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Targeted Activation Probability Maximization
Problem in Online Social Networks

Yapu Zhang ™, Jianxiong Guo

Abstract—In the past decade, influence maximization becomes
one of the fundamental problems in online social networks. It has
popular applications such as viral marketing and rumor blocking.
This problem asks for some influential users to maximize the
expected followers. Unlike traditional influence maximization, we
discuss the problem of influence towards a special target user
in this paper. We define the targeted activation probability
maximization problem, which aims at finding % intermediate users
so that a given target user is more likely to be influenced by the
start user. Motivated by the need for modeling the diffusion
process from one user to another, we propose the Targeted Linear
Threshold (TLT) model and Targeted Independent Cascade (TIC)
model. We prove that the problem is NP-hard, computation of
the objective function is #P-hard, and the objective functions are
non-submodular. Moreover, the objective function in the TLT
model is an upper bound of that in the TIC model. Based on the
sandwich approximation strategy, we obtain their data-dependent
approximate solutions. Finally, we use three real datasets to
evaluate the effectiveness of our algorithms. The experimental
results indicate that our methods can effectively increase the
activation probability of the target user.

Index Terms—Online social networks, targeted activation
probability, data-dependent approximate solutions.

1. INTRODUCTION

N recent decades, online social networks acted as an infor-

mation service platform have been developed quickly. There
are 4.54 billion users, including 3.725 billion active social
media users, by the end of December 2019 [1]. Each user can
make friends, promote products, and so on across these net-
works. Due to its essential applications in economics and epide-
miology, a large number of researchers have studied the
problem of information diffusion in social networks. A formal
study can be traced back to the Influence Maximization (IM)
problem [2], which asks for some initial users so as to maximize
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the followers influenced by these initial users. The authors also
proposed two classic models, namely, Independent Cascade
(IC) and Linear Threshold (LT) models. Since then, there are
considerably related researches based on the two models.

Given an information diffusion model, the traditional IM
problem mainly considers maximizing the number of users who
adopt the information. However, one may only focus on whether
one or more given influential users adopt the information [3]-
[5]. To the best of our knowledge, Yang et al. [3] first studied the
influence towards a target user and proposed the Acceptance
Probability Maximization (APM) problem. More specifically, a
start user wants to make friends with a target user. The APM
problem is to find some intermediate users and send invitations
to them step by step so that the target user can become a friend
of the start user with the maximum probability. The authors [3]
mainly discussed it under an approximate IC model. Different
from the IM problem, the initial users are given in the APM
problem. That is, both the start user and his/her friends are con-
sidered as the initial users. Moreover, only the selected inter-
mediate users can be activated (i.e., the adaptor of the
invitation) in the diffusion process. Following this line, Chen
et al. [6] further considered this problem and extended it to the
directed acyclic graphs. Yuan et al. [7] considered a con-
strained active friending problem in the LT model.

In this paper, we study a similar problem, and the following
scenario drives our problem. A young scholar wants to send a
conference invitation to a mathematician. Due to lacking
mutual friends, he can not directly send this invitation or be
more likely to be rejected if he sends it directly. Therefore, he
hopes that his friends can help him send the invitation, and
then his friends send the invitation to their friends and so on.
Finally, the mathematician can accept this invitation. Assume
that his friends will definitely help him send the invitation and
the friends of his friends will help send this invitation with a
certain probability. There is a network platform that can pro-
vide a recommendation list to assist this young scholar. Given
the limited budget, which users should be included in this rec-
ommendation list to maximize the acceptance probability of
the mathematician? We call this problem the Targeted Activa-
tion Probability Maximization (TAPM) problem.

The main difference between our problem and the traditional
APM problem are as follows. On the one hand, the diffusion
process in the APM problem is approximated by the maximum
influence path. And our diffusion process is considered in the
general graph. On the other hand, the start user will build a new
friendship with the intermediate users at each step for the APM
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TABLEI
IMPORTANT NOTATIONS SHOWED IN THIS PAPER
Variable Description
G=(V.E) an instance of the social network
n,m the size of nodes set V' and edges set I/
Wy influence probability in edge €y,

st the start node and the target node

N (v), N°“(v)  the in-neighbors and out-neighbors of v
a set of nodes in N°%(s) U {s}

f the objective function in the TLT model
h the objective function in the TIC model
1 the set of intermediate users

B the backtracking set

g a realization under a diffusion model

problem, hoping the target can accept the friending invitation
when they have sufficient mutual friends. However, the TAPM
problem does not need to make friends with intermediate users
iteratively. Our goal is to maximize the target user’s acceptance
probability according to the word-of-mouth effect among the
start user, his friends, and these selected intermediate users.

This paper studies the TAPM problem in the Targeted Inde-
pendent Cascade (TIC) and Targeted Linear Threshold (TLT)
models. It is hard to handle since the NP-hardness of the prob-
lem and non-submodularity of the objective function in the
above models. To address it, we devise the approximation
algorithms with the data-dependent ratio. Our main contribu-
tions can be concluded as follows.

1) We consider a novel Targeted Activation Probability
Maximization (TAPM) problem, which focuses on the
influence towards a given user on general graphs. Two
diffusion models, namely the Targeted Linear Thresh-
old (TLT) model and Targeted Independent Cascade
(TIC) model, are proposed. We show that our problem
is NP-hard, and the computation of the objective func-
tion is #P-hard under the above two models.

2) We prove that the objective function is supermodular
under the TLT model. And it is neither submodular
nor supermodular under the TIC model. For the two
models, we devise the unbiased estimator for the
objective function, respectively. Then, the submodular
lower bounds follow. Moreover, we prove that the
function in the TLT model is an upper bound for that
in the TIC model. Using the Sandwich Approximation
method, we obtain their approximate solutions with
the data-dependent performance.

3) Finally, in three real-world networks, we use the experi-
mental results to support the correctness and the superi-
ority of our methods.

The following paper is arranged as follows. We review the
related works in Section II. We introduce the problem defini-
tion and diffusion models in Section III. Sections IV presents
our approximation algorithms under the TLT and TIC models,
respectively. Furthermore, we perform the experiments in
Section V. Finally, our work is concluded in Section 6. For
ease of reference, we list the important definitions of variables
that are frequently used in Table I.

II. RELATED WORK

With the rapid development of internet technology, online
social networks play an important role in our daily life. Hence-
forth, it attracts many researchers to study related problems in
online social networks. Generally, we use a graph structure to
describe the social network. Some novel methods are proposed
to represent relationships among users in reality [8], [9].
Besides, motivated by its applications such as marketing, there
has been extensive research [10], [11]. For instance, Si et al.
[12], [13] explore the relationships among users’ interests and
applications. Mao et al. [14] proposed some methods to iden-
tify influential users for brand communication.

A. Influence Maximization

Among these studies, the influence maximization is a key
issue in online social network. The influence maximization
problem asks for £ initial users such that the followers influ-
enced by these users can be maximized in the social network
[2], [15]. This problem is NP-hard and the computation of the
objective function is #P-hard [16], [17]. Fortunately, the tradi-
tional greedy can give a (1 — 1/¢e) approximate solution since
the objective function is non-negative, monotone non-decreas-
ing and submdoular [18]. Here, a set function f : 2V - Rtis
submodular if and only if f(SU {v}) — f(S) < f(TU{v}) —
f(T) forany T C SCVandwve V\S. fis monotone non-
decreasing if and only if f(T") < f(S) forany T C S.

However, it takes a lot of time to compute the influence
spread at each iteration using the naive greedy algorithm. To
be feasible in large-scale social networks, Leskovec et al. pro-
posed the cost-effective lazy forward algorithm [19] and Chen
et al. proposed degree discount heuristics [20]. Recently,
Borgs et al. achieved a theoretical breakthrough based on the
reverse influence sampling [21]. The time complexity of their
algorithm is O(kf?*(m + n)log?n/e®) under the IC model,
where n and m are the sizes of nodes and edges, respectively.
Besides, their method can guarantee a (1 — 1/e — €)-approxi-
mate solution with at least 1 — n’ probability. Although it has
a strong theoretical guarantee, there still are some rooms to
improve its efficiency. Following this line, some researchers
devised more efficient algorithms [22]-[25].

B. Non-submodular Influence Maximization

Nowadays, many researchers focus on the information-
related problems [26]—[31]. Such an extension of the influence
maximization have been studied [28], [29], [32]. In most cases,
these problems will lack submodularity. For instance, Chaoji
et al. studied the content spread in social networks [28] and
Wang et al. proposed activity maximization problem [29].

Non-submodular influence maximization will no longer
have the approximation guarantee using the traditional greedy
algorithm and other improved schemes. To the best of our
knowledge, there are the following three methods for non-sub-
modular optimization.

1) Global approximation: For any set function, researchers

found that it can be written as the difference between
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two submodular functions [33]. Based on this idea,
some algorithms, such as Submodular-Supermodular
[33] and Modular-Modular algorithms [34], are derived.
These algorithms always give an approximation of the
local optimum.

2) Parameterized method: Some researchers solved the
non-submodular problem from the view of supermodular
degree [35], [36]. The supermodular degree of an ele-
ment u € V' by a set function f is define to be | D} (u)
[35], where

Di(u) ={v e VI3S CV: f(SU{v,u})
— f(SU{v}) > f(SU{u}) - f(9)}.

The supermodular degree of f is

Dt = D (u)].
f Il{lea‘;d f(u)‘

Besides, some strategies based on curvature [37], [38]
are also proposed. These methods can provide strong
theoretical guarantees. However, they are hard to apply
to practical problems.

3) Sandwich approximation: Recently, Lu et al. [39] pro-
posed the Sandwich Approximation strategy, which can
carry out a data-dependent approximate solution based
on their submodular lower and upper bounds. More spe-
cifically, the method devises the solutions for the original
function, lower bound, and upper bound, respectively. It
then returns the solution, which can maximize the origi-
nal objective function as the final result.

C. Targeted Influence Maximization

As an extension of the influence maximization, the problem
of influence towards a special target user plays a role in social
networks.

Yang et al. [3] are first among the researchers who explored
this issue, and they defined Acceptance Probability Maximiza-
tion (APM) problem. For general networks, they showed that
the problem is NP-hard, and computing the objective function
is #P-hard in the IC model. Then, they modeled an approximate
IC model and proposed Selective Invitation with Tree Aggrega-
tion (SITA) and In-Node Aggregation (SITINA). Notice that
these algorithms are based on the tree, and SITA is not a poly-
nomial-time algorithm. Following them, Chen et al. considered
the Target Influence Maximization [6], where the goal is to let
aboy become a friend of a girl by making new friends influence
this girl. In their work, two polynomial-time approximation
algorithms are proposed when assuming the network is a
directed acyclic graph. Yuan et al. [7] then studied a con-
strained active friending in the LT model. From the view of
super-differentials, they devised the approximation algorithms.
Furthermore, the problem can be converted into one minimum
version to find the minimum size of friending innovations so
that the acceptance probability can exceed a given threshold.
Tong et al. [40] studied the minimum version and presented an
approximation algorithm in the LT model for general graphs.

In this paper, we mainly study the targeted activation probabil-
ity maximization problem, which aims at finding k intermediate
users so that a given target user is more likely to be influenced by
the start user. Since the problem is non-submodular, we design
the methods using the Sandwich strategy. The proposed algo-
rithms can not only produce a data-dependent approximate
solution but also apply to large-scale social networks.

III. SYSTEM MODEL AND DEFINITIONS
A. Targeted Activation Probability Maximization Problem

Generally, a social network is described as a directed graph.
Given a graph G = (V,E) with |[V|=n and |E|=m, V
denotes the users and E represents the relationship between
users, respectively. The weight w,, € [0,1] on each directed
edge e,,, means the social influence possibility of v upon v. Let
N (u) = {v|ey € E}, N°“(u) = {v|e,, € E} and N(u) =
Ne“(u) U {u}, respectively. Since each weight can be normal-
ized such that its sum is not more than 1, we suppose that
Zve Nin(u) Wou < 1 for each node u € V. Given a start node s
and a target node ¢, the Targeted Activation Probability Maximi-
zation (TAPM) problem aims to find a set of intermediate nodes
I CV\ N(s) with the cardinality of k so as to maximize the
activation probability of ¢. Given a set I, we denote by f ;- :
2V — R* the activation probability of the target node ¢ upon
the the nodes in N (s) U I. Formally, the TAPM problem is

maxf<svt> (1)7
1] < k.

B. Diffusion Models

In this paper, we mainly consider the process in the follow-
ing two models, which are based on the LT and IC models.

1) Targeted Linear Threshold Model: Motivated by the
need for modeling the diffusion process from one user to
another, we first propose the Targeted Linear Threshold (TLT)
model. The diffusion process under the TLT model unfolds as
follows.

1. In the beginning, we activate all nodes in N(s) and deter-
mine the threshold 6, € [0,1] of each node v randomly. We
initialize the activation set S = N(s).

2. In each subsequent round, each newly-activated node v
tries to activate its each out-neighbor u. If u € I U {¢}, then it
can activate u successfully when > Nin(u)ns Wou > 0,. Other-
wise, u can never be activated. When v is activated, we add u
into the activation set S.

3. The process terminates if there are no newly-activated
nodes or the target node ¢ is activated after one round.

Consider an example in Figure 1. Suppose that each weight
Wyy 18 0.2 and the set of intermediate nodes is I = {vy, v5, vg }.
Initially, we activate all nodes in N (s) and each node chooses a
threshold in [0,1] randomly. Suppose that the threshold of each
node is 0.3. Then, v, will be the first newly-activated node by
the joint influence of s; and s,. Next, vy is activated and it starts
to influence ¢. Unfortunately, ¢ can not be activated since 6, >
wy,+ and then the process terminates. Notice that vy, v3 and vy
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Fig. 1.

Example illustrating the diffusion process.

can never be activated since they are not the intermediate users.
Although vg is intermediate node, vg will not be active since s
and vg lack mutual neighbors.

Theorem 1: The TAPM problem is NP-hard under the TLT
model.

Proof: We show that it is NP-hard with a reduction from the
IM problem, which is proved to be NP-hard in [2]. Consider an
instance of the IM problem as follows. Let X = {zy, 2o, ...,
zotand Y = {y1,90,...,y,}. We define a directed graph G =
(V, E): (1) for nodes set V, it includes node ¢, each node z; in
X and each node y; in Y; (2) for edges set F, it includes
directed edges (z;,y;) and (y;,t) for each z; € X and y; € Y
)y welet -, ying, ;) Wy = Land wy,; = =1/|N"(t)] = 1/d
forz; € X and Y; 6 'Y, Notice that Wy, y,; Can be equal to zero.
The IM problem aims to find out &k nodes to maximize the influ-
ence spread. Actually, the maximum value is k+|Y|+1
involving the graph G.

Next, we can define a corresponding TAPM problem as
follows. Accordingly, we build a graph G' = (V', E): (1)
we copy the graph G as G'; (2) we add nodes s and s;
into V'; (3) we add edges (s,s;) and (si,;) into E,
where wg g = Wy, 0 =1 for each x; € X. Figure 2 illus-
trates a construction of (7. Let s and ¢ be the start node
and target node in the instance of the TAPM problem. We
prove that there is a solution S C X with k£ nodes such
that the influence spread is equal to £+ [Y|+1 in G if
and only if there is a solution with &k + |Y'| nodes such that
the activation probability of £ is 1 in G'. First, we discuss
the sufficient condition. If there is a k—size set S C X
such that the influence spread is equal to k+ Y|+ 1 in G,
then selecting SUY will result in ¢ is activated with 1
probability in G'. Then, we discuss the necessary condi-
tion. If there is a solution I with |I| = k+ |Y]| such that
the activation probability of ¢ is 1, set I must contain all
nodes in Y and the nodes in /N X can definitely activate
all nodes in Y. We can conclude that I N X will be the
seed in the IM problem so that the influence spread is k +
Y|+ 1 with [INX| = |I| —|Y| = k. Thus, the theorem is
proved. |

2) Targeted Independent Cascade Model: In the follow-
ing, we discuss the Targeted Independent Cascade (TIC)
model, and the diffusion process unfolds as follows.

(¥

Fig. 2. Example illustrating the NP-hardness:X = {x1, 22,23} and Y =
{y1, 92, 43,41}

L. Initially, we activate all nodes in N(s).

2. In each subsequent round, for each newly-activated nodes
v, if its neighbor u € I U {t}, then it has a single chance to
activate u with probability w,,. Otherwise, u can never be
active.

3. The process terminates if there are no newly-activated
nodes or the target node ¢ is activated after one round.

Again, we use the example in Figure 1 to illustrate the pro-
cess under an TIC model. We also suppose that each weight
Wy, 18 0.2, and the set of intermediate nodes is I = {va, vs5, vg }.
At beginning, each node in set N(s) = {s, s1, 52, 53} is active.
Then, each node in N(s) starts to influence their neighbors
with a certain probability. Only both vy and v5 can be activated
at this time since they belong to I. Notice that the activation
probabilities of vs and vy are 0.36 and 0.2, respectively. Sup-
pose that v, is activated and vj is not activated. Next, vo will try
to activate vs with probability 0.2. If v; becomes active, then it
will further influence ¢. Otherwise, this process terminates.

Theorem 2: The TAPM problem is NP-hard under the TIC
model.

Proof: We show that it is NP-hard with a reduction from
the IM problem. We construct an instance of the IM problem
and define a corresponding instance of the TAPM problem in
the TIC model as the case in the TLT model. The difference is
that we set w,, ,, = 1 for each z; € X and y; € Y. Similarly,
we can prove that there is a solution S C X with k£ nodes such
that the influence spread is equal to k+ [YV|+1 — (1 — d)"!
in G if and only if there is a solution with k + |Y| nodes such
that ¢ is activated with 1 — (1 — d)‘yl probability in G, where
d = |[N""(t)|. Thus, the theorem is proved. u

C. Property

Theorem 3: The computation of the TAPM problem is #P-
hard under both the TLT model and the TIC model.

Proof: We prove it by a reduction from the IM problem. The
computation of influence spread is #P-hard in the LT model
[17] and IC model [16]. For any directed graph G = (V, E) and
seed set S, we denote the influence spread as o(S). We first
reduce the computation of influence spread in the LT model to
the computation of the activation probability of target node in
the TLT model. Let s and ¢ be the start node and target node in
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Algorithm 1: Backtracking set B.

Algorithm 2: Maximum Probability Paths.

Input:G, g, s,t
Output: B
1: Create a queue ) with the singleton node ¢
2: Initialize B < ()
3: While() is not empty
4: v Q.dequeue()
5:  If there exists a in-neighbor of vin g
6: u «— the in-neighbor of vin g
7
8

IfuebB
: Return B «— BU {n}

9: End If
10: Ifu € N(s)
11: Return B
12: End If
13:  Else
14:  Return B «— BU {n}
15: EndIf

16: B~ BU{u}
17:  Q.enqueue(u)
18: End While

19: Return B

the TAPM problem, respectively. Denote by I = {vy,...,v;}
all the intermediate nodes between nodes s and ¢t. We have
G(N(S) = Feom > IN{ODF oot Fen= I\ {0} +
fesi>(I)+|N ( )|. Thus, the computation of TAPM problem
in the TLT is #P-hard. Similarly, we can prove it in the TIC
model. Then, the theorem follows. u

IV. OUR PROPOSED APPROXIMATION SCHEME

In this section, for convenience, we denote the objective func-
tion fos;~ as f and h under the TLT model and TIC model,
respectively.

A. Targeted Linear Threshold

Definition 1: Given a network G = (V, E), a realization g
under the TLT model is generated as follows. Each node v
selects at most one node among its in-neighbors u € N (v)
with probability w,, and no node with probability 1—
Z’ILEN”%U) Wyp-

Similar to the idea in [40], for a realization g in Definition 1,
we can judge whether the target node ¢ can be activated by
backtracking the nodes that can reach node ¢. As shown in
Algorithm 1, we start to backtrack from ¢ until finding a node
in N(s) or no new node. We define by B the backtracking set
returned by Algorithm 1. For convenience, if there is no new
node, we add an element 7 into B. Then, if 7 € B, we have
@,(I) = 0 for any set I C V. Here, 7 is a notation introduced
for the purpose of analysis. Furthermore, we conclude the fol-
lowing lemma.

Lemma 1: f(I) = E[p,(I)], where

1 if BCI,
%(I) o {0 otherwise.

Proof: For arealization g in Definition 1, each node selects
at most one node. Thus, if there is a path from s to ¢, then all

Input:G = (V, E), t
Output:/ and p
1: Initialize aset S «— V'
2: Initialize [[v] < () for any node v € V
3: Initialize p[t] < 1 and p[v] < 0 for any node v # ¢
4: While S is not empty
5:  u <« argmaxyes{p[v]}
6: remove u from S
7:  For each in-neighbor v of u
8 temp «— p[u} * Wy
9: Iftemp > p[v)]

10: plv] — temp

11: l[v] < 1[u] adds node u
12: End If

13 End For

14: End While
15: Return [, p

intermediate nodes in this path are exactly equal to all nodes
in B. E[gp,(I)] means the probability that there is a path from
s to t such that its intermediate nodes of this path are included
in set /. By definition, ¢ is activated if and only if there is a
path from s to ¢, and its intermediate nodes are included in set
I. Thus, the lemma is proved. u

Notice that the intermediate nodes of one path is as follows.
As shown in Figure 1, < s,s1,v9,v5,t > is a path from s to
t. The intermediate nodes in this path is v2 and vs.

Lemma 2:  f is monotone non-decreasing supermodular.

Proof: 1Tt is trivial to know that f is monotone non-decreas-
ing. Next, it suffices to show the supermodularity. Given any
two subsets I; C I, CV and a node v € V' \ I, we aim to

prove that f(I, U{v}) — f(I;) < f(Io U{v}) — f(I3). That
is, for any realization g, we need to prove that
wg(ll U {U}) - @g(Il) < (0g(12 U {U}) - @g(IZ) (1)

Notice that ¢,(I) is either 0 or 1. We only need to show that
@y(Io U{v}) — 9, (12) =1 when ¢ (I3 U{v}) — ¢, (L) = 1.
If ¢, (L U{v}) —¢,(l;)=1, then ¢, (l; U{v})=1 and
gog(Il) = 0. We can conclude that v € B, where B is the back-
tracking set involving graph g. Therefore, we have B Z I, and
then ¢ (I2) = 0. Furthermore, ¢, (I U {v}) = 1 since ¢, (/; U

{v}) =1and I; C I,. Thus, the lemma is proved. u

Given sets [ and A, we let g, A(I) = maxpe{e,(AU{v})}.
Furthermore, we can construct a submodular lower bound as
follows.

Lemma 3: For any set I C V, we first select a subset A C
I, and then let fA4(I) = E[(pf([)]. We have f4(I) < f(I).
Moreover, f4(I) is submodular.

Proof: For any v € I, AU {v} is a subset of I. Thus, we
have ¢(I) < @,(I) and then f4(I) < f(I). Given any two
subsets I; C I, C V and anode u € V' \ I, it suffices to prove
that

¢ (I U {u})

— @ (1) < @) (11U {u}) — (L), ()
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Algorithm 3: Generate a set B.

Algorithm 4: Semi Sandwich Approximation.

Input:G, s,t, A, e,6
Output: 3

Y —14+1+¢)-

2: N0

3: WhileN < 7T
Generate a realization g by Definition 1
Compute B using Algorithm 1
B — BU{B}
IfBCA

N — N+1

9: EndIf
10: End While
11: Return B

4(4—e)In(2/9)
£2

e A

Furthermore, we only need to prove that ¢ AL U {u})
¢y (I1) =1 when ¢]!(I,U{u}) — ¢/ (L) = Lo 9 (I U
{u}) @, A(I) =1, we have g (AU {u}) =1 and goq (IQ)
0. Therefore, ¢, AL U{u}) =@, (AU{u}) =1 and @, AL) =
0. Then, the lemma follows. u

We first plan to determine set A and then obtain an approxi-
mate solution I containing A. Next, we discuss the selection of
A. Given aset I, we observe that ¢ is activated if and only if there
is a path from s to ¢ and the intermediate nodes of this path are
included in I. Thus, we compute the maximum probability path
from s to ¢, and select the intermediate nodes in this path as A.
Moreover, set A is the optimal solution, if the number of A is
exactly equal to the limited budget k and this path is a shortest
path from s to t. We utilize the idea of Dijkstra Algorithm and
conclude it in Algorithm 2. Let {[v] be the intermediate nodes in
the maximum probability path from v to ¢ and p[v] be the corre-
sponding probability. For each v € V, we add I[v] and p[v] into [
and p, respectively. Initially, S is equal to V, [v] is an empty set
for any v € V, p[t] = 1, and p[v] = 0 for v # t. At each itera-
tion, Algorithm 2 selects a node u with the maximum probability
and remove it from .S. Then, it updates both path /[v] and proba-
bility p[v] for each v € N**(u). The algorithm ends until S = ().
Since we mainly use the idea of Dijkstra Algorithm, the time
complexity of Algorithm 2 can be O(nlogn + m).

Since the computation of f(I) is #P-hard, it is expected to
estimate f(I) by its unbiased estimator E[gp,()]. As shown in
Lemma 1, given a realization g, ¢ (/) can be computed by its
corresponding backtracking set B. More specifically, for a reali-
zation g and its corresponding set B, gog(I ) =1if B C I. Thus,
we can estimate f(I) well by a number of backtracking sets.
Similarly, we can estimate its lower bound fA(I ). Using Algo-
rithm 3, we generate a series of backtracking sets B. Let f and
f* be the estimation of f and fA computed by the set 3, respec-
tively. According to the results in [41], we have the following
lemma.

Lemma 4: Givene € (0,1),8 > 0and set A, let B be a set
returned by Algorithm 3. For any set I containing A, we have
Pr(| f(I) — f(I)] < ef(D)] 2 1 — 8 and Px{|fA(1) — JA(I)]| <
efAN] 21-3.

Proof: According to the definition of f4, we have fA(A) =
f(A). As shown in [41], Algorithm 3 can ensure that
Pr[|f(A)— f(A)| <ef(A)] >1—36. For each set B € B, if

Input:G, s,t,¢,6
Output I

. Initialize I «— ()
tu — argmaxye y(s) {p[v]}

LA 1]\ {t)

: Initialize both I, and [; are equal to A
B — aset returned by Algorithm 3

: While|;| < k X

w — argmax,ep LA U {o}) -
I — LU {u}

: End While

: While |I,| < k

u  argmax,eyr, { f(1o
[1 — Il U {u}

: End While

14: Return [ — argmax{ f(1;), f(1,)}

FAI}

PR UE DD

——
- Qo 0

u{o}) = f(lo)}

—_
W N

B C A, then B C I. Thus, f(] ) and fA(I ) computed by B can
also satisfy the performance and the lemma follows. u

Furthermore, we design Algorithm 4 to obtain a solution
under the TLT model. First, we pick up the maximum probabil-
ity path from v € N(s) to t. Using Algorithm 2, we obtain the
the intermediate nodes in the maximum probability path [[u] and
we let A contain all nodes in l[u] \ {¢}. Then, we generate a set
B according to Algorithm 3. Next, we let both /; and I, are equal
to A. We iteratively choose the node so as to maximize the mar-
ginal gain of the lower bound, i.., argmax,cz,{ fA (Lu
{v}) — fA(I))}, at each step until |I;| = k. We greedily select
the node such that the marginal increment of original function is
maximized, i.e., arg max,cyn 7, { f(L, U {v}) — f(I,)}, at each
iteration until |Iy| = k. Finally, the algorithm returns the set
with the maximum value. Notice that we estimate fA and f
according to set 3.

First, the time complexity of generating A is O(nlogn +
m). Denote by p the maximum probability from v € N(s) to
t. We have the expected number of experiments in Algorithm
3 is T/p. Meanwhile, the time complexity of generating each
backtracking set B is O(m). Thus, the time complexity is
O(mY /p) for Algorithm 3. Notice that the time complexity is
linear to the size of B when computing both I; (line 6-9) and
I, (line 10-13). Thus, the expected time of Algorithm 4 is
O((k+m)Y/p+ nlogn).

Theorem 4: Let I}, and I7.be the optimal solution for the

original function f and its submodular lower bound fA respec-

tively. Algorithm 4 derives a ! (( L_T)>

(1 —1/e — ¢)-approxi-
mate solution with at least 1 — § probablhty
Proof: Due to f# is submodular and Lemma 4, Algorithm 4
can return a solution I; sunch that f4()> (1—1/e—
e) fA(I{,) with at least 1 — § probability. Thus, we have

F() = JAI) = (1= 1/e = )" (Izy)
£A IA
> L 1je -,
holds at least 1 — § probability. u
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Fig. 3. Counterexample illustrating the submodularity.
Notice that f4(I{;) > fA(I;7) if AC Ij;. In that case,
PA
Algorithm 4 returns a % (1—-1/e—¢) withatleast1 —34

probability. Given a set I t can be active if only if there is a
path from s to ¢ and all intermediate nodes belong to I. Thus,

the optimal solution must contaln at least all intermediate

nodes in one path. To obtain the (( )) (1 —1/e — ¢) approxi-

mate solution, we can iteratively choose A as the intermediate
nodes in each path from s to ¢. And then select the optimal
value among them.

B. Targeted Independent Cascade

We first denote the realization under the 77C model. For a set
I C V, we then introduce its reduced graph for this realization.

Definition 2: Given a network G = (V, E), a realization g
under the TIC model is generated as follows. Each edge e, is
removed with probability 1 — w,,,.

Definition 3: Let s and ¢ be the start node and target node,
respectively. Given a realization g in Definition 2 and a set 1,
we generate a reduced graph ¢(I) from g as follows. We
delete each edge ey, from g if v or v does not belong to set
TUN(s)U{t}.

Similar to the case under the TLT model, we have the fol-
lowing results.

Lemma 5: Given any set [ C V, we have h(I) = E[¢,(I)],
where ¢, (1 ) = 1 if there is a path from s to ¢ in the reduced
graph g(I), and ¢,(I) = 0 otherwise.

Proof: By definitions, the target node ¢ is activated if and
only if there is path from s to ¢ in a reduced graph g(I). Thus,
the lemma follows. u

Next, we discuss the submodularity of h and the relation-
ship between the objective function & under the TIC model
and the objective function f under the TLT model.

Lemma 6: h is neither submodular nor supermodular.

Proof: Consider a counterexample shown in Figure 3. Let
each weight w,, = 0.5 for any edge e,,. We have h({v1}) —
h(0) < h({v1,v2}) — h(vy). Thus, h is not submodular. More-
over, h is not supermdular since h({vy,vs2}) — h(vy) > h({vy,
V2, ’Ug}) — h({vl, ’U3}) holds. u

Similarly, we can construct a submodular lower bound as
follows.

Lemma 7: For any set I C V, we first select a subset A C I,
and then let hA(I) = I¢A( )], where qb;(l ) = maxyes
{#,(AU{v})}. We have hA( ) < h(I). Moreover, h*(I) is
submodular.

Proof: The proof is similar to Lemma 3. u

Lemma 8: Forany I CV, h(I) < f(I).

Algorithm 5: Sandwich Approximation.
Input:G, s,t, A, &,6
Output:/
: Initialize I « () and I, < ()
: Initialize I, < Aand I; — A
T —1+(1+¢)- 47(47‘2;"(2/5)
N« 0 “
: While N < 7T
g « arealization generated by Definition 2
G —Gu{g}
For each e, ing
Ifu¢g AUN(s)U{ttorv¢g AUN(s
delete e, from g
End If
End For
If there is a path from sto tin g
N— N+1
EndIf
: End While
: While |[}] < k R A
u — argmax,ein 1, {h (L U {v}) — B4 (1)}
I — LU {u}
: End While
: While |I,| < k
u «— arg max,eyn 7, {h (1,
I, — I,U{u}
: End While
: I, < asetreturned by Algorithm 4
: Return [ — arg max{h([;), h(l,), h(I,)}

AN A S e

0

) Uit}

[ S T N T O e e S
NZYRINRE2D 2

)
A-.-

U{v}) = h(l,)}

[\8]
(9%}

[N O]
SN W

Proof: We first claim that the activation probability of each
node under the TLT model is no less than that under the TIC
model. Suppose that there are £ active in-neighbors of node v at
time ¢ and this set of in-neighbors is {u,us, ..., us}. Then,
node v becomes active under the TIC and TLT models with
probability 1 — I_L (1 —wy,,) and Zle Wy, Tespectively.
We prove 1—J['_,(1 —w,.) <320 w,, by induction.
When ¢ =1, it is obvious that the above inequality holds.
Assume that it still holds when ¢ — 1. We have 1 — Hle(lf
W) = 1= 121 = wy) - (1= wyy) = 1= T2 (1 = wy0)+
T (0~ i) - < S0t w0+ w0 = Sy i Then,
we can conclude that the probability that the target node ¢ is
activated in the TLT model is no less than it in the TIC model.
Thus, the lemma is proved. |

We design Algorithm 5 to solve the TAPM problem under the
TIC model. And this algorithm is based on the above results and
the sandwich approximation strategy. First, we generate a series
of realizations G according to Definition 2. Similarly, we initial-
ize [; and I, as a given set A, which is generated as Algorithm 4.
Then, we choose iteratively node satisfying maxvev\ I {h (Lu
{v}) — hA(I))} and max,ein 7, {h(L, U {v}) — h(l,)} into I;
and I, until |[;| = |I,| = k, respectively. Moreover, according
to Lemma 8, the set I,, returned by Algorithm 4 is considered as
a solution of its upper bound. Finally, our result is the set with
the maximum value of h among [;, I, and ,,.

Notice that we can not compute both i and h4 using G
directly. According to the current set I, and I;, we first need
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generate its reduced graph for each realization g € G and then
obtain & and h*. For a reduced graph g(I), if there is a path
from s to ¢, then ¢, (1) = 1. Thus, we can compute ¢ (/) and
qbg‘ (I) according to Depth First Search. We have the time com-
plexity of generation I; and I,, are O(kmY /p). In summary, the
expected time of Algorithm 5 is O(kmY /p + nlogn).

Let b and h# computed by the realizations G. We can have
the following performance when estimating h and hA.

Lemma 9: Given € € (0,1) and § > 0, for a set I con-
taining A, we have Pr[|h(I) — h(I)| <eh(I)] > 1 -6 and
Pr]|hA(I) — hA(I)| < ehA(I)] > 1 — 6.

Proof: The proof is similar to Lemma 4. u

Theorem 5: Let I, Ifc and IfT be the optimal solu-
tions fgr iz, h* and JflA,Arespectively. Algorithm 5 derives a

RAUIA) I
max (S e -
tion with at least 1 — § probability.

Proof: Due to the submodularity of h# and Lemma 9, the
solution I; returned by Algorithm 5 can ensure that ﬁA(IZ) >
(1 —1/e — e)h™(I;4) with at least 1 — § probability. Thus, we
have

}1 —1/e — ¢)-approximate solu-

h(l) 2 b4 (L) = (1 - 1/e —)h (I 1)
)

h(Iic)
Furthermore, the solution I, returned by Algorithm 4 can

ensure that fA(1,) > (1 —1/e — &) fA(I{,) with at least 1 —
8 probability. Thus, we have

(1—-1/e—¢e)h(I}).

hold with at least 1 — & probability, respectively. The theorem
is proved. [ |

V. PERFORMANCE ANALYSIS

A. Experimental Setup

1) Datasets: We complete our experiments in Wikipedia,
HepTh, and Facebook. All these three datasets can be obtained
from J. Leskovec [42]. We double the number of edges for
Facebook since it is undirected. The important information on
these networks is shown in Table II.

Wikipedia captures a voting activity. If user ¢ votes on user j,
then there is an edge from i to j. HepTh is a citation graph from
the e-print arXiv. An edge from 7 to j means paper ¢ cites paper
j. Facebook is collected from Facebook pages, where the nodes
denote the pages, and edges are mutual hobbies among them.

2) Settings: We conduct the tests under both the TLT model
and TIC model. For convenience, we consider the influence

301

TABLE I
IMPORTANT INFORMATION ON NETWORKS
Name  Wikipedia HepTh  Facebook
#Nodes 7.1K 28K 135K
#Edges 104K 353K 1.4M
Type Directed  Directed Undirected

probability w,, is equal to 1/|N(v)| on each edge e,,. For
each network, we randomly sample 50 pairs of start node s and
target node t. Meanwhile, we make each pair (s, t) satisfy that
there is at least one simple path with the activation probability of
t is no less than 0.005. We use the average of the results yielding
the above 50 pairs as our final experimental results. To estimate
the objective function, we generate a series of realizations. As
for this process, we set thate = 0.5 and 6 = 0.01.

When comparing with other algorithms, we evaluate the
objective function using 10,000 Monte-Carlo simulations. All
experiments are completed on a machine with a 3.6 GHz
quad-core processor.

3) Algorithms: Although our proposed problem is similar
to the active friending problem, there are differences men-
tioned in Section 1. Moreover, we notice that Lin ef al. [3] and
Chen et al. [6] discuss the problem by assuming the network
is a tree or a directed acyclic graph. And the algorithms in
[40] aims to solve the minimum version. Thus, we mainly con-
sider the following algorithms.

1) Semi Sandwich Approximation (SSA): As shown in
Algorithm 4, it is proposed to solve the problem under
the TLT model.

2) Sandwich Approximation (SA): As shown in Algorithm 5,
it is proposed to solve the problem under the TIC model.

3) Shortest Path (SP): The algorithm iteratively chooses
the intermediate nodes on their shortest paths from s to
t until the budget constraint is satisfied. It is also consid-
ered in [3], [40].

4) OutDegree: It selects top k nodes with the maximum
out-degree, which is considered a baseline.

B. Experimental Results

1) The Impact of k: First, we compare the activation prob-
ability of target node using the above algorithms by varying
the budget k. As shown in Figure 4 and Figure 5, our proposed
algorithms outperform other algorithms under both the TLT
model and TIC model. Meanwhile, as the budget k increases,
the activation probability will increase. We observe that the
OutDegree algorithm is not as bad as we expected. That is
because that the distance of the shortest path from s to ¢ is 3 in
some cases. It means that the intermediate nodes in a path can
be an empty set. Generally, if the distance of the shortest path
is 3, their activation probability will be large. In fact, the acti-
vation probability shown in OutDegree algorithm is very close
to the value when budget k£ = 0.

Notice that in the TLT model, we have Zve Nin(u) Wou <1
for each node u € V. However, Zve Nin(u) Wou CAN be larger
than 1 in the TIC model. Thus, we conduct other experiments
in which w,, is chosen uniformly at random from [0,1]. We use
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Fig. 6. Activation probability by varying budget & under the TIC model when w,,, is uniformly at random from [0,1].

a SSA algorithm to obtain the solution since the upper bound
under the TIC model comes from the solution to the TLT
model. As shown in Figure 6, the activation probability of the
target increases when the budget k increases. At the same time,
the activation probability is close to 1 in HepTh and Facebook
when k = 15. Moreover, the results from the SSA is ten times
larger than the solutions from the SP in Wikipedia and three
times larger than that in both HepTh and Facebook.

2) Approximation Ratio: Although both the SSA and SA
algorithms carry a data-dependent approximation ratio, they are
hard to compute directly. To show this approximation ratio, for
Wikipedia, we compute the activation probability of the target
node for both the lower bound and the original function using the
solution returned by the SSA algorithm, respectively. As shown
in Figure 7(a), we see that the difference between f and fA is
small no matter what the size of the budget k. Furthermore, we
consider the objective function f under the TLT model as an

upper bound of the objective function h under the TIC model.
We present the value among h, h* and f in Figure 7(b) using the
solution returned by SA algorithm. Similarly, their results are
very close, which illustrates that our algorithms can provide a
good performance guarantee.

3) The Impact of A: Our algorithms are based on a given
set A. Next, we focus on the impact of A. As shown in the
SSA algorithm, we select the intermediate nodes on the maxi-
mum probability path as A directly. To reflect the influence of
A, we consider the top 3 maximum probability paths for Wiki-
pedia. Let ¢ be the number of selected paths. That is, we use
the intermediate nodes on the top ¢ maximum probability
paths as the set A. Figure 8 shows the final results when the
size of the budget k is equal to 15. We observe that the results
do not vary much, no matter what the size of A.

4) Running Time: Since other methods are heuristics, we do
not compare our algorithm to them. Figure 8 shows the running
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time of the SSA and SA algorithms when the budget & is equal to
15 on three networks. Here, we use a log scale on y-axis to show
their difference. According to Figure 9, we find that the small
dataset takes less time to run. In the meantime, the running time
of the SA algorithm is larger than that of the SSA algorithm.
That is mainly because that the SSA algorithm takes much more
time to estimate the objective function. In section V, we show
that the expected time of SSA and SA are O((k+ m)Y/p +
nlogn) and O(km7Y /p + nlogn), respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we discuss the targeted activation probability
maximization problem, which asks for a certain number of inter-
mediate users so that one user can successfully influence a given
target with a maximum probability. Two different diffusion mod-
els, namely the TIC and TLT model, are proposed. We show that
the problem is NP-hard, and computing the objective function is
#P-hard under the above models. To estimate them, we devise
their unbiased estimators. Moreover, we show that the objective
function is an upper bound of that in the TIC model. Based on the
Sandwich Approximation strategy, we obtain their data-depen-
dent approximate solutions, respectively. Our experimental
results on three networks show the significance of our methods.

Although we obtained a submodular lower bound of the
objective function in the TLT model, a submodular upper is
still hard to give. In the future, we will try to devise an avail-
able upper bound. Also, we will try to design another approxi-
mate algorithm with a better performance guarantee.
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