
Biometrika (20XX), XXX, X, pp. 1–8
Submitted for possible publicationPrinted in Great Britain

Composite grid designs for adaptive computer experiments
with fast inference

BY M. PLUMLEE, C. B. ERICKSON, B. E. ANKENMAN
Department of Industrial Engineering and Management Sciences, Northwestern University

Evanston 60208, Illinois 5

mplumlee@northwestern.edu, collinerickson@u.northwestern.edu,
ankenman@northwestern.edu

AND E. LAWRENCE
Statistical Sciences, Los Alamos National Laboratory

Los Alamos 87544, New Mexico 10

earl@lanl.gov

SUMMARY

Experiments are often used to produce emulators of deterministic computer code. This article
introduces composite grid experimental designs and a sequential method to build the design for
accurate emulation. Computational methods are established that enable fast and exact Gaussian 15

process inference even with large sample sizes. We demonstrate that this approach can produce
emulators orders of magnitude more accurate than current approximations while requiring com-
parable computation.

Some key words: Gaussian process; Emulation; Sparse grid; Kriging; Sequential experiment

1. INTRODUCTION 20

A computer experiment is a set of evaluations of a deterministic computer code with a d
dimensional input. The experiment is often used to build an emulator, which is a statistical esti-
mator of the code. The classical recommendation for a sample size is 10d (Loeppky et al., 2009).
However, 100d to 10, 000d samples can be needed to produce an emulator for a highly complex
model with lofty prediction accuracy goals (Harari et al., 2018). Gaussian process inference is 25

the standard method to build statistical emulators because of its flexibility (Santner et al., 2019).
The major drawback of Gaussian process inference with large sample sizes is that the standard
statistical computation costs scale cubically with respect to the sample size. This limits fast and
exact inference to cases where the sample size is less than a thousand. There are remedies to this
computational barrier, such as Gramacy & Apley (2015), but these approaches generally give 30

only approximate inference that can induce sub-optimal emulation performance. The question
of how to conduct exact Gaussian process inference with large sample sizes remains a challenge
for computer experimenters.

Plumlee (2014) paired Gaussian processes with a special type of experimental design based
on classical sparse grid interpolation rules (Wasilkowski & Wozniakowski, 1995; Nobile et al., 35

2008b) for fast inference. The algorithm yielded shortened computing time by several orders of
magnitude for some examples. However, these sparse grid designs treat all input dimensions as

C© 2018 Biometrika Trust



2 M. PLUMLEE ET AL.

homogeneous. The classical 10d sample size recommendation is based on the idea that the com-
puter code’s response is quite sensitive to some input perturbations and less sensitive to others
(Linkletter et al., 2006; Savitsky et al., 2011). From this perspective, the sparse grid designs of40

Plumlee (2014) are inefficient since they do not account for the differing sensitivity of input di-
mensions. Other popular computer experiment methods, such as those proposed by Joseph et al.
(2015), He (2020) and Sun et al. (2019), are made to be robust to input dimension heterogeneity.
But these types of experiments will not produce fast inference.

This article describes a computer experiment design strategy that accounts for heterogeneous45

sensitivity among the input dimensions while maintaining fast inference. These designs are
unions of grids termed composite grid designs. We also introduce an algorithm that adaptively
builds the design to yield better emulation performance. In a simulation study, this emulation
approach bests modern competitors while taking a similar amount of computation to build the
emulator and significantly less computation to predict using the emulator.50

2. COMPOSITE GRID DESIGNS

We label our input x = (x1, . . . , xd) and without loss of generality take our input space as
[0, 1]d. If we let X represent a discrete set of points in [0, 1], a grid is X × X × · · · × X , where
× is the Cartesian product. One problem with using a single grid as a computer experiment is that
grids have poor projection properties. When X has cardinality n, the existence of k inert input55

dimensions would mean that we have used nk times more samples than needed. This would be
an extremely wasteful design even if k is small. For this reason, grids are rarely directly useful
for computer experiments.

Define an ordered sequence of discrete sets of points in [0, 1] labeledX (1) ⊂ X (2) ⊂ X (3) ⊂
· · · . While not needed for our results, it helps to imagine that X (1) = 0.5: a single point in the60

middle of our space. In our simulations, X (2) is set to (0.125, 0.5, 0.875). The results in this
article hold regardless of this choice and only require that these sets are nested. Simulations
indicated that the somewhat ad-hoc choice described in the supplemental material yielded good
performance.

We propose using a composition of grids to create a better experimental design compared to a65

single grid. An index that describes a potential grid facilitates the explanation of these composite
grid designs.

DEFINITION 1 (INDEX). An index, i = (i1, . . . , id), is a vector of positive integers. The grid
corresponding to i is X (i1)×X (i2)× · · · × X (id).

Our composite grid design is formed as the union of all grids that correspond to a set of in-70

dexes. The structure of this index set is critical. If an index is composed of small elements, like
i = (1, 2, 1) when d = 3, the corresponding grid is reasonably small. If an index has large el-
ements, like i = (3, 8, 4) when d = 3, the corresponding grid is typically large. Thus for both
mathematical and practical reasons, one should ensure that smaller indexes appear before larger
indexes in an index set.75

DEFINITION 2 (REGULAR INDEX SET). A regular index set I is a set of indexes such that
A(i) ⊂ I for all i ∈ I, where A(i) is the set of all indexes i′ 6= i such that i′k ≤ ik for k =
1, . . . , d.

A regular index set can therefore be thought of as obeying a strong hereditary principle. Com-
posite grid designs follow from the structure imposed on the regular index set.80



Composite grid designs 3

Fig. 1. Illustrations of composite grid designs in two dimensions. The top panels represent an index set where a square
appears if it is in the index set. The corresponding two dimensional design is presented below each index set. The

specifics of the grids are in the supplementary material.

DEFINITION 3 (COMPOSITE GRID DESIGN). A composite grid design built from a regular in-
dex set I is defined as C(I) =

⋃
i∈I X (i1)×X (i2)× · · · × X (id).

Composite grid designs generalize the sparse grid designs from existing quadrature rules. Fig-
ure 1 gives four two-dimensional illustrations. The top panels describe the index sets that gener-
ate the designs in the bottom panels using the definition of composite grid designs. This depends 85

on X (1),X (2), . . . ,X (5), where X (1) and X (2) are described previously and the latter three
are described in the supplemental material. The first column of panels represents a traditional
sparse grid design used in Plumlee (2014), which employs the index set of all indexes such that∑d

k=1 ik ≤ η where η = 5 in the Figure 1. This type of index set clearly obeys our rules for a
regular index set. A popular extension of sparse grid quadrature rules by Nobile et al. (2008a) 90

employs a weighted sum, illustrated in the second column of Figure 1 where i1 + 2i2 ≤ 7. This
type of design accounts for some heterogeneous sensitivity among the input dimensions as one
dimension has significantly denser sampling compared to the other. The third and fourth columns
of Figure 1 represent alternative design approaches. The third column contains a design that fre-
quently perturbs the input dimensions individually while infrequently perturbs them jointly. The 95

design in the far right column in Figure 1 takes the opposite approach.
There is no index set which is optimal across all Gaussian process models. An optimal index

set for a specific Gaussian process model would perturb the sensitive input dimensions more than
the insensitive input dimensions. Gaussian process models can have different input dimension
sensitivities, which prevents optimality across all possible Gaussian process models. This article 100

will later discuss choosing the index set adaptively for good emulation. Before addressing this
point, the next section gives the details of Gaussian process inference on composite grid designs.



4 M. PLUMLEE ET AL.

3. COMPUTATIONALLY FAST INFERENCE

Given an input x, the scalar computer model response is labeled y(x). The statistical model
has that y(·) is a realization of a Gaussian Process with mean zero and a separable covariance105

function such that the covariance between inputs x and x′ is given by
∏d

k=1 φk(xk, x
′
k) , where

φ1(·, ·) , . . . , φd(·, ·) are positive definite functions on [0, 1]2. If X and X ′ are sets of n and n′

points in [0, 1], φk(X ,X ′) is the n× n′ matrix of covariances.
Fast inference is possible when using grid designs because the covariance matrix is a Kro-

necker product of smaller matrices. This section describes how to extend this inference technique110

to composite grid designs. Our inference employs small covariance matrices corresponding to
each dimension, φk{X (m),X (m)}, for each k and integers m ≥ 1. For each input dimension,
the largest matrix we must manipulate is the maximum grid size in C(I) along that dimension.
Even when the total design size of C(I) is large, these matrices remain small. Two manipulations
of these smaller covariance matrices will be used;115

Φ̃k(m) = φk{X (m),X (m)}−1 and lk(m) = log (det [φk{X (m),X (m)}]) .

Both of these operations, inversion and determinant calculation, have computational costs that
practically scale on the size of the matrix cubed. Because these matrices are small, equations that
use these elements will be significantly faster than those that use the full covariance matrix.

The following three theorems will use Φ̃k(m) and lk(m) to predict, estimate prediction errors
and compute the likelihood of the observations. The first two have obvious value and the last one120

is commonly used in parameter estimation of the Gaussian process model using experimental
observations (Santner et al., 2019). These results extend the results in Plumlee (2014) by using
the general index set I instead of the sparse grid index set. The proof mechanisms differ from
Plumlee (2014) and are (for the most part) considerably simpler. The proofs are located in the
supplementary material for this article.125

THEOREM 1. Let Y represent the vector of observations of y(·) at C(I). For all i ∈ I, define
Y (i) as the vector of the observations at X (i1)×X (i2)× · · · × X (id), which will be a subset
of all observations in Y . The conditional mean of y(x) given data Y at C(I) is

ŷ(x) =
∑
i∈I

a(i)

[
d⊗

k=1

φk{xk,X (ik)}Φ̃k(ik)

]
Y (i),

where ⊗ is the Kronecker product, a(i) =
∑

j∈I
∏d

k=1 b(ik, jk), and

b(m,m′) =


−1 if m+ 1 = m′,

1 if m = m′,

0 otherwise.

THEOREM 2. For k = 1, . . . , d and t, t′ ∈ [0, 1], define

vk(t, t′,m) = φk{t,X (m)}Φ̃k(m)φk{X (m), t′}

for integers m larger than zero and let vk(t, t′, 0) = 0. Given ŷ(·) described in Theorem 1, then130

the covariance between y(x)− ŷ(x) and y(x′)− ŷ(x′) is

d∏
k=1

φk
(
xk, x

′
k

)
−
∑
i∈I

d∏
k=1

{
vk(xk, x

′
k, ik)− vk(xk, x

′
k, ik − 1)

}
.



Composite grid designs 5

THEOREM 3. The log of the likelihood of Y is

− N

2
log(2π)− 1

2

∑
i∈I

d∑
k=1

{lk(ik)− lk(ik − 1)}
∏
m 6=k

{n(im)− n(im − 1)}

− 1

2

∑
i∈I

a(i)

[
Y (i)T

{
d⊗

k=1

Φ̃k(i)

}
Y (i)

]
, 135

where lk(0) = 0 for all k, N is the cardinality of C(I) and n(m) is the cardinality of X (m)
where n(0) = 0.

4. SEQUENTIALLY BUILDING A COMPOSITE GRID

The proceeding two sections have established the framework for composite grid designs and
their fast inference, but the choice of index set has a substantial influence on the performance 140

of the resulting emulator. Ideally, the indexes should have terms that are largest in the input
dimensions that are most sensitive. We propose a sequential approach where the design is built
iteratively. The composite grid begins with a single element I = {(1, 1, . . . , 1)} and we add
indexes that ensure the index set is regular. The potential indexes set P contains all i such that
i /∈ I andA(i) ⊂ I. After adding an index to I, it is removed from P and P is updated with new 145

potential indexes to ensure the regularity. In each iteration, an index choice criterion is optimized
to select which index is moved from P to I.

Our index choice criterion is based on the variance of the emulator integrated over [0, 1]d.
Using Theorem 2, the integrated variance (Sacks et al., 1989), labeled IV, if we use design C(I),
is given by 150

IV(I) =

∫
[0,1]d

[
d∏

k=1

φk(xk, xk)−
∑
i∈I

d∏
k=1

{vk(xk, xk, ik)− vk(xk, xk, ik − 1)}

]
dx.

The straightforward strategy is to choose whichever i maximizes the reduction in the integrated
variance. The reduction for a new index in i ∈ P is

∆(i) =
d∏

k=1

[∫ 1

0
{vk(t, t, ik)− vk(t, t, ik − 1)} dt

]
,

which can be quickly computed by approximating the one dimensional integrals∫ 1
0 {vk(t, t, ik)− vk(t, t, ik − 1)}dt. The reduction must be considered alongside the sample

size needed to get that reduction. The efficiency of an index set, labeled EFF(i), is ∆(i) divided 155

by the number of new design points,
∏d

k=1 {n(ik)− n(ik − 1)} where n(·) is defined in Theo-
rem 3. The efficiency of an index set forms our index choice criterion. Algorithm 1 summarizes
the proposed approach.

Algorithm 1. Building a composite grid design for emulation of size less than or equal to N∗.
Set P ′ as all i in P with

∏d
k=1 {n(ik)− n(ik − 1)}

less than N∗ minus the cardinality of C(I).
While P ′ is not empty

Add i∗ = arg maxi∈P ′ EFF(i) to I
Update P using the new I



6 M. PLUMLEE ET AL.

The supplemental material to this article describes why the greedy algorithm of Algorithm 1160

achieves nearly optimal performance under a reasonable assumption on EFF(·). In practice, ∆(i)
depends on the covariance functions which are commonly unknown before experimentation.
Given some experimental data, the standard approach is to parameterize a covariance function
and maximize the likelihood to estimate parameters (Santner et al., 2019). These estimates allow
us to leverage the collected data for better index selections in future iterations. Thus our rec-165

ommendation is to use sequential batches of experimentation: do a computer experiment using
C(I), find the maximum likelihood estimates of all covariance parameters, and append onto I
via more iterations of Algorithm 1. The supplementary material includes more details on the
software implementation. More sophisticated methods for incorporating uncertainty in the es-
timation of the covariance parameters are briefly described in the supplementary material, but170

these methods resulted in an insignificant performance difference in our experience.

5. COMPARISON TO MODERN ALTERNATIVES

This section presents an emulation performance comparison on a set of four deterministic
functions termed Borehole, Circuit, Piston and Wing with respective input dimensions 8, 6, 7
and 10. All have been used in the computer experiment literature previously and the details175

of these test functions are provided in the supplementary material. Each test function exhibits
heterogeneous input dimension sensitivity, which was not intended during the selection of test
functions but was expected as most functions have heterogeneous sensitivity. Additionally, the
2019 Northwestern University PhD thesis by C. Erickson describes a successful implementation
of this method on a computer model of cosmology, but the computer model’s computational180

expense prevented using additional runs for comparison to other methods.
We compare our proposed methodology to existing emulation techniques that scale to large

experiments. The R package laGP, with methodology described in Gramacy & Apley (2015),
uses Gaussian process inference with only a carefully selected subset of the design points. The
R package BASS, with methodology described in Francom et al. (2019), conducts Bayesian185

nonparameteric regression with adaptive splines. Our method is implemented in the R package
CGGP. For the competitors, the experimental design points are from a Latin hypercube that is
maximin (Morris & Mitchell, 1995) when the sample size is less than 1000, then a random Latin
hypercube for larger sample sizes because the computational cost of finding a maximin design
with large sample sizes became overwhelming. We study the performance of these approaches190

by calculating the average prediction accuracy at 1000 test points using sample sizes of 10d to
10, 000d. Ten replications of each simulation are used to account for sources of randomness in
both the Latin hypercube designs and our designs and we average over these replications. The
differences between methods was much greater than the replication variability.

Figure 2 shows the root mean squared prediction error. The proposed approach does the best195

by a wide margin for large sample sizes, sometimes several orders of magnitude better. The
competing methods sometimes level off after 1000 to 10,000 observations. These imply that the
simplifications present in the other packages significantly impact the predictive performance.
We also compared using two predictive scoring rules from Gneiting & Raftery (2007) instead
of root mean squared prediction error and found similar competitiveness in small samples and200

dominance by the proposed approach in large samples. These comparisons are located in the
supplementary material. Alongside these comparisons, Figure 2 also offers a comparison to our
method without the adaptive design approach from Section 4. This comparison allows us to moni-
tor the relative contribution of the dimensional adapativity, thus effectively compare the proposed
designs to those proposed in Plumlee (2014). The results show that adapativity is clearly advan-205



Composite grid designs 7

Fig. 2. The average root mean squared prediction error versus sample size for four test functions with four methods.
The diamonds and dash-dotted line is laGP. The triangles and short dashes is BASS. The filled circles and thicker
line is our approach. The thinner line with open circles is our approach if a random index is selected among the ones

with smallest magnitude.

tageous on all test functions. We also attempted inputting our adaptive experiment data into the
other competing approaches and found very poor results. This implies that both the adaptive
design and the exact inference contribute to the observed performance benefit.

The supplemental material to this article demonstrates method is competitive in terms of time
to build the emulator. The build time for a sample size of close to 105 samples was about 20 210

minutes, which was roughly four times faster than BASS and four times slower than LAGP. We
also show that resulting prediction from our method near 105 samples was 3 times faster than
BASS and 10 times faster than laGP. Because laGP finds optimal sub-designs during each
prediction, it was expected to be much slower than our approach. We have no explanation for the
slower BASS predictions. 215

ACKNOWLEDGEMENT

We thank Issac Newton Institute and National Science Foundation’s CDS& E program for
their support as well as J. P. Gosling, W. J. Welch, and H. P. Wynn for their comments and
motivation.

REFERENCES 220

FRANCOM, D., SANSÓ, B., BULAEVSKAYA, V., LUCAS, D. & SIMPSON, M. (2019). Inferring atmospheric release
characteristics in a large computer experiment using bayesian adaptive splines. Journal of the American Statistical
Association 0, 1–22.

GNEITING, T. & RAFTERY, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the
American Statistical Association 102, 359–378. 225



8 M. PLUMLEE ET AL.

GRAMACY, R. B. & APLEY, D. W. (2015). Local Gaussian process approximation for large computer experiments.
Journal of Computational and Graphical Statistics 24, 561–578.

HARARI, O., BINGHAM, D., DEAN, A. & HIGDON, D. (2018). Computer experiments: Prediction accuracy, sample
size and model complexity revisited. Statistica Sinica 28, 899–910.

HE, X. (2020). Lattice-based designs with quasi-optimal separation distance on all projections. Biometrika Asaa057.230

JOSEPH, V. R., GUL, E. & BA, S. (2015). Maximum projection designs for computer experiments. Biometrika 102,
371–380.

LINKLETTER, C., BINGHAM, D., HENGARTNER, N., HIGDON, D. & YE, K. Q. (2006). Variable selection for
Gaussian process models in computer experiments. Technometrics 48, 478–490.

LOEPPKY, J. L., SACKS, J. & WELCH, W. J. (2009). Choosing the sample size of a computer experiment: A practical235

guide. Technometrics 51, 366–376.
MORRIS, M. D. & MITCHELL, T. J. (1995). Exploratory designs for computational experiments. Journal of statis-

tical planning and inference 43, 381–402.
NOBILE, F., TEMPONE, R. & WEBSTER, C. G. (2008a). An anisotropic sparse grid stochastic collocation method

for partial differential equations with random input data. SIAM Journal on Numerical Analysis 46, 2411–2442.240

NOBILE, F., TEMPONE, R. & WEBSTER, C. G. (2008b). A sparse grid stochastic collocation method for partial
differential equations with random input data. SIAM Journal on Numerical Analysis 46, 2309–2345.

PLUMLEE, M. (2014). Fast prediction of deterministic functions using sparse grid experimental designs. Journal of
the American Statistical Association 109, 1581–1591.

SACKS, J., WELCH, W. J., MITCHELL, T. J. & WYNN, H. P. (1989). Design and analysis of computer experiments.245

Statistical Science 4, 409–423.
SANTNER, T. J., NOTZ, W. & WILLIAMS, B. J. (2019). The Design and Analysis of Computer Experiments, Second

Edition. Springer-Verlag.
SAVITSKY, T., VANNUCCI, M. & SHA, N. (2011). Variable selection for nonparametric Gaussian process priors:

Models and computational strategies. Statistical Science 26, 130.250

SUN, F., WANG, Y., XU, H. et al. (2019). Uniform projection designs. The Annals of Statistics 47, 641–661.
WASILKOWSKI, G. W. & WOZNIAKOWSKI, H. (1995). Explicit cost bounds of algorithms for multivariate tensor

product problems. Journal of Complexity 11, 1–56.

[Received on XX XXXX 20XX. Editorial decision on XX XXXX 20XX]


