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A Multi-Feature Diffusion Model: Rumor Blocking
in Social Networks
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Abstract— Online social networks provide a convenient plat-
form for the spread of rumors, which could lead to serious
aftermaths such as economic losses and public panic. The classical
rumor blocking problem aims to launch a set of nodes as a
positive cascade to compete with misinformation in order to limit
the spread of rumors. However, most of the related researches
were based on a one-dimensional diffusion model. In reality, there
is more than one feature associated with an object. A user’s
impression on this object is determined not just by one feature
but by her overall evaluation of all features associated with it.
Thus, the influence spread of this object can be decomposed
into the spread of multiple features. Based on that, we design
a multi-feature diffusion model (MF-model) in this paper and
formulate a multi-feature rumor blocking (MFRB) problem on a
multi-layer network structure according to this model. To solve
the MFRB problem, we design a creative sampling method
called Multi-Sampling, which can be applied to this multi-layer
network structure. Then, we propose a Revised-IMM algorithm
and obtain a satisfactory approximate solution to MFRB. Finally,
we evaluate our proposed algorithm by conducting experiments
on real datasets, which shows the effectiveness of our Revised-
IMM and its advantage to their baseline algorithms.

Index Terms— Multi-feature diffusion, rumor blocking, social
networks, sampling, approximation algorithm, martingale.

I. INTRODUCTION

T
HE online social platforms, such as Facebook, Twitter,
LinkedIn, and WeChat, have been growing rapidly over

the last years and has been a major communication platform.
There are more than 1.52 billion users active daily on Face-
book and 321 million users active monthly on Twitter. Usually,
these social platforms can be represented as online social
networks (OSNs), which is a directed graph, including indi-
viduals and their relationships. Even that providing users with
convenient information exchange, OSNs provide opportunities
for rumor, namely false or negative information, to spread as
well. It can cause something bad to happen and even panic.
For example, in 2018, a video spread in Weibo that a bus
fell down into a river from a bridge because of a car, leading
to there are 15 people losing their lives. In Weibo, all the
comments were unanimously pointed to that this tragic tragedy
was caused by the driving mistakes of the car driver. However,
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after investigated by the police, this disaster was brought by a
dispute between the bus driver and an unreasonable passenger.
Thus, the car driver was acquitted immediately.

The influence in social networks is diffused from user to
user, which can be initiated by a set of seed (initial) users.
The notable study of influence diffusion can be traced back to
Kempe et al.’s work [1] where influence maximization (IM)
problem was formulated as a monotone submodular maxi-
mization problem: find a subset of users as the seed set that
makes the follow-up adoptions (influence spread) maximized.
They proposed two diffusion models that are accepted widely
in subsequent researches, which called Independent Cascade
model (IC-model) and Linear Threshold model (LT-model).
Besides, they proved IM is NP-hard and implemented the
Greedy algorithm [2] by Monte-Carlo (MC) simulations with
(1 − 1/e − ε)-approximation. When opposite points of view,
negative and positive information, from different cascades are
spread at the same time on the same social network, users
are more inclined to accept the information arriving on them
first. Therefore, one solution of blocking rumor spread is to
launch a positive cascade to compete with misinformation [3],
[4]. Since the budget for positive seeds is limited, a classical
rumor blocking (RB) problem is formulated, which spreads a
positive cascade by selecting a positive seed set to prevent the
spread of misinformation as much as possible.

The existing researches, regardless the problem about IM or
RB, were based on the simple IC-model or LT-model. In other
words, a piece of information that propagates through the
network has only a boolean state, either good or bad. However,
in the real world, the actual information diffusion is much
more complicated. Let us look at an example first.

Example 1: For a computer, the features associated with

this computer are price, performance, appearance and brand.

Whether a user will purchase this computer is determined by

her overall evaluation of these features, for example, price is

high or low, performance is good or bad and so on.

Therefore, in this paper, we propose a multi-feature dif-
fusion model (MF-model), which matches to the realistic
scenario better. For a user, the quality of a product depends on
her overall evaluation of all features associated with this prod-
uct. The information diffusion is not simply one-dimensional,
object by object, but multi-dimensional, feature by feature.
Back to the above example, provided some company wants
to promote its new computer, it will not tell others directly
that this computer is very good, but tell others that its price
is low, performance is satisfactory, apperance is beautiful, and
so on. In our MF-model, we assume that each feature can
be diffused independently. After the diffusion of each feature
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terminates, users can determine whether this product is good or
bad according to their own evaluation criteria. The importance
of each feature is different for different users, but we assume
they have the same weight vector to simplify our model.

Then, we propose a multi-feature rumor blocking (MFRB)
problem, which selects a positive seed set to compete with
the rumor cascade under the MF-model. The rumor from
competitors is possible to spread wrong information on dif-
ferent features in order to lower down the reputation of the
product. For example, somebody says the battery performance
of iPhone is not good and its price is too expensive, or some
presidential candidate’s private life is extravagant. It is worth
noting that although there is some negative news, this does
not mean iPhone is not a good product or this presidential
candidate is not qualified. The judgment for an object depends
on the comprehensive evaluation of all features associated with
it. Therefore, our MF-model is suitable to solve such problems.
The influence spread under the MF-model can be constructed
in a multi-layer network structure. We prove the objective
function of MFRB problem is monotone non-decreasing and
submodular. Unfortunately, computing the expected influence
spread is #P-hard [5], thus the objective function is hard to
compute despite the Greedy algorithm is simple and effec-
tive. To estimate the expected influence spread, they usually
adopt the MC simulations, but its computational cost is not
acceptable. In order to improve its efficiency, the randomized
algorithms based on reverse influence sampling (RIS) popu-
larized gradually [6]–[8]. Inspired by this idea, we propose a
novel sampling method, called Multi-Sampling, which can be
applied to the multi-layer network structure, and we show that
this sampling method is effective to solve our MFRB problem.
Then, based on Multi-Sampling and martingale analysis, the
Revised-IMM (IM via martingales) is formulated, whose per-
formance for the MFRB problem is as good as the Greedy
but much more efficient than the Greedy. Besides, We can
implement our Revised-IMM under the different parameter
settings according to your requirements for error and running
time. Finally, our proposed algorithms are evaluated on real-
world datasets. The results show the Revised-IMM is much
faster than the Greedy and almost get the same performance
for MFRB problem.

Organiztion: In Section II, we survey the related works
about RB and its algorithms. We then present MF-model
and MFRB problem in Section III, introduce our sampling
technique on multi-layer networks in Section IV, and design
our randomized algorithms in Section V. Finally, we conduct
experiments and conclude in Section VI and Section VII.

II. RELATED WORKS

By spreading a positive cascade, the RB problem can
be considered as a special case of competitive IM prob-
lem [9], [10]. Based on that, Budak et al. [3] proposed a
multi-campaign IC-model and summarized RB problem as
a monotone submodular maximization problem first. They
proved that the objective function of RB is submodular and
obtained a constant approximation ratio through Greedy algo-
rithm. He et al. [11] considered the competitive LT-model

for RB problem and designed a (1 − 1/e)-approximation
algorithm. Fan et al. [12] proposed the least cost RB problem
under the opportunistic one-active-one model and obtained
a valid theoretical bound. Then, they [13] considered RB
problem under the time constraint, constrained by a deadline
T . Besides, In addition to spreading a positive cascade [14],
there were two other technique that attempted to minimize
the influence spread. One was protecting the most influential
nodes from influenced by rumor cascade so that the influence
of negative information can be reduced [12], [15], [16]. The
other was removing some of relationships (edges) that play a
central role in networks to limit the spread of misinformation
[17]–[19]. Please read the Srijan’s survey [20] about misinfor-
mation.

Since Kempe’s seminal work [1], a large number of related
researches have been done. They try to overcome the high time
complexity of Greedy algorithm. It is #P-hard to compute the
expected influence spread of a seed set under the IC-model
[5] and LT-model [21]. The MC simulations was adopted by
many researchers to estimate the expected influence spread,
but the computational cost was unacceptable when applied to
large networks. Subsequently, a lot of researchers attempted to
overcome the low-efficiency of MC simulations [22]–[26]. For
example, Leskovec et al. [22] proposed an CELF algorithm
with a lazy-forward evaluation, which avoids unnecessary
computation by estimating the upper bound of influence.
CELF++ [27], an improved verson of CELF, reduced its time
complexity. The effect was not satisfactory until the emergence
of RIS, which was proposed firstly by Brogs et al. [6]. Based
on that, a series of efficient randomized algorithm arised like
TIM/TIM+ [7], IMM [8], and SSA/D-SSA [28]. They were
scalable methods with (1− 1/e− ε)-approximation guarantee
for the IM problem. Recently, Li et al. [25] proposed TIPTOP
based on RIS, an almost exact solutions for IM in in Billion-
Scale Networks, which tried to reduces the number of samples
as much as possible. Extended this RIS technique from IM to
RM problem, Tong et al. [4] designed a unbiased estimator for
the objective value of RB problem and presented an efficient
randomized algorithm with (1− 1/e− ε)-approximation. Guo
et al. [29] created a targeted protection problem and designed
a efficient heuristic algorithm by means of sampling reverse
shortest path. Even though that, these problem and sampling
techniques are based on one-dimensional diffusion model.
Thus, how to construct a multi-dimensional diffusion model
and design its sampling method is the main contribution of
this paper.

III. PROBLEM FORMULATION

In this section, we introduce the MF-model, formulate the
MFRB problem, and discuss its properties.

A. Influence Model

A social network can be denoted by a directed graph G =
(V, E) where V = {v1, v2, . . . , vn} is the set of n users and
E = {e1, e2, . . . , em} is the set of m directed edges. The node
set (resp. edge set) of graph G can be referred as V (G) (resp.
E(G)). For an edge e = (u, v), u (resp. v) is an incoming
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neighbor (resp. outgoing neighbor) of v (resp. u). Then, we use
N−(v) (resp. N+(v)) to denote the set of incoming neighbors
(resp. outgoing neighbors) of node v. Given a seed set S ⊆
V (G), the influence diffusion from S can be modelled by a
discrete-time process. At time step ti, we denote by Si the
current active node set. We have S0 := S at t0.

Definition 1 (IC-model): Each edge (u, v) ∈ E(G) is asso-

ciated with a diffusion probability puv ∈ (0, 1]. At ti for

i ≥ 1, we have Si := Si−1 first; then, each new activated

node u ∈ (St−1\St−2) has one chance to activate its each

inactive outgoing neighbor v with the probability puv. We add

v into Si if u activates v successfully. The influence diffusion

stops when no node can be activated later.

B. Realization

Given a dircted graph G = (V, E), a realization g =
(V, E(g)) is a subgraph of G such that E(g) ⊆ E(G).
The edges in E(g) are referred as to live edges, otherwise,
called blocked edges. Under the IC-model, for each edge
e = (u, v) ∈ E(G), it appears in realization g with probability
puv. Let Pr[g] be the probability of realization g generated
from G under the IC-model, we have

Pr[g] =
∏

e∈E(g)

pe

∏

e∈E(G)\E(g)

(1 − pe) (1)

Obviously, there are 2m possible realizations in all. The
diffusion process in a realization g is a deterministic process.

In classical IM problem, we usually denote by σ(S) the
expected number of active nodes (influence spread) given a
seed set S. Under the IC-model, we have

σ(S) =
∑

g∈G

Pr[g] · σg(S) (2)

where G is the set of all possible realizations sampled from G
and σg(S) is the number of nodes that can be reached from
a node in S by the live edges in the realization g. Given a
set function h : 2V → R and any two sets S, T ⊆ V , it is
monotone if h(S) ≤ h(T ) when S ⊆ T ⊆ V and submodular
if h(S∪{u})−h(S) ≥ h(T ∪{u})−h(T ) when S ⊆ T ⊆ V
and u /∈ T . Based on that, we have

Lemma 1 ( [1]): The objective function σ(·) is monotone

non-decreasing and submodular under the IC-model.

Remark 1: The function σ(·) is a general notation to repre-

sent the expected influence spread, thus, every time we mention

it, we need to emphasize what diffusion model we use.

C. Problem Definition

First, let us consider a scenario with composed influence
under a single cascade. Considering a product with r features
and a directed social network G = (V, E), the diffusion
process can be regarded as discrete steps:

1) Each node represents a user, and there are two possible
states associated with each user, active and inactive.
The user is active when she is willing to purchase this
product. Initially, all users are inactive.

2) Each edge (u, v) is associated with a r-dimensional
probability vector (p1

uv, p2
uv, . . . , p

r
uv), where pi

uv rep-
resents the diffusion probability of feature i. When user
u is activated, she will attempt to motivate her inactive
outgoing neighbor v to accept feature i with probability
pi

uv. In this activation attempt, maybe v will accept one
or many features.

3) If user v receives influence from more than one active
incoming neighbors simultaneously, v will treat their
features independently.

4) Each user v has a threshold θv, representing the thresh-
old that v will purchase this product, and a weight vector
(w1

v, w2
v, . . . , wr

v), where wi
v represents the weight of

feature i and
∑r

i=1 wi
v = 1. User v will be activated

if and only if the total weight of accepted features is
larger than or equal to θv.

5) Initially, a seed set, containing initial users, is activated.
At each step, every user checks whether the activated
condition is satisfied. The process ends if no user
becomes newly active at current step.

Observation 1: According to above composed influence

model, the expected influence spread σ(·) (active nodes) is

not submodular.

Proof: We take a counterexample to show that. Con-
sidering a product associated with five features, a user v
has five incoming neighbors {u1, u2, u3, u4, u5}. For each
edge (ui, v), we define pi

uiv = 1 and other pj
uiv = 0 for

j 6= i. We assume that user v has a threshold θv = 0.5 and
weight wi

v = 0.2 on each feature i. Obviously, σ({u1, u3})−
σ({u1}) = 0 < σ({u1, u2, u3}) − σ({u1, u2}) = 1 and
{u1} ⊆ {u1, u2}, contradicting the property of diminishing
marginal gain. Thus, σ(·) is not submodular under the com-
posed influence model.

Are there any techniques improving the composed influence
to make the expected influence spread be submodular? We
assume user v will be influenced by the features of her
incoming neighbor u only when u is activated. This condition
can be relaxed. Here, each feature can be spread independently,
in other words, v can be influenced by the accepted features of
u, but u is inactive. Thus, we can treat this relaxed diffusion
model as a multi-dimensional IC-model, which is still valid.
For example, if someone tells me the appearance of iPhone
is good, I will propagate this feature about appearance to my
friends even though I do not know whether the iPhone’s other
features are good or bad. Thus, each feature diffuses in its own
dimension like the diffusion of IC-model and consults with
other dimensions only when making decision to purchase the
product. In order to simulate the real scene better, a threshold
θv should be distributed in interval [0, 1] uniformly. In this
paper, we assume that the weight for feature i is equal for
different users, wi ← wi

u = wi
v = . . . = wi

z . So far, the
multi-feature diffusion model (MF-model) is formulated:

Definition 2 (MF-Model): Given a product with r features

and a directed social network G = (V, E), there exists an

equivalent directed multi-layer graph G′ = (V ′, E′). For each

feature i ∈ {1, 2, . . . , r}, make a copy Gi of G. Here, we define

ui in Gi is the copy of corresponding node u in G. The new
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Fig. 1. The form of expression to multi-layer network structure in MF-model,
where each layer represents one feature and the nodes in the same column
correspond to one user.

graph G′ = G1 ∪ G2 ∪ . . . ∪ Gr. For each edge (ui, vi), the

diffusion probability puivi is equal to pi
uv defined in composed

influence model. For each layer Gi, only feature i is spread on

it and the diffusion process in this layer is independent to other

layers. After all diffusion terminate, we need to determine

whether a user is activated. Here, we define x(vi) = 1 if node

vi accepts feature i, otherwise x(vi) = 0. If user v satisfies

the following condition:

r
∑

i=1

wi · x(vi) ≥ θv (3)

we say this user v is activated. Other definition is similar to

that in composed influence model.

Remark 2: The nodes in V (G) are called user node,

or user; but the nodes in V (G′) are called feature node,

or feature. For example, a user node u corresponds to feature

node set {u1, u2, . . . , ur}. A user node can be activated when

satisfying Equation (3). To avoid confusion, we say a feature

node is accepted when it is activated in its layer.

Then, we take an example, shown as Fig. 1, to demonstrate
how MF-model works, where it is a realization of G′ and
{G1, G2, G3} corresponds to three features. Initially, user b
is activated, namely features {b1, b2, b3} are accepted. After
diffustion stops, for user c, feature c2 and c3 are accepted.
Assuming θc = 0.5, we have

∑3
i=1 wi · x(ci) = 0.2 × 0 +

0.5 × 1 + 0.3 × 1 = 0.8 > θc, thus, user c is activated.
Under the MF-model, there are multiple cascades diffusing

on the same social network. A user is C-active if she is
activated by cascade C. A feature node is C-accepted if
it is activated by cascade C in its layer. Initially, all users
are ∅-active. Shown as Definition 2, each feature diffuses
independently, and then we are able to determine whether
the user is active after all feature diffusions have terminated.

Let us consider the following scenario: there are two cascades
spreading on network G = (V, E), a positive cascade Cp

and a negative (rumor) cascade Cr, where rumor cascade will
propagate false information on one or more features. Given the
rumor seed set Sr, we want to launch a positive cascade to
compete against the rumor cascade. Denote by Sp the seed set
of positive cascade, the information from Sr and Sp diffuses
simultaneously under the MF-model. On the layer Gi, if two
opposite cascades activate a node vi successfully at the same
time, rumor cascade has a higher priority, thus vi will be
Cr-accepted. After all feature diffusions stop, we are able to
determine whether a user is Cr-active or Cp-active.

Remark 3: For a user u, we define F(u) =
{u1, u2, . . . , ur} as u’s corresponding feature nodes.

Assuming that a seed set S is served for cascade C, we say

S is partially C-active if there exists some user u ∈ S, only

part of feature nodes in F(u) accept cascade C. For example,

only {u1, u3} ⊂ F(u) accept cascade C. On the contrary, S
is fully C-active if all feature nodes of each user in S accept

cascade C. Then, we denote by Si, i ∈ {1, 2, . . . , r}, the set

of corresponding feature nodes of S in layer i that accept

cascade C. If S is partially C-active, then |Si| ≤ |S|. If S
is fully C-active, then |Si| = |S|.

In the real world, a user can hardly be so stupid that she
believes the rumor that announces all the features of a product
are not good. Thus, we assume that rumor seed set Sr is
partially Cr-active, in other words, there exists some user
u ∈ Sr who does not believe all the features of this product
are bad when rumor is this product is totally bad. And positive
seed set Sp is fully Cp-active. A user is C̄r-active if she is
not Cr-active. For user v, we define r(vi) = 1 if node vi

accepts rumor cascade, otherwise r(vi) = 0. If user v satisfies
the following condition:

r
∑

i=1

wi · (1 − r(vi)) ≥ θv (4)

this user v is not activated by rumor cascade. If Inequality
(4) is satisfied, we say this user v is C̄r-active. Besides,
we denote by f(Sp) the expected number of C̄r-active users
given a positive seed set Sp. So far, the multi-feature rumor
blocking (MFRB) problem is formulated.

Problem 1 (MFRB): Given a social network G = (V, E),
a budget k and a partially Cr-active rumor set Sr, MFRB

selects an fully Cp-active positive seed set S◦
p , |S◦

p | ≤ k, from

V (G)\Sr to make the expected number of C̄r-active users

f(Sp) maximized under the MF-model. We have

S◦
p = arg max

Sp⊆V \Sr,|Sp|≤k
f(Sp) (5)

Theorem 1: In MFRB problem, the expected number of C̄r-

active users f(Sp) is monotone non-decreasing and submod-

ular with respect to Sp.

Proof: First, we need to represent f(Sp) mathmatically.
The f(Sp) under the MF-model can be defined as follows:

f(Sp) =

r
∑

i=1

wi
∑

gi∈Gi

Pr[gi] · f i
gi(Si

p) (6)
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Algorithm 1 R-Sampling (gi, vi, Si
r)

Input: gi = (V i, Ei(g)), vi and Si
r

Output: V ∗ or V i

1: Initialize Vcur ← {vi}
2: Initialize V ∗ ← ∅
3: Initialize an empty queue Q
4: while true do

5: if Vcur = ∅ then

6: Return V i

7: end if

8: if Vcur ∩ Si
r 6= ∅ then

9: Return V ∗

10: end if

11: V ∗ ← V ∗ ∪ Vcur

12: Q ← Q ∪ Vcur

13: Vcur ← ∅
14: while Q 6= ∅ do

15: ui = Q.pop()
16: Vcur ← Vcur ∪ {ti|ti ∈ N−(ui) and ti /∈ V ∗}
17: end while

18: end while

where f i
gi(Si

p) is the number of feature nodes that cannot
be reached by rumor cascade from Si

r in the realization gi

of graph Gi, and Si
p is the set of feature nodes in layer

i corresponding to users in Sp according to fully active
assumption of Sp.

Then,
∑

gi∈Gi Pr[gi] · f i
gi(Si

p) is the average number of
feature nodes, which is C̄r-accepted in feature i. Becuase the
threshold θv is uniformly distributed in [0, 1] and

∑r
i=1 wi =

1, each C̄r-active node ui contributes wi to the expectation of
C̄r-accepted users. In other words, the probability of user u
terminated as C̄r-active increases by wi, so f(Sp) increases
by wi. In addition, f i

gi(Si
p) is monotone non-decreasing and

submodular, which has been proven by Tong et al. [4]. f(Sp)
is a linear combination of f i

gi(Si
p), thus, f(Sp) is monotone

and submodular with respect to Sp.

IV. SAMPLING TECHNIQUE

In last section, we have proven that the MFRB problem is
monotone non-decreasing and submodular, thereby the Greedy
algorithm can get a (1−1/e)-approximation [2]. However, its
computational cost is too high because computing the objective
function of MFRB is #P-hard [5]. Thus, it is not advisable to
compute f(Sp) by MC simulations. In this section, we can
find an estimator of f(Sp) by some sampling techniques, and
then make this estimator maximized. Here, we will get help
from Random R-tuple sampling technique [4] to design our
estimator. First, we define the expected C̄r-accepted feature
nodes f i(Si

p) in layer i as

f i(Si
p) =

∑

gi∈Gi

Pr[gi] · f i
gi(Si

p) (7)

For any feature node vi ∈ V (Gi), we use R-tuple sampling
technique [4] on graph Gi = (V i, Ei) given rumor accepted
set Si

r, here, we call it as R-sampling. Given gi = (V i, Ei(g))

Algorithm 2 Single-Sampling (Gi, Si
r)

Input: Gi = (V i, Ei) and Si
r

Output: Ri

1: Select a node vi from V i uniformly.
2: Generate a realization gi of Gi.
3: Ri ← R-sampling (gi, vi, Si

r)
4: Return Ri

Algorithm 3 Multi-Sampling (G, Sr)

Input: G = (V, E) and Sr

Output: R
1: Select a node v from V 1 ∪ V 2 ∪ . . . ∪ V r uniformly.
2: Confirm v ∈ V i

3: Generate a realization gi of Gi.
4: R ← R-sampling (gi, v, Si

r)
5: Return R

as a realization of Gi, feature node vi and rumor accepted
set Si

r, the R-sampling is shown in Algorithm 1 which is a
little different from the original version in [4]. The R-sampling
starts from vi in V ∗ and determine whether the incoming
neighbors of the nodes in V ∗ can be added to V ∗ in a breadth-
first searching until one of the rumor nodes in Si

r is reached
or no node can be furthered reached. Then, the random R-
sampling in graph Gi can be generated by the following steps:

1) Select a node vi from V (Gi) uniformly.
2) Generate a realization gi of Gi.
3) Get an R-sampling V ∗ returned by Algorithm 1,

R-sampling (gi, vi, Si
r).

This process is shown in Algorithm 2, called Single-
Sampling. Intuitively, Ri contains the feature nodes that could
prevent vi in gi from influenced by rumor set Si

r when one of
them accepts positive cascade. For any positive seed set Sp,
we define an indicator as

x(Si
p, R

i) =

{

1, if Si
p ∩ Ri 6= ∅

0, otherwise
(8)

Remark 4: For convenience, we can consider positive seed

set as Sp = S1
p ∪ S2

p ∪ . . . ∪ Sr
p and rumor seed set as Sr =

S1
r ∪ S2

r ∪ . . . ∪ Sr
r .

Here, it is easy to know that x(Sp, R
i) = x(Si

p, R
i) because

Sj
p ∩ Ri = ∅ when i 6= j. Under the set Si

r, we generate a
collection of Single-Sampling Ri = {Ri

1, R
i
2, . . . , R

i
π} given

the feature i. We define FRi(Si
p), the fraction of Single-

Sampling in Ri covered by Si
p, as follows:

FRi(Si
p) =

1

π
·

π
∑

j=1

x(Si
p, R

i
j) (9)

Lemma 2 ( [4]): Given Gi = (V i, Ei) and Si
r for feature

i, we have E[n · FRi(Si
p)] = f i(Si

p) for Si
p ⊆ V i\Si

r.

So far, we have obtained an unbiased estimator for f i(Si
p)

but it cannot be applied to solve our FMRB problem directly
because multiple features exist in our problem. We can con-
sider this problem in another way. Given G′ = (V ′, E′) and
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rumor seed set Sr, V ′ = V 1∪V 2∪. . .∪V r, we select a feature
node v ∈ V ′ from these nr nodes randomly. After confirming
this feature node we select belongs to feature i, we generate
a realization gi of Gi and then get a R-sampling R returned
by Algorithm 1. This process is shown in Aglorithm 3, called
Multi-Sampling. Let R be a collection of Multi-Samplings,
R = {R1, R2, . . . , Rθ}, that contains θ Multi-Samplings.
We define WR(Sp), the weighted average fraction of Multi-
Samplings in R covered by Sp, as follows:

WR(Sp) =
1

θ
·

r
∑

i=1

wi
θ

∑

j=1

x(Si
p, Rj) (10)

Theorem 2: Given G = (V, E) and rumor seed set Sr,

we have E[nr · WR(Sp)] = f(Sp) for Sp ⊆ V \Sr.

Proof: In Algorithm 3, we select a node v from V ′

uniformly, which means that the average number of Multi-
Samplings in R generated by a node in each feature i is
the same. We define the number of Multi-Samplings in R
generated by a node in feature i as NR(i), thus, E[NR(i)] =
θ/r for i ∈ {1, 2, · · · , r}. Therefore, E[FRi (Si

p)] can be
expressed as

E[FRi (Si
p)] = r · E[FR(Si

p)] (11)

According to Equation (10) and (11), for E[nr · WR(Sp)],
we have E[nr · WR(Sp)] =

=

r
∑

i=1

wi ·
(

nr · E
[1

θ

θ
∑

j=1

x(Si
p, Rj)

]

)

=

r
∑

i=1

wi ·
(

nr · E[FR(Si
p)]

)

=

r
∑

i=1

wi ·
(

n · E[FRi(Si
p)]

)

=

r
∑

i=1

wi · f i(Si
p) = f(Sp)

From above, we know that nr · WR(Sp) is an unbiased
estimator to f(Sp). Then, the theorem is proved.

V. THE ALGORITHM

Before designing our algorithm, we need to introduce mar-
tingale and its relative properties first, defined as follows:

Definition 3 (Martingale [30]): A martingale is a sequence

of random variables Y1, Y2, Y3, · · · , such that E[|Yi|] < +∞
and E[Yi|Y1, Y2, . . . , Yi−1] = Yi−1 for any i.
Consider R = {R1, R2, · · · , Rθ} and p = f(Sp)/nr,
we define Mk as

Mk =

k
∑

j=1

( r
∑

i=1

wi · x(Si
p, Rj) − p

)

(12)

where k = {1, 2, . . . , θ}. Becasue of the linearity of
expectation, p = E[WR(Sp)] = E[

∑r
i=1 wi · x(Si

p, Rj)],
we have E[Mi] = 0 and E[|Mi|] < +∞. The value
of x(Sp, Rj) is independent to the value from x(Sp, R1)
to x(Sp, Rj−1), thus, E[Mi|M1, M2, · · · , Mi−1] = Mi−1.
Therefore, M1, M2, . . . , Mθ is formulated as a martingale.

Lemma 3 ( [30]): Let Y1, Y2, Y3, · · · be a martingale, such

that |Y1| ≤ a, |Yj − Yj−1| ≤ a for each j ∈ {2, · · · , i} and

V ar[Y1] +
∑θ

j=2 V ar[Yj |Y1, Y2, · · · , Yj−1] <= b. Then for

any γ > 0, we have

Pr[Yi − E[Yi] ≤ −γ] ≤ exp

(

− γ2

2b

)

(13)

Pr[Yi − E[Yi] ≥ γ] ≤ exp

(

− γ2

(2/3)aγ + 2b

)

(14)

Considering the martingale M1, M2, · · · , Mθ, we can set
a = 1 because |M1| ≤ 1 and |Mj − Mj−1| ≤ 1 for each
j ∈ {2, · · · , θ}. Here, we define the maximum weight w̄
over all features as w̄ = max{w1, w2, . . . , wr}. Obviously,
we have

∑r
i=1 wi · x(Si

p, Rj) ≤ w̄ · x(Sp, Rj) because for
each Multi-Sampling Rj , which can only be covered by one
kind of feature nodes. If x(Sy

p , Rj) = 1, then we have
x(Sz

p , Rj) = 0 for z ∈ {1, 2, · · · , r}\{y}. Based on the
properties of variance and Equation (12), we can set b = w̄·pθ
because V ar[M1] +

∑θ
j=2 V ar[Mj |M1, M2, . . . , Mj−1] =

=

θ
∑

j=1

V ar[

r
∑

i=1

wi · x(Si
p, Rj)]

=

θ
∑

j=1

{E[(

r
∑

i=1

wi · x(Si
p, Rj))

2] − (E[

r
∑

i=1

wi · x(Si
p, Rj)])

2
}

=

θ
∑

j=1

{E[

r
∑

i=1

(wi)2 · x(Si
p, Rj)] − p2

}

(15)

≤
θ

∑

j=1

{E[

r
∑

i=1

wi · x(Si
p, Rj)]

}

· w̄ = pθ · w̄

where the Inequality (15) holds because of the above analy-
sis. If x(Sy

p , Rj) = 1, then we have x(Sz
p , Rj) = 0 for

z ∈ {1, 2, . . . , r}\{y}. Thus,
∑r

i=1 wi · x(Si
p, Rj) = wy ·

x(Sy
p , Rj), so (wy · x(Sy

p , Rj))
2 =

∑r
i=1(w

i)2 · x(Si
p, Rj).

From Equation (13) (14), we have the following for any ε > 0

Pr

[ θ
∑

j=1

r
∑

i=1

wi · x(Si
p, Rj) − pθ ≤ −ε · pθ

]

≤ exp

(

− ε2

2w̄
· pθ

)

(16)

Pr

[ θ
∑

j=1

r
∑

i=1

wi · x(Si
p, Rj) − pθ ≥ ε · pθ

]

≤ exp

(

− ε2

2w̄ + (2/3)ε
· pθ

)

(17)

Borrowed from the idea of IMM algorithm [8], our solution
of MFRB problem can be designed as two stages as follows:
(1) Sampling Multi-Samplings: This stage generates Multi-
Samplings iteratively and put them into R until satisfying a
certain stopping condition; and (2) Node selection: This stage
adopts greedy strategy to drive a size-k user set Sp that covers
sub-maximum weight of Multi-Samplings in R.

A. Node Selection

Let R = {R1, R2, . . . , Rθ} be a collection of Multi-
Samplings and WR(Sp) be the weighted average fraction of
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Algorithm 4 NodeSelection (R, k)

Input: R = {R1, R2, . . . , Rθ} and k
Output: {S∗

p , WR(S∗
p)}

1: Initialize S∗
p ← ∅

2: for 1 to k do

3: u = argmaxu∈V \Sr
(WR(S∗

p ∪ {u})− WR(S∗
p))

4: S∗
p = S∗

p ∪ {u}
5: end for

6: Return {S∗
p , WR(S∗

p)}

Multi-Samplings in R covered by Sp. The node selection
stage is shown in Algorithm 4. Here, we define the optimal
solution as S◦

p and optimal value as OPT = f(S◦
p). Because

WR(·) is monotone non-decreasing and submodular, which
guarantees that WR(S∗

p) returned by Algorithm 4 satisfies
WR(S∗

p) ≥ (1 − 1/e) · WR(S◦
p ).

Lemma 4: Given rumor seed set Sr, WR(Sp) is monotone

non-decreasing and submodular with respect to Sp.

Proof: First, we show WR(·) is monotone non-decreasing.
For any positive seed set Sp ⊆ V \Sr and node u 6⊆ Sp ∪ Sr,
we have WR(Sp ∪ {u})− WR(Sp) =

=
1

θ
·

r
∑

i=1

wi
θ

∑

j=1

(x(Si
p ∪ {ui}, Rj) − x(Si

p, Rj)) (18)

It is monotone non-decreasing becuase x(Si
p, Rj) = 1 implies

x(Si
p ∪ {ui}, Rj) = 1, WR(Sp ∪ {u}) − WR(Sp) ≥ 0. Next,

we show WR(·) is submodular. Given any Sp1 ⊆ Sp2 ⊆ V \Sr

and u 6⊆ Sp2∪Sr, it is equivalent to prove x(Si
p1∪{ui}, Rj)−

x(Si
p1, Rj) ≥ x(Si

p2 ∪ {ui}, Rj) − x(Si
p2, Rj) according to

Equation (18). Here, we need to show that x(Si
p1∪{ui}, Rj)−

x(Si
p1, Rj) = 1 whenever x(Si

p2∪{ui}, Rj)−x(Si
p2, Rj) = 1,

which implies x(Si
p2 ∪ {ui}, Rj) = 1 and x(Si

p2, Rj) = 0.
x(Si

p2, Rj) = 0 means that Si
p2 ∪ Rj = ∅ and Si

p1 ∪ Rj = ∅
because of Sp1 ⊆ Sp2. Then, x(Si

p2 ∪ {ui}, Rj) = 1 means
that {ui} ∪ Rj 6= ∅, so x(Si

p1 ∪ {ui}, Rj) = 1. Therefore,
x(Si

p1∪{ui}, Rj)−x(Si
p1, Rj) = 1 and WR(·) is submodular,

then the Lemma is proved.
Lemma 5: If the number of Multi-Samplings θ in R of

Algorithm 4 satisfies that θ ≥ θ1,

θ1 =
2nrw̄ · log(1/δ1)

ε2
1 · OPT

(19)

then, nr · WR(S∗
p) ≥ (1 − 1/e)(1 − ε1) · OPT holds with at

least 1 − δ1 probability.

Lemma 6: If the number of Multi-Samplings θ in R of

Algorithm 4 satisfies that θ ≥ θ2,

θ2 =
(2w̄ + 2

3ε2)nr · log
((

n−nr

k

)

/δ2

)

ε2
2 · OPT

(20)

then, nr · WR(S∗
p) − f(S∗

p) ≤ ε2 · OPT holds with at least

1 − δ2 probability, where nr = |Sr|.
Theorem 3: Given any ε1 < ε, ε2 = ε− (1− 1/e) · ε1 and

δ1, δ2 ∈ (0, 1) with δ1 + δ2 ≤ 1/n�, if the number of Multi-

Samplings θ in R of Algorithm 4 satisfies θ ≥ max{θ1, θ2},

Algorithm 5 Sampling (G, k, r, ε, `)

Input: G = (V, E), parameters k, r, ε and `
Output: A collection R
1: Initialize R = ∅, LB = 1, ε′ =

√
2ε

2: Initialize R′ = ∅
3: λ′=nr

(

2w̄+ 2
3ε′

) (

log
(

n−nr

k

)

/δ3

)

ε′−2

4: λ∗=2nrw̄
(

2− 1
e

) (

2− 1
e + ε

3w̄

) (

log
((

n−nr

k

)

· 2n�
))

ε−2

5: for i = 1 to log2(nr) − 1 do

6: xi = nr · 2−i

7: θi = λ′/xi

8: while |R| ≤ θi do

9: R ← Multi-Sampling (G, Sr)
10: R = R∪ R
11: end while

12: {Si, WR(Si)} ← NodeSelection (R, k)
13: if nr · WR(Si) ≥ (1 + ε′) · xi then

14: LB = nr · WR(Si)/(1 + ε′)
15: break
16: end if

17: end for

18: θ ← λ∗/LB
19: while |R′| ≤ θ do

20: R ← Multi-Sampling (G, Sr)
21: R′ = R′ ∪ R
22: end while

23: Return R′

it returns a (1− 1/e− ε)-approximate solution of our MFRB

problem with at least 1 − 1/n� probability.

Proof: By Lemma 4 and Lemma 5, they hold with
(1 − δ1)(1 − δ2) > 1 − (δ1 + δ2) ≥ 1 − 1/n� probability.
Then, f(S∗

p) ≥ nr ·WR(S∗
p)− ε2 ·OPT ≥ (1−1/e)(1− ε1) ·

OPT− ε2 ·OPT = (1− 1/e− ((1− 1/e) · ε1 + ε2)) ·OPT =
(1 − 1/e − ε) · OPT. Then the Theorem is proved.

From Theorem 3, we need to compute θ ≥ max{θ1, θ2}
and ensure R contains at least θ Multi-Samplings. In order
to derive such a θ, which is feasible to find the minimum θ.
Here, we set δ1 = δ2 = 1/(2n�) and ε1 = ε2 = ε/(2 − 1/e)
such that ε2 = ε − (1 − 1/e)ε1. We define λ∗ as

λ∗ =
2nrw̄

(

2 − 1
e

) (

2 − 1
e + ε

3w̄

)

log
((

n−nr

k

)

· 2n�
)

ε2
(21)

and θ∗ = λ∗/OPT. We can verify θ∗ ≥ max{θ1, θ2} easily.
However, it is difficult to compute the value of OPT in a
direct manner. In the next subsection, we will find a lower
bound LB of optimal value instead of OPT and determine
the number of Multi-Samplings in R by λ∗/LB.

B. Sampling Multi-Sampling

In last subsection, we have obtained the approximate mini-
mum value of θ. Next, we aim to make the difference between
LB and OPT as close as possible. The process of Sampling
Multi-Sampling stage is shown in Algorithm 5. In iteration
i, we generate a certain number of Multi-Samplings, put
them into R and call Algorithm 4, then compare this result
WR(Si) with statistical test (1 + ε′) · xi. When the LB
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Algorithm 6 Revised-IMM (G, k, r, ε, `)

Input: G = (V, E), parameters k, r, ε and `
Output: {S∗

p , WR(S∗
p)}

1: R ← Sampling(G, k, r, ε, `)
2: {S∗

p , WR(S∗
p)} ← NodeSelection(R, k)

3: Return {S∗
p , WR(S∗

p)}

is close to OPT enough, it terminates the for-loop with a
high probability. Obviously, the Multi-Samplings generated
by Algorithm 5 are not independent, because those Multi-
Samplings generated in ith iteration are determined by whether
the size of collection R in (i − 1)th iteration is large enough
to make the estimation accurate. It can be analyzed by use of
martingale technique, which is shown as Lemma 7 and Lemma
8. Finally, we generate a new collection of Multi-Samplings,
and we will explain why we need to do that later.

Lemma 7: Consider the ith iteration in Algorithm 5, if the

number of Multi-Samplings θi in R satisfies

θi ≥
(

2w̄ + 2
3ε′

)

nr ·
(

log
(

n−nr

k

)

/δ3

)

ε′2 · xi
(22)

If OPT < xi, then nr · WR(Si) < (1 + ε′) · xi holds with at

least 1 − δ3 probability.

Lemma 8: Consider the ith iteration in Algorithm 5,

if OPT ≥ xi, then OPT ≥ nr · WR(Si)/(1 + ε′) holds with

at least 1 − δ3 probability.

Theorem 4: Given δ3 = 1/(n� · log2(nr)), the number of

Multi-Samplings |R| returned by Algorithm 5 satisfies |R| ≥
θ∗ with at least 1 − 1/n� probability.

Proof: Chen [31] pointed out this theorem cannot be
obtained directly by combining Lemma 7 and Lemma 8. The
Multi-Samplings generated in ith iteration are biased samples,
because of the fact that it enters the ith iteration in Algorithm 5
means that the size of collection R in (i−1)th iteration cannot
satisfy the termination condition with a high probability. The
explanation and complete proof is in the appendix of [31],
then this Theorem can be inferred from it.

C. Time Complexity

We can observe that the computational cost of Algorithm 5
mainly concentrates on the generation of Multi-Samplings.
First, we need to analyze the time of generating a Multi-
Samplings. At the high level, we use breath-first search from
a feature node to visit each of its incoming neighbors until
reaching a rumor node. Thus, the expected time to generate a
Multi-Sampling is E[w(R)], where w(R) denotes the number
of edges in G that are incoming edges to the nodes in R.

Lemma 9: Consider the objective function f i(·) defined by

the Equation (7), we have

E[w(R)] =
m · ∑r

i=1 OPTi

nr
(23)

where OPTi is the optimal value of objective function f i(Si
p)

with |Si
p| ≤ k and r is the number of features.

Proof: We denote by H(vi) the collection of all pos-
sible Multi-Samplings for a feature node vi. For any Multi-
Sampling R ∈ H(vi), we have E[w(R)] =

=

∑r
i=1

∑

vi∈V i

∑

R∈H(vi) Pr[R] · w(R)

nr

=

∑r
i=1

∑

vi∈V i

∑

R∈H(vi) Pr[R] · ∑(yi,zi)∈Ei x({zi}, R)

nr

=

∑

(yi,zi)∈Ei

∑r
i=1

∑

vi∈V i

∑

R∈H(vi) Pr[R] · x({zi}, R)

nr

=

∑

(yi,zi)∈Ei

∑r
i=1 f i({zi})

nr

≤ m · ∑r
i=1 OPTi

nr

Then the Lemma is proved.
Lemma 10: Algorithm 4 runs in O(r · ∑R∈R |R|) time.

Proof: The running time of Algorithm 4 can be derived
directly from the Eqaution (10).

Shown as above, the total number of Multi-Samplings
generated in Algorithm 5 is (|R| + |R′|). We denote by i′

the ending iteration of the for-loop, we have |R| = λ′/xi′

and |R′| = λ∗/LB where xi′ ≤ LB ≤ OPT. The expected
number of Multi-Samplings generated in Algorithm 5 can be
expressed as E[|R|] = O((λ′ + λ∗)/OPT), thus

E[|R|] = O

(

(nr)(k + `) logn

OPT · ε2

)

(24)

From above, we can know that the expected time of generating
all Multi-Samplings in Algorithm 5 is E[

∑

R∈R w(R)]. Based
on Theorem 3 in [8], another property of martingale [32],
we have E[

∑

R∈R w(R)] = E[|R|] · E[w(R)]. Thus,

E[
∑

R∈R

w(R)] = O((k + `)m log n/ε2) (25)

due to the fact that
∑r

i=1 OPTi = O(OPT). Besides,
E[

∑

R∈R |R|] ≤ E[
∑

R∈R w(R)] because |R| ≤ w(R)
for any R ∈ R. Thus, the total running time is
O((k+`)mr log n/ε2). Then, we have the following theorem:

Theorem 5: Algorithm 6 can be ganranteed to return a

(1 − 1/e − ε)-approximate solution of our MFRB prob-

lem with at least 1 − 1/n� probability, and runs in

O((k + `)mr log n/ε2) expected time.

Proof: Chen [31] pointed out a direct combination of
Theorem 3 and Theorem 4 is problematic. For Theorem 3,
it is correct given a fixed value of θ, which means that these
θ Multi-Samplings are sampled from the same sample space.
Theorem 4 is based on the satisfaction of Theorem 3, and it
uses the same base sample from the probability space. There-
fore, they gave us two workarounds to fix it. We adopt the
first workaround in line 19 of Algorithm 5 that regenerates a
new collection of Multi-Samplings. In line 18 of Algorithm 5,
after determining the size of θ, we regenerate a new collection
of Multi-Samplings with the length of θ from line 19 to line
22. Then, we feed this new collections into Algorithm 4 to get
the final result. It answers the question mentioned above why
we need to generate a new collection of Multi-Samplings.
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TABLE I

THE STATISTICS OF THREE DATASETS

VI. EXPERIMENT

In this section, we will show the effectiveness and efficiency
of our proposed algorithms on four real social networks. There
are four datasets: (1) Netsci [33]: a co-authorship network
among scientists to publish papers about network science;
(2) Wikivt [33]: a who-votes-on-whom network which come
from the collection Wikipedia voting; (3) Hethpt [34]: an
academic collaboration relationship on high energy physics
area; and (4) Epions [34]: a who-trust-whom online social
network on a general consumer review site Epinions.com.
Basic statistics of these datasets are summarized in Table I.
However, according to the multi-layer structure of MF-model,
the number of feature nodes is different from this basic
information, but determined by the number of features.

A. Experimental Setup

The experiments are based on MF-model, thus for each edge
e = (u, v), we set pe = 1/|N−(v)|, which is is widely used
in prior works [7], [27], [35]. The Revised-IMM algorithm is
defaulted by ε = 0.2 and 1/n� = 0.1, then we compare it with
some common baseline algorithms. They are shown as follows:
(1) Greedy: it selects a node such that adding this node to
current seed set can obtain the maximum marginal gain at
each iteration, which is implemented by MC simulations with
200 times for each targeted set; (2) Proximity: it selects the
outgoing neighbors of the nodes in rumor set according to the
out-degree of these outgoing neighbors, where these neighbors
with high out-degree are in priority; and (3) Random: this is
a classical baseline algorithm, where the nodes in the positive
set are selected randomly.

In our experiment, the users in rumor seed set Sr are the
nodes with the highest outgoing degree in original graph G
and the size |Sr| = 20. Because the Sr is partially Cr-active,
only part of features of those users in Sr are Cr-accepted,
thus, we set the probability that the corresponding feature
nodes of Sr accept rumor cascade is 80%. The number of
users in positive set Sp is from 1 to 20, and Sp is fully
Cp-active, so the corresponding feature nodes of Sp are all
Cp-accepted. Assume there are r features given a product,
we denote by w = (w1, w2, · · · , wr) its weight vector for
features. Next, we evaluate the performance of Revised-IMM
algorithm. It can be divided into four sub-cases: (1) there
are two features where w = (0.3, 0.7); (2) there are three
features, where w = (0.3, 0.3, 0.4); (3) there are four features
w = (0.2, 0.3, 0.4, 0.1); and (4) there are five features w =
(0.2, 0.1, 0.3, 0.1, 0.3). The actual number of nodes and edges
in the corresponding graph G′ depends on the number of

Fig. 2. The performance comparison achieved by different algorithms with
the different number of features in Netsci dataset.

Fig. 3. The performance comparison achieved by different algorithms with
the different number of features in Wikivt dataset.

features. For example, they will be doubled when there are
two features, and tripled when three features.

B. Experimental Results

1) Performance: Fig. 2 and Fig. 3 draw the performance
comparison achieved by different algorithms with the different
number of features under the Netsci and Wikivt datasets.
In this part, we only consider these two smaller datasets since
the Greedy algorithm implemented by MC simulations is very
inefficient which cannot be used in larger networks. Obviously,
we can see that Revised-IMM and Greedy algorithm almost
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Fig. 4. The number of Multi-Samplings generated by Algorithm 5 in Revised-
IMM algorithm under the two datasets.

Fig. 5. The average relative error between the estimated value and objective
value under the two datasets.

TABLE II

THE RUNNING TIME COMPARISON FOR k = 20, WHERE s = second,
m = minite, AND h = hour

have the same performance, where the objective value of
Revised-IMM is estimated by nr · WR(Sp). Besides, the
performance of Revised-IMM is better than Proximity and
Random algorithms, which proves its effectiveness.

2) Sampling and error analysis: Fig. 4 draws the number
of Multi-Samplings generated by Algorithm 5 in Revised-
IMM algorithm. We can see that this is in line with our
expectation, the number of Multi-Samplings increases as the
budget increases. It is related to the weight vector we defined
as well. Show as Fig. 4, the number of Multi-Sampling at
r = 2 is larger than that at r = 3. This is because the
w̄ = 0.7 at r = 2, which is larger than w̄ = 0.4 at
r = 3. Fig. 5 draws the average relative error between the
estimated value and objective value given a positive seed set.
Consider a estimated value nr ·WR(S∗

p) returned by Revised-
IMM, the objective value is defined as f(S∗

p) implemented by
MC simulations with 2000 times. Thus, the relative error is
|f(Sp) − nr · WR(Sp)|/f(Sp). Shown as Fig. 5, the average
relative error is less than 0.2% generally, which proves the
correctness of our estimator further.

Fig. 6. The performance comparison achieved by different algorithms with
different number of features in Hethpt dataset.

Fig. 7. The performance comparison achieved by different algorithms with
different number of features in Epions dataset.

3) Scalability: Fig. 6 and Fig. 7 draw the performance
comparison under the Hethpt and Epions datasets. Here,
we invoke Revised-IMM algorithm with k = 20 only once
and print out the intermediate estimated values at the process
of node selection, thus these curves are very smooth. The
results from Fig. 2 and Fig. 3 are by invoking Revised-IMM
with different k one by one because we need to record the
number of Multi-Samplings. Shown as Fig. 6 and Fig. 7,
the Revised-IMM has a good performance as well in these
two larger networks. Moreover, the running time comparison
in these experiments is shown as Table II. Compared to
Greedy algorithm, our Revised-IMM reduced the running time
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significantly without losing approximation, which proves the
efficiency and scalability of our proposed algorithm.

VII. CONCLUSION

In this paper, we propose a MF-model to simulate a
real scenario in which multiple features can be propagated
independently in social networks. Based on MF-model, the
MFRB problem is formulated as a monotone non-decreasing
submodular maximization problem. Then, we design a novel
Multi-Sampling, which is an unbiased estimator to objec-
tive function of MFRB. Inspired by martingale analysis,
the Revised-IMM algorithm is proposed, which returns a
(1 − 1/e − ε)-approximation solution and runs in O((k +
`)mr log n/ε2) expected time. The experimental result ver-
ified the effectiveness and correctness of our Revised-IMM
algorithm.

However, one of the shortcomings of this paper is that the
weight for each feature is equal for different users, which is not
entirely realistic. Actually, we now verify that the objectives
still monotone submodular when the weight vector is different
for different users. Our methods can be extended to such a
more generalized case by simple mathematical treatments.

APPENDIX

In this section, we provide the detialed proofs for the
Lemmas which are neglected in the main paper.

A. Proof of Lemma 4

Proof: For optimal solution S◦
p , we have defined p =

f(S◦
p)/nr, thus, p = OPT/nr = E[WR(S◦

p)]. Then, by Equa-
tion (16), we have Pr[nr·WR(S◦

p) ≤ (1−ε1)·OPT] = Pr[nr·
WR(S◦

p) ≤ (1− ε1) · pnr] = Pr[
∑θ

j=1

∑r
i=1 wi ·x(Si

p, Rj)−
pθ ≤ −ε1 · pθ] ≤ exp(− ε2

1

2w̄ · pθ) ≤ exp(− ε2

1

2w̄ · pθ1) = δ1.
Thus, nr · WR(S◦

p) ≥ (1 − ε1) · OPT holds with at least
1 − δ1 probability. By Lemma 3 and greedy properties, nr ·
WR(S∗

p) ≥ (1−1/e)·nr ·WR(S◦
p) ≥ (1−1/e)(1−ε1)·OPT.

Then the Lemma is proved.

B. Proof of Lemma 5

Proof: For any k-size seed set Sp, we have defined
p = f(Sp)/nr, thus, p = E[WR(Sp)]. Then, by Equa-
tion (17) and ζ = ε2 · OPT/pnr, we have Pr[nr ·
WR(S∗

p) − f(Sp) ≥ ε2 · OPT] = Pr[nr · WR(Sp) −
pnr ≥ ε2 · OPT] = Pr[θ · WR(Sp) − pθ ≥ ε2·OPT

pnr ·
pθ] = Pr[

∑θ
j=1

∑r
i=1 wi · x(Si

p, Rj) − pθ ≥ ε2·OPT
pnr · pθ] ≤

exp(− ζ2

2w̄+(2/3)ζ · pθ) = exp(− ε2

2
·OPT2

2w̄pn2r2+(2/3)ε2nr·OPT · θ) ≤
exp(− ε2

2
·OPT2

2w̄nr·OPT+(2/3)ε2nr·OPT · θ) ≤ exp(− ε2

2
·OPT

(2w̄+(2/3)ε2)·nr ·
θ2) = δ2/

(

n−nr

k

)

.
Because there exists at most

(

n−nr

k

)

positive size-k seed
sets and by union bound, there is at least 1 − δ2 probability
that no such S∗

p satisfies nr · WR(S∗
p) − f(S∗

p) ≥ ε2 · OPT.
Then the Lemma is proved.

C. Proof of Lemma 6

Proof: For any k-size seed set Si, we have defined p =
f(Si)/nr, thus, p = E[WR(Si)] ≤ OPT/nr < xi/nr. Then,

by Equation (17) and ζ = (1−ε′)·xi

pnr −1, we know that ζ > ε′ ·
xi/(pnr) > ε′, and we have Pr[nr ·WR(Si) ≥ (1+ε′) ·xi] =

Pr[θi·WR(Si)−pθi ≥ ( (1−ε′)·xi

pnr −1)·pθi] ≤ exp(− ζ2

2w̄+(2/3)ζ ·
pθi) < exp(− ε′2·xi/(pnr)

2w̄+(2/3)ζ · (2w̄+(2/3)ε′)pnr(log (n−nr
k )/δ3)

ε′2·xi
) <

exp(− log
(

n−nr

k

)

/δ3) = δ3/
(

n−nr

k

)

.
Because there is at least 1− δ3 probability by union bound

that no such Si satisfies nr ·WR(Si) ≥ (1+ ε′) ·xi. Then the
Lemma is proved.

D. Proof of Lemma 7

Proof: For any k-size seed set Si, we have defined
p = f(Si)/nr, thus, p = E[WR(Si)] ≤ OPT/nr. Then,
by Equation (17) and ζ = ε′·OPT

pnr , we have Pr[OPT <
nr · WR(Si)/(1 + ε′)] = Pr[nr · WR(Si) − OPT ≥
ε′ · OPT] < Pr[θi · WR(Si) − pθi ≥ ε′·OPT

pnr · pθi] ≤
exp(− ζ2

2w̄+(2/3)ζ · pθi) = exp(− ε′2·OPT2

2w̄pn2r2+(2/3)ε′nr·OPT · θi) =

exp(− ε′2·OPT2

2w̄pnr·OPT+(2/3)ε′nr·OPT ·θi) ≤ exp(− ε′2·OPT
(2w̄+(2/3)ε′)·nr ·

θi) = δ3/
(

n−nr

k

)

.
Because there is at least 1− δ3 probability by union bound

that no such Si satisfies OPT < nr ·WR(Si)/(1 + ε′). Then
the Lemma is proved.
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