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The fish gut microbiome is impacted by a number of biological and environmental factors
including fish feed formulations. Unlike mammals, vertical microbiome transmission
is largely absent in fish and thus little is known about how the gut microbiome is
initially colonized during hatchery rearing nor the stability throughout growout stages.
Here we investigate how various microbial-rich surfaces from the built environment
“BE” and feed influence the development of the mucosal microbiome (gill, skin, and
digesta) of an economically important marine fish, yellowtail kingfish, Seriola lalandi,
over time. For the first experiment, we sampled gill and skin microbiomes from 36
fish reared in three tank conditions, and demonstrate that the gill is more influenced
by the surrounding environment than the skin. In a second experiment, fish mucous
(gill, skin, and digesta), the BE (tank side, water, inlet pipe, airstones, and air diffusers)
and feed were sampled from indoor reared fish at three ages (43, 137, and 430 dph;
n =12 per age). At 430 dph, 20 additional fish were sampled from an outdoor ocean
net pen. A total of 304 samples were processed for 16S rBNA gene sequencing. Gill
and skin alpha diversity increased while gut diversity decreased with age. Diversity
was much lower in fish from the ocean net pen compared to indoor fish. The gill
and skin are most influenced by the BE early in development, with aeration equipment
having more impact in later ages, while the gut “allochthonous” microbiome becomes
increasingly differentiated from the environment over time. Feed had a relatively low
impact on driving microbial communities. Our findings suggest that S. /alandi mucosal
microbiomes are differentially influenced by the BE with a high turnover and rapid
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succession occurring in the gill and skin while the gut microbiome is more stable.
We demonstrate how individual components of a hatchery system, especially aeration
equipment, may contribute directly to microbiome development in a marine fish. In
addition, results demonstrate how early life (larval) exposure to biofouling in the rearing
environment may influence fish microbiome development which is important for animal
health and aquaculture production.

Keywords: microbiome, built environment, yellowtail kingfish, Seriola lalandi, aquaculture, fisheries, ontogeny,

mariculture

INTRODUCTION

Aquaculture, which is the farming of aquatic organisms including
algae, invertebrates, and vertebrates, has been one of the fastest
growing agriculture sectors (8.8% annual growth between 1980
and 2010) for the past 40 years (The State of World Fisheries
and Aquaculture, 2020). Demand for seafood has continually
grown with global fish production in 2018 at around 179
million metric tons (MMT), of which 82 MMT comes from
aquaculture (The State of World Fisheries and Aquaculture,
2020). While 86.5% of total finfish production occurs in inland
freshwater systems, with the majority in Asia (The State of
World Fisheries and Aquaculture, 2020), marine culture has the
highest growth potential with 2% of oceans being suitable for fish
farming (Oyinlola et al., 2018). For marine aquaculture growth,
Australia, Argentina, India, Mexico, and the United States have
the greatest potential based on suitable habitat (Gentry et al.,
2017). Freshwater finfish production has primarily been driven
by carp, catfish, and tilapia, while marine fish production is
dominated by Atlantic salmon which has a freshwater hatchery
stage. Despite the recognized opportunities for marine finfish
aquaculture production, very few marine fish species have been
successful compared to freshwater fish, due in part to the
inability to spawn and produce quality fingerlings in captivity.
This has led to the common practice of catching wild juveniles
and their transfer to captive rearing environments. In recent
years, however, certain high value marine species, including the
yellowtail kingfish (YTK) Seriola lalandi, have been successfully
reared in the lab (Welch et al., 2010). The Seriola genus, within
the family Carangidae, contains several species of yellowtail
(Purcell et al,, 2015; Oyinlola et al,, 2018) that are globally
distributed across broad temperature range (Poortenaar et al.,
2001). S. lalandi, is reared in temperate waters across the
Pacific Ocean (Nakada, 2002; Food and Agriculture Organization
of the United Nations, 2008; Orellana et al., 2014) in Japan
(Nakada, 2002), Australia (Nakada, 2002; Hutson et al., 2007),
New Zealand (Orellana et al., 2014; Symonds et al., 2014), Chile
(Orellana et al., 2014), and North America (The State of World
Fisheries and Aquaculture, 2020).

Fish, unlike mammals, are not thought to inherit their
microbiome vertically. Understanding the factors which
influence microbiome development in fish is an important first
step in mitigating disease and promoting health. One of the
primary challenges in marine fish hatcheries is poor survival
rate which is often attributed to a combination of disease and

nutrition (Sepulveda et al., 2017). Even in the wild, the survival
rate for fish larvae is 44x higher for freshwater fish (5.3%)
as compared to marine (0.12%; Houde, 1994). Wild marine
fish, particularly temperate coastal pelagics like Seriola spp.
(Ben-Aderet, 2017), are exposed to wide ranges in environmental
variables such as temperature, oxygen, and nutrients both
diurnally with vertical migration for feeding and temporally
with changing seasons. The mucosal microbiome of coastal
pelagics is highly differentiated across body sites, primarily in
the gill, skin, digesta, and gut tissue with the microbiome on
external sites (gill and skin) most influenced by these changing
environmental variables (Minich et al., 2020a). In mammals,
both phylogeny and diet influence gut microbiome development
(Groussin et al., 2017), whereas fish microbiomes are influenced
more by environmental variables including habitat, trophic level,
phylogeny, and diet (Sullam et al., 2012; Egerton et al., 2018).
Diet also varies widely by development stage particularly in the
larval to fry stages (Infante et al., 2000). While mammals have
a significant proportion of their gut microbiome colonized or
inherited vertically from the mother during birth (Méndar and
Mikelsaar, 1996; Dominguez-Bello et al., 2010; Korpela et al,
2018), the initial establishment of the gut microbiome in fish is
less understood. Even fewer studies have sought to identify the
source colonizers of gill and skin communities.

Microbial colonization throughout development of the fish is a
function of both exposure and host selection. At the earliest stage,
bacteria which form biofilms on the outside of the egg eventually
can colonize both external and internal mucosal sites of freshly
hatched larvae upon ingestion of the yolk sac (Hansen and
Olafsen, 1999). Marine fish differ from freshwater fish in that they
must drink vast quantities of water to maintain osmoregulation,
which in turn provides a large source of potential microbes for
gut colonization (Hansen and Olafsen, 1999). The first live feeds
the larvae consume, which in hatchery settings are often artemia
and rotifers, also contribute to the gut microbiome development
(Ringo, 1999; Egerton et al, 2018; Wang et al, 2018). In
larval YTK, S. lalandi, gut microbiome composition and density
changes most when transitioning from a live rotifer feed to pellet
based feeds around 30 days post hatch (Walburn et al., 2019) with
many of the gut microbes having anti-microbial functionality
(Ramirez et al., 2019). In a study assessing gut enteritis in farmed
S. lalandi from seapens, gill, and skin microbiomes correlated
with disease state suggesting these communities were either
responding to overall health decline or contributing to stress
(Legrand et al., 2017). Skin and gut microbiomes of captively
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reared S. lalandi were also influenced by diet and temperature
(Horlick et al., 2020). For a freshwater hatchery, the tank
side and tank water were shown to significantly influence the
skin and gut microbiomes of Atlantic salmon (Minich et al,
2020b). Despite the array of studies evaluating impacts of various
husbandry methods on microbiome composition of mucosal
sites (gill, skin, and gut), there is a lack of information for how
microbiomes on surfaces in the built environment (BE) directly
contribute to marine fish.

To evaluate how the collective hatchery microbiome
influences the mucosal microbiome of a marine fish, we
investigated the economically important YTK S. lalandi. This
study sought to answer three primary questions: (1) Are body
sites differentially influenced by the BE or feed microbiome?,
(2) What surfaces within a hatchery environment contribute
to the mucosal microbiome of the fish?, and (3) Does the
BE and feed microbiome source contribution vary across age
and development of the fish? To answer these questions, we
sampled the mucosal microbiomes of 92 fish across three broad
development stages (fry, pre-stocking juvenile, and mature
adult). Specifically, we used 16S rRNA amplicon sequencing
of microbial communities from the fish (gill, skin, and digesta
“allochthonous”) together with various hatchery surfaces
including tank water, tank side, inlet water pipe, air stones, and
air diffusers along with feed used in all stages of production. To
our knowledge this is the first study to quantify and compare
the relationship of the BE microbiome with the fish microbiome
across multiple age classes of a marine fish.

MATERIALS AND METHODS
Sampling Design

All sampling events occurred in June of 2018 in Port Stephens
Australia at the Department of Primary Industries New
South Wales. Two broad sampling regimes were carried out
(Supplementary Table 1). A total of 92 “YTK” were sampled in
Port Stephens, Australia. In the first experiment, gill and skin
swabs were sampled from a total of 36 living fish across three
different indoor rearing condition tanks (12 fish per tank) along
with corresponding BE samples including tank water, the tank
side, inlet pipes, and air diffusers. These fish were all siblings
and 130 days post hatch “dph.” Fish were reared in either a
flow through system “FT, a traditional moving bed bioreactor
“MBBR” Recirculating Aquaculture Systems “RAS,” or a modified
BioGill RAS. Fish were reared at a max of 25 kg/m? fed at a
maximum of 0.5 kg food/day/m® and reared in 10 m? tanks.
Additional details can be found in the white paper (Enabling
land-based production of juvenile YTK in NSW). Fish were non-
lethally sampled during routine biometric measurements where
individuals were weighed and measured. Prior to taking the
weight and length, the skin and gill of each fish was swabbed
using a cotton swab [Puritan] and placed directly into a 2 ml
PowerSoil tube. For these three tank conditions, “BE” samples
were taken from the tank water, swab of tank side (biofilm), swab
of air diffuser, swab of air stone, and swab of inlet water pipe. For
the two RAS tanks, an additional inlet water sample was taken

which represents cleaned water (post filtration). Comparisons
were made to determine if there was a relationship between the
external fish mucosal sites and the BE and if so how that varied
across the water filtration or rearing system.

For the second experiment, fish were sampled cross sectionally
at different ages including 43 dph (indoor), 137 dph (indoor),
and 430 dph (indoor and outdoor). Fish at 430 dph included
fish sampled from an ocean net pen along with fish which were
transferred from an ocean net pen back to an indoor system.
For the age comparison cohort, three body sites were sampled
including the gill, skin, and digesta “allochthonous” samples
along with corresponding BE samples described in experiment
1. The BE “built environment” samples included tank water,
inlet pipe, airstone, air diffuser, and tank side. Specifically 12
fish were similarly non-lethally sampled from three different age
classes: 43, 137, and 430 dph from indoor tanks. The 430 dph fish
from the indoor tank were initially reared indoor until 245 dph
following methods described by Stewart Fielder et al. (2011) and
then transferred to ocean netpens where they were grown for
106 days. At 351 dph, they were then transported back to the
indoor system where they were held until sampled at 430 dph. An
additional 20 fish at 430 dph from the seapen were harvested for
another experiment and opportunistically sampled. All fish were
measured for length and mass with condition factor calculated.
A total of 92 fish were sampled across the two experiments.
For the entire experiment, 304 samples were processed for DNA
extraction including 19 controls, 45 “BE” samples, 92 gill swabs,
92 skin swabs, and 56 digesta swabs (Supplementary Table 1).

Microbiome Sample Preparation and

Processing

After swabbing the BE and fish mucosal sites, individual swab
heads were broken off into a 2 ml PowerSoil tube and then
stored at —20°C for 2 weeks until DNA extraction to preserve
microbiome integrity (Song et al., 2016). All molecular processing
was done according to the standard Earth Microbiome Project
protocols (Thompson et al., 2017; earthmicrobiome.org). Batches
of samples were extracted in groups of 48 using the Mobio
PowerSoil kit (Cat# 12888-50). Lysis in single tubes were used
to minimize noise from well-to-well contamination (Minich
et al., 2019; Walker, 2019). A serial dilution (titration) of a
positive control, Escherichia coli isolate (n = 12), along with
negative control blanks (n = 7) were included to estimate
the limit of detection of the assay (Minich et al, 2018b). By
using the Katharoseq method, we empirically calculated the
read count used to exclude samples (Minich et al., 2018b). For
library preparation, DNA samples of equal volume (0.2 pl)
were processed using the EMP 16S rRNA 515F (Parada)/806R
(Apprill) primers (Caporaso et al., 2011; Apprill et al.,, 2015;
Parada et al., 2016; Walters et al., 2016) with 12 bp golay barcodes
at a miniaturized PCR reaction volume of 5 Ll reactions in
triplicate (Minich et al., 2018a). After PCR, equal volumes of each
library (2 pl) were pooled and processed through the MinElute
PCR purification kit (Qiagen Cat# 28004) followed by a 1x
Ampure cleanup. The final library was sequenced using a MiSeq
2 x 250 bp kit (Caporaso et al., 2012).
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Microbiome Analysis

Sequences were uploaded, demultiplexed, and processed in Qiita
(Gonzalez et al., 2018), using the Qiime2 commands (Bolyen
et al., 2019; Estaki et al., 2020). Specifically, sequences from the
first read were trimmed to 150 bp following the EMP protocol,
and processed through the deblur pipeline and SEPP (Janssen
et al,, 2018) to generate Amplicon Sequence Variants “ASVs”
(Amir et al., 2017). ASVs were rarified to 5,000 reads per
sample. General Alpha and Beta diversity measures (Whittaker
et al., 2001; Reese and Dunn, 2018) were generated in Qiita.
Microbial Alpha diversity comparisons (Reese and Dunn, 2018)
were calculated for richness, Shannon diversity (Shannon, 1948),
and Faith’s Phylogenetic Diversity (Faith, 1992). For statistical
analysis, grouped comparisons (>2 groups) were compared
using Kruskal-Wallis test (Kruskal and Allen Wallis, 1952)
with Benjamini Hochberg FDR 0.05 (Benjamini and Hochberg,
1995). To compare the age of fish with alpha diversity metrics,
both linear regression and Spearman correlation (Spearman,
1904) were used using PRISM 9.0 (La Jolla, CA, United States).
Beta diversity measures were calculated using both Unweighted
UniFrac and Weighted normalized UniFrac (Hamady et al., 2010;
Lozupone et al., 2011). Categorical group comparisons of beta
diversity were calculated using PERMANOVA tests (Anderson,
2001, 2017). Lastly, to quantify the effects or sources of microbes
from the BE onto the fish mucus, we applied the microbial
source tracking software SourceTracker2 (version 2.0.1; Knights
et al, 2011). Prior to SourceTracker2 analysis, ASVs which had
less than 100 total counts across the dataset were removed
to reduce sparsity and improve performance of the microbial
source tracking.

RESULTS

Microbiome Sequence Data

Both negative and positive controls were used to determine
the overall limit of detection to exclude or include samples.
Serial dilutions of positive controls indicated a sample exclusion
criterion of 2,406 reads (Supplementary Figure 1). To be
conservative, we choose to rarefy at 5,000 reads which yielded
a total of 246 samples (out of the original 304 samples) and
17,348 unique ASVs. After removing controls, a total of 236
samples were retained resulting in 17,161 ASVs. This includes
two primary datasets: the tank rearing comparison of fish at
130 dph (gill, skin, and BE x three tank types) and the age
comparison of fish sampled at 43, 137, and 430 dph (gill,
skin, digesta, and BE). Overall, sample success was very high
(Supplementary Table 1).

Impact of Rearing System (FT vs RAS) on
Fish Mucosal Microbiome (at 130 dph)

To first assess how the rearing condition influences the
microbiome of the BE and external mucosal sites of the fish (gill
and skin), 12 YTK (130 dph) fish and various tank controls were
sampled from three unique rearing systems. Microbial diversity
in the gill varied across tank systems for richness (Figure 1A:

P = 0.0376, KW = 6.563), Shannon (Figure 1B: P = 0.0008,
KW = 14.26), and Faith’s Phylogenetic diversity (Figure 1C:
P = 0.0273, KW = 7.199) with FT grown fish having slightly
higher microbial diversity compared to RAS reared. Skin samples
did not differ in microbial diversity based on rearing type. In
the BE, water generally was highest in microbial diversity, while
both air stones and air diffusers had the lowest diversity across
all sample types. When comparing the water communities of
the FT and RAS tanks, the richness and phylogenetic diversity
trended higher in RAS (Figures 1A-C). Interestingly, the inlet
pipe biofilms were highly variable across the FT and RAS systems
with the FT tank having a very high microbial diversity compared
to RAS systems. The tank side biofilms were generally higher
in microbial diversity in the RAS tanks as compared to the FT
tank. When comparing beta diversity, the largest compositional
differences were due to the feed vs all other sample types,
with most feed pellet communities highly differentiated from
the BE and fish mucus with the exception of live rotifer feeds.
Many chloroplasts ASVs were present in the pellet feeds, likely
from plant ingredients, which likely drove this separation. Upon
chloroplast removal, read counts for feed samples drop to levels
which would largely exclude them from analysis thus suggesting
that feed samples have very low proportions of microbes. The
second largest driver in microbial community composition was
the fish body sites for both Weighted and Unweighted UniFrac
(Figures 1D,E). For individual body sites, the tank systems
also had a moderate impact with gill samples being more
differentiated across tank systems (Table 1). Specifically, for
gill samples, the tank rearing system had an impact on the
microbial community for both Unweighted Unifrac distance
(Table 1, PERMANOVA, P = 0.001, and F = 2.72) and Weighted
normalized Unifrac distances (Table 1, PERMANOVA, P =0.001,
and F = 11.01). Pairwise comparisons of Unweighted Unifrac
distances revealed that gill microbiomes of RAS reared fish
were also differentiated but in general less differentiated as
compared to the FT reared fish (Figure 1E and Table 1). Pairwise
comparisons of Weighted normalized Unifrac distances revealed
the same pattern, with fish reared in different RAS systems having
a differentiated community but more even more differentiated
when compared to fish reared in FT systems (Figure 1D and
Table 1). Skin microbial communities were only influenced
by the rearing method when comparing Unweighted Unifrac
(Table 1) but not with Weighted normalized Unifrac. When
comparing YTK from the same age and genetic cohort reared
in three different conditions, gill microbial communities were
more influenced by the environmental conditions than the skin,
while microbial communities of the BE were highly variable
across tank systems.

Impact of Age on Fish Mucosal

Microbiome

After quantifying the variation which existed across tank systems
at a single age of fish, we next wanted to evaluate the extent
by which mucosal microbiomes (gill, skin, and gut) varied with
fish age. Specifically, we sought to investigate factors governing
the randomness vs. deterministic mechanisms for microbial
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FIGURE 1 | Microbial diversity of the hatchery built environment along with fish gill and skin mucus at 130 days post hatch across three rearing tanks (flow through,
RAS BioGill, and RAS MBBR). Alpha diversity as measured by (A) richness, (B) Shannon, and (C) Faith’s phylogenetic diversity. Gill and skin (group comparison
calculated with Kruskal-Wallis test, Benjamini Hochberg FDR 0.05). Beta diversity calculated using (D) Weighted normalized UniFrac and (E) Unweighted UniFrac
distance. (*P < 0.05, **P < 0.01, **P < 0.001, and ****P < 0.0001).

TABLE 1 | Multivariate statistical comparison of impacts of rearing system across gill and skin (PERMANOVA, 999 permutations).

Unweighted Unifrac

YTK_tank_system

Body_site n P F
Gill FT vs RAS BioGill vs RAS MBBR 35 0.001 2.72
FT vs RAS BioGill 23 0.001 2.82
FT vs RAS MBBR 24 0.001 3.29
RAS BioGill vs RAS MBBR 23 0.001 1.95
Skin FT vs RAS BioGill vs RAS MBBR 32 0.002 1.73
FT vs RAS BioGill 20 0.565 0.94
FT vs RAS MBBR 21 0.001 2.21
RAS BioGill vs RAS MBBR 23 0.002 2.08

Weighted normalized Unifrac

YTK_tank_system

Body_site n P F

Gill FT vs RAS BioGill vs RAS MBBR 35 0.001 11.01
FT vs RAS BioGill 20 0.001 17.43
FT vs RAS MBBR 21 0.001 11.55
RAS BioGill vs RAS MBBR 23 0.018 3.18

Skin FT vs RAS BioGill vs RAS MBBR 32 0.182 1.60
FT vs RAS BioGill 20 0.256 1.62
FT vs RAS MBBR 21 0.038 2.87
RAS BioGill vs RAS MBBR 23 0.413 0.83
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FIGURE 2 | Alpha diversity measures: richness, Faith’s Phylogenetic diversity, and Shannon diversity grouped per body site (red = gill, green = skin, and
brown = digesta). Each body site assessed for diversity differences across age (Kruskal-Wallis, Benjamini-Hochberg FDR 0.05). Gill microbial diversity: (A) richness,
(B) Faiths PD, and (C) Shannon; Skin microbial diversity: (D) richness, (E) Faiths PD, and (F) Shannon; and Digesta microbial diversity: (G) richness, (H) Faiths PD,

colonization in marine fish over time. Fish were sampled at
three age points including 43, 137, and 430 dph. At 430 dph,
fish were either collected from an offshore sea pen (n = 20) or
from the indoor environment. The indoor fish at 430 dph had

been in the sea pen but were transferred back to the indoor
environment to be used as broodstock (n = 12). These fish were
in the indoor tanks for 79 days before sampling. Fish from
43 to 137 dph were always reared in indoor systems. At each
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body site: gill (Figures 2A-C), skin (Figures 2D-F), and digesta
(Figures 2G-I), microbial diversity was compared across fish
ages. Additionally, fish from 430 dph were separated by either
indoor or ocean net pen. When comparing richness measures, all
three body sites were influenced by age with the gill (P < 0.0001,
KW = 31.85, Figure 2A) being most influenced followed by
digesta (P < 0.0001, KW = 24.88, Figure 2G) and then skin
(P = 0.0435, KW = 8.127, Figure 2D). A similar pattern was
observed for Faith’s PD, which takes into account microbial
phylogenetic diversity with all three body sites being influenced
by age. The gill was most influenced (P < 0.0001, KW = 28.8,
Figure 2B) followed by digesta (P = 0.0002, KW = 20.22,
Figure 2H) and lastly skin (P = 0.0038, KW = 13.4, Figure 2E).
Shannon diversity had the same pattern with gill (P < 0.0001,
KW = 31.63, Figure 2C), digesta (P < 0.0001, KW = 27.91,
Figure 2I), and skin (P = 0.0015, KW = 15.47, Figure 2F) all
being influenced by fish age in the same order of impact. When
comparing only samples at 430 dph, gill diversity (richness,
Faith’s PD, and Shannon evenness) was larger for fish which
were transferred from the ocean net pen back into the indoor
environment as compared to ocean net pen reared fish. This effect
was also seen in the skin, but to a much smaller degree.

To model age and microbial diversity across the body sites,
we performed a regression and Spearman correlation for each
diversity measure. For this analysis, we excluded ocean net pen
reared fish from 430 dph to compare only indoor fish (Figure 3).
For richness, both gill and skin samples were positively associated
with fish age while digesta samples were negatively associated
with fish age (Figure 3A). For Faith’s PD, both gill and skin again
were positively associated with fish age (Figure 3B). Lastly for
Shannon diversity, skin was positively associated with fish age
while digesta was negatively associated with fish age (Figure 3C).
These cumulative results suggest a general mechanism for alpha
diversity changes in the marine fish YTK, S. lalandi, whereby
alpha diversity may continue to increase over time in the gill and
skin surfaces while digesta samples start highly diverse but then
adapt or reduce in complexity over time.

Microbial Compositional Drivers Across
Age and Rearing Condition

Next we wanted to understand how the composition of microbial
diversity changed over time (age) and to also determine if there
was evidence for succession. To determine if age was associated
with microbial niche differentiation across body sites, we
compared the fish body site microbiome independently at each
of the four ages or conditions including 43 dph (Supplementary
Figures 3a,b), 137 dph (Supplementary Figures 3c,d), 430 dph
“indoor tank” (Supplementary Figures 3e,f), and 430 dph
“seapen” (Supplementary Figures 3g,h). Body sites at each
age group, even as early as 43 dph, had unique microbial
communities measured using Unweighted and Weighted
normalized Unifrac distance metrics (Supplementary Table 2a).
For Weighted normalized Unifrac, based on the F-statistic, body
site microbial communities were most differentiated at 430 dph,
especially in the open sea pens. This result suggests that body site
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microbial communities continue to differentiate throughout the
lifetime of the fish.

We then sought to answer the question if certain body
sites are more influenced by age. To do this, we compared
microbiome differences of age and tank type within each
body site independently (Supplementary Figures 3i-n and
Supplementary Table 2b). For both Unweighted and Weighted
normalized Unifrac distance comparisons, the gill microbiome
samples were more differentiated across ages as compared to
the skin and digesta (F-statistic). Furthermore, when observing
the gill samples, the 430 dph fish reared in the indoor tank and
ocean net pen were divergent on the PCoA (Supplementary
Figures 3i,j). In addition, fish at 43 dph were also differentiated.

Next, we evaluated if overall fish mucosal microbiome
similarity to the BE changed with age and if it did, which BE or
water sample types were most influential (e.g., potential source
reservoirs for fish microbiome colonization). For indoor reared
fish at 43, 137, and 430 dph, we compared the microbiome of
the gill, skin, and gut to various hatchery components including
tank side, water from the tank, the inlet pipe into the tank,
air stones, air diffusers, and feed. For feed, we evaluated 12
different feed types that were used throughout the production
schedule ranging from days 1-12 (first feed) until harvest. The
first feed type (live rotifers) consistently had a more similar
microbial community to the gill, skin, and digesta samples
across the different ages (Supplementary Figure 4) thus we used
these samples (unenriched and enriched rotifers) for the feed
comparison in the broader BE comparison. When including all
possible BE sample types, a noticeable trend emerged where at
the earliest age (43 dph), the microbial communities across all
body sites were generally more similar to the BE (Figures 4A-
C). Whereas at later ages, the microbiome of the gill and skin
communities generally become more dissimilar from the inlet
pipe and feeds, but became more similar to the air diffuser.
The digesta samples (Figure 4C), however, consistently became
more differentiated from the BE samples over time suggesting
a stronger niche differentiation in the gut. To quantify this, we
included only BE sample comparisons which were consistent
in all ages — water, inlet pipe, and first feeds — and compared
how the mucosal microbiomes of the fish disperse or converge
toward the BE. For both gill and skin samples, the total
differentiation of fish mucosal site to the three BE samples
was least at 43 dph but increased with age (Figures 4D,E).
The gill and skin samples were both more similar to the inlet
pipe at 43 dph and became more divergent from the inlet
pipe over time (137 and 430 dph). Digesta samples became
more differentiated from all BE surfaces equally over time
(Figure 4F). To estimate the total impact of these differences,
we calculated the effect size (Figure 4G). For the gill, the
dissimilarity differences across the BE samples explained 34.5%
of the variation at 43 dph but then increased to 68.8% of the
variation explained at 137 dph. For the skin, the largest jump in
effect size occurred between 137 dph (25.6%) and 430 dph (61.5%;
Figure 4G). These results indicate that niche differentiation
occurs at varying rates depending on body site and that some
BE microbial sources continue to have an influence on the
fish mucosal microbiome throughout the lifespan of the fish,

whereas other environmental sources may only be influential
during early ontogeny.

Determining Which Built Environment

Surfaces Contribute to Fish Microbiome

To identify the extent by which the BE contributes to the
mucosal microbiome of the fish, we applied the popular microbial
source tracking program SourceTracker2 which uses Bayesian
statistics to estimate contributions of features from various
sources to sink communities. SourceTrackr2 determined that
contributions of the BE varied widely depending on both the
body site and the age of the fish. At 43 dph, the tank side
biofilm and air stones were the biggest sources of microbes
to the gill and skin of the fish larvae, while the majority of
microbes in digesta samples were from unknown or unsampled
sources (Figure 5A). Rotifer feeds also contributed to the gill,
skin, and gut microbiomes, but to a lesser extent compared to
airstone and tank side (Figure 5A). At 137 dph, gill was again
influenced by the airstone and air diffusers in the BE, while
higher frequencies of skin and digesta samples were colonized
by microbes from feeds (Figure 5B). However, microbes from
unknown sources had the largest overall contribution at 137 dph
across all body sites (Figure 5B). For 430 dph fish transferred
from the ocean net pen back to the land based facility, both
air diffusers and the water column were the largest microbial
sources to the gill and skin microbiomes (Figure 5C). For the
430 dph net pen reared fish, gill, and skin samples were primarily
colonized by microbes from unknown sources followed by small
proportions from air diffusers, airstones, and water from pre-
transfer. Common planktonic marine microbes from sea water
and netpen biofouling were not collected in this study and thus
is likely a meaningful “source” which would fall into “unknown
sources” in this study. Interestingly, digesta samples for both
430 dph seapen and 430 dph indoor fish were primarily colonized
from water samples from the 137 dph (Figures 5C,D). This would
suggest that the water community which fish are exposed to
prior to transfer to ocean net pen (at around 137 dph) is very
important to the gut microbiome colonization and that these
microbes remain in the gut even after long term growout in
seapens. The finding that the microbiome of the fish digesta
originates primarily from water sources rather than feed sources
is intriguing. It is important to note, however, that the feeds used
in this study were normal extruded pellet feeds with no added
probiotics. Results from the Sourcetracker2 analysis reinforce and
support the observations from the beta diversity comparisons,
that fish mucosal sites are influenced uniquely by the BE which
also show succession patterns as a function of age.

430 dph Seapen vs. Indoor

One of the primary questions in this dataset is understanding how
the surrounding environment influences mucosal microbiomes.
Specifically, we were interested in understanding the specificity
and stability of these microbial communities as a function of
ontongeny. To compare fish of the same age (430 dph) and
genetic cohort, we sampled fish which were being reared in
ocean net pens along with fish which had been in seapens but
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for (d,e,f) depicted as effect size to demonstrate the rate of microbial community niche differentiation.

were brought back to the indoor facility. Digesta samples were
previously shown to have large decreases in alpha diversity at
430 dph particularly when comparing the fish in the seapen vs
the indoor fish. Interestingly, much of this microbial diversity
loss can be attributed to a single uncultured representative ASV,
from the family Mycoplasmataceae (phylum Tenericutes, class
Mollicutes), which becomes more dominant in the fish gut with
age especially in the outdoor seapen. This ASV was observed
in 100% of the 430 dph fish yet was found in only 75% of the
43 dph and 137 dph fish, while less frequently observed in the
BE (Supplementary Figure 5a). At 430 dph this ASV made up
a large proportion of total reads in the seapen (mean = 0.71)
and FT indoor tank (0.60) fish but significantly less abundant in
younger fish at 137 dph (0.14) and 43 dph (0.02; Supplementary
Figure 5b). Thus, although the Mycoplasmataceae is present in
younger fish, the proportion of reads is much smaller. Since

these are proportions, it’s important to realize that this does
not implicate a biomass change, but only representation in
comparison to total microbial diversity.

DISCUSSION

Seafood is an important source of protein globally which has
led to the steady positive growth in aquaculture over the past
30 years. Marine finfish production has tremendous opportunity
for growth (Gentry et al., 2017) yet challenges and concerns
have arisen over the sustainability of such practices (Bush and
Oosterveer, 2019). One of the primary concerns is animal
welfare and preventing disease transmission from farmed fish
to wild stocks (Bush and Oosterveer, 2019; Weitzman et al,,
2019). A potential solution to antibiotic overuse in agriculture
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is the promotion of probiotics. The mucosal microbiome is
an important component of fish health as microbes colonizing
the gill, skin, and gastrointestinal tract can either be a
source of infection or inversely, protect the animal from
infection by inhibiting the colonization of pathogens, producing
antimicrobial compounds, or eliciting an immune response
(Gomez et al,, 2013). Our research sought to evaluate how the
mucosal microbiome develops and to estimate its stability in
different body sites over time in the economically important
cultured marine fish S. lalandi. We describe the potential sources
of microbes from the “BE” (hatchery surfaces) that drive these
changes across three unique body sites including the gill, skin,
and digesta communities. Previous fish microbiome studies have
focused primarily on one body site at a time, particularly the
gut, while our approach aimed to more fully describe diversity
dynamics across multiple mucosal body sites.

Gill microbiomes were the most sensitive to changes in
the indoor and outdoor culture environment followed by skin
with digesta demonstrating a more deterministic or enriched
microbiome with ontogenic development. Specifically, while
both gill and skin microbial communities increased in diversity
with age, the digesta decreased. The progression of decreasing
microbial diversity in the fish gut samples suggest that the
gut environment is more deterministic rather than stochastic
in microbial community composition. Conversely, the gill and
skin generally increase in diversity with age which could be
due to additive exposure and increased surface area over time.

In addition to variable exposure to the external environment,
individual body sites maintain unique physical and chemical
properties that confer selection for specific microbial groups.
Neutral (stochastic) theory ascribes that biodiversity formation
and change over time occurs from random dispersal and
exposure events and while it is largely conceptualized in
macrofauna and flora (Hubbell, 2011), it can also be applied
to microbial communities (Sloan et al., 2006). In contrast, a
niche-based (deterministic) model describes how select species
evolve and adapt to certain conditions as the result of
interspecies interactions and niche differentiation. In this study,
we demonstrate that while the gill and skin do have unique
microbial communities, the processes for microbial colonization
are largely stochastic whereas the gut environment demonstrates
a more deterministic process for microbial colonization. In adult
Atlantic salmon sampled from marine net pens, gut microbial
diversity decreased as the age of fish was increased while the
presence of most individual gut microbes were random and only
a few deterministic, which was primarily driven by Mycoplasma
(Heys et al., 2020). In zebrafish (Burns et al., 2016) and sturgeon
(Abdul Razak and Scribner, 2020), both freshwater fish, higher
proportions of gut microbes were non-neutral or deterministic as
fish matured (older age). In catfish skin microbiomes, geographic
location drove community composition with most microbes
being neutral (Chiarello et al., 2019).

The implications of different body sites demonstrating a
more neutral or deterministic microbiome is important for
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understanding both the impact of environmental change on
wild fish stocks as well as improving aquaculture production.
Negative anthropogenic impacts to the marine environment
include contaminant and nutrient pollution which can cause
disturbances of primary productivity. In a wild marine fish,
the Pacific chub mackerel, the composition of external mucosal
microbiomes of gill and skin were most influenced by temporal
changes, coinciding with temperature, along with gill alpha
diversity positively correlated with age (Minich et al., 2020a).
The gill is an important organ for excretion of nitrogenous
waste (Sayer and Davenport, 1987; Wilkie, 2002) and gas
exchange which is critical for highly active swimming fish like
Seriola spp. (Yamamoto et al., 1981; Roberts and Rowell, 1988).
In aquaculture settings, microbes which produce compounds
causing off-flavor in flesh (Auffret et al., 2013) have been found
to be enriched and primarily taken up through the gills of fish
(From and Horlyck, 1984; Klausen et al., 2005). Since the gill is a
critical component of maintaining homeostasis, and in this study
appears most susceptible to changing environmental conditions,
further research is needed to understand how changes in the
microbiome may negatively or positively impact fish physiology.
Additionally, skin is an important physical barrier for disease
prevention. The skin microbiomes of two coastal pelagic marine
fish, Scomber japonicus and S. lalandi, were strongly influenced by
increased temperature that coincided with increased proportions
of a potential marine pathogen, Photobacterium spp. (Horlick
et al., 2020; Minich et al., 2020a).

Body site microbiomes of S. lalandi were most similar to
the BE surfaces at the earliest age (43 dph). As fish aged,
digesta samples diverged from all BE surfaces, while gill and
skin were differentially influenced by specific BE surfaces. In
Atlantic salmon reared in freshwater indoor hatcheries, microbial
diversity from both the tank side and water column were highly
correlated with the fish skin and gut, but not other BE surfaces
(Minich et al., 2020b). Understanding which surfaces likely
contributed to the various body sites over time was calculated
using SourceTracker2 analysis. At 43 dph, the biofilm from the
tank side along with the aeration equipment (airstones) were the
largest contributors to the gill and skin communities whereas
much of the digesta microbes were from unknown sources.
Aeration equipment in tilapia culture has been implicated as
a source of Acinetobacter in culture systems (Grande Burgos
et al., 2018). While feed had a marginal impact on the microbial
community of the various fish body sites, it was not consistent
and was generally lower than the surrounding BE surfaces.
Although diet has been shown to have a strong influence on gut
microbiome development (Nayak, 2010; Tarnecki et al., 2017), the
importance of live feeds as contributors to the gut microbiome
is debated (Ringo, 1999; Bakke et al., 2013). One explanation is
that the microbes colonizing the live feeds have low specificity for
successful colonization of the fish gut. Likewise, since the overall
exposure to and density of BE surfaces and associated microbes,
including the water, is much greater than that of the live feeds
(Walburn et al., 2019), feed-associated taxa may be outcompeted
in the gut environment.

A unique opportunity of this study was to compare mature
fish (430 dph) from an ocean net pen to fish that had been in

the ocean but were transported back to an indoor system to be
used as broodstock. We are not aware of any other study which
has looked at the microbiome transition from ocean to indoor in
a marine fish. Selective breeding programs rely on the ability to
develop broodstock which are used to maintain genetic lines from
previous grow out populations (Symonds et al., 2014). Ocean
net pen fish generally had lower microbial diversity than indoor
reared fish for all fish body sites, but was most pronounced in the
gill. This further suggests that the mucosal, even in adult fish that
are least susceptible to BE impacts, has a high capacity to change
which is critical when considering time scales for probiotic effects
(Vadstein et al., 2018; Dawood et al., 2019; Ramirez et al., 2019).
Probiotic treatments in fish are common but little is known
about dosage for a given treatment along with frequency of
administration for having a lasting effect. If the normal microbial
community of a fish gill or skin can change rapidly, this would
suggest that a sustained administration rather than a “one-time
treatment” would be required for maintaining mucosal health
in fish. For gill and skin communities, the water column and
aeration surfaces contributed the most for indoor reared fish
while fish reared in the net pens had many bacteria of unknown
sources, presumably from the ocean, e.g., seawater. Digesta
samples, however, were primarily colonized by hatchery water
associated microbiota and to a lesser extent feeds. The opposite
explanation is also true that in land-based systems, fish feces
could be contributing more to the water column microbiome
as compared to the oceanic conditions where feces is more
quickly exported out of the system. These vast differences and the
speed at which microbiomes develop and change is a plausible
explanation for differences between wild and farmed Seriola
(Ramirez and Romero, 2017). The most abundant microbe in
the Seriola digesta was an unresolved Mycoplasmataceae which
was strongly associated with transfer of fish from indoor rearing
systems to the ocean net pen. Mycoplasma are important gut
microbes which can colonize the gut very early in development.
Several plausible explanations exist for this observation. First, it is
possible that in land-based systems, fish are simply not as heavily
exposed to Mycoplasma. Second, it is possible that Mycoplasma
microbial density or diversity is higher in ocean net pen systems
compared to the indoor system thus allowing the Mycoplasma to
dominate the gut microbiome. Lastly, an alternative explanation
is that Mycoplasma outcompetes other microbes in the fish gut
especially as the fish increase in age. However, since the data are
compositional, it is not possible to determine absolute microbial
densities thus requiring additional experimentation to resolve.
All mucosal environments were influenced by the BE over time
with the strongest effects at early fish development. Digesta
samples in particular became less influenced by the BE over time
and demonstrated a strong selective or deterministic pressure on
microbiome development with increasing age. This progression
of decreasing microbial diversity in the fish gut suggests that
the gut environment is more deterministic rather than stochastic
in microbial community composition whereas the gill and skin
generally increase in diversity with age which could be due to
additive exposure.

One of the limitations of this study is that we did not perform
quantitative measures of the microbial communities. Part of
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the reason for this is that these methods can often involve
invasive or destructive sampling of tissues. Since we largely utilize
non-invasive sampling techniques, at least for the fish samples,
performing quantitative measures is a challenge. Nonetheless,
future studies should focus on developing non-invasive methods
for accessing the quantitative measures of microbial quantities in
both the BE and the fish mucous.
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