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a b s t r a c t 

Face spoofing attacks based on 3D face images have posed a severe security risk to face recognition sys- 

tems. Despite the great effort made by the technical community in recent years, existing 3D face spoofing 

databases, mostly based on 3D masks, still suffer from small sample size, low diversity, or poor authen- 

ticity due to the production difficulty and high cost. To fill in this gap, we introduce a new database 

in this paper with 4-0 0 0 single wax figure faces, named SWFFD (Single Wax Figure Face Database), as 

a type of super-realistic 3D face presentation attack. Collected from online resources, this database has 

high diversity in terms of subjects, lighting conditions, facial poses, and recording devices. We have also 

designed a new detection method, which combines attention-aware features from different face scales to 

generate discriminative representations for realistic face spoofing attack detection. Extensive experiments 

have been conducted on the SWFFD as well as the CelebA-HQ database (containing real faces from the 

online collection). Experimental results have demonstrated the effectiveness of the proposed method in 

both intra-database and cross-database testing scenarios. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

In recent years, great progress has been made to address the 

ulnerability of existing face recognition systems to various face 

poofing attacks (a.k.a. presentation attacks) [10] . As of today, 2D 

odality based attacks, which present printed photos or recorded 

ideos to the biometric data capture subsystem, have drawn much 

ttention due to their simplicity, efficiency, and low cost [33] . Ac- 

ordingly, 2D face anti-spoofing detection has been extensively 

tudied in the literature [26] . Existing face anti-spoofing methods 

ostly explore the effects of spoofing medium (e.g., the printed 

aper, the displaying screen) or the geometric differences between 

 fake 2D planar face and a real 3D structured face. However, an 

ncreasing number of studies have found that a variety of face 

ecognition systems, even taking face spoofing detection into con- 

ideration, can still be fooled by more powerful 3D face spoofing 

ttacks [6] . 

Empowered by 3D structures or materials similar to real faces, 

D face presentation attacks are more realistic and therefore more 

ifficult to be detected by face recognition systems. Existing 3D 

ace spoofing attacks can be realized by wearing a face mask, 

resenting a synthetic model, or wearing makeup, as shown 
∗ Corresponding author. 
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n Fig. 1 . When compared with 2D attacks, 3D face spoofing is 

uch more difficult and expensive to manufacture, often requiring 

pecial devices and materials. However, the rapid advances of 3D 

rinting technologies and services in recent years have opened up 

pportunities for making more affordable and higher-quality 3D 

ace spoofing attacks. Several 3D face spoofing attack databases 

ave been created using third-party 3D printing services, based on 

elf-manufactured masks or from online collections. For example, 

s the first public 3D mask spoofing database, 3DMAD [5] used 

he services of ThatsMyFace 1 to generate 17 masks of users, and 

ecorded 255 video sequences with color and depth information 

or both real faces and mask spoofing attacks. Similarly, HKBU- 

ARs database [22] obtained 8 customized masks from two mask 

anufacture companies and included 120 videos with lighting 

ariations to simulate the real world scenarios. Taking another 

xample, 3DFS-DB [7] is a self-manufactured 3D face spoofing 

atabase based on 26 printed models using two 3D printers. 

ikewise, Rose-Youtu face liveness detection dataset [18] and 

MCA database [8] contained different types of face spoofing 

ttacks from 25 and 72 subjects respectively. In addition to 2D 

ace spoofing, they have both designed paper masks (WMCA 

lso includes rigid and flexible masks) as 3D face spoofing at- 

acks. Last, by taking advantage of the rich online resources, 
1 http://thatsmyface.com/ . 
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Fig. 1. Examples of 3D face spoofing attacks, (a) wearing face masks, (b) presenting 

a synthetic model, (c) wearing makeup. 
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Fig. 2. Examples of excluded faces in data cleaning process. (a) SWFFD, (b) CelebA- 

HQ database. 

Fig. 3. Examples of face images in (a) SWFFD, (b) CelebA-HQ database. 
MAD database [24] has collected 65 videos of people wearing 

ilicone masks and 65 genuine access videos of people auditioning, 

nterviewing, and hosting shows. 

In view of increasing attention to 3D face spoofing, a variety of 

tudies have been devoted to 3D face spoofing detection methods. 

ifferent from 2D face anti-spoofing, existing 3D spoofing detec- 

ion schemes are mainly based on the subtle differences between 

eal face skin and mask materials. The reflectance/multispectral 

roperties have been widely studied in the early years due to ap- 

arent visual differences of different object surfaces. Using mul- 

iple illumination wavelengths, methods [15,38] have achieved 

ver 96% accuracies on their private dataset. Instead of requir- 

ng special devices to acquire multispectral images, texture-based 

ethods explore the texture patterns in visible images to dis- 

inguish real faces from spoofed ones. Local Binary Pattern (LBP) 

as extracted in several studies [5,28,32] based on its discrim- 

native power and computational simplicity. However, their ro- 

ustness to different qualities of mask spoofing attacks remains 

o be further improved. Haralick features [1] show promising 

erformance in both 2D and 3D mask spoofing databases (e.g., 

ith 0% error rate on 3DMAD database). Besides, using intrin- 

ic liveness signals for 3D face anti-spoofing has also attracted 

reat research interest in recent years. Several liveness cues have 

een studied, including heartbeat signals [21,22] , thermal signa- 

ure [4] , and gaze information [3] . This class of methods can 

chieve good performance in distinguishing real faces from masks, 

ut their performances rely a lot on video settings. Deep learn- 

ng features have also become increasingly popular for face spoof- 

ng detection. Various work [19,20,27] based on different convolu- 

ional neural network (CNN) architectures have shown high detec- 

ion accuracy in telling 3D face spoofing attacks apart from real 

aces. 

Despite some progress, several recent studies [11,21,25,30] have 

hown that the 3D face anti-spoofing methods will suffer from 

erformance degradation when dealing with more diverse and re- 

listic 3D face spoofing attacks. Mostly based on facial masks, 

xisting 3D face spoofing databases are restricted to small data 

izes (mostly less than 30 subjects), low mask quality (e.g., us- 

ng 2D paper masks [2,18] , or not user-customized masks [2,24] ), 

nd low diversity in subjects, facial poses, and recording environ- 

ent. To address these limitations, our previous work [12] first in- 

roduced diverse and super-realistic 3D face spoofing attacks based 

n wax figure faces from online resources. Totally 4400 images 

ere collected, with 2200 real faces and 2200 wax figure faces. 

nspired by the powerful spoofing capability of wax figure faces, 

e have further collected a new database in this paper with 40 0 0 

ingle wax figure faces, named SWFFD (Single Wax Figure Face 

atabase), to promote more effective 3D face spoofing detection 

ethods. A new detection method is also designed to distinguish 

hese realistic 3D face spoofing attacks from real faces. Combin- 

ng attention-aware features from multiscale face images, the pro- 

osed method can generate subtle and discriminative representa- 

ions, which has achieved outstanding detection performance un- 

er both intra-database and cross-database testing in our experi- 

ents. 
104 
. The single wax figure face database (SWFFD) 

By taking advantage of the rich and open online resources, we 

ave collected a large number of wax figure faces from the Internet 

o construct a realistic 3D face spoofing database with a large size 

nd high diversity. We first downloaded as many celebrity wax fig- 

re faces as possible, and then cleaned the dataset manually based 

n our own selection criterion. During the dataset cleaning, images 

ithout frontal faces, with face dimensions smaller than 50 × 50, 

r with a face with over half occlusion or embedded text (see the 

xamples in Fig. 2 (a)), have been excluded from the dataset. 

Finally, a total of 40 0 0 images with single wax figure faces 

rom 1457 subjects were collected as the newly constructed SWFFD 

atabase. The resolutions of face images are in the range of 

0 × 50 to 20 0 0 × 20 0 0 (with 25.20% less than 20 0, 64.92% be-

ween 200 and 600, 8.80% between 600 and 1000, and 1.08% over 

0 0 0). 

For real faces, we have combined SWFFD with the pub- 

icly available CelebA-HQ dataset [14] , which consists of 30,0 0 0 

elebrity images obtained from the Internet. To reduce the quality 

iscrepancy among different data sources, we have followed the 

ame procedure for data cleaning (see the excluded examples in 

ig. 2 (b)), and finally obtained 28,0 0 0 images, which are further 

andomly divided into 7 sessions (40 0 0 images in each session) 

o reach a balance in size with wax figure faces in SWFFD. Fig. 3

hows image examples in our combined SWFFD and CelebA-HQ 

atabases. The statistical information about the subject’s age, gen- 

er, and race (detected by Deepface [35] ) of these two datasets is 

hown in Fig. 4 . It can be seen that the faces in SWFFD are gender-

alanced and have a high diversity in terms of subject age and 

ace, which is almost consistent with the distribution of CelebA- 

Q dataset. 

Based on the combined database, we have designed a new 

ata protocol based on cross-validation for performance evaluation. 

pecifically, we first combine the wax figure faces in SWFFD with 

ach session of real faces in CelebA-HQ to construct seven evalu- 

tion subsets, each with 80 0 0 face images. Then each evaluation 

ubset is randomly divided into training, validation, and testing 

ubsets by a ratio of 2:1:1. The average result on the seven eval- 

ation subsets is taken as the final detection performance. 
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Fig. 4. Statistics of face images in SWFFD and CelebA-HQ databases. 

Fig. 5. Comparison of images in SWFFD and WFFD [12] datasets. (a) SWFFD, (b) 

WFFD. 
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To sum up, the differences between the new SWFFD dataset 

nd the previous WFFD [12] are threefold. First, SWFFD includes 

ore wax figure faces, almost twice the size (40 0 0) of the WFFD

ataset (2200). Second, SWFFD collects images with higher quali- 

ies in terms of face size and pose (as shown in Fig. 5 (a)). Contain-

ng images with both a wax figure face and a real face recorded 

n the same environment (see Fig. 5 (b)), WFFD has more images 

ith small faces and diverse facial poses. Third, instead of provid- 

ng matched face pairs (with a wax figure face and a real face 

rom the same subject) as WFFD did, the SWFFD dataset, com- 

ined with higher-quality real faces from CelebA-HQ, aims to pro- 

ide rich data for real vs. fake face detection. We will make this 

ewly-constructed database publicly available 2 to support the re- 

earch on 3D face anti-spoofing. 

. Proposed face anti-spoofing method 

In this section, we propose an effective detection method, 

hich combines attention-aware features across different scales to 

nhance the discriminative power of CNN-based representations 

or 3D face spoofing detection. Inspired by recent advances in at- 

ention mechanism-based deep neural networks, we propose to 

se the Residual Attention Network (RAN) [36] in our work to gen- 

rate attention-aware features from different face scales. Through 

he integration of the mixed attention mechanism and stacking at- 

ention modules, RAN has shown good performance in several im- 

ge processing tasks such as image classification [36] , visual track- 

ng [37] , and image super-resolution [41] . To the best of our knowl-

dge, this work represents the first effort of leveraging RAN to 

daptively learn more useful features for face spoofing detection. 
2 https://github.com/shanface33/Wax _ Figure _ Face _ DB . 

105 
urthermore, considering the importance of face scales to charac- 

erize different appearance features in face analysis, we propose to 

enerate more discriminative features from multiscale face repre- 

entations for realistic 3D face anti-spoofing. Overall, we hypoth- 

size that both residual and multiscale representations will facil- 

tate the task of revealing subtle appearance differences between 

eal faces and fake ones. 

The overall architecture of the residual attention network based 

n multiscale face representations has been shown in Fig. 6 (note 

hat we have shown three different scales as an example for in- 

ut, but the generalization to less or more scales is straightfor- 

ard). The faces cropped by MTCNN [39] are first resampled to 

ifferent sizes, such as 256 × 256 × 3, 288 × 288 × 3, and 

20 × 320 × 3, and then they are re-cropped to 224 × 224 × 3 

o get different face scales as the input of the RAN models. The 

AN model [36] is constructed by stacking multiple residual blocks 

nd attention modules. Designed to alleviate the vanishing gradi- 

nt problem [9] in the training process, the residual block extracts 

nd presents the basic and important features of images. It first 

eeds a given input feature into three convolution layers with the 

ernel sizes of 1 × 1, 3 × 3, 1 × 1, respectively, and then add this 

utput to the original input or input after a 1 × 1 convolution in 

n element-wise manner to get the new feature map. The details 

f such a feature addition procedure are illustrated in Fig. 7 (a). 

The attention module consists of two parts - i.e., the trunk 

ranch and the soft-mask branch, as shown in Fig. 7 (b). It devotes 

o adaptively enhancing the useful features while suppressing the 

ess useful ones from the trunk branch. The trunk branch performs 

eature processing and is constructed by residual units. The soft- 

ask branch, however, contains fast feed-forward sweep and top- 

own feedback steps with the strategies of downsampling and up- 

ampling to softly combine the trunk branch output (i.e., it serves 

s a feature selector). More specifically, the soft-mask branch first 

ownsamples the input features based on max-pooling and resid- 

al units modules, then uses linear interpolation to upsample the 

eatures to get the output with the same size as the input fea- 

ure map. The output is further normalized with a sigmoid layer 

fter two 1 ×1 convolution layers. Putting things together, given the 

runk branch output T (x ) from the input x and the learned mask 

(x ) with the same size and in range of [0, 1], the output of at-

ention module is H(x ) = (1 + M(x )) ∗ T (x ) . Accordingly, with two

r more face scales as the input of the RAN module, we can first 

btain their multiscale attention-aware feature maps (but with the 

ame size). Then the feature maps are fused by concatenation, fol- 

owed by a fully connected (FC) layer for final classification using 

 softmax classifier. 

To further show the significance of fusing multiscale faces, we 

ave compared the saliency maps of the RAN model on both real 

nd wax figure faces in Fig. 8 . The visualization tool FlashTorch 3 

s used to better explore how the RAN network “perceives” faces 

ith different scales in the scenario of face anti-spoofing. Five face 

cales have been considered, including 224 × 224, 256 × 256, 

88 × 288, 320 × 320, and 352 × 352 (Note that for simplicity, all 

he scales are shortened to two dimensions in the following writ- 

ng). From the gradient maps in each column of Fig. 8 , we can ob-

erve that the RAN network pays attention to different regions for 

ifferent scales of faces. For smaller-size faces, the network seems 

o focus more on global face regions due to the existence of back- 

round, while for larger-size faces, more attention is paid to spe- 

ific regions, such as around the mouth and eyes. When comparing 

ifferent columns, we can see the difference of the network’s focus 

n real faces and wax figure faces. Specifically, the network tends 

o focus on more areas in wax figure faces than in real faces, such 
3 https://github.com/MisaOgura/flashtorch . 
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Fig. 6. Architecture of deep residual attention network based on multiscale faces for face spoofing detection. ‘C’ denotes Concatenation, and ‘FC’ denotes Fully Connected 

Layer. Note that three different scales are shown as an example for input, but the generalization to less or more scales is straightforward. 

Fig. 7. Residual block and attention module in RAN [36] . (a) Residual block, (b) 

Attention module with a combination of trunk branch and soft mask branch. ‘RB’ 

denotes Residual Block. 
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s more regions around the nose for smaller face scales and more 

pecific regions for larger face scales. Therefore, the combination 

f these scales will contribute to generating more discriminative 

eatures for realistic face spoofing detection. 

. Experiments 

In this section, we evaluate the performance of the proposed 

AN-based method on 3D face spoofing detection. Both intra- 
Fig. 8. Visualization of RAN network on wax figure face a

106 
atabase testing and cross-database testing are conducted to jus- 

ify the effectiveness of the proposed method. 

.1. Databases and metrics 

Four databases are used in our experiments - namely, the new 

WFFD, WFFD [12] , and two existing 3D mask face spoofing 

atabases, 3DMAD [5] (the most widely-used), and HKBU-MARs- 

1 [22] (with hyper-real 3D masks). The WFFD database contains 

hree protocols: Protocol I with 10 0 0 pairs of heterogeneous wax 

gure faces and real faces, Protocol II with 1200 pairs of homol- 

gous faces, and Protocol III combining the previous two proto- 

ols to simulate real-world operational scenarios. Both 3DMAD and 

KBU-MARs-V1 datasets contain videos of 300 frames (3DMAD 

ith 255 videos and HKBU-MARs-V1 with 120). We randomly se- 

ected 10 frames and averaged their scores as the final result 

n spoofing detection. For performance evaluation, we report the 

SO/IEC 30107-3 metrics [34] - i.e., Attack Presentation Classifica- 

ion Error Rate (APCER), Bona Fide Presentation Classification Error 

ate (BPCER), and Average Classification Error Rate (ACER). The de- 

ection accuracy is also used in our comparison. 

.2. Implementation details 

We have followed the same method as the previous 

ork [36] for weight initialization, and trained the proposed 

etwork using Adam optimizer [16] with the batch size of 16, β1 , 

nd β2 equal to 0.9, and 0.999, respectively. We set the initial 

earning rate to be 0.01 (decreased by a factor of 10 for every 

0 epochs), and opt to terminate the training at 300 epochs. All 
nd real face classification based on saliency maps. 
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Fig. 9. Comparison of error rates with different input face scales. ACER values are 

labelled. 

Fig. 10. Comparison of error rates with different real face numbers for training un- 

der 256 × 256 and 288 × 288 face scales fusion scheme. ACER values are labelled. 
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xperiments are conducted using PyTorch on a workstation with 

our Titan XP GPUs. 

.3. Ablation study 

Impact of face scale. We first show the influence of input face 

cale on wax figure face anti-spoofing. Fig. 9 presents the com- 

arison results of using single face scales and combining two or 

hree face scales as the input. Five face scales have been consid- 

red, including 224 × 224, 256 × 256, 288 × 288, 320 × 320, 

nd 352 × 352. It can be observed that among different single 

ace scales, larger face regions achieve lower error rates, especially 

or the 320 × 320 scale (with ACER of 5.01%). The fusion of two 

ace scales results in the reduction of error rates. Especially for 

he fusion of 288 × 288 and 320 × 320, the final performance 

as achieved 3.63% for APCER, BPCER and ACER on SWFFD, sightly 

ower than combining 320 × 320 with 352 × 352 (with ACER of 

.77%) and using 256 × 256 and 288 × 288 (with ACER of 4.45%). 

owever, we can see from the results in the last three groups that 

sing three scales can not further improve the detection perfor- 

ance. We conjecture the reason is ‘the curse of dimensionality’ 

17] that higher feature dimensionality tends to have the over- 

tting problem. Therefore, we suggest to use two scales to get 

romising performance. In the following experiment, we will re- 

ort all results of both combining 288 × 288 with 320 × 320 

cales and combining 256 × 256 with 288 × 288 scales for com- 

arison. 

Impact of database size. Since the real face dataset using CelebA- 

Q is much larger than the introduced SWFFD, we have divided it 

nto seven sessions each with the same size (40 0 0) as the SWFFD

onsidering the balance of fake and real faces for performance 

valuation. Here we fixed the size of SWFFD and changed the real 

ace size for training from 30 0 0 to 70 0 0 with a step size of 10 0 0

o study the influence of training set size. The comparison results 

nder 256 × 256 and 288 × 288 face scales fusion scheme are 

hown in Fig. 10 . It is clear that unbalanced real and fake face sam-

les lead to unbalanced APCER and BPCER rates, using 30 0 0 with 

he highest BPCER (over 10%) while using a larger size of real faces 
107 
esulting in smaller BPCER but larger APCER rates. With the same 

ize as the SWFFD, the proposed method has achieved the most 

alanced results, although the average ACER of 4.45% is slightly 

igher than using 50 0 0 real faces. 

.4. Intra-database testing 

Intra-database testing is carried out on the proposed SWFFD 

ataset and compared with several state-of-the-art face anti- 

poofing methods to show how they work for super-realistic 3D 

ax figure face spoofing attacks. These methods include two 

and-crafted methods with promising performance on 3D mask 

atabases: the multiscale LBP (MsLBP) [5] and Haralick features 

ased [1] . Additionally we have included four deep learning-based 

ethods into our benchmark: the FaceDs [13] based on noise 

odeling, Feathernets [40] using streaming module, and FaceBag- 

et [31] based on patch-based features, along with the original 

AN method [36] . All these methods have public available codes 

o we can readily test them on the new SWFFD dataset. 

As shown in Table 1 , we can first observe the big differences 

mong these methods. Two hand-crafted features and the noise 

odeling based method show obvious performance degradation 

with accuracy less than 80% and ACER higher than 20%) in distin- 

uishing between wax figure faces and real faces due to the high 

iversity and authenticity of attacks in the SWFFD dataset. The 

eathernets, FaceBagNet, and RAN networks performed better with 

igher detection accuracy rates and lower error rates. Especially, 

he proposed method achieved the best performance under both 

usion schemes, with accuracy over 95.5% and ACER lower than 

.5%. The FaceBagNet method ranked third thanks to the patch- 

ased features learned from independent sub-networks, with the 

ccuracy of 93.8%. 

.5. Cross-database testing on wax figure faces 

In cross-database testing, we first show how well the proposed 

cheme and existing methods can perform in detecting unknown 

ax figure faces and real faces on SWFFD and WFFD datasets. 

n this experiment, training is conducted on SWFFD (with 40 0 0 

mages in each subset) and testing on the Protocol II on WFFD 

ataset (with 2400 images). The comparison results in Table 2 il- 

ustrates the apparent degraded performance of all methods, with 

he ACER ranging from 25.69% to 41.55%. This can be attributed to 

he lower and more diverse quality of faces in WFFD than SWFFD 

ecause the collected wax figure and real faces were recorded in 

he same environment with the same camera in WFFD. Thanks 

o the attention-aware features of multiscale faces, our proposed 

ethod fusing 256 × 256 with 288 × 288 face scales has achieved 

he best performance with the lowest error rates, with a 6% er- 

or rate below the FaceBagNet method, and improving the original 

AN-based method by as much as 10%. 

We have also shown the cross-database testing results of using 

FFD as the training set but SWFFD as the testing set in Table 3

i.e., swap the role of WFFD and SWFFD). Using more diverse sam- 

les for training, all methods achieved higher classification accu- 

acy and lower error rates under this testing scenario when com- 

ared with the results in Table 2 . Similar performance differences 

ut smaller gaps can be observed among different methods. Our 

roposed scheme fusing 288 × 288 with 320 × 320 face scales 

btained the highest accuracy of 78.59%, and the lowest ACER of 

1.41%. Such findings suggest that face spoofing detection perfor- 

ance degrades rapidly when the characteristics of the dataset 

ary. A promising solution to such cross-database cases is transfer 

earning [23,29] , which we have left as the future research. 
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Table 1 

Comparison results (%) of intra-database testing on SWFFD. 

Method Accuracy APCER BPCER ACER 

MsLBP [5] 78.81 ± 0.80 20.03 ± 1.05 22.36 ± 1.47 21.19 ± 0.80 

Haralick [1] 74.52 ± 0.97 26.19 ± 2.06 24.77 ± 1.01 25.48 ± 0.97 

RAN [36] 92.71 ± 1.12 6.83 ± 0.56 7.74 ± 2.27 7.29 ± 1.12 

FaceDs [13] 75.36 ± 0.77 21.36 ± 0.70 41.91 ± 1.75 26.64 ± 0.77 

Feathernets [40] 89.88 ± 1.40 9.01 ± 1.22 11.23 ± 1.70 10.12 ± 1.40 

FaceBagNet [31] 93.80 ± 0.64 5.47 ± 0.73 6.93 ± 0.95 6.20 ± 0.64 

Ours_256 + 288 95.55 ± 1.41 4.96 ± 1.54 3.94 ± 1.53 4.45 ± 1.41 

Ours_288 + 320 96.37 ± 0.48 3.63 ± 1.15 3.63 ± 0.55 3.63 ± 0.48 

Table 2 

Comparison results (%) of cross-database testing on WFFD. 

Method Accuracy APCER BPCER ACER 

MsLBP [5] 61.83 ± 0.28 30.25 ± 1.46 46.09 ± 1.41 38.17 ± 0.28 

Haralick [1] 58.73 ± 0.50 39.68 ± 2.34 42.86 ± 1.95 41.27 ± 0.50 

RAN [36] 64.32 ± 1.19 33.95 ± 8.16 37.40 ± 8.99 35.67 ± 1.19 

FaceDs [13] 58.45 ± 0.29 21.55 ± 0.80 62.05 ± 1.37 41.55 ± 0.29 

Feathernets [40] 63.24 ± 0.97 21.81 ± 1.28 51.71 ± 2.22 36.76 ± 0.97 

FaceBagNet [31] 68.55 ± 1.28 21.48 ± 5.34 41.41 ± 3.79 31.45 ± 1.28 

Ours_256 + 288 74.31 ± 1.14 21.46 ± 3.64 29.81 ± 3.77 25.69 ± 1.14 

Ours_288 + 320 72.17 ± 2.08 26.07 ± 3.69 29.59 ± 4.22 27.83 ± 2.08 

Table 3 

Comparison results (%) of cross-database testing on SWFFD. 

Method Accuracy APCER BPCER ACER 

MsLBP [5] 62.86 ± 1.11 45.07 ± 1.86 29.20 ± 0.71 37.14 ± 1.11 

Haralick [1] 63.01 ± 1.04 37.11 ± 1.72 36.86 ± 1.13 36.99 ± 1.04 

RAN [36] 74.85 ± 1.48 30.63 ± 7.98 19.63 ± 8.98 25.15 ± 1.48 

FaceDs [13] 63.13 ± 0.60 48.91 ± 1.65 24.83 ± 1.36 36.87 ± 0.60 

Feathernets [40] 67.83 ± 1.11 32.60 ± 3.94 31.74 ± 3.45 32.17 ± 1.11 

FaceBagNet [31] 75.94 ± 1.59 28.74 ± 3.50 19.37 ± 2.07 24.06 ± 1.59 

Ours_256 + 288 77.33 ± 1.61 23.21 ± 3.16 22.13 ± 3.05 22.67 ± 1.61 

Ours_288 + 320 78.59 ± 2.32 22.53 ± 4.37 20.28 ± 3.86 21.41 ± 2.32 

Table 4 

Comparison results (%) of cross-database testing on other 3D face spoofing datasets. 

Method 

SWFFD → 3DMAD SWFFD → HKBU-MARs-V1 

APCER BPCER ACER APCER BPCER ACER 

MsLBP [5] 41.93 ± 11.01 50.87 ± 10.14 46.40 ± 3.35 26.32 ± 20.19 59.69 ± 27.00 43.01 ± 10.18 

Haralick [1] 35.11 ± 12.70 53.31 ± 11.63 44.21 ± 5.69 42.50 ± 2.07 51.14 ± 4.45 46.82 ± 1.84 

RAN [36] 29.18 ± 19.56 36.34 ± 26.53 33.26 ± 3.81 53.00 ± 19.54 30.52 ± 19.39 41.76 ± 10.33 

FaceDs [13] 65.16 ± 4.97 23.37 ± 3.91 44.26 ± 2.18 60.57 ± 1.34 24.16 ± 1.05 42.37 ± 0.56 

Feathernets [40] 60.86 ± 29.13 35.41 ± 13.05 48.13 ± 9.81 26.75 ± 21.35 50.16 ± 21.04 38.46 ± 6.04 

FaceBagNet [31] 26.19 ± 15.93 47.90 ± 24.93 37.05 ± 6.07 31.10 ± 13.00 58.20 ± 10.23 44.65 ± 4.05 

Ours_256 + 288 32.81 ± 23.00 23.34 ± 10.35 28.07 ± 9.54 47.00 ± 12.34 26.37 ± 14.24 36.69 ± 1.95 

Ours_288 + 320 29.90 ± 21.29 24.51 ± 19.06 27.20 ± 7.24 23.79 ± 12.83 35.88 ± 10.48 29.84 ± 6.83 
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.6. Cross-database testing on other 3D face spoofing attacks 

To further show the generalization ability of the proposed 

cheme and existing methods in detecting other 3D face spoof- 

ng attacks, we have conducted cross-database experiments with 

raining on SWFFD (with 40 0 0 images in each subset) and test- 

ng on 3DMAD and HKBU-MARs-V1 datasets (using all the selected 

rames). The comparison results in Table 4 show similar perfor- 

ance differences for most methods with those in Table 2 us- 

ng the same data for training. The proposed method demon- 

trates the best generalizability. Specifically, using 288 × 288 and 

20 × 320 face scales achieved the lowest ACER values with 27.20% 

n 3DMAD and 29.84% on HKBU-MARs-V1, quite close to the re- 

ult on WFFD dataset (with ACER of 27.88%), while combining 

56 × 256 with 288 × 288 ranked second in detecting different 

inds of unknown 3D face spoofing attacks. 
108 
. Conclusions 

To address the limitations in existing 3D face spoofing attack 

atabases, we have introduced a new database, SWFFD, composed 

f large-scale single wax figure faces with high diversity from 

nline resources as super-realistic 3D face spoofing attacks. We 

lso propose an effective method to learn discriminative attention- 

ware features from different face scales for the detection of wax 

gure faces and real ones. By combining the SWFFD with real faces 

n CelebA-HQ for performance evaluation, we have found that the 

roposed method demonstrates promising accuracy and robustness 

erformance under both intra-database and cross-database test- 

ng. The benefits of multiscale fusion (especially using larger face 

cales) and database size balancing have also been verified through 

ur ablation studies. It should be noted that the best performance 

chieved by the proposed scheme under cross-database setting still 
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as the error rate of over 20%. Super-realistic wax figure faces are 

ndeed difficult to distinguish from real ones even for humans, es- 

ecially with unknown attack patterns. Therefore, how to further 

mprove the generalization property of existing methods deserves 

urther study for not only 2D face anti-spoofing but also 3D real- 

stic face anti-spoofing in the future. Recently developed transfer 

earning techniques such as domain adaptation deserve systematic 

tudy for cross-database anti-spoofing detection. 
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