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ABSTRACT

Face spoofing attacks based on 3D face images have posed a severe security risk to face recognition sys-
tems. Despite the great effort made by the technical community in recent years, existing 3D face spoofing
databases, mostly based on 3D masks, still suffer from small sample size, low diversity, or poor authen-
ticity due to the production difficulty and high cost. To fill in this gap, we introduce a new database
in this paper with 4-000 single wax figure faces, named SWFFD (Single Wax Figure Face Database), as
a type of super-realistic 3D face presentation attack. Collected from online resources, this database has
high diversity in terms of subjects, lighting conditions, facial poses, and recording devices. We have also
designed a new detection method, which combines attention-aware features from different face scales to
generate discriminative representations for realistic face spoofing attack detection. Extensive experiments
have been conducted on the SWFFD as well as the CelebA-HQ database (containing real faces from the
online collection). Experimental results have demonstrated the effectiveness of the proposed method in
both intra-database and cross-database testing scenarios.

3D face presentation attack
Wax figure face database
Residual Attention Network
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1. Introduction

In recent years, great progress has been made to address the
vulnerability of existing face recognition systems to various face
spoofing attacks (a.k.a. presentation attacks) [10]. As of today, 2D
modality based attacks, which present printed photos or recorded
videos to the biometric data capture subsystem, have drawn much
attention due to their simplicity, efficiency, and low cost [33]. Ac-
cordingly, 2D face anti-spoofing detection has been extensively
studied in the literature [26]. Existing face anti-spoofing methods
mostly explore the effects of spoofing medium (e.g., the printed
paper, the displaying screen) or the geometric differences between
a fake 2D planar face and a real 3D structured face. However, an
increasing number of studies have found that a variety of face
recognition systems, even taking face spoofing detection into con-
sideration, can still be fooled by more powerful 3D face spoofing
attacks [6].

Empowered by 3D structures or materials similar to real faces,
3D face presentation attacks are more realistic and therefore more
difficult to be detected by face recognition systems. Existing 3D
face spoofing attacks can be realized by wearing a face mask,
presenting a synthetic model, or wearing makeup, as shown
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in Fig. 1. When compared with 2D attacks, 3D face spoofing is
much more difficult and expensive to manufacture, often requiring
special devices and materials. However, the rapid advances of 3D
printing technologies and services in recent years have opened up
opportunities for making more affordable and higher-quality 3D
face spoofing attacks. Several 3D face spoofing attack databases
have been created using third-party 3D printing services, based on
self-manufactured masks or from online collections. For example,
as the first public 3D mask spoofing database, 3DMAD [5] used
the services of ThatsMyFace! to generate 17 masks of users, and
recorded 255 video sequences with color and depth information
for both real faces and mask spoofing attacks. Similarly, HKBU-
MARs database [22] obtained 8 customized masks from two mask
manufacture companies and included 120 videos with lighting
variations to simulate the real world scenarios. Taking another
example, 3DFS-DB [7] is a self-manufactured 3D face spoofing
database based on 26 printed models using two 3D printers.
Likewise, Rose-Youtu face liveness detection dataset [18] and
WMCA database [8] contained different types of face spoofing
attacks from 25 and 72 subjects respectively. In addition to 2D
face spoofing, they have both designed paper masks (WMCA
also includes rigid and flexible masks) as 3D face spoofing at-
tacks. Last, by taking advantage of the rich online resources,

1 http://thatsmyface.com/.
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Fig. 1. Examples of 3D face spoofing attacks, (a) wearing face masks, (b) presenting
a synthetic model, (c) wearing makeup.

SMAD database [24] has collected 65 videos of people wearing
silicone masks and 65 genuine access videos of people auditioning,
interviewing, and hosting shows.

In view of increasing attention to 3D face spoofing, a variety of
studies have been devoted to 3D face spoofing detection methods.
Different from 2D face anti-spoofing, existing 3D spoofing detec-
tion schemes are mainly based on the subtle differences between
real face skin and mask materials. The reflectance/multispectral
properties have been widely studied in the early years due to ap-
parent visual differences of different object surfaces. Using mul-
tiple illumination wavelengths, methods [15,38] have achieved
over 96% accuracies on their private dataset. Instead of requir-
ing special devices to acquire multispectral images, texture-based
methods explore the texture patterns in visible images to dis-
tinguish real faces from spoofed ones. Local Binary Pattern (LBP)
was extracted in several studies [5,28,32] based on its discrim-
inative power and computational simplicity. However, their ro-
bustness to different qualities of mask spoofing attacks remains
to be further improved. Haralick features [1] show promising
performance in both 2D and 3D mask spoofing databases (e.g.,
with 0% error rate on 3DMAD database). Besides, using intrin-
sic liveness signals for 3D face anti-spoofing has also attracted
great research interest in recent years. Several liveness cues have
been studied, including heartbeat signals [21,22], thermal signa-
ture [4], and gaze information [3]. This class of methods can
achieve good performance in distinguishing real faces from masks,
but their performances rely a lot on video settings. Deep learn-
ing features have also become increasingly popular for face spoof-
ing detection. Various work [19,20,27] based on different convolu-
tional neural network (CNN) architectures have shown high detec-
tion accuracy in telling 3D face spoofing attacks apart from real
faces.

Despite some progress, several recent studies [11,21,25,30] have
shown that the 3D face anti-spoofing methods will suffer from
performance degradation when dealing with more diverse and re-
alistic 3D face spoofing attacks. Mostly based on facial masks,
existing 3D face spoofing databases are restricted to small data
sizes (mostly less than 30 subjects), low mask quality (e.g., us-
ing 2D paper masks [2,18], or not user-customized masks [2,24]),
and low diversity in subjects, facial poses, and recording environ-
ment. To address these limitations, our previous work [12] first in-
troduced diverse and super-realistic 3D face spoofing attacks based
on wax figure faces from online resources. Totally 4400 images
were collected, with 2200 real faces and 2200 wax figure faces.
Inspired by the powerful spoofing capability of wax figure faces,
we have further collected a new database in this paper with 4000
single wax figure faces, named SWFFD (Single Wax Figure Face
Database), to promote more effective 3D face spoofing detection
methods. A new detection method is also designed to distinguish
these realistic 3D face spoofing attacks from real faces. Combin-
ing attention-aware features from multiscale face images, the pro-
posed method can generate subtle and discriminative representa-
tions, which has achieved outstanding detection performance un-
der both intra-database and cross-database testing in our experi-
ments.
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2. The single wax figure face database (SWFFD)

By taking advantage of the rich and open online resources, we
have collected a large number of wax figure faces from the Internet
to construct a realistic 3D face spoofing database with a large size
and high diversity. We first downloaded as many celebrity wax fig-
ure faces as possible, and then cleaned the dataset manually based
on our own selection criterion. During the dataset cleaning, images
without frontal faces, with face dimensions smaller than 50 x 50,
or with a face with over half occlusion or embedded text (see the
examples in Fig. 2(a)), have been excluded from the dataset.

Finally, a total of 4000 images with single wax figure faces
from 1457 subjects were collected as the newly constructed SWFFD
database. The resolutions of face images are in the range of
50 x 50 to 2000 x 2000 (with 25.20% less than 200, 64.92% be-
tween 200 and 600, 8.80% between 600 and 1000, and 1.08% over
1000).

For real faces, we have combined SWFFD with the pub-
licly available CelebA-HQ dataset [14], which consists of 30,000
celebrity images obtained from the Internet. To reduce the quality
discrepancy among different data sources, we have followed the
same procedure for data cleaning (see the excluded examples in
Fig. 2(b)), and finally obtained 28,000 images, which are further
randomly divided into 7 sessions (4000 images in each session)
to reach a balance in size with wax figure faces in SWFFD. Fig. 3
shows image examples in our combined SWFFD and CelebA-HQ
databases. The statistical information about the subject’s age, gen-
der, and race (detected by Deepface [35]) of these two datasets is
shown in Fig. 4. It can be seen that the faces in SWFFD are gender-
balanced and have a high diversity in terms of subject age and
race, which is almost consistent with the distribution of CelebA-
HQ dataset.

Based on the combined database, we have designed a new
data protocol based on cross-validation for performance evaluation.
Specifically, we first combine the wax figure faces in SWFFD with
each session of real faces in CelebA-HQ to construct seven evalu-
ation subsets, each with 8000 face images. Then each evaluation
subset is randomly divided into training, validation, and testing
subsets by a ratio of 2:1:1. The average result on the seven eval-
uation subsets is taken as the final detection performance.

Fig. 2. Examples of excluded faces in data cleaning process. (a) SWFFD, (b) CelebA-
HQ database.

Fig. 3. Examples of face images in (a) SWFFD, (b) CelebA-HQ database.
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Fig. 4. Statistics of face images in SWFFD and CelebA-HQ databases.

Fig. 5. Comparison of images in SWFFD and WFFD [12] datasets. (a) SWFFD, (b)
WEFFD.

To sum up, the differences between the new SWFFD dataset
and the previous WFFD [12] are threefold. First, SWFFD includes
more wax figure faces, almost twice the size (4000) of the WFFD
dataset (2200). Second, SWFFD collects images with higher quali-
ties in terms of face size and pose (as shown in Fig. 5(a)). Contain-
ing images with both a wax figure face and a real face recorded
in the same environment (see Fig. 5(b)), WFFD has more images
with small faces and diverse facial poses. Third, instead of provid-
ing matched face pairs (with a wax figure face and a real face
from the same subject) as WFFD did, the SWFFD dataset, com-
bined with higher-quality real faces from CelebA-HQ, aims to pro-
vide rich data for real vs. fake face detection. We will make this
newly-constructed database publicly available? to support the re-
search on 3D face anti-spoofing.

3. Proposed face anti-spoofing method

In this section, we propose an effective detection method,
which combines attention-aware features across different scales to
enhance the discriminative power of CNN-based representations
for 3D face spoofing detection. Inspired by recent advances in at-
tention mechanism-based deep neural networks, we propose to
use the Residual Attention Network (RAN) [36] in our work to gen-
erate attention-aware features from different face scales. Through
the integration of the mixed attention mechanism and stacking at-
tention modules, RAN has shown good performance in several im-
age processing tasks such as image classification [36], visual track-
ing [37], and image super-resolution [41]. To the best of our knowl-
edge, this work represents the first effort of leveraging RAN to
adaptively learn more useful features for face spoofing detection.

2 https://github.com/shanface33/Wax_Figure_Face_DB.
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Furthermore, considering the importance of face scales to charac-
terize different appearance features in face analysis, we propose to
generate more discriminative features from multiscale face repre-
sentations for realistic 3D face anti-spoofing. Overall, we hypoth-
esize that both residual and multiscale representations will facil-
itate the task of revealing subtle appearance differences between
real faces and fake ones.

The overall architecture of the residual attention network based
on multiscale face representations has been shown in Fig. 6 (note
that we have shown three different scales as an example for in-
put, but the generalization to less or more scales is straightfor-
ward). The faces cropped by MTCNN [39] are first resampled to
different sizes, such as 256 x 256 x 3, 288 x 288 x 3, and
320 x 320 x 3, and then they are re-cropped to 224 x 224 x 3
to get different face scales as the input of the RAN models. The
RAN model [36] is constructed by stacking multiple residual blocks
and attention modules. Designed to alleviate the vanishing gradi-
ent problem [9] in the training process, the residual block extracts
and presents the basic and important features of images. It first
feeds a given input feature into three convolution layers with the
kernel sizes of 1 x 1, 3 x 3, 1 x 1, respectively, and then add this
output to the original input or input after a 1 x 1 convolution in
an element-wise manner to get the new feature map. The details
of such a feature addition procedure are illustrated in Fig. 7(a).

The attention module consists of two parts - i.e., the trunk
branch and the soft-mask branch, as shown in Fig. 7(b). It devotes
to adaptively enhancing the useful features while suppressing the
less useful ones from the trunk branch. The trunk branch performs
feature processing and is constructed by residual units. The soft-
mask branch, however, contains fast feed-forward sweep and top-
down feedback steps with the strategies of downsampling and up-
sampling to softly combine the trunk branch output (i.e., it serves
as a feature selector). More specifically, the soft-mask branch first
downsamples the input features based on max-pooling and resid-
ual units modules, then uses linear interpolation to upsample the
features to get the output with the same size as the input fea-
ture map. The output is further normalized with a sigmoid layer
after two 1x1 convolution layers. Putting things together, given the
trunk branch output T(x) from the input x and the learned mask
M(x) with the same size and in range of [0, 1], the output of at-
tention module is H(x) = (1 + M(x)) = T (x). Accordingly, with two
or more face scales as the input of the RAN module, we can first
obtain their multiscale attention-aware feature maps (but with the
same size). Then the feature maps are fused by concatenation, fol-
lowed by a fully connected (FC) layer for final classification using
a softmax classifier.

To further show the significance of fusing multiscale faces, we
have compared the saliency maps of the RAN model on both real
and wax figure faces in Fig. 8. The visualization tool FlashTorch?
is used to better explore how the RAN network “perceives” faces
with different scales in the scenario of face anti-spoofing. Five face
scales have been considered, including 224 x 224, 256 x 256,
288 x 288, 320 x 320, and 352 x 352 (Note that for simplicity, all
the scales are shortened to two dimensions in the following writ-
ing). From the gradient maps in each column of Fig. 8, we can ob-
serve that the RAN network pays attention to different regions for
different scales of faces. For smaller-size faces, the network seems
to focus more on global face regions due to the existence of back-
ground, while for larger-size faces, more attention is paid to spe-
cific regions, such as around the mouth and eyes. When comparing
different columns, we can see the difference of the network’s focus
on real faces and wax figure faces. Specifically, the network tends
to focus on more areas in wax figure faces than in real faces, such

3 https://github.com/MisaOgura/flashtorch.
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Fig. 7. Residual block and attention module in RAN [36]. (a) Residual block, (b)
Attention module with a combination of trunk branch and soft mask branch. ‘RB’
denotes Residual Block.

as more regions around the nose for smaller face scales and more
specific regions for larger face scales. Therefore, the combination
of these scales will contribute to generating more discriminative
features for realistic face spoofing detection.

4. Experiments

In this section, we evaluate the performance of the proposed
RAN-based method on 3D face spoofing detection. Both intra-

Real faces

224x224

256%256
288x288
320%320

352x252

database testing and cross-database testing are conducted to jus-
tify the effectiveness of the proposed method.

4.1. Databases and metrics

Four databases are used in our experiments - namely, the new
SWFFD, WFFD [12], and two existing 3D mask face spoofing
databases, 3DMAD [5] (the most widely-used), and HKBU-MARs-
V1 [22] (with hyper-real 3D masks). The WFFD database contains
three protocols: Protocol I with 1000 pairs of heterogeneous wax
figure faces and real faces, Protocol II with 1200 pairs of homol-
ogous faces, and Protocol Il combining the previous two proto-
cols to simulate real-world operational scenarios. Both 3DMAD and
HKBU-MARs-V1 datasets contain videos of 300 frames (3DMAD
with 255 videos and HKBU-MARs-V1 with 120). We randomly se-
lected 10 frames and averaged their scores as the final result
in spoofing detection. For performance evaluation, we report the
ISO/IEC 30107-3 metrics [34] - i.e., Attack Presentation Classifica-
tion Error Rate (APCER), Bona Fide Presentation Classification Error
Rate (BPCER), and Average Classification Error Rate (ACER). The de-
tection accuracy is also used in our comparison.

4.2. Implementation details

We have followed the same method as the previous
work [36] for weight initialization, and trained the proposed
network using Adam optimizer [16] with the batch size of 16, B,
and B, equal to 0.9, and 0.999, respectively. We set the initial
learning rate to be 0.01 (decreased by a factor of 10 for every
90 epochs), and opt to terminate the training at 300 epochs. All

Wax figure faces

Fig. 8. Visualization of RAN network on wax figure face and real face classification based on saliency maps.
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Fig. 10. Comparison of error rates with different real face numbers for training un-
der 256 x 256 and 288 x 288 face scales fusion scheme. ACER values are labelled.

experiments are conducted using PyTorch on a workstation with
four Titan XP GPUs.

4.3. Ablation study

Impact of face scale. We first show the influence of input face
scale on wax figure face anti-spoofing. Fig. 9 presents the com-
parison results of using single face scales and combining two or
three face scales as the input. Five face scales have been consid-
ered, including 224 x 224, 256 x 256, 288 x 288, 320 x 320,
and 352 x 352. It can be observed that among different single
face scales, larger face regions achieve lower error rates, especially
for the 320 x 320 scale (with ACER of 5.01%). The fusion of two
face scales results in the reduction of error rates. Especially for
the fusion of 288 x 288 and 320 x 320, the final performance
has achieved 3.63% for APCER, BPCER and ACER on SWFFD, sightly
lower than combining 320 x 320 with 352 x 352 (with ACER of
3.77%) and using 256 x 256 and 288 x 288 (with ACER of 4.45%).
However, we can see from the results in the last three groups that
using three scales can not further improve the detection perfor-
mance. We conjecture the reason is ‘the curse of dimensionality’
[17] that higher feature dimensionality tends to have the over-
fitting problem. Therefore, we suggest to use two scales to get
promising performance. In the following experiment, we will re-
port all results of both combining 288 x 288 with 320 x 320
scales and combining 256 x 256 with 288 x 288 scales for com-
parison.

Impact of database size. Since the real face dataset using CelebA-
HQ is much larger than the introduced SWFFD, we have divided it
into seven sessions each with the same size (4000) as the SWFFD
considering the balance of fake and real faces for performance
evaluation. Here we fixed the size of SWFFD and changed the real
face size for training from 3000 to 7000 with a step size of 1000
to study the influence of training set size. The comparison results
under 256 x 256 and 288 x 288 face scales fusion scheme are
shown in Fig. 10. It is clear that unbalanced real and fake face sam-
ples lead to unbalanced APCER and BPCER rates, using 3000 with
the highest BPCER (over 10%) while using a larger size of real faces

107

Pattern Recognition Letters 145 (2021) 103-109

resulting in smaller BPCER but larger APCER rates. With the same
size as the SWFFD, the proposed method has achieved the most
balanced results, although the average ACER of 4.45% is slightly
higher than using 5000 real faces.

4.4. Intra-database testing

Intra-database testing is carried out on the proposed SWFFD
dataset and compared with several state-of-the-art face anti-
spoofing methods to show how they work for super-realistic 3D
wax figure face spoofing attacks. These methods include two
hand-crafted methods with promising performance on 3D mask
databases: the multiscale LBP (MsLBP) [5] and Haralick features
based [1]. Additionally we have included four deep learning-based
methods into our benchmark: the FaceDs [13] based on noise
modeling, Feathernets [40] using streaming module, and FaceBag-
Net [31] based on patch-based features, along with the original
RAN method [36]. All these methods have public available codes
so we can readily test them on the new SWFFD dataset.

As shown in Table 1, we can first observe the big differences
among these methods. Two hand-crafted features and the noise
modeling based method show obvious performance degradation
(with accuracy less than 80% and ACER higher than 20%) in distin-
guishing between wax figure faces and real faces due to the high
diversity and authenticity of attacks in the SWFFD dataset. The
Feathernets, FaceBagNet, and RAN networks performed better with
higher detection accuracy rates and lower error rates. Especially,
the proposed method achieved the best performance under both
fusion schemes, with accuracy over 95.5% and ACER lower than
4.5%. The FaceBagNet method ranked third thanks to the patch-
based features learned from independent sub-networks, with the
accuracy of 93.8%.

4.5. Cross-database testing on wax figure faces

In cross-database testing, we first show how well the proposed
scheme and existing methods can perform in detecting unknown
wax figure faces and real faces on SWFFD and WFFD datasets.
In this experiment, training is conducted on SWFFD (with 4000
images in each subset) and testing on the Protocol II on WFFD
dataset (with 2400 images). The comparison results in Table 2 il-
lustrates the apparent degraded performance of all methods, with
the ACER ranging from 25.69% to 41.55%. This can be attributed to
the lower and more diverse quality of faces in WFFD than SWFFD
because the collected wax figure and real faces were recorded in
the same environment with the same camera in WFFD. Thanks
to the attention-aware features of multiscale faces, our proposed
method fusing 256 x 256 with 288 x 288 face scales has achieved
the best performance with the lowest error rates, with a 6% er-
ror rate below the FaceBagNet method, and improving the original
RAN-based method by as much as 10%.

We have also shown the cross-database testing results of using
WEFFD as the training set but SWFFD as the testing set in Table 3
(i.e., swap the role of WFFD and SWFFD). Using more diverse sam-
ples for training, all methods achieved higher classification accu-
racy and lower error rates under this testing scenario when com-
pared with the results in Table 2. Similar performance differences
but smaller gaps can be observed among different methods. Our
proposed scheme fusing 288 x 288 with 320 x 320 face scales
obtained the highest accuracy of 78.59%, and the lowest ACER of
21.41%. Such findings suggest that face spoofing detection perfor-
mance degrades rapidly when the characteristics of the dataset
vary. A promising solution to such cross-database cases is transfer
learning [23,29], which we have left as the future research.
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Table 1

Comparison results (%) of intra-database testing on SWFFD.
Method Accuracy APCER BPCER ACER
MSsLBP [5] 78.81 £ 0.80  20.03 +£ 1.05 22.36 + 1.47  21.19 £+ 0.80
Haralick [1] 74.52 £ 097  26.19 £2.06 24.77 £ 1.01 25.48 + 0.97
RAN [36] 92.71 £ 1.12  6.83 £ 0.56 7.74 £2.27 7.29 £ 1.12
FaceDs [13] 7536 £0.77 2136 £ 0.70 4191 +£ 1.75  26.64 £+ 0.77
Feathernets [40]  89.88 +£ 1.40  9.01 &+ 1.22 1123 £1.70 10.12 + 1.40
FaceBagNet [31] 93.80 £ 0.64 547 £ 0.73 6.93 + 0.95 6.20 + 0.64
Ours_256+288 95.55 + 1.41 496 + 1.54 3.94 + 1.53 445 + 1.41
Ours_288+320 96.37 + 048 3.63 + 1.15 3.63 + 0.55 3.63 + 0.48

Table 2

Comparison results (%) of cross-database testing on WFFD.
Method Accuracy APCER BPCER ACER
MSsLBP [5] 61.83 £ 0.28  30.25 + 1.46  46.09 + 1.41 38.17 £ 0.28
Haralick [1] 58.73 £ 0.50  39.68 £ 234 4286 £ 1.95 41.27 + 0.50
RAN [36] 64.32 £ 1.19 3395+ 8.16 3740 £ 899 3567 + 1.19
FaceDs [13] 5845 + 029 2155+ 080 62.05+ 137 41.55+0.29
Feathernets [40] 63.24 +£ 097  21.81 +£1.28 51.71 £ 222  36.76 + 0.97
FaceBagNet [31] 68.55 + 1.28 2148 £ 534 4141 +£3.79 3145+ 1.28
Ours_256+288 74.31 + 1.14 21.46 + 3.64 29.81 + 3.77 25.69 + 1.14
Ours_288+320 7217 £ 2.08  26.07 + 3.69  29.59 + 4.22  27.83 4+ 2.08

Table 3

Comparison results (%) of cross-database testing on SWFFD.
Method Accuracy APCER BPCER ACER
MsLBP [5] 62.86 + 1.11 45.07 £ 1.86  29.20 £ 0.71 37.14 £ 1.11
Haralick [1] 63.01 £ 1.04 37.11 £1.72 3686 +1.13  36.99 + 1.04
RAN [36] 74.85 + 1.48  30.63 + 7.98 19.63 £8.98  25.15 + 1.48
FaceDs [13] 63.13 £ 0.60 4891 + 1.65 24.83 £ 1.36  36.87 &+ 0.60
Feathernets [40] 67.83 + 1.11 32.60 + 3.94 31.74 + 3.45 32.17 £ 1.11
FaceBagNet [31] 75.94 £ 159 2874 £ 350 19.37 + 2.07 24.06 + 1.59
Ours_256 + 288  77.33 £ 1.61 23.21 £3.16 2213 £ 3.05  22.67 + 1.61
Ours_288 + 320  78.59 + 2.32  22.53 + 4.37 20.28 +3.86  21.41 + 2.32

Table 4

Comparison results (%) of cross-database testing on other 3D face spoofing datasets.

SWFFD — 3DMAD

SWFFD — HKBU-MARs-V1

Method
APCER BPCER ACER APCER BPCER ACER

MsLBP [5] 4193 + 11.01 50.87 + 10.14  46.40 +£ 3.35 26.32 +£20.19  59.69 4+ 27.00  43.01 + 10.18
Haralick [1] 35.11 £ 12.70  53.31 £ 11.63  44.21 £5.69  42.50 £ 2.07 51.14 4+ 4.45 46.82 + 1.84

RAN [36] 29.18 £ 19.56  36.34 £ 26.53  33.26 & 3.81 53.00 &£ 19.54  30.52 £ 19.39  41.76 + 10.33
FaceDs [13] 65.16 + 4.97 23.37 £ 391 4426 +£2.18  60.57 + 1.34 24.16 £ 1.05 42.37 + 0.56

Feathernets [40]  60.86 + 29.13 3541 4+ 13.05  48.13 + 9.81 26.75 + 21.35  50.16 + 21.04  38.46 + 6.04

FaceBagNet [31] 26.19 £ 1593 4790 +£ 2493 37.05 £ 6.07 31.10 £ 13.00 5820 &+ 10.23  44.65 £ 4.05

Ours_256 + 288  32.81 £23.00 23.34 + 10.35 28.07 £ 9.54  47.00 + 1234  26.37 + 1424  36.69 + 1.95

Ours_288 + 320  29.90 + 21.29 2451 + 19.06  27.20 + 7.24  23.79 + 12.83  35.88 + 10.48  29.84 + 6.83

4.6. Cross-database testing on other 3D face spoofing attacks

To further show the generalization ability of the proposed
scheme and existing methods in detecting other 3D face spoof-
ing attacks, we have conducted cross-database experiments with
training on SWFFD (with 4000 images in each subset) and test-
ing on 3DMAD and HKBU-MARs-V1 datasets (using all the selected
frames). The comparison results in Table 4 show similar perfor-
mance differences for most methods with those in Table 2 us-
ing the same data for training. The proposed method demon-
strates the best generalizability. Specifically, using 288 x 288 and
320 x 320 face scales achieved the lowest ACER values with 27.20%
on 3DMAD and 29.84% on HKBU-MARs-V1, quite close to the re-
sult on WFFD dataset (with ACER of 27.88%), while combining
256 x 256 with 288 x 288 ranked second in detecting different
kinds of unknown 3D face spoofing attacks.
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5. Conclusions

To address the limitations in existing 3D face spoofing attack
databases, we have introduced a new database, SWFFD, composed
of large-scale single wax figure faces with high diversity from
online resources as super-realistic 3D face spoofing attacks. We
also propose an effective method to learn discriminative attention-
aware features from different face scales for the detection of wax
figure faces and real ones. By combining the SWFFD with real faces
in CelebA-HQ for performance evaluation, we have found that the
proposed method demonstrates promising accuracy and robustness
performance under both intra-database and cross-database test-
ing. The benefits of multiscale fusion (especially using larger face
scales) and database size balancing have also been verified through
our ablation studies. It should be noted that the best performance
achieved by the proposed scheme under cross-database setting still
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has the error rate of over 20%. Super-realistic wax figure faces are
indeed difficult to distinguish from real ones even for humans, es-
pecially with unknown attack patterns. Therefore, how to further
improve the generalization property of existing methods deserves
further study for not only 2D face anti-spoofing but also 3D real-
istic face anti-spoofing in the future. Recently developed transfer
learning techniques such as domain adaptation deserve systematic
study for cross-database anti-spoofing detection.
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