMaximi-

zation (TAPM) problem aims to find a set of intermediate nodes

I � V nNðsÞ with the cardinality of k so as to maximize the

activation probability of t. Given a set I, we denote by f<s;t> :

2V ! Rþ the activation probability of the target node t upon
the the nodes inNðsÞ [ I. Formally, the TAPM problem is

maxf<s;t> ðIÞ;

jIj � k:

B. Diffusion Models

In this paper, we mainly consider the process in the follow-

ing two models, which are based on the LT and IC models.

1) Targeted Linear Threshold Model: Motivated by the

need for modeling the diffusion process from one user to

another, we first propose the Targeted Linear Threshold (TLT)

model. The diffusion process under the TLT model unfolds as

follows.

1. In the beginning, we activate all nodes in NðsÞ and deter-
mine the threshold uv 2 ½0; 1� of each node v randomly. We

initialize the activation set S ¼ NðsÞ.
2. In each subsequent round, each newly-activated node v

tries to activate its each out-neighbor u. If u 2 I [ ftg, then it

can activate u successfully when
P

NinðuÞ\S wvu � uu. Other-

wise, u can never be activated. When u is activated, we add u
into the activation set S.
3. The process terminates if there are no newly-activated

nodes or the target node t is activated after one round.
Consider an example in Figure 1. Suppose that each weight

wuv is 0.2 and the set of intermediate nodes is I ¼ fv2; v5; v6g.
Initially, we activate all nodes inNðsÞ and each node chooses a
threshold in [0,1] randomly. Suppose that the threshold of each

node is 0.3. Then, v2 will be the first newly-activated node by

the joint influence of s1 and s2. Next, v5 is activated and it starts
to influence t. Unfortunately, t can not be activated since ut >
wv5;t and then the process terminates. Notice that v1; v3 and v4
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can never be activated since they are not the intermediate users.

Although v6 is intermediate node, v6 will not be active since s
and v6 lack mutual neighbors.

Theorem 1: The TAPM problem is NP-hard under the TLT

model.

Proof: We show that it is NP-hard with a reduction from the

IM problem, which is proved to be NP-hard in [2]. Consider an

instance of the IM problem as follows. Let X ¼ fx1; x2; . . . ;
xqg and Y ¼ fy1; y2; . . . ; ypg. We define a directed graph G ¼
ðV;EÞ: (1) for nodes set V , it includes node t, each node xi in

X and each node yj in Y ; (2) for edges set E, it includes

directed edges ðxi; yjÞ and ðyj; tÞ for each xi 2 X and yj 2 Y ;

(3) we let
P

xi2N
inðyjÞ

wxi;yj ¼ 1 and wyj;t ¼ 1=jN inðtÞj ¼ 1=d
for xi 2 X and yj 2 Y . Notice that wxi;yj can be equal to zero.

The IM problem aims to find out k nodes to maximize the influ-

ence spread. Actually, the maximum value is kþ jY j þ 1

involving the graphG.

Next, we can define a corresponding TAPM problem as

follows. Accordingly, we build a graph G
0
¼ ðV

0
; E

0
Þ: (1)

we copy the graph G as G
0
; (2) we add nodes s and s1

into V
0
; (3) we add edges ðs; s1Þ and ðs1; xiÞ into E

0
,

where ws;s1 ¼ ws1;xi ¼ 1 for each xi 2 X. Figure 2 illus-

trates a construction of G
0
. Let s and t be the start node

and target node in the instance of the TAPM problem. We

prove that there is a solution S � X with k nodes such

that the influence spread is equal to kþ jY j þ 1 in G if

and only if there is a solution with kþ jY j nodes such that

the activation probability of t is 1 in G
0
. First, we discuss

the sufficient condition. If there is a k�size set S � X
such that the influence spread is equal to kþ jY j þ 1 in G,

then selecting S [ Y will result in t is activated with 1

probability in G
0
. Then, we discuss the necessary condi-

tion. If there is a solution I with jIj ¼ kþ jY j such that

the activation probability of t is 1, set I must contain all

nodes in Y and the nodes in I \X can definitely activate

all nodes in Y . We can conclude that I \X will be the

seed in the IM problem so that the influence spread is kþ
jY j þ 1 with jI \Xj ¼ jIj � jY j ¼ k. Thus, the theorem is

proved. &

2) Targeted Independent Cascade Model: In the follow-

ing, we discuss the Targeted Independent Cascade (TIC)

model, and the diffusion process unfolds as follows.

1. Initially, we activate all nodes inNðsÞ.
2. In each subsequent round, for each newly-activated nodes

v, if its neighbor u 2 I [ ftg, then it has a single chance to

activate u with probability wvu. Otherwise, u can never be

active.

3. The process terminates if there are no newly-activated

nodes or the target node t is activated after one round.
Again, we use the example in Figure 1 to illustrate the pro-

cess under an TIC model. We also suppose that each weight

wuv is 0.2, and the set of intermediate nodes is I ¼ fv2; v5; v6g.
At beginning, each node in set NðsÞ ¼ fs; s1; s2; s3g is active.
Then, each node in NðsÞ starts to influence their neighbors

with a certain probability. Only both v2 and v5 can be activated
at this time since they belong to I. Notice that the activation

probabilities of v2 and v5 are 0.36 and 0.2, respectively. Sup-

pose that v2 is activated and v5 is not activated. Next, v2 will try
to activate v5 with probability 0.2. If v5 becomes active, then it

will further influence t. Otherwise, this process terminates.

Theorem 2: The TAPM problem is NP-hard under the TIC

model.

Proof: We show that it is NP-hard with a reduction from

the IM problem. We construct an instance of the IM problem

and define a corresponding instance of the TAPM problem in

the TIC model as the case in the TLT model. The difference is

that we set wxi;yj ¼ 1 for each xi 2 X and yj 2 Y . Similarly,

we can prove that there is a solution S � X with k nodes such

that the influence spread is equal to kþ jY j þ 1� ð1� dÞjY j

in G if and only if there is a solution with kþ jY j nodes such
that t is activated with 1� ð1� dÞjY j probability in G

0
, where

d ¼ jN inðtÞj. Thus, the theorem is proved. &

C. Property

Theorem 3: The computation of the TAPM problem is #P-

hard under both the TLT model and the TIC model.

Proof: We prove it by a reduction from the IM problem. The

computation of influence spread is #P-hard in the LT model

[17] and IC model [16]. For any directed graphG ¼ ðV;EÞ and
seed set S, we denote the influence spread as sGðSÞ. We first

reduce the computation of influence spread in the LT model to

the computation of the activation probability of target node in

the TLT model. Let s and t be the start node and target node in

Fig. 1. Example illustrating the diffusion process. Fig. 2. Example illustrating the NP-hardness:X ¼ fx1; x2; x3g and Y ¼
fy1; y2; y3; y4g.
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the TAPM problem, respectively. Denote by I ¼ fv1; . . . ; vlg
all the intermediate nodes between nodes s and t. We have

sGðNðsÞÞ ¼ f<s;v1 > ðI n fv1gÞþ . . .þ f<s;vl > ðI n fvlgÞ þ
f<s;t> ðIÞ þ jNðsÞj. Thus, the computation of TAPM problem

in the TLT is #P-hard. Similarly, we can prove it in the TIC

model. Then, the theorem follows. &

IV. OUR PROPOSED APPROXIMATION SCHEME

In this section, for convenience, we denote the objective func-

tion f<s;t> as f and h under the TLT model and TIC model,

respectively.

A. Targeted Linear Threshold

Definition 1: Given a network G ¼ ðV; EÞ, a realization g
under the TLT model is generated as follows. Each node v
selects at most one node among its in-neighbors u 2 N inðvÞ
with probability wuv and no node with probability 1�P

u2NinðvÞ wuv.

Similar to the idea in [40], for a realization g in Definition 1,
we can judge whether the target node t can be activated by

backtracking the nodes that can reach node t. As shown in

Algorithm 1, we start to backtrack from t until finding a node

in NðsÞ or no new node. We define by B the backtracking set

returned by Algorithm 1. For convenience, if there is no new

node, we add an element p into B. Then, if p 2 B, we have

’gðIÞ ¼ 0 for any set I � V . Here, p is a notation introduced

for the purpose of analysis. Furthermore, we conclude the fol-

lowing lemma.

Lemma 1: fðIÞ ¼ E½’gðIÞ�; where

’gðIÞ ¼
1 if B � I;
0 otherwise:

�

Proof: For a realization g in Definition 1, each node selects

at most one node. Thus, if there is a path from s to t, then all

intermediate nodes in this path are exactly equal to all nodes

in B. E½’gðIÞ� means the probability that there is a path from

s to t such that its intermediate nodes of this path are included

in set I. By definition, t is activated if and only if there is a

path from s to t, and its intermediate nodes are included in set

I. Thus, the lemma is proved. &

Notice that the intermediate nodes of one path is as follows.

As shown in Figure 1, < s; s1; v2; v5; t > is a path from s to

t. The intermediate nodes in this path is v2 and v5.
Lemma 2: f is monotone non-decreasing supermodular.

Proof: It is trivial to know that f is monotone non-decreas-

ing. Next, it suffices to show the supermodularity. Given any

two subsets I1 � I2 � V and a node v 2 V n I2, we aim to

prove that fðI1 [ fvgÞ � fðI1Þ � fðI2 [ fvgÞ � fðI2Þ. That

is, for any realization g, we need to prove that

’gðI1 [ fvgÞ � ’gðI1Þ � ’gðI2 [ fvgÞ � ’gðI2Þ: (1)

Notice that ’gðIÞ is either 0 or 1. We only need to show that

’gðI2 [ fvgÞ � ’gðI2Þ ¼ 1 when ’gðI1 [ fvgÞ � ’gðI1Þ ¼ 1.

If ’gðI1 [ fvgÞ � ’gðI1Þ ¼ 1, then ’gðI1 [ fvgÞ ¼ 1 and

’gðI1Þ ¼ 0. We can conclude that v 2 B, where B is the back-

tracking set involving graph g. Therefore, we have B 6� I2 and
then ’gðI2Þ ¼ 0. Furthermore, ’gðI2 [ fvgÞ ¼ 1 since ’gðI1 [
fvgÞ ¼ 1 and I1 � I2. Thus, the lemma is proved. &

Given sets I and A, we let ’A
g ðIÞ ¼ maxv2If’gðA [ fvgÞg.

Furthermore, we can construct a submodular lower bound as

follows.

Lemma 3: For any set I � V , we first select a subset A �
I, and then let f̂AðIÞ ¼ E½’A

g ðIÞ�. We have f̂AðIÞ � fðIÞ.
Moreover, f̂AðIÞ is submodular.

Proof: For any v 2 I, A [ fvg is a subset of I. Thus, we
have ’A

g ðIÞ � ’gðIÞ and then f̂AðIÞ � fðIÞ. Given any two

subsets I1 � I2 � V and a node u 2 V n I2, it suffices to prove
that

’A
g ðI2 [ fugÞ � ’A

g ðI2Þ � ’A
g ðI1 [ fugÞ � ’A

g ðI1Þ: (2)

Algorithm 1: Backtracking set B.

Input:G; g; s; t
Output:B
1: Create a queue Q with the singleton node t
2: Initialize B ;
3: WhileQ is not empty

4: v Q:dequeueðÞ
5: If there exists a in-neighbor of v in g
6: u the in-neighbor of v in g
7: If u 2 B
8: Return B B [ fpg
9: End If

10: If u 2 NðsÞ
11: Return B
12: End If

13: Else

14: Return B B [ fpg
15: End If

16: B B [ fug
17: Q:enqueueðuÞ
18: End While

19: Return B

Algorithm 2:Maximum Probability Paths.

Input:G ¼ ðV;EÞ; t
Output:l and p
1: Initialize a set S  V
2: Initialize l½v�  ; for any node v 2 V
3: Initialize p½t�  1 and p½v�  0 for any node v 6¼ t
4: While S is not empty

5: u argmaxv2Sfp½v�g
6: remove u from S
7: For each in-neighbor v of u
8: temp p½u� � wvu

9: Iftemp > p½v�
10: p½v�  temp
11: l½v�  l½u� adds node u
12: End If

13 End For

14: End While

15: Return l; p
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Furthermore, we only need to prove that ’A
g ðI1 [ fugÞ �

’A
g ðI1Þ ¼ 1 when ’A

g ðI2 [ fugÞ � ’A
g ðI2Þ ¼ 1. If ’A

g ðI2 [
fugÞ � ’A

g ðI2Þ ¼ 1, we have ’gðA [ fugÞ ¼ 1 and ’A
g ðI2Þ ¼

0. Therefore, ’A
g ðI1 [ fugÞ ¼ ’gðA [ fugÞ ¼ 1 and ’A

g ðI1Þ ¼
0. Then, the lemma follows. &

We first plan to determine set A and then obtain an approxi-

mate solution I containing A. Next, we discuss the selection of

A. Given a set I, we observe that t is activated if and only if there
is a path from s to t and the intermediate nodes of this path are

included in I. Thus, we compute the maximum probability path

from s to t, and select the intermediate nodes in this path as A.

Moreover, set A is the optimal solution, if the number of A is

exactly equal to the limited budget k and this path is a shortest

path from s to t. We utilize the idea of Dijkstra Algorithm and

conclude it in Algorithm 2. Let l½v� be the intermediate nodes in

the maximum probability path from v to t and p½v� be the corre-
sponding probability. For each v 2 V , we add l½v� and p½v� into l
and p, respectively. Initially, S is equal to V , l½v� is an empty set

for any v 2 V , p½t� ¼ 1, and p½v� ¼ 0 for v 6¼ t. At each itera-

tion, Algorithm 2 selects a node uwith themaximum probability

and remove it from S. Then, it updates both path l½v� and proba-
bility p½v� for each v 2 N inðuÞ. The algorithm ends until S ¼ ;.
Since we mainly use the idea of Dijkstra Algorithm, the time

complexity of Algorithm 2 can beOðnlognþmÞ.
Since the computation of fðIÞ is #P-hard, it is expected to

estimate fðIÞ by its unbiased estimator E½’gðIÞ�. As shown in

Lemma 1, given a realization g, ’gðIÞ can be computed by its

corresponding backtracking setB. More specifically, for a reali-

zation g and its corresponding set B, ’gðIÞ ¼ 1 if B � I. Thus,
we can estimate fðIÞ well by a number of backtracking sets.

Similarly, we can estimate its lower bound f̂AðIÞ. Using Algo-

rithm 3, we generate a series of backtracking sets B. Let ef and
efA be the estimation of f and f̂A computed by the set B, respec-
tively. According to the results in [41], we have the following

lemma.

Lemma 4: Given " 2 ð0; 1Þ, d > 0 and set A, let B be a set

returned by Algorithm 3. For any set I containing A, we have

Pr½jfðIÞ � efðIÞj � "efðIÞ� � 1� d and Pr½jf̂AðIÞ � efAðIÞj �
"efAðIÞ� � 1� d.

Proof: According to the definition of f̂A, we have f̂AðAÞ ¼
fðAÞ. As shown in [41], Algorithm 3 can ensure that

Pr½jfðAÞ� efðAÞj � "efðAÞ� � 1� d. For each set B 2 B, if

B � A, then B � I. Thus, efðIÞ and efAðIÞ computed by B can

also satisfy the performance and the lemma follows. &

Furthermore, we design Algorithm 4 to obtain a solution

under the TLT model. First, we pick up the maximum probabil-

ity path from v 2 NðsÞ to t. Using Algorithm 2, we obtain the

the intermediate nodes in the maximum probability path l½u� and
we let A contain all nodes in l½u� n ftg. Then, we generate a set
B according to Algorithm 3. Next, we let both Il and Io are equal
toA. We iteratively choose the node so as to maximize the mar-

ginal gain of the lower bound, i.e., argmaxv2V nIlff̂
AðIl [

fvgÞ � f̂AðIlÞg, at each step until jIlj ¼ k. We greedily select

the node such that the marginal increment of original function is

maximized, i.e., argmaxv2V nIoffðIo [ fvgÞ � fðIoÞg, at each
iteration until jI0j ¼ k. Finally, the algorithm returns the set

with the maximum value. Notice that we estimate f̂A and f
according to set B.

First, the time complexity of generating A is Oðnlognþ
mÞ. Denote by p the maximum probability from v 2 NðsÞ to
t. We have the expected number of experiments in Algorithm

3 is �=p. Meanwhile, the time complexity of generating each

backtracking set B is OðmÞ. Thus, the time complexity is

Oðm�=pÞ for Algorithm 3. Notice that the time complexity is

linear to the size of B when computing both Il (line 6-9) and

Io (line 10-13). Thus, the expected time of Algorithm 4 is

OððkþmÞ�=pþ nlognÞ.
Theorem 4: Let I�LT and IALTbe the optimal solution for the

original function f and its submodular lower bound f̂A, respec-

tively. Algorithm 4 derives a
f̂AðIA

LT
Þ

fðI�
LT
Þ ð1� 1=e� "Þ-approxi-

mate solution with at least 1� d probability.

Proof: Due to f̂A is submodular and Lemma 4, Algorithm 4

can return a solution Il sunch that f̂AðIlÞ � ð1� 1=e�
"Þf̂AðIALT Þ with at least 1� d probability. Thus, we have

fðIlÞ � f̂AðIlÞ � ð1� 1=e� "Þf̂AðIALT Þ

�
f̂AðIALT Þ

fðI�LT Þ
ð1� 1=e� "ÞfðI�LT Þ;

holds at least 1� d probability. &

Algorithm 3: Generate a set B.
Input:G; s; t; A; "; d
Output:B
1: � 1þ ð1þ "Þ � 4ð4�eÞ lnð2=dÞ

"2

2: N  0

3: WhileN � �

4: Generate a realization g by Definition 1
5: Compute B using Algorithm 1

6: B  B [ fBg
7: If B � A
8: N  N þ 1

9: End If

10: End While

11: Return B

Algorithm 4: Semi Sandwich Approximation.

Input:G; s; t; "; d
Output:I
1: Initialize I  ;
2: u argmaxv2NðsÞfp½v�g
3: A l½u� n ftg
4: Initialize both Io and Il are equal to A
5: B  a set returned by Algorithm 3

6: WhilejIlj < k
7: u argmaxv2V nIlff̂

AðIl [ fvgÞ � f̂AðIlÞg
8: Il  Il [ fug
9: End While

10: While jIoj < k
11: u argmaxv2V nIoffðIo [ fvgÞ � fðIoÞg
12: Il  Il [ fug
13: End While

14: Return I  argmaxffðIlÞ; fðIoÞg
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Notice that f̂AðIALT Þ � f̂AðI�LT Þ if A � I�LT . In that case,

Algorithm 4 returns a
f̂AðI�

LT
Þ

fðI�
LT
Þ ð1� 1=e� "Þ with at least 1� d

probability. Given a set I, t can be active if only if there is a

path from s to t and all intermediate nodes belong to I. Thus,
the optimal solution must contain at least all intermediate

nodes in one path. To obtain the
f̂AðI�

LT
Þ

fðI�
LT
Þ ð1� 1=e� "Þ approxi-

mate solution, we can iteratively choose A as the intermediate

nodes in each path from s to t. And then select the optimal

value among them.

B. Targeted Independent Cascade

We first denote the realization under the TIC model. For a set

I � V , we then introduce its reduced graph for this realization.

Definition 2: Given a network G ¼ ðV;EÞ, a realization g
under the TIC model is generated as follows. Each edge euv is
removed with probability 1� wuv.

Definition 3: Let s and t be the start node and target node,

respectively. Given a realization g in Definition 2 and a set I,
we generate a reduced graph gðIÞ from g as follows. We

delete each edge euv from g if u or v does not belong to set

I [NðsÞ [ ftg.
Similar to the case under the TLT model, we have the fol-

lowing results.

Lemma 5: Given any set I � V , we have hðIÞ ¼ E½fgðIÞ�;
where fgðIÞ ¼ 1 if there is a path from s to t in the reduced

graph gðIÞ, and fgðIÞ ¼ 0 otherwise.

Proof: By definitions, the target node t is activated if and

only if there is path from s to t in a reduced graph gðIÞ. Thus,
the lemma follows. &

Next, we discuss the submodularity of h and the relation-

ship between the objective function h under the TIC model

and the objective function f under the TLT model.

Lemma 6: h is neither submodular nor supermodular.

Proof: Consider a counterexample shown in Figure 3. Let

each weight wuv ¼ 0:5 for any edge euv. We have hðfv1gÞ �
hð;Þ � hðfv1; v2gÞ � hðv2Þ. Thus, h is not submodular. More-

over, h is not supermdular since hðfv1; v2gÞ � hðv1Þ � hðfv1;
v2; v3gÞ � hðfv1; v3gÞ holds. &

Similarly, we can construct a submodular lower bound as

follows.

Lemma 7: For any set I � V , we first select a subset A � I,
and then let ĥAðIÞ ¼ E½fA

g ðIÞ�, where fA
g ðIÞ ¼ maxv2I

ffgðA [ fvgÞg. We have ĥAðIÞ � hðIÞ. Moreover, ĥAðIÞ is
submodular.

Proof: The proof is similar to Lemma 3. &

Lemma 8: For any I � V , hðIÞ � fðIÞ.

Proof: We first claim that the activation probability of each

node under the TLT model is no less than that under the TIC

model. Suppose that there are ‘ active in-neighbors of node v at
time t and this set of in-neighbors is fu1; u2; . . . ; u‘g. Then,
node v becomes active under the TIC and TLT models with

probability 1�
Q‘

i¼1ð1� wuivÞ and
P‘

i¼1 wuiv, respectively.

We prove 1�
Q‘

i¼1ð1� wuivÞ �
P‘

i¼1 wuiv by induction.

When ‘ ¼ 1, it is obvious that the above inequality holds.

Assume that it still holds when ‘� 1. We have 1�
Q‘

i¼1ð1�

wuivÞ ¼ 1�
Q‘�1

i¼1ð1� wuivÞ � ð1� wu‘vÞ ¼ 1�
Q‘�1

i¼1ð1� wuivÞþQ‘�1
i¼1ð1� wuivÞ � wulv �

P‘�1
i¼1 wuiv þ wu‘v ¼

P‘
i¼1 wuiv. Then,

we can conclude that the probability that the target node t is
activated in the TLT model is no less than it in the TIC model.

Thus, the lemma is proved. &

We design Algorithm 5 to solve the TAPM problem under the

TIC model. And this algorithm is based on the above results and

the sandwich approximation strategy. First, we generate a series

of realizations G according to Definition 2. Similarly, we initial-

ize Il and Io as a given setA, which is generated as Algorithm 4.

Then, we choose iteratively node satisfyingmaxv2V nIlfĥ
AðIl [

fvgÞ � ĥAðIlÞg and maxv2V nIofhðIo [ fvgÞ � hðIoÞg into Il
and Io until jIlj ¼ jIoj ¼ k, respectively. Moreover, according

to Lemma 8, the set Iu returned by Algorithm 4 is considered as

a solution of its upper bound. Finally, our result is the set with

the maximum value of h among Il; Io and Iu.
Notice that we can not compute both h and ĥA using G

directly. According to the current set Io and Il, we first need

Fig. 3. Counterexample illustrating the submodularity.

Algorithm 5: Sandwich Approximation.

Input:G; s; t; A; "; d
Output:I
1: Initialize I  ; and Iu  ;
2: Initialize Io  A and Il  A

3: � 1þ ð1þ "Þ � 4ð4�eÞ lnð2=dÞ
"2

4: N  0

5: WhileN � �

6: g a realization generated by Definition 2

7: G  G [ fgg
8: For each euv in g
9: If u =2 A [NðsÞ [ ftg or v =2 A [NðsÞ [ ftg
10: delete euv from g
11: End If

12: End For

13: If there is a path from s to t in g
14: N  N þ 1

15: EndIf

16: End While

17: While jIlj < k
18: u argmaxv2V nIlfĥ

AðIl [ fvgÞ � ĥAðIlÞg
19: Il  Il [ fug
20: End While

21: While jIoj < k
22: u argmaxv2V nIofhðIo [ fvgÞ � hðIoÞg
23: Io  Io [ fug
24: End While

25: Iu  a set returned by Algorithm 4

26: Return I  argmaxfhðIlÞ; hðIoÞ; hðIuÞg
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generate its reduced graph for each realization g 2 G and then

obtain h and ĥA. For a reduced graph gðIÞ, if there is a path

from s to t, then fgðIÞ ¼ 1. Thus, we can compute fgðIÞ and
fA
g ðIÞ according to Depth First Search. We have the time com-

plexity of generation Il and Io areOðkm�=pÞ. In summary, the

expected time of Algorithm 5 isOðkm�=pþ nlognÞ.
Let h and ĥA computed by the realizations G. We can have

the following performance when estimating h and ĥA.

Lemma 9: Given " 2 ð0; 1Þ and d > 0, for a set I con-

taining A, we have Pr½jhðIÞ � ehðIÞj � "ehðIÞ� � 1� d and

Pr½jĥAðIÞ � ehAðIÞj � "ehAðIÞ� � 1� d.

Proof: The proof is similar to Lemma 4. &

Theorem 5: Let I�IC , I
A
IC and IALT be the optimal solu-

tions for h, ĥA and f̂A, respectively. Algorithm 5 derives a

maxf
ĥAðIA

IC
Þ

hðI�
IC
Þ ;

hðIuÞ
hðI�

IC
Þ �

f̂AðIA
LT
Þ

fðIuÞ
gð1� 1=e� "Þ-approximate solu-

tion with at least 1� d probability.

Proof: Due to the submodularity of ĥA and Lemma 9, the

solution Il returned by Algorithm 5 can ensure that ĥAðIlÞ �
ð1� 1=e� "ÞĥAðIAICÞ with at least 1� d probability. Thus, we

have

hðIlÞ � ĥAðIlÞ � ð1� 1=e� "ÞĥAðIAICÞ

�
ĥAðIAICÞ

hðI�ICÞ
ð1� 1=e� "ÞhðI�ICÞ:

Furthermore, the solution Iu returned by Algorithm 4 can

ensure that f̂AðIuÞ � ð1� 1=e� "Þf̂AðIALT Þ with at least 1�
d probability. Thus, we have

hðIuÞ ¼
hðIuÞ

fðIuÞ
fðIuÞ

�
hðIuÞ

fðIuÞ
f̂AðIuÞ

�
hðIuÞ

fðIuÞ
ð1� 1=e� "Þf̂AðIALT Þ

�
hðIuÞ

fðIuÞ
�
f̂AðIALT Þ

hðI�ICÞ
ð1� 1=e� "ÞhðI�ICÞ;

hold with at least 1� d probability, respectively. The theorem

is proved. &

V. PERFORMANCE ANALYSIS

A. Experimental Setup

1) Datasets: We complete our experiments in Wikipedia,

HepTh, and Facebook. All these three datasets can be obtained

from J. Leskovec [42]. We double the number of edges for

Facebook since it is undirected. The important information on

these networks is shown in Table II.

Wikipedia captures a voting activity. If user i votes on user j,
then there is an edge from i to j. HepTh is a citation graph from
the e-print arXiv. An edge from i to j means paper i cites paper
j. Facebook is collected from Facebook pages, where the nodes

denote the pages, and edges are mutual hobbies among them.

2) Settings: We conduct the tests under both the TLTmodel

and TIC model. For convenience, we consider the influence

probability wuv is equal to 1=jN inðvÞj on each edge euv. For
each network, we randomly sample 50 pairs of start node s and
target node t. Meanwhile, we make each pair ðs; tÞ satisfy that

there is at least one simple path with the activation probability of

t is no less than 0.005.We use the average of the results yielding

the above 50 pairs as our final experimental results. To estimate

the objective function, we generate a series of realizations. As

for this process, we set that " ¼ 0:5 and d ¼ 0:01.
When comparing with other algorithms, we evaluate the

objective function using 10,000 Monte-Carlo simulations. All

experiments are completed on a machine with a 3.6 GHz

quad-core processor.

3) Algorithms: Although our proposed problem is similar

to the active friending problem, there are differences men-

tioned in Section 1. Moreover, we notice that Lin et al. [3] and

Chen et al. [6] discuss the problem by assuming the network

is a tree or a directed acyclic graph. And the algorithms in

[40] aims to solve the minimum version. Thus, we mainly con-

sider the following algorithms.

1) Semi Sandwich Approximation (SSA): As shown in

Algorithm 4, it is proposed to solve the problem under

the TLT model.

2) Sandwich Approximation (SA): As shown inAlgorithm 5,

it is proposed to solve the problem under the TICmodel.

3) Shortest Path (SP): The algorithm iteratively chooses

the intermediate nodes on their shortest paths from s to

t until the budget constraint is satisfied. It is also consid-
ered in [3], [40].

4) OutDegree: It selects top k nodes with the maximum

out-degree, which is considered a baseline.

B. Experimental Results

1) The Impact of k: First, we compare the activation prob-

ability of target node using the above algorithms by varying

the budget k. As shown in Figure 4 and Figure 5, our proposed
algorithms outperform other algorithms under both the TLT

model and TIC model. Meanwhile, as the budget k increases,

the activation probability will increase. We observe that the

OutDegree algorithm is not as bad as we expected. That is

because that the distance of the shortest path from s to t is 3 in

some cases. It means that the intermediate nodes in a path can

be an empty set. Generally, if the distance of the shortest path

is 3, their activation probability will be large. In fact, the acti-

vation probability shown in OutDegree algorithm is very close

to the value when budget k ¼ 0.

Notice that in the TLT model, we have
P

v2NinðuÞ wvu � 1

for each node u 2 V . However,
P

v2NinðuÞ wvu can be larger

than 1 in the TIC model. Thus, we conduct other experiments

in whichwuv is chosen uniformly at random from [0,1]. We use

TABLE II
IMPORTANT INFORMATION ON NETWORKS
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a SSA algorithm to obtain the solution since the upper bound

under the TIC model comes from the solution to the TLT

model. As shown in Figure 6, the activation probability of the

target increases when the budget k increases. At the same time,

the activation probability is close to 1 in HepTh and Facebook

when k ¼ 15. Moreover, the results from the SSA is ten times

larger than the solutions from the SP in Wikipedia and three

times larger than that in bothHepTh and Facebook.
2) Approximation Ratio: Although both the SSA and SA

algorithms carry a data-dependent approximation ratio, they are

hard to compute directly. To show this approximation ratio, for

Wikipedia, we compute the activation probability of the target

node for both the lower bound and the original function using the

solution returned by the SSA algorithm, respectively. As shown

in Figure 7(a), we see that the difference between f and f̂A is

small no matter what the size of the budget k. Furthermore, we

consider the objective function f under the TLT model as an

upper bound of the objective function h under the TIC model.

We present the value among h, hA and f in Figure 7(b) using the

solution returned by SA algorithm. Similarly, their results are

very close, which illustrates that our algorithms can provide a

good performance guarantee.

3) The Impact of A: Our algorithms are based on a given

set A. Next, we focus on the impact of A. As shown in the

SSA algorithm, we select the intermediate nodes on the maxi-

mum probability path as A directly. To reflect the influence of

A, we consider the top 3 maximum probability paths for Wiki-

pedia. Let ‘ be the number of selected paths. That is, we use

the intermediate nodes on the top ‘ maximum probability

paths as the set A. Figure 8 shows the final results when the

size of the budget k is equal to 15. We observe that the results

do not vary much, no matter what the size of A.

4) Running Time: Since other methods are heuristics, we do

not compare our algorithm to them. Figure 8 shows the running

Fig. 4. Activation probability by varying budget k under the TLT model.

Fig. 5. Activation probability by varying budget k under the TIC model.

Fig. 6. Activation probability by varying budget k under the TIC model when wuv is uniformly at random from [0,1].
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time of the SSA and SA algorithmswhen the budget k is equal to
15 on three networks. Here, we use a log scale on y-axis to show
their difference. According to Figure 9, we find that the small

dataset takes less time to run. In the meantime, the running time

of the SA algorithm is larger than that of the SSA algorithm.

That is mainly because that the SSA algorithm takes much more

time to estimate the objective function. In section V, we show

that the expected time of SSA and SA are OððkþmÞ�=pþ
nlognÞ andOðkm�=pþ nlognÞ, respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we discuss the targeted activation probability

maximization problem, which asks for a certain number of inter-

mediate users so that one user can successfully influence a given

target with a maximum probability. Two different diffusion mod-

els, namely the TIC and TLTmodel, are proposed. We show that

the problem is NP-hard, and computing the objective function is

#P-hard under the above models. To estimate them, we devise

their unbiased estimators. Moreover, we show that the objective

function is an upper bound of that in the TICmodel. Based on the

Sandwich Approximation strategy, we obtain their data-depen-

dent approximate solutions, respectively. Our experimental

results on three networks show the significance of ourmethods.

Although we obtained a submodular lower bound of the

objective function in the TLT model, a submodular upper is

still hard to give. In the future, we will try to devise an avail-

able upper bound. Also, we will try to design another approxi-

mate algorithm with a better performance guarantee.
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