
162 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

Fine-Grained Trajectory Optimization of Multiple

UAVs for Efficient Data Gathering from WSNs

Chuanwen Luo, Meghana N. Satpute , Deying Li , Yongcai Wang , Member, IEEE, Wenping Chen,

and Weili Wu, Senior Member, IEEE

Abstract— The increasing availability of autonomous small-
size Unmanned Aerial Vehicles (UAVs) has provided a promising
way for data gathering from Wireless Sensor Networks (WSNs)
with the advantages of high mobility, flexibility, and good speed.
However, few works considered the situations that multiple UAVs
are collaboratively used and the fine-grained trajectory plans
of multiple UAVs are devised for collecting data from network
including detailed traveling and hovering plans of them in the
continuous space. In this paper, we investigate the problem of
the Fine-grained Trajectory Plan for multi-UAVs (FTP), in which
m UAVs are used to collect data from a given WSN, where
m ≥ 1. The problem entails not only to find the flight paths
of multiple UAVs but also to design the detailed hovering and
traveling plans on their paths for efficient data gathering from
WSN. The objective of the problem is to minimize the maximum
flight time of UAVs such that all sensory data of WSN is collected
by the UAVs and transported to the base station. We first propose
a mathematical model of the FTP problem and prove that the
problem is NP-hard. To solve the FTP problem, we first study
a special case of the FTP problem when m = 1, called FTP
with Single UAV (FTPS) problem. Then we propose a constant-
factor approximation algorithm for the FTPS problem. Based on
the FTPS problem, an approximation algorithm for the general
version of the FTP problem when m > 1 is further proposed,
which can guarantee a constant factor of the optimal solution.
Afterwards, the proposed algorithms are verified by extensive
simulations.

Index Terms— Unmanned Aerial Vehicle, Wireless Sensor Net-
work, data gathering, mobile collector, trajectory optimization.

I. INTRODUCTION

IN WIRELESS Sensor Networks (WSNs), sensors with

limited battery resources are deployed on the detection

areas to monitor the environment and their sensory data
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needs to be collected to the base station [1], [2]. In the

past decades, a huge amount of architectures tailored to Low

Power Wide Area Networks (LPWANs), such as LORAWAN,

SIGFOX, NB-IOT and LTE-M, have been prosperous in both

urban and remote areas, in which the installation of few

gateways over the territory allows to gather data even from

sensors that are placed at different miles from the gateways.

However, one of the prominent features, and subsequently one

of the main problems with these architectures is that they rely

heavily on infrastructure. Infrastructure-based networks tend

to be susceptible to major damage by natural disasters and

other catastrophic situations, such as hurricane, earthquake,

volcanic, etc [3]. Therefore, in these situations, the fast and

effective data collection methods from WSNs can effectively

reduce the losses of lives and property. Due to the complexity

of terrain and environment of the detection areas, data collec-

tion via multi-hop communication or ground mobile collectors

faces many practical challenges. For examples, multi-hop

communication makes the energy of sensors around the base

station deplete much faster than others, which shortens the

lifetime of the network; and the obstacles in the detection

areas may inhibit ground mobile collectors to gather data from

sensors, since the sensors are generally deployed in complex

ground environments, especially in rugged and hilly terrain.

The fast development of Unmanned Aerial Vehicles (UAVs)

is providing an emerging solution to these challenging tasks

due to their high maneuverability, good speed, flexibility,

and increasing carrying capacity [4], [5]. The architecture of

the UAV-based WSN is shown in Fig.1, in which sensors

are deployed in the monitoring area to detect environment

information. UAVs act as mobile collectors to gather data

generated by sensors from WSN and transmit the data to the

base station for data forwarding. Then the received data by the

base station is transmitted to the users through the Internet or

Satellite for further computational analysis to determine the

appropriate response mechanism.

In recent years, there are many researches which proposed

various problems and algorithms for the trajectory optimiza-

tion of UAVs to effectively collect sensory data from WSNs,

such as [6]–[9]. In [6], Kim et al. investigated the trajectory

optimization problem of multiple UAVs, in which UAVs are

employed to jointly collect sensory data from a given set of

sensors to minimize the task completion time. However, their

models of the problems are defined on the two-dimensional

plane without considering flight altitude and data transmission

expenditure for data gathering from sensors. In [7], Gong et al.
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Fig. 1. The architecture of the UAV-based WSN.

studied the flight time minimization problem of UAV for data

collection from WSN, in which they considered the case that

the UAV can collect data from sensors during either cruising

or hovering. However, they only gave the solution for the situ-

ation where the single UAV gathers sensory data from sensors

located on a line. In [8], Ghorbel et al. proposed an energy-

efficient method to minimize the energy consumption of both

the UAV and the sensors while accomplishing a tour to collect

data from WSN. They took into account the total consumption

of both traveling and hovering for data collection. But they

only considered data gathering on the fixed hovering points

and ignored the situation where the UAV can collect data

during flight. In [9], Luo et al. investigated the Transportation

and Communication Latency Optimization (TCLO) problem,

which is to find the optimal flight plan of UAV such that

all sensing data carried by sensors is collected by the UAV

and transported to the base station, while the data collection

latency of UAV is minimized. They considered the situation

where single UAV collects data from sensors during flight,

but they ignored the circumstance in which multiple UAVs

are collaboratively used to gather sensory data from sensors.

To overcome the shortcomings of the above research works,

in this paper, we focus on fine-grained trajectory plans of

multiple UAVs in three-dimensional free space. It optimizes

not only the paths of UAVs but also detailed hovering and

traveling plans of UAVs for efficient data gathering from WSN.

We aim at optimizing the flight trajectories of multiple UAVs

such that all sensing data generated by sensors are transported

to the base station and the maximum flight time of UAVs is

minimized. The contributions of this paper are as below.

(1) We propose a multi-UAVs data gathering model in

WSNs, which is called Fine-grained Trajectory Plan for multi-

UAVs (m-UAVs) (FTP) problem, where m ≥ 1. It is to find the

optimal fine-grained flight plans of multiple UAVs to gather

data from WSN such that the maximum time consumption of

UAVs is minimized. Then we give a mathematical model for

the FTP problem and prove that it is NP-hard.

(2) We first study a special case of the FTP problem when

m = 1, called FTP with Single UAV (FTPS), in which the

single UAV is used to complete data gathering tasks from a

given WSN. To solve the FTPS problem, we present another

problem, namely the Path Plan of Single-UAV (PPS), which

is to find a detailed flight plan of the UAV in the data

collection area of a sensor. Then we propose an approximation

algorithm to solve the PPS problem. Based on the PPS

problem, we devise an approximation algorithm FTPSA with

the performance ratio 2 + ε for the FTPS problem, where

0 < ε < 1 is a constant.

(3) We extend the solution for the FTPS problem to the

general FTP problem, where m > 1, and propose an approxi-

mation algorithm FTPM with the performance ratio 3+ ε for

approximating the optimal solution of the FTP problem, where

0 < ε < 1 is a constant.

(4) The extensive simulations are presented to verify the

effectiveness of the proposed algorithm for the FTP problem.

The remainder of this paper is organized as fol-

lows. Section II introduces related works. In Section III,

we introduce some models and definitions of the problem.

In Section IV, we propose an approximation algorithm for

solving the FTPS problem. Section V introduces an approxi-

mation algorithm for the FTP problem. Simulations are shown

in Section VI. Section VII concludes this paper.

II. RELATED WORKS

In this section, we briefly review the literature related to

the trajectory optimization problems of UAVs as collectors for

sensory data collection in WSNs. Based on the mobility of col-

lectors, we classify the investigated problems into two different

types: trajectory optimization of ground mobile collectors (e.g.

robots and vehicles) in two-dimensional plane and trajectory

optimization of UAVs in three-dimensional (3D) space.

Trajectory Optimization of Ground Mobile Collectors:

In [10], Bhadauria and Isler introduced a path planning prob-

lem, called k-DGP, in which multiple robots are used to gather

data from stationary devices with wireless communication

capabilities in WSN. The objective of the problem is to com-

pute tours of k robots such that all data carried by sensors is

collected by robots and the time cost of robots is minimized. In

[11], Huang et al. investigated the data delivery delay problem

in WSNs, in which mobile nodes attached to buses were used

to collect data from sensors. The goal of the problem is to route

delay sensitive data from sensors to mobile nodes within an

allowed latency. In [12], Singh et al. proposed a scheme using

an unequal fixed grid-based cluster along with a mobile data

mule for data collection from the cluster heads in WSN, which

could overcome the challenge of the high energy depletion

rate in nodes near to the base station to maximize the lifetime

of the network. In [13], Kumar and Dash investigated the data

collection problem in WSN using a mobile collector, in which

the mobile sink efficiently collects data from nearby sensors

while moving along a pre-specified path with a constant speed

such that the total data collected by the mobile collector is

maximized with minimum energy consumption.

Trajectory Optimization of UAVs in 3D Space: In [14],

Zeng et al. investigated the energy-efficient communication

problem for a point-to-point link, in which a UAV is employed

to communicate with a ground terminal for a finite time

horizon, which is a new design framework that needs to

jointly consider the communication throughput and the UAV’s

propulsion energy consumption. The objective of the problem

aims at maximizing the energy efficiency in bits/Joule by

optimizing the UAV’s trajectory. In [15], Liu et al. studied
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the problem of UAVs supported data collection for WSN and

designed the flight paths for single UAV and multiple UAVs

to maximize the capacity of sensors. However, they assumed

that the flying paths of UAVs are fixed, which is not in line

with the actual situation. In [16], Hamidullah et al. investigated

the problem of path planning for multiple UAVs to collect

data from several RoadSide Units (RSUs), whose goal is to

find the time-optimal paths for these UAVs such that they can

collectively visit all RSUs and gather all data from RSUs.

However, they assumed that the altitude of the RSUs and UAVs

are identical, which ignores the impact of flying height of

UAVs on path optimization, and they used traditional genetic

algorithm and harmony search algorithm to solve the problem.

In [17], Liu et al. investigated the delay-tolerant sensory

data gathering problem in UAV-aided WSNs, in which they

consider both the sensor’s transmission strategy and UAV’s

trajectory optimization to minimize the transmission energy

consumption while guaranteeing the completed transmission

within a given time. They considered the situations that the

single UAV is used to collect data from sensors and divided

the data transmission deadline into discrete time slots for

designing UAV trajectory. In [18], Guo et al. studied jointly

optimizing the UAV’s time allocation between recharging

and service, flight trajectory and transmit power allocation

to maximize the minimum average rate among all ground

users, in which the UAV can be recharged periodically at

a fixed depot before providing communication service to

ground users. In [19], Lee and Yu proposed the path planning

optimization of rechargeable solar-powered UAV based on the

gravitational potential energy to expand flight time without

energy consumption. In [20], Natalizio et al. intrduced a

novel trajectory planning problem for multiple UAVs that

takes into account time and capacity constraints, such as

airborne energy and limited computational resources. They

solved these problem by leveraging the deployment of training

and recharging areas (TRA) in the smart cities for providing

sevices of securely recharging, updating and reconfiguration

for UAVs. Then the 3D trajectory planning problem of UAVs

moving through TRA was investigated by proposing an online

approach. However, the method was only validated and tested

through simulation without analyzing performance ratio.

In this paper, we investigate the FTP problem which is to

optimize the fine-grained trajectories of multiple UAVs for

efficient sensory data gathering from WSNs in 3D free space.

It not only can overcome the challenges of data collection

with ground mobile collectors such as rugged and hilly

terrain of detection areas, low speed but also can conquer

the shortcomings of UAV trajectory optimization problems

in the above researches. Then we propose a constant factor

approximation algorithm to solve the FTP problem, which

optimizes not only the paths of UAVs but also detailed hov-

ering and traveling plans of UAVs for efficient data gathering

from WSN.

III. MODELS AND DEFINITIONS

In this section, we introduce some models and the defini-

tions of the problem.

Fig. 2. UAVs act as mobile collectors to gather data from WSN.

A. Network Model

As shown in Fig. 2, we consider a set of n wireless sensors

S = {s1,s2, · · · ,sn} located in the two-dimensional monitoring

region Ω ⊆ ℜ2 and they have the same three-dimensional

transmission range R. Assume that each sensor si ∈ S generates

Vi units of sensing data. For each si ∈ S, we use TR(si)
to denote the hemispheric region above the ground which

is centered at si and whose radius is R. There are several

UAVs available to gather sensory data from sensors within the

sensors’ transmission range. Let F = { f1, f2, · · · , fm} denote

the set of m UAVs, in which UAVs have the uniform horizontal

flight speed v f , the vertical flight speed vh and fly at a fixed

altitude of h when they fly in horizontal, where h ≤ R. Let h0

denote the minimum altitude of UAVs from the ground when

they fly in vertical. In practice, v f and vh could correspond

to the maximum horizontal speed and vertical speed required

for minimizing the time consumption of UAVs, respectively

and h could correspond to the minimum altitude required for

terrain or building avoidance without the need for frequent

aircraft ascending and descending. In this paper, we do not

consider other higher constraints such as acceleration, weight

and steering angle of UAVs. The UAV fk ∈ F can collect

sensory data from si ∈ S if and only if it is in T R(si). All UAVs

will start from the stationary base station s0 when performing

their data collection duties and go back to s0 after finishing

their data collection tasks.

In this paper, we use the three-dimensional Cartesian coor-

dinate system XYZ to mark the locations of sensors and UAVs,

with all dimensions being measured in meters. Without loss

of generality, we assume that all sensors in S are randomly

deployed in the first quadrant of the coordinate system and

the Z coordinates of them are zero, and let (xi,yi,0) denote

the coordinates of sensor si ∈ S. For each sensor si ∈ S, since

the horizontal flight altitude of UAV is h, the horizontal flying

data collection area of UAV at flight altitude h in T R(si) is

a circular area that is the cross-section between T R(si) and

the plane Z = h in the coordinate system. We use N(s0i) to

represent the circular area which is centered at s0i and whose

radius is r =
√

R2 −h2, as the upper gray shaded area shown

in Fig.3, where s0i is the projection of si on the N(s0i) plane,

and the X and Y coordinates of s0i are the same as si and its

Z coordinate is h. Let D = {N(s0i),N(s02), · · · ,N(s0n)}. For each

sensor si ∈ S, since the minimum flying altitude of UAVs is

h0 when they fly in vertical, the data collection area of UAV
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Fig. 3. The data collection area Ω(si) is a cylinder whose top and bottom
bases are N(s0i) and N(s00i ) respectively, and its altitude is h−h0 .

in T R(si) is a cylinder Ω(si) ⊂ T R(si), one of whose bases is

N(s0i), which is formed by moving down the base N(s0i) for

the distance h−h0. Let N(s00i ) denote the other base of Ω(si)
which is centered at s00i and whose radius is also r, where s00i is

the projection of si on N(s00i ) and its X and Y coordinates are

the same as si and its Z coordinate is h0, as shown in Fig. 3.

That means the UAV can collect data from si only when it

travels (or hovers) in Ω(si). Let Θ = {Ω(s1),Ω(s2), · · · ,Ω(sn)}
be the set of the data collection areas of UAVs. For simplicity,

we denote {x0,y0,z0} as the coordinate of s0. If Uk is the flight

path of fk ∈ F , then we use L(Uk) to represent the length of

Uk. For any two different points u and w on Uk, we use Pu,w

to denote the path between them on Uk and (u,w) to represent

the line segment for connecting the two points. Let L(Pu,w)
stand for the length of Pu,w and du,w be the Euclidean distance

between u and w.

For any pair of sensors si,s j ∈ S, if they are within each

other’s communication range, then they can communicate with

each other. Therefore, the cluster head sensors can be selected

by clustering algorithms from sensors in the network and could

enable basic data gathering work in WSNs. For this reason,

the UAVs can focus on gathering sensing data from cluster

head sensors, such as [12], [21]. In this paper, we assume that

any two data collection areas Ω(si) ∈ Θ and Ω(s j) ∈ Θ are

disjoint from each other.

B. Communication Model

For each fk ∈ F , it can gather data from sensor si ∈ S only

when it is in Ω(si). As the data transmission rate from si to fk

changes with the varying transmission distance under signal

path loss model, in this paper, we employ the LOS ground-to-

air channel model between UAVs and sensors with path loss

exponent 2 ≤ α < 4 that was adopted by [7], [14]. Therefore,

the data transmission rate from si to fk can be expressed as

Cik =
1

2
W log2(1 +

β0P

σ2dα
si, fk

) =
1

2
W log2(1 +

γ0

dα
si, fk

), (1)

where dsi, fk is the Euclidean distance between si and fk, W

represents the channel bandwidth, β0 denotes the channel

power at the reference distance d0 = 1m, σ2 is the Gaussian

noise power at the UAVs, and γ0 = β0P

σ 2 denotes the reference

signal-to-noise ratio (SNR) at the reference distance d0 = 1m.

C. Definition of the Problem

For each fk ∈ F , let Uk represent the flight tour of fk where

Uk is composed of the horizontal flight path U
f

k and vertical

flight path Uh
k , i.e., Uk = U

f
k ∪Uh

k . We use Hk to denote the set

of hovering points of fk on Uk and Tk to be the set of hovering

times of fk at the hovering points in Hk. For any hovering

point HPk
si
∈ Hk of fk in Ω(si), there exists a corresponding

hovering time tk
si
∈ Tk. Suppose Φ(U,H,T ) is a feasible flight

plan of m UAVs such that all sensory data of sensors can

be collected by m UAVs and transported to the base station,

in which U = {U1,U2, · · · ,Um}, H = {H1,H2, · · · ,Hm} and

T = {T1,T2, · · · ,Tm}. We use φ(Uk,Hk,Tk) to denote the flight

plan of fk and Ek
φ = L(U f

k )/v f +L(Uh
k )/vh +∑tk

si
∈Tk

tk
si

to rep-

resent the time cost of fk when its flight plan φ(Uk,Hk,Tk) has

been determined. In this paper, we aim at finding an optimal

flight plan Φ(U,H,T ) of m UAVs such that the maximum time

consumption EΦ = max{Ek
φ | fk ∈ F} is minimized.

We refer to the problem as a Fine-grained Trajectory Plan

for multi-UAVs (FTP), whose detailed definition is shown as

follows.

Definition 1 FTP: Given a set S = {s1,s2, · · · ,sn} of n

sensors in which each sensor si has Vi units of sensing data,

a set of data collection areas Θ = {Ω(s1),Ω(s2), · · · ,Ω(sn)},

a set of disks D = {N(s0i),N(s02), · · · ,N(s0n)}, a set F =
{ f1, f2, · · · , fm} of m UAVs in which all UAVs have uniform

horizontal flight speed v f , vertical flight speed vh, flight

altitude h for horizontal flying, the minimum vertical flight

altitude h0 and the same initial location s0, the Fine-grained

Trajectory Plan for multi-UAVs (FTP) problem is to find a

flight plan Φ(U,H,T ) for m UAVs such that

(1) each tour Uk ∈U starts from and ends at s0,

(2) each fk ∈ F can collect data from si when it flies in (or

on the border of) Ω(si),
(3) for each si ∈ S, the UAVs can only fly vertically in the

area Ω(si)\N(s0i),
(4) for each si ∈ S, there exists at least a tour Uk ∈U passing

through Ω(si) and a hovering point HPk
si
∈ Hk ∩Ω(si) with

hovering time tk
si
∈ Tk for some fk ∈ F and Vi units of sensing

data is transmitted to the base station, and

(5) EΦ = max{Ek
φ | fk ∈ F} is minimized, where Ek

φ =

L(U f
k )/v f + L(Uh

k )/vh + ∑tk
si
∈Tk

tk
si

.

Next, we will introduce the mathematical formulation for

the FTP problem. We use qk
i to denote the projection point of

HPk
si

on N(s0i). For simplicity, let V0 = 0 denote the amount

of data stored by s0, qk
0 = (x0,y0,h), and HPk

s0
= s0 for each

fk ∈ F . Let V k
i represent the amount of data collected from si

by fk. We define binary variable ai jk as below.

ai jk =

{

1, if fk visits Ω(s j) after Ω(si),

0, otherwise.
(2)

We can obtain the following mathematical formulation of

the FTP problem.

Minimize max
1≤k≤m

n

∑
i=0

n

∑
j=0
j 6=i

(
dqk

i ,q
k
j

v f

+
2 ·d

qk
j,HPk

s j

vh

+ tk
s j
) ·ai jk

(3)

s.t.
m

∑
k=1

n

∑
j=1

a0 jk = m (4)
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m

∑
k=1

n

∑
i=1

ai0k = m (5)

1 ≤
m

∑
k=1

n

∑
i=0

ai jk ≤ m j = 1,2, · · · ,n (6)

n

∑
i=0

aipk −
n

∑
j=0

ap jk = 0 k = 1,2, · · · ,m, (7)

p = 1,2, · · · ,n
n

∑
i=0

m

∑
k=1

ai jk ·V k
j = V j j = 1,2, · · · ,n (8)

∑
si∈G

∑
s j∈G

ai jk ≤ |G|−1 ∀G ⊂ S, G 6= /0, (9)

k = 1,2 · · · ,m
ai jk ∈ {0,1} i = 0,1, · · · ,n (10)

j = 0,1, · · · ,n, i 6= j, k = 1,2, · · · ,m
HPk

si
∈ Ω(si) i = 1,2, · · · ,n, k = 1,2, · · · ,m (11)

qk
i ∈ N(s0i) i = 1,2, · · · ,n, k = 1,2, · · · ,m (12)

Constraints (4) and (5) express that each UAV goes from

the depot s0 to any data collection area and comes back

to the depot. Constraint (6) states that each data collection

area should be visited by at least one UAV and at most

m UAVs. Constraint (7) is the flow conservation constraint

which ensures that once a UAV visits a data collection area,

it must also depart from the same area. Constraint (8) ensures

that the total amount of data collected from s j by the visited

UAVs is V j. Constraint (9) ensures connectivity requirement

for the solution, i.e., prevents from formating subtours of

cardinality G not including the depot s0, where G is a subset

of S. Constraint (10) defines the domain of the instance.

Constraints (11) and (12) limit the position ranges of hovering

point HPk
si

and its projection point qk
i in each data collection

area Ω(si) for any fk ∈ F .

According to the definition of the FTP problem, the hov-

ering time tk
s j

in the objective formula (3) can be computed

as below. If ai jk = 1 and a jpk = 1, then we compute the

intersection point q
j

b between the line segment (qk
i ,q

k
j) and

N(s0j) and compute the intersection point q
j
e between the

line segment (qk
j,q

k
p) and N(s0j). Assume that the time of

fk arriving at q
j

b is t0. Let Γ = t0 +
d

q
j
b
,qk

j

v f
+ 2 ·

d
qk

j
,HPk

si

vh
+

d
qk

j
,q

j
e

v f

and t1 =
d

q
j
b
,qk

j

v f
+

d
qk

j
,HPk

si

vh
. Assume the coordinate of fk at time

t ∈ [t0,Γ] is (xk(t),yk(t),zk(t)). Then, at time t ∈ [t0,Γ], the data

transmission rate from s j to fk can be expressed as

C jk(t) =
1

2
W log2(1 +

γ0

dα
s j , fk

(t)
), (13)

where ds j , fk(t) =
√

(xk(t)− x j)2 +(yk(t)− y j)2 +(zk(t)−0)2.

Therefore, the hovering time of fk at HPk
s j

can be written as

tk
s j

=
V k

j −
∫ Γ

t0
C jk(t)dt

C jk(t1)
. (14)

In the following theorem, we will prove that the FTP

problem is NP-hard.

Fig. 4. An example of the flight path Usi
of UAV in Ω(si), which is composed

of U
f

si
and Uh

si
, where U

f
si

= (bsi
,q0i)∪(q0i,esi

) and Uh
si

= (q0i,HPsi
)∪(HPsi

,q0i).

Theorem 1: The problem FTP is NP-hard.

Proof: If we set Vi = 0 for each sensor si ∈ S, R = 0,

m = 1 and h = h0 = 0, then the FTP problem can be reduced

to the well-known traveling salesman problem (TSP), which is

proved NP-hard [22]. Since a special case of the FTP problem

is NP-hard, the FTP problem is also NP-hard.

In the FTP problem, a special case is that the single UAV

(i.e., m = 1) is used for gathering all sensory data from WSN,

which is called the FTP with Single UAV (FTPS) problem.

Based on Theorem 1, we can find that the FTPS problem is

also NP-hard.

IV. ALGORITHM FOR THE FTPS PROBLEM

In this section, we propose an approximation algorithm to

solve the FTPS problem. According to the definition of the

problem, we can find that the flight plan of UAV consists

of two parts. The first is the path for connecting all data

collection areas in Θ. The second is the flight plan of UAV

in every data collection area Ω(si) for gathering data from

si ∈ S including horizontal flight path, vertical flight path and

hovering point with corresponding hovering time. Therefore,

to solve the FTPS problem, we introduce two other problems,

Euclidean TSP with Neighborhoods (TSPN) and Path Plan of

Single-UAV (PPS), as shown in Definitions 2 and 3, which

can be used as subroutines for the FTPS problem.

Definition 2 TSPN: Given a collection of n disks, D =
{N(s0i),N(s02), · · · ,N(s0n)} where the disks are equal-size and

disjoint each other, the TSPN problem aims to find a shortest

tour U 0
f that visits all disks in D.

The TSPN problem is proved NP-hard, and there exists a

(1+ε)-approximation algorithm for the problem in [23], where

0 < ε < 1.

The PPS problem aims at finding an optimal flight plan

ϕ(Usi
,HPsi

,tsi
) of UAV in the data collection area Ω(si) ∈ Θ,

as shown in Fig. 4, such that Vi units of data carried by si is

collected by the UAV, where Usi
that consists of the horizontal

flight path U
f

si
and vertical flight path Uh

si
is the traveling path

of UAV in Ω(si), which starts from a given border point bsi
of

N(s0i) and ends at another border point esi
of N(s0i), and HPsi

represents the hovering point of UAV with hovering time tsi

on Usi
. The objective of the problem is to minimize the time

cost E i
ϕ = L(U f

si
)/v f +L(Uh

si
)/vh + tsi

of UAV. More formally,

we formulate this problem as below.

Definition 3 PPS: Given a sensor si with Vi units of sensing

data, a data collection area Ω(si), a horizontal flying data

collection area N(s0i), a border point bsi
of N(s0i) and a

UAV with horizontal flight speed v f , vertical flight speed vh,

horizontal flight altitude h, the minimum vertical flight altitude
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Algorithm 1 PPSA

Input: Ω(si), N(s0i), bsi
= (xb

i ,y
b
i ,h), s0i = (xi,yi,h), Vi, r,

n, h, h0, v f , vh, W, γ0, M

Output: ϕ(Usi
,HPsi

, tsi
)

1 δ = r
6n

, (p0, p1, · · · , p6n) = (bsi
,s0i);

2 η = δ
v f
· vh, τ = d h−h0

η e;

3 For any 0 ≤ t ≤ 6n, (qt,0,qt,1, · · · ,qt,τ ) = (pt , p0t);
4 for t from 0 to 6n do

5 for l from 0 to τ do

6 Cqt,l
= 1

2
W log2(1 + γ0

((r−t·δ )2+(h−l·η)2)
α
2
);

7 if t = 0 then

8 1) If l = 0, then Vt,l = 0 ;

9 2) If 1 ≤ l < τ , then Vt,l =
l−1

∑
j=0

2η
vh

·Cqt, j
;

10 3) If l = τ , then

11 Vt,l =
l−2

∑
j=0

2η
vh

·Cqt, j
+ 2(h−h0−(l−1)η)

vh
·Cqt,l−1

;

12 else

13 1) If l = 0, then Vt,l =
t−1

∑
k=0

2δ
v f

·Cqk,0
;

14 2) If 1 ≤ l < τ , then

15 Vt,l =
t−1

∑
k=0

2δ
v f

·Cqk,0
+

l−1

∑
j=0

2η
vh

·Cqt, j
;

16 3) If l = τ , then

17 Vt,l =
t−1

∑
k=0

2δ
v f

·Cqk,0
+

l−2

∑
j=0

2η
vh

·Cqt, j
+

2(h−h0−(l−1)η)
vh

·Cqt,l−1
;

18 end

19 if Vt,l ≥Vi then

20 E i
t,l = M;

21 else

22 E i
t,l = 2 · ( t·δ

v f
+ l·η

vh
)+

Vi−Vt,l

Cqt,l
;

23 end

24 end

25 end

26 E i
ϕ = min{E i

t,l|0 ≤ t ≤ 6n,0 ≤ l ≤ τ};

27 Return the current t and l, tsi
=

Vi−Vt,l

Cqt,l
;

28 if t = 6n then

29 if l = τ then

30 HPsi
= (xi,yi,h0)

31 else

32 HPsi
= (xi,yi,h− l ·η)

33 end

34 else

35 λ = t·δ
r−t·δ ;

36 if l = τ then

37 HPsi
= (

xb
i +λ ·xi

1+λ ,
yb

i +λ ·yi

1+λ ,h−h0);
38 else

39 HPsi
= (

xb
i +λ ·xi

1+λ ,
yb

i +λ ·yi

1+λ ,h− l ·η);
40 end

41 end

42 U
f

si
=

⋃

0≤k<t(qk,0,qk+1,0)∪
⋃

0≤k<t(qk+1,0,qk,0);
43 Uh

si
=

⋃

0≤ j<l(qt, j,qt, j+1)∪
⋃

0≤ j<l(qt, j+1,qt, j) ;

44 Usi
= U

f
si
∪Uh

si
;

h0, the Path Plan of Single-UAV (PPS) problem is to find a

flight plan ϕ(Usi
,HPsi

,tsi
) of UAV in Ω(si) such that

(1) Usi
starts from bsi

and ends at another border point esi

(including bsi
) of N(s0i),

(2) the UAV can only fly vertically in the area Ω(si)\N(s0i),
(3) UAV can gather data from si during flying on Usi

and

have a hovering point HPsi
with hovering time tsi

on Usi
for

gathering the remaining data from si,

(4) Vi units of sensing data is transmitted to the UAV, and

(5) E i
ϕ = L(U f

si
)/v f + L(Uh

si
)/vh + tsi

is minimized.

A. Algorithm for the PPS Problem

In this subsection, we propose an approximation algorithm

for solving the PPS problem, which is called PPSA.

The objective of the algorithm is to find a flight plan

ϕ(Usi
,HPsi

,tsi
) of single UAV in Ω(si) such that the total

time cost of UAV in Ω(si)

E i
ϕ =

L(U
f

si
)

v f

+
L(Uh

si
)

vh

+ tsi
is minimized,

where Usi
= U

f
si
∪Uh

si
.

Before describing the algorithm, we introduce some terms

and notations. Suppose the coordinates of bsi
are (xb

1,y
b
1,h).

Initially, we divide r into 6n equal parts and set δ = r
6n

. Let

p0 = bsi
and p6n = s0i. Afterwards, we use (p0, p1, · · · , p6n) to

represent the line segment (bsi
,s0i), where pt is an equidistant

point and dpt ,pt+1
= δ for any 0≤ t ≤ 6n−1. For arbitrary point

pt ∈ {p0, p1, · · · , p6n}, there exists a projection p0t on N(s00i ).
Let η = δ

v f
· vh. We divide the line segment (pt , p0t) into τ

parts, where τ = d h−h0
η e. The first τ − 1 parts are equal and

their length is η , and the length of the last part is less than or

equal to η . For arbitrary 0 ≤ t ≤ 6n, we let (qt,0,qt,1, · · · ,qt,τ )
denote the line segment (pt , p0t), where qt,l is a breakpoint and

dqt,l ,qt,l+1
= η for any 0 ≤ l ≤ τ −2, and dqt,τ−1,qt.τ = h−h0−

(τ −1) ·η . Since the time complexity for calculating integral

function grows exponentially, we use the amount of data col-

lected by UAV during hovering at the starting point of a very

short path to approximate the amount of data collected by UAV

during flying on the path in the same time. For any 0 ≤ t < 6n,

we use
2·dpt,0,pt+1,0

v f
·Cqt,0 to approximate the size of data col-

lected by UAV during flying on the round trip of (pt,0, pt+1,0),
where Cqt,0 = 1

2
W log2(1+ γ0

((r−t·δ )2+h2)
α
2
) is the data transmis-

sion rate of UAV when it hovers at qt,0. By taking t, for any 0≤
l < τ , let

2·dqt,l ,qt,l+1

vh
·Cqt,l

approximate the amount of data col-

lected by UAV during flying on the round trip of (qt,l ,qt,l+1),
where Cqt,l

= 1
2
W log2(1 + γ0

((r−t·δ )2+(h−l·η)2)
α
2
) represents the

data transmission rate of UAV when it hovers at qt,l .

The PPSA algorithm consists of four steps as follows.

In the first step, we set δ = r
6n

and (p0, p1, · · · , p6n) =
(bsi

,s0i). For each pt ∈ {p0, p1, · · · , p6n}, we compute its pro-

jection point p0t on N(s00i ). Let η = δ
v f

· vh and τ = d h−h0
η e.

For arbitrary 0 ≤ t ≤ 6n, we set (qt,0,qt,1, · · · ,qt,τ ) = (pt , p0t).
For any 0 ≤ l ≤ τ − 2, let dqt,l ,qt,l+1

= η and dqt,τ−1,qt.τ =
h−h0− (τ −1)η .
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In the second step, for any 0≤ t ≤ 6n and 0≤ l ≤ τ , we com-

pute the time consumption E i
t,l of UAV for gathering Vi units of

data from si when its hovering point is located at qt,l . Let Vt,l

denote the amount of data collected by UAV during traveling

from bsi
to qt,l and from qt,l to bsi

. We compute the value of

Vt,l in the light of the two cases: t = 0 and 0 < t ≤ 6n. Then we

compute the time cost E i
t,l of UAV for each of cases as below.

(1) t = 0

• If l = 0, then Vt,l = 0.

• If 1 ≤ l < τ , then Vt,l =
l−1

∑
j=0

2η
vh

·Cqt, j
.

• If l = τ , then Vt,l =
l−2

∑
j=0

2η
vh

·Cqt, j
+

2(h−h0−(l−1)η)
vh

·Cqt,l−1
.

(2) 0 < t ≤ 6n

• If l = 0, then Vt,l =
t−1

∑
k=0

2δ
v f

·Cqk,0
.

• If 1 ≤ l < τ , then Vt,l =
t−1

∑
k=0

2δ
v f

·Cqk,0
+

l−1

∑
j=0

2η
vh

·Cqt, j
.

• If l = τ , then Vt,l =
t−1

∑
k=0

2δ
v f

· Cqk,0
+

l−2

∑
j=0

2η
vh

· Cqt, j
+

2(h−h0−(l−1)η)
vh

·Cqt,l−1
.

After obtaining the value of Vt,l , we compare Vt,l

with Vi. If Vt,l ≥ Vi, then we set E i
t,l = M, otherwise,

E i
t,l = 2 · ( t·δ

v f
+ l·η

vh
) +

Vi−Vt,l

Cqt,l
, where M is a very large real

number to control the end of the algorithm.

In the third step, the minimum time cost of UAV is

computed as E i
ϕ = min{E i

t,l|0 ≤ t ≤ 6n,0 ≤ l ≤ τ}, and the

corresponding t and l are obtained.

In the fourth step, based on the values of t and l, we compute

the flight plan ϕ(Usi
,HPsi

,tsi
) of UAV in the area Ω(si). Firstly,

for any 0 ≤ t < 6n, we let λ = t·δ
r−t·δ and λ = 0 for t = 6n.

Then based on the different values of l obtained from the above

processes, we can compute the coordinates of HPsi
with the

following cases.

• If 0 ≤ l < τ , then HPsi
= (

xb
i +λ ·xi

1+λ ,
yb

i +λ ·yi

1+λ ,h− l ·η).

• If l = τ , then HPsi
= (

xb
i +λ ·xi

1+λ ,
yb

i +λ ·yi

1+λ ,h−h0).

Based on the coordinates of HPsi
, we compute the traveling

path Usi
and of UAV in Ω(si) and its hovering time tsi

on

HPsi
, where Usi

=
⋃

0≤k<t(qk,0,qk+1,0)∪
⋃

0≤ j<l(qt, j,qt, j+1)∪
⋃

0≤k<t(qk+1,0,qk,0)∪
⋃

0≤ j<l(qt, j+1,qt, j) and tsi
=

Vi−Vt,l

Cqt,l
.

Note that for any t and l, the line segments (qt,l ,qt,l+1)
and (qt,l+1,qt,l) (or (qt,l ,qt+1,l) and (qt+1,l ,qt,l)) represent the

different traveling paths of UAV since the flight directions of

UAV on the two paths are different. After executing the above

four steps of the PPSA algorithm, a detailed flight plan of

UAV ϕ(Usi
,HPsi

,tsi
) in Ω(si) is obtained. The pseudo-code

of the algorithm is shown in Algorithm 1.

Now, we analyze the performance of the PPSA algorithm.

Suppose ϕ(U∗
si
,HP∗

si
,t∗si

) is an optimal flight plan of UAV for

the PPS problem, where U∗
si

denotes the optimal traveling

path of UAV in Ω(si) and HP∗
si

represents the optimal

hovering point of UAV with hovering time t∗si
on U∗

si
.

Assume U∗
si

is composed of U
f∗

si and Uh∗
si

, where U
f∗

si

and Uh∗
si

are the horizontal flight path and vertical flight

path of UAV in Ω(si), respectively. Let q∗i denote the

Fig. 5. Two oppositions to the optimal horizontal flight path of UAV.

projection point of HP∗
si

on N(s0i) and dHP∗
si

,q∗i = h∗. We use

E i∗
ϕ = L(U f∗

si
)/v f + L(Uh∗

si
)/vh + t∗si

to represent the time cost

of UAV by executing the flight plan ϕ(U∗
si
,HP∗

si
,t∗si

) and C∗
si

to be the data transmission rate of UAV on HP∗
si

.

Lemma 1: The path U
f∗

si
must be a tour which is on the

line segment (bsi
,s0i) from bsi

to q∗i and from q∗i to bsi
.

Proof: We use the proof by contradiction. Suppose U
f∗

si
is

not a tour on the line segment (bsi
,s0i), then two cases should

be considered, as shown in Fig. 5. One is that both the starting

point and ending point of U
f∗

si
are bsi

but either of Pbsi
,q∗i and

Pq∗i ,bsi
or neither of them is on the line (bsi

,s0i), as shown

in Fig. 5(a). The other is that U
f∗

si
starts from bsi

and ends

at another border point esi
of N(s0i), as shown in Fig. 5(b).

In the first case, we construct a new flight plan

ϕ(Usi
,HPsi

,tsi
) of UAV in Ω(si). Let HPsi

= HP∗
si

be the

hovering point of UAV. Let U
f

si
= (bsi

,q∗i ) ∪ (q∗i ,bsi
) and

Uh
si

= (q∗i ,HPsi
)∪ (HPsi

,q∗i ) be the horizontal flight path and

vertical flight path of UAV, respectively, and Usi
= U

f
si
∪Uh

si
.

Then, we can obtain L(U
f∗

si
) > L(U

f
si
) and L(Uh∗

si
) = L(Uh

si
).

Assume that the amount of data collected by UAV during

flying on Uh
si

is V h
i and that the average data transmission rate

of UAV during traveling on U
f

si
is C

f
si

. Thus, we can obtain

tsi
=

Vi−V h
i −

L(U
f

si
)

v f
·C f

si

C∗
si

, and E i
ϕ =

L(U
f

si
)

v f
+

L(Uh
si

)

vh
+

Vi−V h
i −

L(U
f

si
)

v f
·C f

si

C∗
si

.

According to the shapes of the curves U
f

si
and U

f∗
si

, we can

find that for each point p ∈ U
f

si
, there exists a point p0 ∈U

f∗
si

such that ds0i,p
= ds0i,p

0 , which means that the data trans-

mission rate of UAV on p is the same as on p0 since

d(si, p) =
√

h2 + d2
s0i,p

=
√

h2 + d2
s0i,p

0 = d(si, p0). Therefore,

we can obtain that there exists a part of U
f∗

si
such that the

amount of data collected by UAV during flying on the part

is
L(U

f
si

)

v f
·C f

si
. Suppose the average data transmission of UAV

during flying on the path U
f∗

si
\U

f
si

is C∗
si

. Since C∗
si

< C∗
si

,

we can obtain

E i∗
ϕ

=
Vi −V h

i − L(U
f

si
)

v f
·C f

si
− L(U

f∗
si

)−L(U
f

si
)

v f
·C∗

si

C∗
si

+
L(U f∗

si
)

v f

+
L(Uh∗

si
)

vh

= E i
ϕ +

L(U
f∗

si
)−L(U

f
si
)

v f

− L(U
f∗

si
)−L(U

f
si
)

v f

·
C∗

si

C∗
si

> E i
ϕ ,
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which is contradiction to the assumption that E i∗
ϕ is an optimal

solution.

In the second case, we construct another new flight plan

ϕ(Usi
,HPsi

,tsi
) of UAV. We first connect q∗i with s0i to obtain

the line segment (q∗i ,s
0
i). Then we select a point q0i on the line

segment (bsi
,s0i) such that dq0i,s

0
i
= dq∗i ,s

0
i
, as shown in Fig. 5(b).

Let q00i represent the projection point of q0i on N(s00i ). We use

p0i ∈ (q0i,q
00
i ) to be the hovering point HPsi

of UAV in Ω(si),
where dq0i,p

0
i
= h∗. We can obtain that the data transmission

rate of UAV at HPsi
is the same as HP∗

si
since dHPsi

,si
=

√

(h−h∗)2 +(r−dq0i,s
0
i
)2 = dHP∗

si
,si

. Afterwards, we let U
f

si =

(bsi
,q0i)∪ (q0i,bsi

) and Uh
si

= (q0i,HPsi
)∪ (HPsi

,q0i) be the hori-

zontal flight path and vertical flight path of UAV, respectively.

Therefore, we have L(U f∗
si

) > L(U f
si
) and L(Uh∗

si
) = L(Uh

si
).

According to the shapes of the curves U
f

si
and U

f∗
si

, we can

obtain that for each point p ∈ (bsi
,q0i) (or p ∈ (q0i,bsi

) ), there

exists a point p0 ∈Pbsi
,q∗i (or p0 ∈Pq∗i ,esi

) such that ds0i,p
= ds0i,p

0 ,

which means that the data transmission rate of UAV on p is the

same as on p0. The following proof is similar to the first case.

Therefore, we can obtain E i
ϕ < E i∗

ϕ , which is also contradiction

to the assumption that E i∗
ϕ is an optimal solution.

From above discussion, we can obtain that U
f∗

si
is a tour

on the line segment (bsi
,s0i), and both the starting point and

ending point of U
f∗

si
are bsi

.

Theorem 2: We have E i
ϕ ≤ E i∗

ϕ + r
n·v f

, where E i
ϕ is obtained

by PPSA.

Proof: According to definition of the PPS problem and

Lemma 1, we should consider three cases as follows:

(1) HP∗
si
∈ (bsi

,s0i);
(2) There exists a 0 ≤ t ≤ 6n such that HP∗

si
∈ (qt,0,qt,τ ) \

{qt,0};

(3) There exists a 0 ≤ t ≤ 6n such that q∗i ∈ (qt,0,qt+1,0) \
{qt,0,qt+1,0} and HP∗

si
/∈ (bsi

,s0i).
In the following, we will give the relationship between the

time consumption of the optimal flight plan and the time con-

sumption obtained by the PPSA algorithm for each of cases,

and then obtain the performance ratio of the algorithm. For

simplicity, we use V ∗
U to represent the amount of transmission

data from si to UAV when it flies on U∗
si

.

In the first case, based on the Lemma 1, we know that there

exists a 0 ≤ t < 6n which satisfies

r− (t + 1) ·δ ≤ dHP∗
si

,s0i
≤ r− t ·δ , (15)

as shown in Fig.6. then we can obtain

E i∗
ϕ =

2(r−dHP∗
si

,s0i)

v f

+
2(Vi −V ∗

U)

W log2(1 + γ0

(d2
HP∗si

,s0
i

+h2)
α
2
)

≥ 2t · δ

v f

+
2(Vi −V ∗

U)

W log2(1 + γ0

((r−(t+1)·δ )2+h2)
α
2
)
. (16)

By taking t + 1, let VU =
t

∑
j=0

δ
v f

W log(1 + γ0

((r− j·δ )2+h2)
α
2
),

which is the amount of data transmitted from si to UAV when

it flies on the path (bsi
,qt+1,0)∪(qt+1,0,bsi

) obtained by PPSA.

Fig. 6. An example t such that r− (t +1) ·δ < dHP∗
si

,s0i
≤ r− t ·δ .

Then, we have

V ∗
U ≤VU +

δ

v f

W log(1 +
γ0

((r− (t + 1) ·δ )2 + h2)
α
2

). (17)

Based on inequations (15)-(17) and algorithm PPSA, we can

obtain

E i
ϕ ≤ (t + 1) · 2δ

v f

+
2(Vi −VU)

W log2(1 + γ0

((r−(t+1)·δ )2+h2)
α
2
)

= (2t + 4) · δ

v f

+

2(Vi −VU − δ
v f

W log(1 + γ0

((r−(t+1)·δ )2+h2)
α
2
))

W log2(1 + γ0

((r−(t+1)·δ )2+h2)
α
2
)

≤ (2t + 4) · δ

v f

+
2(Vi−V ∗

U)

W log2(1 + γ0

((r−(t+1)·δ )2+h2)
α
2
)

≤ E i∗
ϕ +

4δ

v f

< E i∗
ϕ +

r

n · v f

.

In the second case, we can obtain that there exists a 1≤ l < τ
which satisfies

l ·η ≤ dHP∗
si

,q∗i ≤ (l + 1) ·η . (18)

By taking t, according to the inequation (18), we can obtain

E i∗
ϕ =

2dbsi
,q∗i

v f

+
2dq∗i ,HP∗

si

vh

+
2(Vi −V ∗

U)

W log2(1 + γ0

dα
HP∗si

,si

)

≥ 2t · δ

v f

+ 2l · η

vh

+
2(Vi −V ∗

U)

W log2(1 + γ0

((r−tδ )2+(h−(l+1)η)2)
α
2
)
.

(19)

By taking l + 1, let VU =
t

∑
k=0

2δ
v f

·Cqk,0
+

l

∑
j=1

2η
vh

·Cqt, j
be the

amount of data transmitted from si to UAV when it flies on the

path (bsi
,qt,0)∪ (qt,0,qt,l+1)∪ (qt,l+1,qt,0)∪ (qt,0,bsi

) obtained

by PPSA, where Cqk,0
= 1

2
W log2(1 + γ0

((r−k·δ )2+h2)
α
2
) for any

0 ≤ k ≤ t and Cqt, j
= 1

2
W log2(1+ γ0

((r−t·δ )2+(h− j·η)2)
α
2
) for any

1 ≤ j ≤ l. We can find that

V ∗
U ≤VU +

η

vh

W log(1 +
γ0

((r− t ·δ )2 +(h− (l + 1) ·η)2)
α
2

).

(20)
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Since δ
v f

= η
vh

, based on the algorithm PPSA and inequa-

tions (18)-(20), we can obtain

E i
ϕ ≤ 2t · δ

v f

+ 2(l + 1) · η

vh

+
2(Vi −VU)

W log2(1 + γ0

((r−t·δ )2+(h−(l+1)·η)2)
α
2
)

≤ 2t · δ

v f

+(2l + 4) · η

vh

+
2(Vi −V ∗

U)

W log2(1 + γ0

((r−t·δ )2+(h−(l+1)·η)2)
α
2
)

≤ E i∗
ϕ +

4η

vh

< E i∗
ϕ +

r

n · v f

.

In the third case, we can obtain

r− (t + 1) ·δ < dq∗i ,s
0
i
< r− t ·δ , (21)

Suppose dqt,0,q
∗
i

= ε · δ , where 0 < ε < 1. Let q0i be the

projection point of q∗i on N(s00i ). Then we divide (q∗i ,q
0
i)

into τ parts, and (qt+ε,0,qt+ε,1, · · · ,qt+ε,τ ) = (q∗i ,q
0
i), where

dqt+ε,l ,qt+ε,l+1
= η for any 0 ≤ l < τ −1 and dqt+ε,l ,qt+ε,l+1

= h−
h0 − (τ −1) ·η for l = τ −1. Then, based on inequations (18)

and (21), we can obtain

E i∗
ϕ =

2dbsi
,q∗i

v f

+
2dq∗i ,HP∗

si

vh

+
2(Vi −V ∗

U)

W log2(1 + γ0

dα
HP∗si

,si

)

≥ 2(t + ε) ·δ
v f

+
2l ·η

vh

+
2(Vi −V ∗

U)

W log2(1 + γ0

((r−(t+ε)δ )2+(h−(l+1)η)2)
α
2
)

≥ 2t · δ

v f

+
2l ·η

vh

+
2(Vi −V ∗

U)

W log2(1 + γ0

((r−(t+1)δ )2+(h−(l+1)η)2)
α
2
)
. (22)

By taking t + 1 and l + 1, let VU =
t

∑
k=0

2δ
v f

·Cqk,0
+

l

∑
j=0

2η
vh

·
Cqt+1, j

be the amount of data transmitted from si to UAV

when it flies on the path (bsi
,qt+1,0) ∪ (qt+1,0,qt+1,l+1) ∪

(qt+1,l+1,qt+1,0) ∪ (qt+1,0,bsi
) obtained by PPSA, where

Cqk,0
= 1

2
W log2(1 + γ0

((r−k·δ )2+h2)
α
2
) for any 0 ≤ k ≤ t and

Cqt+1, j
= 1

2
W log2(1+ γ0

((r−(t+1)·δ )2+(h− j·η)2)
α
2
) for any 0 ≤ j ≤

l. We have

V ∗
U ≤VU +

η

vh

W log(1+
γ0

((r− (t + 1) ·δ )2+(h−(l+1) ·η)2)
α
2

).

(23)

Based on inequations (21)-(23), we can obtain

E i
ϕ ≤ 2(t + 1)δ

v f

+
2(l + 1)η

vh

+
2(Vi −VU) · 1

W

log2(1 + γ0

((r−(t+1)·δ )2+(h−(l+1)·η)2)
α
2
)

≤ (2t + 2)δ

v f

+
(2l + 4)η

vh

+
2(Vi −V ∗

U) · 1
W

log2(1 + γ0

((r−(t+1)·δ )2+(h−(l+1)·η)2)
α
2
)

≤ E i∗
ϕ +

2δ

v f

+
4η

vh

≤ E i∗
ϕ +

r

n · v f

.

From what has been discussed, we have E i
ϕ ≤ E i∗

ϕ + r
n·v f

.

B. Algorithm for the FTPS Problem

In this subsection, we propose an approximation algorithm

for solving the FTPS problem, which is called FTPSA. The

objective of the algorithm is to find a flight plan Φ(U,H,T )
of single UAV and

Minimize EΦ =
L(U f )

v f

+
L(Uh)

vh

+ tsi
,

where U f and Uh represent the total horizontal flight path

and total vertical flight path of UAV, respectively, and

U = U f ∪Uh.

The FTPSA consists of four steps. In the first step,

we employ the (1+ε)-approximation algorithm for the TSPN

problem proposed in [23] to compute a tour U 0
f for D, and

obtain the order of the data collection areas in Θ visited by U 0
f ,

which is denoted as Ω(sρ1
),Ω(sρ2

), · · · ,Ω(sρn), where Ω(sρi
)

is the i-th data collection area visited by U 0
f . In the second

step, for each Ω(sρi
) ∈ Θ, we compute the first intersection

point bsρi
between U 0

f and N(s0ρi
). Let bsρi

be the entry point

of UAV to visit the data collection area Ω(sρi
). We compute

the flight plan ϕ(Usρi
,HPsρi

, tsρi
) and the time cost E

ρi
ϕ for

UAV in Ω(sρi
) by executing the PPSA algorithm, where Usρi

is comprised of the horizontal flight path U
f

sρi
and vertical

flight path Uh
sρi

of UAV. Then we compute the projection point

qρi
of HPsρi

on N(s0ρi
). Afterwards, we perform the operations

Uh =Uh∪Uh
sρi

, H = H∪{HPsρi
} and T = T ∪{tsρi

}. In the third

step, for any 1 ≤ i ≤ n, we use the line segment (qρi
,qρi+1

)
to be the horizontal flight path of UAV which is from

qρi
to qρi+1

(where sρn+1
= sρ1

), and U f = U f ∪ (qρi
,qρi+1

).
Finally, the complete flight tour of UAV U = U f ∪Uh is

derived, and then the flight plan Φ = {U,H,T} and the total

time cost EΦ = L(U f )/v f + L(Uh)/vh + ∑tsρi
∈T tsρi

of UAV

are obtained. The pseudo-code of the algorithm is shown

in Algorithm 2.

Suppose Φ(U∗,H∗,T ∗) is an optimal flight plan of the UAV

for the FTPS problem, where U∗ is an optimal traveling tour

of UAV, which consists of the optimal horizontal flight path

U∗
f and vertical flight path U∗

h , H∗ denotes an optimal set of

hovering points of UAV on U∗ in which for each HP∗
si
∈ H∗,

there is a corresponding hovering time t∗si
∈ T ∗. We use E∗

Φ
to denote the time consumption of UAV for the flight plan

Φ(U∗,H∗,T ∗).
Theorem 3: We have EΦ ≤ (2 + ε) ·E∗

Φ + r
v f

, where EΦ is

obtained by using the FTPSA algorithm.

Proof: Suppose U∗
t p is an optimal tour for the TSPN

problem. Since U∗
f should visit all disks in D, we can obtain
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Algorithm 2 FTPSA

Input: S = {s1,s2, · · · ,sn}, Vi for each si ∈ S, R, r,

D = {N(s01),N(s02), · · · ,N(s0n)}, W , γ0, h0,

Θ = {Ω(s1),Ω(s2), · · · ,Ω(sn)}, h, v f , vh, s0

Output: A flight plan Φ(U,H,T ) of UAV and EΦ

1 Using the (1 + ε)-approximation algorithm for the TSPN

problem to compute a tour U 0
f for D [23], and the order

of data collection areas in Θ visited by U 0
f , which is

denoted as Ω(sρ1
),Ω(sρ2

), · · · ,Ω(sρn);
2 for each Ω(sρi

) ∈ Θ do

3 Compute the first intersection point bsρi
between U 0

f

and N(s0ρi
), where U 0

f is visited in counter clockwise

order;

4 Compute the flight plan ϕ(Usρi
,HPsρi

,tsρi
) and the

time cost E
ρi
ϕ for UAV in the area Ω(sρi

) by executing

the PPSA algorithm, where Usρi
= U

f
sρi

∪Uh
sρi

, and

compute the projection point qρi
of HPsρi

on N(s0i);
5 Uh = Uh ∪Uh

sρi
, H = H ∪HPsρi

, T = T ∪ tsρi
;

6 end

7 for i from 0 to n do

8 Let (qρi
,qρi+1

)be the horizontal flight path of UAV

which is from qρi
to qρi+1

, and U f = U f ∪ (qρi
,qρi+1

);
9 end

10 U = U f ∪Uh, EΦ = L(U f )/v f + L(Uh)/vh + ∑tsρi
∈T tsρi

;

that U∗
f is a feasible solution for the TSPN problem. Thus,

we have

L(U∗
t p) ≤ L(U∗

f ). (24)

According to the algorithm for the TSPN problem, we can

derive

L(U 0
f ) ≤ (1 + ε) ·L(U∗

t p). (25)

Based on the definition of FTPS problem, we can obtain

E∗
Φ ≥

L(U∗
f )

v f

+
L(U∗

h )

vh

, (26)

and

E∗
Φ ≥

n

∑
i=1

E
ρi∗
ϕ . (27)

Since the shortest distance between any pair of points is the

straight line for connecting them without any curves, we can

get that for any 1 ≤ i ≤ n,

dqρi
,qρi+1

≤ 1

2
·L(U f

sρi
)+

1

2
·L(U f

sρi+1
)+ L(Pbsρi

,bsρi+1
).

(28)

Based on the Theorem 2 and inequations (24)-(28), we can

obtain

EΦ =
L(U f )

v f

+
L(Uh)

vh

+ ∑
tsρi

∈T

tsρi

=
∑n

i=1 dqρi
,qρi+1

v f

+
L(Uh)

vh

+ ∑
tsρi

∈T

tsρi

≤
L(U 0

f )

v f

+ ∑
sρi

∈S

(
L(U f

sρi
)

v f

+
L(Uh

sρi
)

vh

+ tsρi
)

=
L(U 0

f )

v f

+
n

∑
i=1

E
ρi
ϕ ≤

(1 + ε) ·L(U∗
f )

v f

+
n

∑
i=1

(E
ρi∗
ϕ +

r

n · v f

)

≤ (2 + ε) ·E∗
Φ +

r

v f

.

Hence, the theorem has been proved.

V. ALGORITHM FOR THE FTP PROBLEM

In this section, we propose an approximation algorithm,

called FTPM, to solve the general FTP problem. The objective

of the FTPM algorithm aims at finding a flight plan Φ(U,H,T )
of m UAVs and

Minimize EΦ = max
1≤k≤m

Ek
φ ,

where Ek
φ is the time cost of fk.

The FTPM algorithm consists of five steps as follows.

In the first step, we compute the flight plan Φ(Ut ,Ht ,Tt)
of the single UAV on Θ by executing the FTPSA algorithm,

where Ut consists of the horizontal flight path U
f

t and vertical

flight path Uh
t .

In the second step, for each si ∈ S, we create the virtual

paths P
sb
i ,s

e
i

and Ps1
i ,s

2
i

to represent the horizontal flight path

and vertical flight path of UAV with tsi
and

dqi,HPsi
vh

flying time,

respectively, i.e., L(Psb
i ,se

i
) = v f · tsi

and L(Ps1
i ,s2

i
) =

dqi,HPsi
vh

· v f ,

where sb
i and se

i are respectively the starting point and ending

point of Psb
i ,se

i
, and s1

i and s2
i respectively denote the starting

point and ending point of Ps1
i ,s

2
i
. Then the paths Psb

i ,se
i
, Ps1

i ,s
2
i

and Ps2
i ,s

1
i

are added into Q, where Q is a set of virtual paths.

In the third step, we combine Q and U
f

t , and put the result

into U f , i.e., U f = U
f

t ∪Q. Afterwards, we divide U f into m

paths P1,P2, · · · ,Pm based on their counter-clockwise visiting

sequence such that L(Pk) =
L(U f )

m
for any 1 ≤ k ≤ m. Let ck

denote the connection point between Pk and Pk+1, where 1 ≤
k ≤ m− 1. For simplicity, we use cb

k and ce
k to represent the

starting point and ending point of Pk, respectively. Initially,

we have cb
1 = ce

m = s0, ce
k = ck for any 1 ≤ k ≤ m − 1 and

cb
k = ck−1 for any 2 ≤ k ≤ m.

In the fourth step, for each si ∈ S that is visited by the path

Pk, we design the detailed flight plan of fk in Ω(si) on the

following two cases: P
sb
i ,s

e
i
⊂ Pk and ck ∈ P

sb
i ,s

e
i
. In the former

case, we let HPsi
∈ Ht with the hovering time L(P

sb
i ,se

i
)/v f

be the hovering point of fk, and set Hk = Hk ∪{HPsi
}, Tk =

Tk ∪ {L(Psb
i ,se

i
)/v f } and Uh

k = Uh
k ∪ Ps1

i ,s
2
i
∪ Ps2

i ,s1
i
, where Uh

k

represents the vertical flight path of fk. If Ω(si) is the last

data collection area visited by Pk, then the paths Psb
i ,s

e
i

and

Pse
i ,ck

are deleted from Pk, the path Ps1
i ,s

2
i

is added into Pk, and

the end point ce
k of Pk is changed to s1

i . Otherwise, if Ω(si) is

the first data collection area visited by Pk, then the paths Psb
i ,se

i

and Pck−1,s
b
i

are deleted from Pk, the path Ps2
i ,s

1
i

is added into Pk,

and the start point cb
k of Pk is updated to s1

i . In the latter case,

we let HPsi
with the hovering time L(Psb

i ,ck
)/v f be the hovering

point of fk, and set Hk = Hk∪{HPsi
}, Tk = Tk∪{L(P

sb
i ,ck

)/v f }.
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Algorithm 3 FTPM

Input: S = {s1,s2, · · · ,sn}, Vi for each si ∈ S, r, R,

F = { f1, f2, · · · , fm}, h, v f , vh, h0, W , γ0,

Θ = {Ω(s1),Ω(s2), · · · ,Ω(sn)},

D = {N(s01),N(s02), · · · ,N(s0n)}
Output: A flight plan Φ(U,H,T ) for m UAVs and EΦ

1 Compute the flight plan Φ(Ut ,Ht ,Tt) for the single UAV

on Θ by executing Algorithm FTPSA;

2 for each si ∈ S do

3 Psb
i ,se

i
= tsi

· v f , Ps1
i ,s

2
i
=

dqi,HPsi
vh

· v f ;

4 Q = Q∪Psb
i ,s

e
i
∪Ps1

i ,s
2
i
∪Ps2

i ,s
1
i
;

5 end

6 U f = U
f

t ∪Q, and divide U f into m paths P1,P2, · · · ,Pm

such that L(Pk) =
L(U f )

m
, and let ck denote the connection

point between Pk and Pk+1;

7 for k from 1 to m do

8 for each si ∈ S do

9 if Psb
i ,se

i
⊂ Pk then

10 Hk = Hk ∪{HPsi
}, Tk = Tk ∪{

L(P
sb
i
,se

i
)

v f
)},

Uh
k = Uh

k ∪Ps1
i ,s

2
i
∪Ps2

i ,s
1
i
;

11 if Ω(si) is the last area visited by Pk then

12 Pk = (Pk −Psb
i ,s

e
i
−Pse

i ,ck
)∪Ps2

i ,s
1
i
, ce

k = s1
i ;

13 end

14 if Ω(si) is the first area visited by Pk then

15 Pk = (Pk −P
sb
i ,s

e
i
−P

ck−1,s
b
i
)∪Ps2

i ,s
1
i
;

16 cb
k = s1

i ;

17 end

18 else

19 if ck ∈ Psb
i ,se

i
then

20 Hk = Hk ∪{HPsi
}, Tk = Tk ∪{

L(P
sb
i
,ck

)

v f
)};

21 Pk = (Pk −Psb
i ,ck

)∪Ps2
i ,s

1
i
, ce

k = s1
i ;

22 sb
i = ck, Uh

k = Uh
k ∪Ps1

i ,s
2
i
∪Ps2

i ,s
1
i

;

23 end

24 end

25 end

26 Uk = Pk ∪ (s0,c
b
k)∪ (ce

k,s0), U
f

k = Uk −Uh
k ;

27 Ek
φ =

L(U
f

k
)

v f
+

L(Uh
k )

vh
+ ∑tk

si
∈Tk

tk
si

, U = U ∪Uk;

28 end

29 Φ = {U,H,T}, EΦ = max1≤k≤m Ek
φ ;

Afterwards, we delete the path Psb
i ,ck

from Pk and add the path

Ps2
i ,s

1
i

into Pk. Then the ending point ce
k of Pk is set to s1

i and the

starting point of path P
sb
i ,s

e
i

is changed to ck. This is because

when the amount of sensory data carried by si is very large,

we may need several UAVs to collect its data simultaneously.

Afterwards, we add the paths Ps1
i ,s2

i
and Ps2

i ,s
1
i

into the path

Uk
h . After completing this step, for any fk ∈ F , the flight plan

φ(Pk,Hk,Tk) is obtained.

Finally, for any fk ∈ F , we construct the flight tour of

fk by combining Pk, (s0,c
b
k) and (ce

k,s0), i.e., Uk = Pk ∪
(s0,c

b
k)∪(ce

k,s0), and its horizontal flight time is U
f

k =Uk−Uh
k .

Therefore, we can calculate the time cost of fk as Ek
φ =

L(U
f

k )/v f +L(Uh
k )/vh +∑tk

si
∈Tk

tk
si

. Consequently, the time cost

EΦ = max1≤k≤m Ek
φ is obtained. The pseudo-code of the FTPM

algorithm is given in Algorithm 3.

Next, we will analyze the performance of the FTPM algo-

rithm. Suppose Φ(U∗,H∗,T ∗) is an optimal flight plan of m

UAVs for the FTP problem, where U∗ = {U∗
1 ,U∗

2 , · · · ,U∗
m},

H∗ = {H∗
1 ,H∗

2 , · · · ,H∗
m}, T ∗ = {T ∗

1 ,T ∗
2 , · · · ,T ∗

m} and let E∗
Φ

denote the time cost of the flight plan Φ(U∗,H∗,T ∗). For any

1 ≤ k ≤ m, let U∗
k = U

f∗
k ∪Uh∗

k , where U
f∗

k and Uh∗
k denote

the optimal horizontal flight path and vertical flight path of

fk, respectively. Let U∗
f = {U

f∗
1 ,U f∗

2 , · · · ,U f∗
m }.

Theorem 4: We have EΦ ≤ (3 + ε) ·E∗
Φ + 3r

v f
, where EΦ is

obtained by the FTPM algorithm.

Proof: Suppose U
f∗

c =
⋃m

k=1 U
f∗

k is the union of all tours

in U∗
f . Since all tours in U∗

f can jointly visit all disks in D

and converge on s0, we can find that U
f∗

c is a feasible solution

for the TSPN problem. Thus, we have L(U f∗
c ) ≥ L(U∗

t p). Let

L(U∗
f ) = max{L(U f∗

k )|U f∗
k ∈U∗

f }. Then, we can obtain

L(U∗
f ) ≥ 1

m
·L(U f∗

c ) ≥ 1
m
·L(U∗

t p). (29)

According to the definition of FTP problem, we can get

E∗
Φ ≥

L(U∗
f )

v f

, (30)

and

E∗
Φ ≥ 1

m
· ∑

si∈S

E i∗
ϕ . (31)

Based on the FTPM algorithm, we can obtain for each 1 ≤
k ≤ m, both the starting point cb

k and ending point ce
k of Pk are

located in the disks in D. Suppose cb
k is located in N(s0i) and

ce
k is in the disk N(s0l). Then we can obtain

L(s0,c
b
k) ≤ L(s0,s

0
i)+ r, (32)

and

L(ce
k,s0) ≤ L(s0,s

0
l)+ r. (33)

Since for any data collection area Ω(si) ∈ Θ, it should be

visited by one of UAVs in F and the UAV should arrive at

Ω(si) from s0 and go back to s0. Therefore, we have

E∗
Φ ≥ 2maxΩ(si)∈Θ

L(s0,s0i)−r

v f
. (34)

Based on Theorem 2 and the inequations (29)-(34), for any

fk ∈ F and m ≥ 2, we can obtain

Ek
φ =

L(Uk
f )

v f

+
L(Uk

h )

vh

+ ∑
tk
si
∈Tk

tk
si

=
L(Pk)

v f

+
L(s0,c

b
k)

v f

+
L(ce

k,s0)

v f

+ ∑
tk
si
∈Tk

tk
si

≤ 1

m
(

L(U
f

t )

v f

+ ∑
si∈S

E i
ϕ)+

L(s0,c
b
k)

v f

+
L(ce

k,s0)

v f

≤ 1

m
((1 + ε) ·

L(U∗
t p)

v f

+ ∑
si∈S

(E i∗
ϕ +

r

n · v f

))+ E∗
Φ +

2r

v f
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≤ 1

m
(1 + ε)

L(U∗
f )

v f

+
1

m
· ∑

si∈S

E i∗
ϕ +

1

m
· r

v f

+ E∗
Φ +

2r

v f

≤ (3 + ε) ·E∗
Φ +

3r

v f

.

Consequently, we have

EΦ = max
1≤k≤m

Ek
φ ≤ (3 + ε) ·E∗

Φ +
3r

v f

.

Hence, the theorem has been proved.

According to Theorem 4, we can obtain that the FTPM

have the constant approximation ratio for the FTP problem.

However, in the case of steep terrain, such as in a mountain-

ous environment, since sensors are deployed in the different

altitudes, the data collection areas of sensors are different in

size when the UAVs fly horizontally with fixed altitude. Based

on the proposed algorithm for the FTP problem, we can firstly

design traveling paths of UAVs for visiting all data collection

areas in various sizes. If UAVs need to fly above and outside

the transmission ranges of sensors due to the complex terrain,

we can use the the projection points of the sensors on the

flight plane of UAVs to be the starting points for visiting their

data collection areas. Then for each sensor in the network,

we find the optimal traveling paths of the visited UAVs by

changing vertical cruising height to obtain the best tradeoff

between traveling cost and hovering consumption of UAVs.

VI. SIMULATION RESULTS

In this section, we evaluate the average performance of

the approximation algorithm FTPM through simulations on

several key performance metrics under different settings. We

implement the code using MATLAB 2013. In the simulations,

sensors are deployed in a 2000 m × 2000 m detection area,

the reference SNR at transmission distance 1 m is set to

γ0 = 80 dB and the path loss exponent is set to α = 3. For

each parameter setting, we create 100 instances, execute the

simulations, and obtain the average results.

Given an FTP instance, we compute the lower bound of

the time cost of any feasible solution for the FTP problem as

follows: (a) A minimum spanning tree Tr of D is computed,

and we let U∗
D denote an optimal tour to visit all disks in D,

where disks in D are referred as points. (b) The time cost E i
ϕ

of UAV for each Ω(si) ∈ Θ is computed by algorithm PPSA.

(c) The lower bound of the solution for the FTP problem

is equal to 1
m
· (L(Tr)

v f
+ ∑Ω(si)∈Θ E i

ϕ − r
v f

), since E∗
Φ ≥ 1

m
·

(
L(U∗

D)
v f

+∑Ω(si)∈Θ E i∗
ϕ )≥ 1

m
·(L(Tr)

v f
+∑Ω(si)∈Θ E i

ϕ − r
v f

) based on

Theorem 2. In the following, we use Emax = max{Ek
φ | fk ∈ F}

and Emin = min{Ek
φ | fk ∈ F} to denote the maximum time cost

and the minimum time cost of m UAVs obtained by the FTPM

algorithm, respectively. Then we evaluate how the network

configurations, such as the number of sensors n, the number

of UAVs m, the Bandwidth W , the amount of data Vi carried by

each sensor si ∈ S, the data transmission range R, the horizontal

flight speed v f , the vertical flight speed vh and horizontal flight

altitude h, impact on the performance of FTPM algorithm by

comparing Emax, Emin with Lower Bound.

In Fig. 7, we give the performance of FTPM when we set

R = 100 m, h = 60 m, h0 = 10 m, W = 2 MB/s, v f = 10 m/s,

Fig. 7. Simulations by varing n from 20 to 80 under different m.

vh = 2 m/s and use the interval [1,3] MB to pick a uniformly

distributed random data size Vi for each sensor si ∈ S, and

vary m to 1, 3, 5, 7, 9 and n from 20 to 80 increased by 5.

In Fig. 7(a), we compare the performance of FTPM against

the lower bound in terms of the ratio of Emax to the Lower

Bound. It is observed that the ratio becomes higher as m

grows, and that the performance gap is getting smaller and

stabilized with an increase in the number of sensors, since

the total time consumption for each UAV in data collection

areas of sensors increases as n grows and the time cost of

the lower bound in each data collection area got by PPSA is

infinitely close to the optimal solution for the PPS problem.

We also find that the ratio of Emax to the Lower Bound is

always less than 3, which verifies the effectiveness of the

FTPM algorithm, and that FTPM performs reasonably well

in a larger network. Fig. 7(b) is to illustrate the impact of

the number of sensors on the time cost of UAV. We can

find that Emax increases with the increasing of the number

of sensors since both the hovering time and traveling time of

UAVs are increased as the number of sensors grows. We can

also observe that the performance gap is becoming smaller

with increasing m. This is because the traveling time of UAVs

becomes the main part of the time cost of UAVs while the

traveling distance of each UAV does not increase very much

as m grows. In Fig. 7(c), we give the comparison of Emax, Emin

and Lower Bound with m = 5. It shows that all three increase

as the number of sensors increases, which can guarantee the

ratios in Fig. 7(a). We can also observe that the performance

gap between Emax and Emin got by the algorithm FTPM is

very small and stabilized, which can prove the validity of the

algorithm. Fig. 7(d) illustrates the ratios between any pairs

of Emax, Emin and Lower Bound when m = 5. We can find the

ratios Emax/LowerBound, Emin/LowerBound and Emax/Emin

derease with the increasing of n since both the hovering time

and traveling time of UAVs are increased as n grows.
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Fig. 8. Simulations through changing vh from 1 m/s to 7 m/s under
different Vi.

Fig. 9. Simulations through changing v f from 8 m/s to 20 m/s under
different R.

Fig. 8 illustrates the performance of FTPM when we set

n = 60, R = 100 m, h = 60 m, h0=10 m, v f = 15 m/s, m = 5

and randomly pick Vi from the intervals [1,2], [2,3], [3,4],

[4,5], and [5,6] MB, respectively and change vh from 1 m/s to

7 m/s. Fig. 8(a) gives the changing trend of the ratio of Emax

to the lower bound as vh grows. It is observed that the ratio of

Emax to the Lower Bound tends to balance with the increasing

of vh. This is because although the vertical flight time of

UAV decreases as vh grows, the traveling time outside of data

collection areas becomes the major part of Emax, which makes

the ratio of Emax to lower bound remain unchanged. We can

find the ratio of Emax to the Lower Bound is always less than

1.5, which can prove the validity of the algorithm. We also find

that the ratio decreases with increasing Vi for each sensor since

both the hovering times of Emax and Lower Bound increase as

the amount of data carried by sensors grows. Fig. 8(b) shows

that Emax decreases with the increasing of vh since UAVs need

less vertical flight time to arrive the hovering point in each data

collection area for gathering data from sensor.

In Fig. 9, we use the interval [1,3] MB to pick a uniformly

distributed random Vi for each sensor si ∈ S and set n = 30,

h = 50 m, W = 2 MB/s, m = 3 and R = 60, 80, 100, 120,

140 m, and change v f from 8 to 20 m/s. Fig. 9(a) shows

that the ratio of Emax to the Lower Bound decreases with

increasing v f . This is because the hovering time part of both

Emax and Lower Bound is unchanged while the traveling time

of them decreases as v f grows. We also observe that the ratio

of Emax to Lower Bound becomes larger as R increases, since

the traveling time of both Emax and the Lower Bound increases

with increasing R but the hovering time of them is unchanged

and becomes the main time cost of UAVs. Fig. 9(b) shows

that the time cost of UAVs decreases as v f grows since the

total traveling time of UAV decreases with the increasing of

v f . We also find the time consumption of UAV decreases as R

Fig. 10. Simulations through varying W from 1 Mb/s to 7 Mb/s under
different h.

decreases. This is because that the data transmission rate from

sensors to UAV raises with the decreasing of R, which leads

to descent in the total time consumption of UAV.

Fig. 10 illustrates the performance of FTPM when we

set n = 60, R = 100 m, m = 3, v f = 10 m/s, vh = 3 m/s,

h0 = 10 m, randomly pick Vi from the interval [5, 6] Mb and

h =50, 60, 70, 80, 90, and change W from 1Mb/s to 7Mb/s.

Fig. 10(a) gives the changing trend of the ratio of Emax to the

Lower Bound. It is observed that the ratio decreases with the

increasing of W . This is because as W increases, the proportion

of the horizontal flight time outside of data collection areas

to Emax increases while the proportion of the horizontal flight

time outside of data collection areas of Lower Bound,
L(Tr)

v f

is unchanged. We also find the ratio of Emax to Lower Bound

remains stable as h increases, since both the horizontal flight

time and vertical flight time of UAVs decreases, which can

keep their values unchanged. Fig. 10(b) shows that Emax

decreases with the increasing of W since UAVs need less data

transmission time to collect data from sensors.

VII. CONCLUSION

In this paper, we identify the Fine-grained Trajectory Plan

for multi-UAVs (FTP) problem, which focuses on finding the

fine-grained trajectory plans for m UAVs. The objective of the

problem is to minimize the maximum time cost of UAVs such

that all sensory data carried by sensors in WSN is collected

and transported to the base station. Then we prove that the

FTP problem is NP-hard. Afterwards, we first investigate a

special case of FTP problem where m = 1, called FTPS. Then

we propose an approximation algorithm FTPSA for solving the

FTPS problem. Based on the FTPSA algorithm, we present an

approximation algorithm FTPM to design a fine-grained flight

plan for each of m UAVs, which not only gives the flight paths

of multiple UAVs but also provides the detailed hovering and

traveling plans of UAVs. According to the theoretical analysis

and simulations, we can verify that the proposed algorithms

have great performance.

REFERENCES

[1] J. Li, S. Cheng, Z. Cai, J. Yu, C. Wang, and Y. Li, “Approximate holistic
aggregation in wireless sensor networks,” ACM Trans. Sensor Netw.,
vol. 13, no. 2, p. 11, Aug. 2017.

[2] C. Luo, J. Yu, D. Li, H. Chen, Y. Hong, and L. Ni, “A novel dis-
tributed algorithm for constructing virtual backbones in wireless sensor
networks,” Comput. Netw., vol. 146, pp. 104–114, Dec. 2018.

[3] P. Bupe, R. Haddad, and F. Rios-Gutierrez, “Relief and emergency
communication network based on an autonomous decentralized UAV
clustering network,” in Proc. SoutheastCon, Apr. 2015, pp. 1–8.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 27,2021 at 00:08:47 UTC from IEEE Xplore.  Restrictions apply. 



LUO et al.: FINE-GRAINED TRAJECTORY OPTIMIZATION OF MULTIPLE UAVs FOR EFFICIENT DATA GATHERING FROM WSNs 175

[4] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with
unmanned aerial vehicles: Opportunities and challenges,” IEEE Com-

mun. Mag., vol. 54, no. 5, pp. 36–42, May 2016.
[5] M. Erdelj, E. Natalizio, K. R. Chowdhury, and I. F. Akyildiz, “Help

from the sky: Leveraging UAVs for disaster management,” IEEE Pervas.

Comput., vol. 16, no. 1, pp. 24–32, Jan. 2017.
[6] D. Kim, L. Xue, D. Li, Y. Zhu, W. Wang, and A. O. Tokuta, “On

theoretical trajectory planning of multiple drones to minimize latency
in search-and-reconnaissance operations,” IEEE Trans. Mobile Comput.,
vol. 16, no. 11, pp. 3156–3166, Nov. 2017.

[7] J. Gong, T.-H. Chang, C. Shen, and X. Chen, “Flight time minimization
of UAV for data collection over wireless sensor networks,” IEEE J. Sel.

Areas Commun., vol. 36, no. 9, pp. 1942–1954, Sep. 2018.
[8] M. B. Ghorbel, D. Rodriguez-Duarte, H. Ghazzai, M. J. Hossain, and

H. Menouar, “Joint position and travel path optimization for energy
efficient wireless data gathering using unmanned aerial vehicles,” IEEE

Trans. Veh. Technol., vol. 68, no. 3, pp. 2165–2175, Mar. 2019.
[9] C. Luo, Y. Wang, Y. Hong, W. Chen, X. Ding, Y. Zhu, and D. Li,

“Minimizing data collection latency with unmanned aerial vehicle in
wireless sensor networks,” J. Combinat. Optim., vol. 38, pp. 1–24,
Jul. 2019.

[10] D. Bhadauria and V. Isler, “Data gathering tours for mobile robots,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2009,
pp. 3868–3873.

[11] H. Huang, A. V. Savkin, and C. Huang, “I-UMDPC: The improved-
unusual message delivery path construction for wireless sensor net-
works with mobile sinks,” IEEE Internet Things J., vol. 4, no. 5,
pp. 1528–1536, Oct. 2017.

[12] S. K. Singh, P. Kumar, and J. P. Singh, “An energy efficient protocol to
mitigate hot spot problem using unequal clustering in WSN,” Wireless

Pers. Commun., vol. 101, no. 2, pp. 799–827, Jul. 2018.
[13] N. Kumar and D. Dash, “Flow based efficient data gathering in wireless

sensor network using path-constrained mobile sink,” J. Ambient Intell.

Humanized Comput., vol. 11, pp. 1163–1175, Feb. 2019.
[14] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with

trajectory optimization,” IEEE Trans. Wireless Commun., vol. 16, no. 6,
pp. 3747–3760, Jun. 2017.

[15] S. Liu, Z. Wei, Z. Guo, X. Yuan, and Z. Feng, “Performance analysis
of UAVs assisted data collection in wireless sensor network,” in Proc.
IEEE 87th Veh. Technol. Conf. (VTC Spring), Jun. 2018, pp. 1–5.

[16] H. Binol, E. Bulut, K. Akkaya, and I. Guvenc, “Time optimal multi-
UAV path planning for gathering its data from roadside units,” in Proc.
IEEE 88th Veh. Technol. Conf. (VTC-Fall), Aug. 2018, pp. 1–5.

[17] B. Liu and H. Zhu, “Energy-effective data gathering for UAV-aided
wireless sensor networks,” Sensors, vol. 19, no. 11, p. 2506, May 2019.

[18] Y. Guo, S. Yin, and J. Hao, “Resource allocation and 3-D trajectory
design in wireless networks assisted by rechargeable UAV,” IEEE

Wireless Commun. Lett., vol. 8, no. 3, pp. 781–784, Jun. 2019.
[19] J.-S. Lee and K.-H. Yu, “Optimal path planning of solar-powered UAV

using gravitational potential energy,” IEEE Trans. Aerosp. Electron.

Syst., vol. 53, no. 3, pp. 1442–1451, Jun. 2017.
[20] E. Natalizio, N. R. Zema, L. Di Puglia Pugliese, and F. Guerriero,

“Download and fly: An online solution for the UAV 3D trajectory
planning problem in smart cities,” in Proc. 9th ACM Symp. Design Anal.

Intell. Veh. Netw. Appl. (DIVANet), 2019, pp. 49–56.
[21] P. B. Sujit, D. E. Lucani, and J. B. Sousa, “Joint route planning for

UAV and sensor network for data retrieval,” in Proc. IEEE Int. Syst.

Conf. (SysCon), Apr. 2013, pp. 688–692.
[22] C. H. Papadimitriou, “The Euclidean travelling salesman problem is NP-

complete,” Theor. Comput. Sci., vol. 4, no. 3, pp. 237–244, Jun. 1977.
[23] A. Dumitrescu and J. S. B. Mitchell, “Approximation algorithms for

TSP with neighborhoods in the plane,” J. Algorithms, vol. 48, no. 1,
pp. 135–159, Aug. 2003.

Chuanwen Luo received the Ph.D. degree from the
School of Information, Renmin University of China,
Beijing, China, in 2020. He is currently working as
an Assistant Professor with the School of Informa-
tion Science and Technology, Beijing Forestry Uni-
versity, Beijing. He was a Visiting Scholar with the
Department of Computer Science, The University
of Texas at Dallas, in 2019. His research interests
include various topics in the application of wireless
networks, ad hoc and sensor networks, and algorithm
design and analysis.

Meghana N. Satpute received the M.E. degree in
computer engineering from the University of Pune,
Pune, India, and the Ph.D. degree in computer sci-
ence from The University of Texas at Dallas. She is
currently an Assistant Professor with the Department
of Computer Sciences, The University of Texas
at Dallas. Her current research interests include
applying combinatorial optimization algorithms for
solving natural language processing problems and
wireless communication problems.

Deying Li received the B.S. and M.S. degrees in
mathematics from Central China Normal University,
Wuhan, in 1985 and 1988, respectively, and the
Ph.D. degree in computer science from the City
University of Hong Kong in 2004. She is currently a
Professor with the Department of Computer Science,
Renmin University of China. Her research interests
include wireless networks, ad hoc and sensor net-
works, distributed network systems, social networks,
and algorithm design.

Yongcai Wang (Member, IEEE) received the B.S.
and Ph.D. degrees from the Department of Automa-
tion Sciences and Engineering, Tsinghua University,
in 2001 and 2006, respectively. He worked as an
Associate Researcher with NEC Laboratories China,
from 2007 to 2009. He was a Research Scientist
with the Institute for Interdisciplinary Information
Sciences, Tsinghua University, from 2009 to 2015.
He was a Visiting Scholar with the Department
of Electronic and Computer Engineering, Cornell
University, in 2015. He is currently an Associate

Professor with the Department of Computer Science, Renmin University of
China. His current research interests include network localization algorithms,
simultaneously locating and mapping algorithms, combinatorial optimization,
and applications.

Wenping Chen received the B.E. and M.E. degrees
from the Department of Computer Science and
Technology, Xi’an Jiaotong University, in 1997 and
2000, respectively, and the Ph.D. degree from the
Department of Computer Science and Technology,
Tsinghua University, in 2003. She is currently work-
ing as an Assistant Professor with the Department of
Computer Science, Renmin University of China. Her
current research interests include mobile computing,
wireless ad hoc networks, and social computing.

Weili Wu (Senior Member, IEEE) received the
M.S. and Ph.D. degrees from the Department of
Computer Science, University of Minnesota, Min-
neapolis, MN, USA, in 1998 and 2002, respectively.
She is currently a Full Professor with the Department
of Computer Science, The University of Texas at
Dallas, Richardson, TX, USA. Her research interests
include the design and analysis of algorithms for
optimization problems that occur in wireless net-
working environments and various database systems.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 27,2021 at 00:08:47 UTC from IEEE Xplore.  Restrictions apply. 


