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Probabilistic hurricane storm surge forecasting using a high-fidelity
model has been considered impractical due to the overwhelming com-
putational expense to run thousands of simulations. This article demon-
strates that modern statistical tools enable good forecasting perfor-
mance using a small number of carefully chosen simulations. This
article offers algorithms that quickly handle the massive output of a
surge model while addressing the missing data at unsubmerged lo-
cations. Also included is a new optimal design criterion for selecting
simulations that accounts for the log transform required to statisti-
cally model surge data. Hurricane Michael (2018) is used as a testbed
for this investigation and provides evidence for the approach’s efficacy
in comparison to the existing probabilistic surge forecast method.

1. Introduction. Major hurricanes such as 2005’s Katrina, 2012’s Sandy, and 2017’s
Irma produced tens of billions of dollars in damages. A majority of the damage comes from
coastal flooding as high wind speeds from tropical cyclones push water from the ocean
and coastal estuaries up onto land (Resio and Westerink, 2008). This phenomenon, called
storm surge, is the rise of water associated with coastal flooding caused by storms such as
tropical cyclones. It can reach elevations of several meters above sea level and can extend
over several tens of kilometers. Storm surge is driven by tropical cyclone characteristics like
location, heading, speed, intensity, and size.

This article will focus on forecasting the surge from an incoming storm. Predicting coastal
storm surge as a storm nears landfall is critical to improve evacuation management and
can be used to evaluate damage for recovery (Walker et al., 2018). The interface between
coastal geometry and a storm is the key factor for predicting coastal flooding. In shallow
areas, the seafloor acts as a ramp for the wind-driven ocean currents to flow to higher
elevations. Funneling land features can further amplify surges. Elevated overland areas like
barrier islands can partially block lesser storm surges but may be overtopped by larger ones,
substantially changing flooding patterns (Bilskie et al., 2015). A storm landfalling slightly to
the east would have a radically different surge profile compared to a storm landfalling slightly
to the west because the winds on either side of a storm’s center are directed opposite of
each other. Today, computer models are considered the best way to understand and predict
the complex interactions between coastal geometry and a storm.
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1.1. Computer models for forecasting storm surge. Storm surge is simulated by solving
a set of partial differential equations known as the shallow water equations to yield water
elevation and velocity in space and time (Bode and Hardy, 1997; Resio and Westerink,
2008). A mesh of nodes, which are points in geographic space, is constructed to capture
the shape of the seafloor and overland topography. The partial differential equations are
then solved on the mesh and integrated forward in time over several days for a single storm
simulation.

When using surge simulations for forecasting, the substantial uncertainty in meteorolog-
ical forecast of the storm itself (Cangialosi, 2019) necessitates simulating multiple possible
storm variations. Current surge forecasting in the U.S. employs a numerical model that can
be run cheaply to permit thousands of simulations: The U.S. National Hurricane Center
(NHC) publishes a probabilistic surge forecast product called P-Surge (Taylor and Glahn,
2008) that is based on the SLOSH storm surge model (Jelesnianski, 1966; Jelesnianski,
Chen and Shaffer, 1992). SLOSH is used partly because of its low computational expense;
a single simulation can be run on a laptop in about 1 hour. SLOSH’s speed and numerics
were chosen given the computational capabilities of the time and have been maintained to
provide a reliable and efficient model.

SLOSH’s computational speed comes from a lower mesh resolution and simpler physics
such as neglecting nonlinear advection terms in the momentum equations. Our study uses
the ADCIRC model (Westerink et al., 2008) which, including differences in mesh resolution,
can be over 100 times more computationally expensive than SLOSH. In addition to its more
realistic physics, ADCIRC’s numerics allow more flexible meshes that can resolve small fea-
tures such as coastal inlets and elevated highways that act as crucial pathways and barriers
to flooding (Bilskie et al., 2015), while also covering entire ocean basins to reproduce the
large-scale ocean response to storm forcing (Morey et al., 2006). High-fidelity verification
and calibration studies on ADCIRC indicate model errors are typically below half a meter
(Dietrich et al., 2011; Bilskie et al., 2016), though errors in forecasting are expected to be
larger due to forecast uncertainty (Cyriac et al., 2018). To manage the added computa-
tional cost, ADCIRC scales efficiently in parallel from one to thousands of processors on
supercomputing systems (Tanaka et al., 2011). Despite the advantages in accuracy of AD-
CIRC over SLOSH, operational forecasting using a computationally demanding model such
as ADCIRC remains challenging. A generic (and exhaustive) thousand-member ensemble
using the ADCIRC model for our case study would require on the order of 100,000 dedi-
cated computer cores in a high performance computing configuration to forecast a single
geographic region.

1.2. Setting and approach. This article explains an approach to forecasting peak storm
surge using the high-fidelity ADCIRC model with a small number of carefully chosen runs
per forecast period. Using only a small number of high-fidelity model runs is crucial to
provide time-sensitive information. Our proposed approach uses only 10 — 30 runs every 12
hours. It does this by using statistical tools to predict water levels for unsimulated storms,
borrow information across forecast periods, and intelligently choose storms to be run. Our
goal was to construct an approach with less than one hour of overhead computation using a
standard desktop computer, which is time aside from the ADCIRC simulation that cannot
be easily parallelized.
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The input to our process is the NHC forecasts, which are given every 6 hours and consist
of information at future intervals on location of the storm, the maximum sustained wind
speed and directional isotach radii from storm center. These forecasts typically predict
storm states for 12hr, 24hr, 36hr, 48hr, 72hr, 96hr and 120hr from the time of forecast
if the tropical cyclone exists through that time period. A raw NHC storm forecast thus
consists of over a hundred values representing storm properties. Instead of examining all of
these values, we focused on the storm properties when the center of the storm first makes
landfall because these determine the bulk of the peak surge. We use a six-dimensional
characterization of the storms at landfall: latitude (LAT), longitude (LONG), heading (H),
forward speed (FS), maximum wind speed (MWS), and radius of 34kt isotach (R34). This
characterization is unique to this paper, but it was anticipated to provide a good summary
of storm properties relevant to storm surge. It also shares similarities with existing studies
(Toro et al., 2010). Once the landfall characteristics are specified or changed, the remaining
aspects of the forecast are then filled based on current NHC forecast. Figure 1 illustrates the
results of this operation for our case study. Using the historical error metrics published by
the NHC, we also construct a probabilistic forecast of the storm’s landfall characteristics.
The derivation and procedure for drawing from the forecasted distribution of the storm’s
landfall characteristics is not the focus of this article, but details on the new procedure are
given in Supplement A.

Our approach involves existing and new computer model emulation and designed com-
puter experiment tools (Sacks et al., 1989; Currin et al., 1991; Santner, Williams and Notz,
2003). The structure of our algorithm is to select computer experiments at each forecast
period and then run those storms through the ADCIRC simulator. A fast emulator of the
ADCIRC simulator is then built using this data set, which provides an ability to integrate
over thousands of storms without running them through the expensive ADCIRC simulator.
The emulator is constructed using Gaussian Process inference, also widely used in geostatis-
tics (e.g., Cressie, 1993). The Gaussian Process is used here as a statistical model of the
surge response to predict at uninvestigated storms, not in a geographic sense to interpolate
between nodes.

1.3. Contributions summary. The overarching goal of this project is demonstrating the
effectiveness of statistical computer experiment inference for forecasting storm surge of
an approaching tropical cyclone. Emulation for water level modelling has been considered
previously (Rohmer and Idier, 2012; Parker et al., 2019) for forecasting surge with a fixed
dataset (Taflanidis et al., 2012; Jia and Taflanidis, 2013; Jia et al., 2016). However, there
appears to be no existing surge forecasting tool that both employs emulation techniques
and adaptively selects new storms for sequential forecasting. We find that the integrative
methodology described in this article results in significantly smaller predictive errors.

Several authors have applied data assimilation-based approaches to forecast storm surge
(Peng and Xie, 2006; Altaf et al., 2014), though such efforts are functionally different from
what we do here. Assimilation approaches leverage the covariance structure between ob-
served and modeled water levels to produce a probabilistic prediction. They lack a mech-
anism to account for forecast uncertainties known to exist in the NHC storm forecast.
Further, it is unclear whether such assimilation-based methods can provide useful informa-
tion early enough to be of practical use (Asher et al., 2019). This is because observations of
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Fic 1. Hurricane forecast examples for our case study described in Section 1.4. The top panels are the
NHC forecasts and the bottom panels are hypothetical modified storms generated by our procedure described
in Supplement A when the landfall characteristics are set to the (unknown at the time) actual landfall
characteristics. The thick line represents the track of the center of the hurricane. The thin lines in circular
shapes are the 12hr increments of the 64kt, 50kt and 34kt isotach lines respectively (inward to outward). The
numbers represent the mazrimum wind speed.

surge when the storm is far from landfall are nearly uncorrelated with surge when the storm
makes landfall, thus there is little information gained during assimilation in our forecast
time period.

The novel contributions of this research can be broken into three categories. The first
is the production of speedy and accurate statistical emulator of a deterministic computer
model during forecasting. This required an agglomeration of tools, but centered around
parallel modeling and imputation. There are roughly half a million nodes of interest where
peak surge needs to be simultaneously predicted. This can cause our computational overhead
to swell if not carefully addressed (Higdon et al., 2008; Chang et al., 2014; Gu and Berger,
2016). We find in this setting that the partial parallel approach (Gu and Berger, 2016) is
superior to a dimension reduction approach, such as that found in Chang et al. (2014).
Some new justifications for a partial parallel approach from a frequentist perspective are in
Supplement B. The peak surges at nodes which were never below water on a given run are
undefined physically and marked as missing in the software. This issue can consume our
entire computational overhead if not consciously handled. A surface imputation approach
that maintains interpolative properties proves effective.

Our second contribution is to enable the re-use of ADCIRC output from prior forecast
periods in the current forecast. The simulation model effectively changes as new forecast
information is given, even when the input vector of landfall properties remains the same.
The bottom panels of Figure 1 illustrate this fact, where the same storm landfall charac-
teristics produced slightly different storms because of alterations to other portions of the
forecast outside of the landfall characteristics. This is because our approach used the NHC
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forecast and the current storm track to fill in the additional storm aspects aside from the
landfall characteristics. One example of this effect is present in Figure 1, where at 72 and
48 hours out the NHC storm forecast diminished into landfall, but at 24 hours out the
NHC storm forecast reversed that trend and intensified into landfall. The bottom panels
contain our modified NHC storm forecasts, where even though all modified storms have
the same landfall characteristics, the progression borrowed the diminishing or intensifying
trend from the current NHC forecast. This differs from the emulation problem of computer
models of dynamics (Conti et al., 2009) and from computer models where the output given
is time dependent (Liu and West, 2009; Mak et al., 2018). To account for this, a unique
parameterization is used where the input vector includes the forecast time. Then, during
prediction, the future landfall time is drawn and used in the input vector, correctly account-
ing for the future uncertainty induced by changes to the NHC forecast aside from landfall
characteristics.

Lastly, our findings are that log transformed surge data can be fit to a Gaussian Process,
which has previously been used in conjunction with Gaussian process inference. Cressie
(1990) dates this transform to the origin of kriging. However this transform implies that the
classical designed experiment criterion no longer functions and a new criterion was needed.
Designed experimentation on computer models in a sequential setting has been investigated
in other contexts (Ranjan, Bingham and Michailidis, 2008; Gramacy and Lee, 2009; Bect
et al., 2012). In the practical context of storm surge prediction, we quantify the relative value
of designed experimentation and find that the adaptive method significantly outperforms
random draws of the storm characteristics from the forecast distribution.

1.4. Michael case study. A case study was needed to generate an efficacy evaluation of
our approach. The computational demands of the ADCIRC model limited us to a single
storm for this evaluation. We chose to study 2018’s Hurricane Michael. Michael was a pow-
erful but short-lived hurricane that caused 16 direct fatalities and $25 billion in damages
in the U.S. as it made landfall in the Florida Panhandle (Beven, Berg and Hagen, 2019).
Michael’s forecast error was unusual. Forecast location errors were less than half the his-
torical average, but forecast intensity errors were more than triple the historical average
with forecasted intensity persistently below actual. This can be seen in Figure 1: the storm
forecasts intensify closer to landfall.

In our study, we reproduced the knowledge of Michael at select forecast intervals, which
we call rounds, and let our algorithm evolve to meet the modeling demands observed at
each interval. The computational cost breakdown of our case study using the configuration
of ADCIRC from Bilskie, Hagen and Medeiros (2019) is provided in Table 1. Our attempt
required a limited number of runs at prediction periods spaced twelve hours apart, doubling
the NHC’s six hour typical window to simplify this pilot study. We gave ourselves much
more than twelve hours to build and test the statistical algorithm, but kept the total run
time of the algorithm within our one hour constraint.

Table 1 lists our case study’s forecast periods, sample size and simulation computational
cost. The hours until landfall approximate to within half an hour of actual landfall (Beven,
Berg and Hagen, 2019). The number of runs per forecast period decreased in size as our
accuracy goals appeared achievable with fewer runs. The computational cost per run is also
decreasing as the ADCIRC simulation time decreases. The last three rounds of simulation
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Experimental data Verification data
Ro;nd a(?\lfliigry iii)irlog nlzlcglrls Runs Core-hours | Runs Core-hours
0 07 72 30 23870* 0 0
1 09 60 30 12569 0 0
2 11 48 20 6141 0 0
3 13 36 20 4976 20 5161
4 15 24 10 2077 10 1818
5 17 12 10 1219 10 1195
Total: 120 50854 40 8174
TABLE 1

ADCIRC data collected and core-hours used the case study described in Section 1.4. The marking % on
round 0 core-hours indicates the core-hours are inflated due to cold starts of the ADCIRC model.

included random simulations as verification data that we used to measure the accuracy of
our emulator and evaluate designed experimentation in this setting compared to random
experimentation.

1.5. Structure of this article. The remainder of the article is structured as follows. Sec-
tion 2 describes the notation and Section 3 describes our general statistical model, fitting
details and our prediction algorithm for surge forecasting. Section 4 describes the new op-
timal experimental design approach to select each round’s storms. Sections 5 and 6 give
numerical analysis to evaluate the overall performance of the approach. The article offers
some concluding remarks in Section 7.

2. Setting and data notation. In general terminology, our goal is to produce a prob-
abilistic forecast of water level using a limited number runs from an expensive computer
model of storm surge that changes based on the time at which it is evaluated. Toward
this goal, we designed an emulator of the computer model as well as a sequential, optimal
designed experiment tool that selects inputs to the computer model while accounting for
the current forecast distribution. A more exhaustive description of the overall approach is
located in Supplement A.

At some point in time ¢, our computer model given landfall characteristics x is a length
M vector of peak surge labeled f(x,t) with numerical values at wetted nodes and missing
values for unwetted nodes. As stated in the introduction, x, a landfall characteristic, is a
6-dimensional vector of storm latitude, longitude, heading, forward speed, maximum wind
speed, and 34 kt isotach radius at landfall. We want to emphasize that the ¢ in f(x,t)
refers to the time at which the model is evaluated because depending on when the model is
evaluated, the response will reflect some underlying properties of the current NHC forecast
outside of = as detailed in Section 1. After some time, we will have generated surge data
from n storms at (x1,%1), ..., (Zn, tn) through ADCIRC simulations, where z; is a vector of
landfall characteristics for run ¢ and ¢; is the time of run ¢. Simulation outputs are stored
and labeled as f(x;,1;), a column vector of length M for all nodes of interest. Let f;(x;, ;)
be peak water level for the jth node of the ith run. The geospatial locations of the M nodes
are labeled s1,...,sy. We chose M as roughly half a million nodes—the computer model
domain contains roughly 2 million nodes—covering overland areas and coastal waters with
ground elevation at least —4 meters (i.e. 4 meters below sea level) in the study region.
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Hurricane forecasts have uncertainty associated with prediction errors that decrease as
the landfall draws near. The storm forecast distribution for the landfall characteristics
reflecting such uncertainty at time ¢ is labeled as II(¢). This distribution is considered an
input to our approach, specified by the NHC with some distributional assumptions pulled
from historical accuracy measures. Moreover, the landfall time of the hurricane is unknown
but can be drawn. The details of this process is in Supplement A. A random vector of
landfall characteristics and landfall time drawn from this distribution is labeled (Z,7) and
the surge response given this random vector is f(Z,7), where 7 is used as the landfall time
to distinguish it from ¢, the current time point.

Our statistical algorithm will take in the ADCIRC simulation data and the forecast
distribution and return two items at an arbitrary time point ¢. The first item is a statistical
emulator for ADCIRC simulation at time ¢. Due to the limited number of available runs,
f(x,7) is assigned a predictive distribution through statistical inference for any (z,7) pair.
To match current reporting practices at the NHC, we are only interested in the marginal
distribution of each element in the vector f(z, 7). The second item we return is sequential
experiments, which are new storms that can be investigated at time t. That is, if we have
budget for ¢ storms, we want to choose (p41,tn41);- -, (Tntq, tntq). We note that ¢, =
-+ = tp4q = t by construction, thus our decision is the choice of xy11,..., 2,44 using
the past data and the current storm forecast distribution II(¢). We do this by optimizing
a design criterion that considers both the forecast distribution and the accuracy of the
statistical estimation of f(Z,7).

We presume to have some initial data collected at (z1,0),..., (zn,0). For our case study,
these landfall characteristics drawn were a Latin Hypercube design of size 30. The landfall
characteristic ranges were chosen to roughly cover the south-east US Gulf coast with LONG
between —88.5 and —83.5 degrees, corresponding to the extent of the numerical model
domain. The remaining landfall characteristics’ ranges were roughly based on the observed
ranges from historical hurricanes in the area and the current storm forecast: FS:[3kts, 15kts],
H:[—10deg, 40deg], MWS:[60kts, 160kts]|, and R34:[75nm, 200nm].

3. Statistical modeling and forecasting. This section explains our overall statistical
modeling approach using collected data. This includes the dry node imputation, statistical
inference and probabilistic forecasting.

3.1. Imputation for spatial surge patterns. We require fast simultaneous prediction at
M (~ half a million) nodes. This eliminates a computation strategy where a prediction
algorithm is used separately at each node. One simple approach that yields fast computation
is to treat each node as independent with some shared parameters to allow for shared
computation (Gu and Berger, 2016). However, surge data poses an important obstacle to
the use of independent predictions: peak surge does not exist at some nodes for some runs.
The data are missing not because of randomness nor computation error but due to the
underlying physical system of interest. If a node is dry throughout the simulation, the peak
surge is reported as a missing value. For an inland node, storm surge occurs only when
the surge height is larger than the node’s ground elevation. Moreover, higher ground near
the ocean can block storm surge and create dry nodes behind it. Two approaches are to
set these missing values to zero or to the ground elevation at the corresponding location.
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The former can lead to a large gap between simulated surges and the imposed zero values.
The latter introduces an undesirable dependence on the ground elevation. Both of these
methods lead to discarding the information from nearby nodes that can be used to impute
reasonable surge values on dry nodes.

Our research found that within-surface imputation was an adequate strategy to surrogate
the missing values in the sense that the overall forecasts are satisfactory and the prediction
time is within the one hour time limit. The more sophisticated existing alternatives would
not function well in our setting. For example, missing values in remote sensing problems are
often imputed based on observations at both the same and different time steps (see, e.g.,
Cressie, Shi and Kang, 2010). Hung, Joseph and Melkote (2015) used a similar philosophy
on high dimensional computer model output with irregular grids. Transferring these ideas
to the surge setting implies a dry node should be imputed based on runs where the same
node is wet. One concern in using these type of algorithms in our setting is the intensive
computational burden they would impose. Aside from the computational concern, storm
surge data also involves complex missingness patterns that differ from these cases. For many
inland locations at high elevation, the water level is missing unless the surge is extremely
high. Storms where a node is wetted do not always provide useful information for storms
where the water level is lower.

Our imputation approach can be interpreted as compositing the original surge function
with the imputation scheme. Thus the imputation algorithm can be chosen without regard
for the statistical approach we leverage for emulation. The imputation should not change
the wet nodes’ peak surges. Also, the imputation approach should be continuous, or nearly
so, in the following sense: if a node is almost wetted, the imputed numeric value is very
close to when the node is nearly dry. Let y; = f(x;,t;) be the vector of imputed data for
storm generated with (z;,¢;) and y;; = fj(z;,¢;) when the jth node is wetted. Our chosen
within-surface imputation approach is inverse distance weighting interpolation (Shepard,
1968). Let z;; denote the imputed value. Thus if y;; is wet, then z;; = v;;, and if y;; is dry

viillsi — sell ™
j where f;(x;,t;)is wet
Zik =

Isj —sill=*
j where f;(x;,t;)is wet

where ||s — §/|| is the distance between the geographic locations s and s’. The only modifi-
cation was that the surge level was capped at the elevation of the node where a node is dry.
This modification ensures that the presence of surge from the ADCIRC model matches the
event when the imputed water level is larger than the elevation. That is, when a node is
dry, the water level is less than or equal to ground elevation. When a node is wet, the water
level is greater than ground elevation. The rationale for inverse distance weighting is that it
is computationally fast and can impute an entire mesh’s missing values in under a minute
for a single surface. More discussions on this point are in the last section of this article.

3.2. A fast, log-transformed Gaussian Process model. After imputation filled in the miss-
ing values, we opted for an approach termed as “partially paralle]” by Gu and Berger (2016).
This resulted in significant computational savings. Initially in our study, Gaussian Process
emulator failed in providing accurate prediction for simulated surges from ADCIRC. The



HURRICANE SURGE FORECASTING USING EMULATION 9

solution to the problem was to simply transform the data using a monotonic transform.
While the full Box-Cox family was available (Sakia, 1992), our approach was to simply
check if the two most popular transforms, square-root and log, would work, similar to the
strategy of Johnson et al. (2018). We found that a log transform was superior. While this
fix alone is not particularly novel (Cressie, 1990), it is worth acknowledging the degree to
which it resolved the problems in our case. The log-transformed Gaussian Process model
resulted in reasonable predictive models for the marginal distribution at each node.

To simplify notation in this section, let g(£) be the imputed value at £ = (x,t), meaning
that the input to the model can be represented by &1, ..., &,. Our statistical model is

(3.1) log (g;(+)) % Gaussian Process (uj, ajzr(-, “ gb)) forj=1,..., M,

where p; and UJQ» are constants associated with the jth node and r is a correlation func-
tion depending on correlation parameters ¢. In terms of the ADCIRC model, the coastal
geography implies that nodes can differ in terms of the average surge and the variation in
the surge, thus it is important that each node be endowed with its own mean and variance
parameters as in (3.1). However, for the correlation function, it makes sense to choose the
same structure and parameters for all nodes to ease the computational burden. If we did
not do this, we would have to invert hundreds of thousands of correlation matrices, which
by round 5 grow to size 120 x 120. If we did this inversion 100 times during optimization,
this would expend approximately 4 times our entire overhead computational budget on ma-
trix inversion alone. By using the same correlation structure and parameter ¢, the speedup
is massive and the fitting process takes less than 5 minutes on any round. We opted for
a custom non-separable power exponential correlation function; the separable variant was
used by Welch et al. (1992). Supplement B describes the specific correlation structure used
for our case study alongside a brief justification.

Let Z = log ((21, . ,zn)T> be an n X M matrix computed elementwise. The symbol T
represents transpose. Following known derivations, our maximum likelihood vectors are

fi1(o) TR(6) e
i = | = G and
fire (9)
53(9)
)= | = pdiag((2-en@) RO (2 el)T)).
531(9)

where e is a length n vector of 1s, and R(¢) is the n by n matrix

r(€,650) o (€160 0)
R(¢) = : : :
T(£n7§17¢) T(€n7§n7¢)

and the function diag returns a column vector of the diagonal elements of the matrix. The
maximum likelihood estimate for the correlation parameters is then found by

M
b= argmin, log (determinant(R(¢))) + % > log &?(q&).
j=1
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Supplement B gives additional computational details on how we found gz% in our case study.
We use a predictive distribution for the log of the surge at a new set of storm character-
istics &, log(g(§)), as a vector of normal distributions with vector of means

~

. T . T(£7 gl; ¢)
(€)= i(0) + (2 - ei(@)T) RO i
T(§7 &ns (b)
and a vector of variances

A~

) ) A (€, 615 9)
o) = [r(660) = (r(& &) - rEEud)) RO

: 5%(9).
T‘(ﬁ, énQ Qg)

These two functions, m and 0, are the conditional mean and variance of log(g(£)) based on all
available data and the maximum likelihood estimates for the Gaussian process parameters.
This predictive distribution ignores the estimation uncertainty in the parameters, but this
is a fast approximation compared to other popular, but slower, methods like Markov Chain
Monte-Carlo. Given a landfall storm characteristic vector &, the mean of the predictive
distribution of g(§), often directly referred to as the emulator, is given as follows by a
property of the log-normal distribution:

9(8) = exp(m(¢) + 0(£)/2).

The function exp(ri(§)) represents our predictive median. Interestingly, §(¢) is inflated
beyond the median at uncertain storm characteristics because of the log-transform used in
our statistical model.

3.3. Forecasting technique. Our forecast distribution for the imputed maximum water
level at node j at time t is then

(3.2) Log-Normal (m;(z,7),0;(Z,7)), (Z,7) ~ II(t),

where II(t) is the forecast distribution at time ¢. This implies the forecast for f(z,t), which
should have dry values indicated, should be a truncated log-normal distribution, where the
value is marked dry when the prediction is below that node’s elevation. This can be quickly
simulated without re-running the ARCIRC model. The current NHC surge forecast provides
the 90% quantile, so we used N = 3500 samples from the forecast distribution at time ¢ to
ensure an adequate estimation of this quantile via a large enough sample size. We label our
draws of landfall characteristics as (%1,71),. .., (Zn,7n). It is important to note that these
are not the same as (z1,t1), ..., (¥n,ty) which are run through the ADCIRC simulator.
While (Z1,71), ..., (Zn,7n) are chosen via random sampling, (x1,¢1),..., (Zn,t,) are more
carefully chosen as described in the next section. Moreover, t1, ..., t, are forecast times
whereas 7, ..., Ty are storm landfall times.

The usage of forecasted and actual landfall time is a unique and important component in
prediction that departs from existing studies of time and computer emulation (Conti et al.,
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2009; Mak et al., 2018). Forecast time, not landfall time, is the major driver of discrepancy
in surge model output. If ignored, this could break our Gaussian Process inference because
a storm with the same landfall characteristics could return two different outputs. While
we could treat each response as having random error, sometimes refereed to as a nugget
(Gramacy and Lee, 2012), we opted for a procedure that reflects the actual generation of the
discrepancy. The previous data include which forecast time the surge measurement is based,
t1,...,t,. However, the predictive distribution is based on the random landfall occurrence
time 7. When we are far from landfall, thus 7 is far from t,, the model output is less
correlated with predictions and the predictive distribution gets more diffuse. As forecasted
landfall 7 draws near to t,, the model outputs and predictions become more correlated.
This mirrors the intuitive effect of non-landfall information that is borrowed from NHC
forecast: far from landfall, many things can aggregate for large effects and we should have
a broader predictive distribution; closer to landfall, these extraneous forecast properties
are closely aligned with the actual storm and should have a relatively minor effect. This is
automatically tuned during maximum likelihood estimation by estimating the correlation
parameter corresponding to .

4. Sequential sampling using optimal designs. In our case study, the emulator
using our initial data from 30 runs was not sufficient to end the statistical learning pro-
cess. This section describes a new sequential sampling strategy for choosing storm landfall
characteristics using optimal designed experiments. We will select a batch of experiments
of size ¢ to be run through the ADCIRC simulator in parallel. This section discusses how
the log transform used in our statistical model impacts the typical optimal design criterion.
Aside from this transformation issue, our problem differs from a static problem where the
goal is to improve the emulator in a fixed environment, as done in Loeppky, Moore and
Williams (2010) and Vernon, Goldstein and Bower (2014). Two important changes happen
each round as 12 hours of wall clock time passes and the storm marches toward land-
fall. First, the distribution of the landfall storm characteristics becomes more concentrated
around the unknown true storm’s landfall characteristics, reducing the need to improve
the emulator globally. Second, the simulation model changes as a function of the landfall
characteristics each round, as detailed in Section 1. These two changes affect the resulting
designs and overall performance, but not the optimal design criterion we introduce.

We presume our statistical model is fitted using the previous data. Without loss of gen-
erality, we refer to these as (z1,t1) ..., (zn,ts), acknowledging that n increases after each
round of data collection. We then invert the fitted model by optimizing a criterion to find
the best possible selection of g new landfall characteristics, between 10 and 30, to investi-
gate. One widely used model-based criterion for computer experiments comes from Sacks
et al. (1989). This takes a Gaussian Process model, with no transform applied, evaluates
designs based on the integrated mean squared error (IMSE), given by

1 M N
(4.1) IMSE = —— 6P (i, 7).
MN &&=

]:1 =

The word ‘integrated’ is used here in place of the more obvious ‘average’ to match historical

notation. The variance 9% is the variance of log(f;(#,7)) conditional on the data up to
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this point, the parameter estimates at this time, as well as on both the choice of the new ¢
points and the previously used storms. For us, it is given by

-1
PP (2, 7) = 53(d) (r«m), (2, 7):8) — h(a,7)T ( o Z) h<w>> ,

where .
T((.’E,T), ($1,t1);¢)
v | @), @ata): )
= (@, 7). s, 0:0) |
T((CE,T), (‘Tn+q7t); gg)
r((z1, 1), (@na1,1):0) o r((21,1), (Tnag 1): &)
H = : , and
7((Zns tn), (Tny1,t); flg) o (T, th), (xn+qat)§ (Zg)
P(@ng1,8), (Tna1,8):0) - (@1, 1), (Tnigr 1) 0)
G= :
T((xn—&-q? t)7 (xn-'rla t)§ (5) T T‘((l’n+q, t) ($n+q7 t); (i)
These formulae leverage t,41 = -+ = t,4+4 = t since we are selecting ¢ storms at time

t. Minimizing the IMSE criterion typically avoids previously used storms, seeking to fill
gaps where needed in the input space. Minimizing the IMSE criterion also considers the
forecast distribution II(¢) through the draws (Z1,71),..., (Zn,7n). Minimizing the criterion
will place experimental landfall characteristics near the draws from the forecast distribution
to reduce the variance in those locations. Thus minimizing IMSE will automatically both
fill gaps in the existing data while adhering to the current forecast distribution.

For us, the traditional IMSE in (4.1) is not representative of the predictive accuracy of our
emulator. IMSE is measuring the error in the log-transformed space, m(z, 7) —log(g(Z, 7)),
but our concern is the actual error in terms of storm surge, §(Z,7) — g(Z,7). A more
nuanced criterion for our case with a log-transformed response would incorporate the results
such as those presented in Section 3.2.2 of Cressie (1993). This new criterion is termed an
exponential integrated mean square error (E-IMSE) criterion and is defined as

| M N o -
(4.2) EIMSE—M;;% (3:,7) (1~ exp (~00" (31, 7))

where w;(-,-) is a weight defined as w;(Z,7) = exp (2m;(Z,7) + 20;(z,7)) . Supplement B
contains more details on the derivation. The weight depends only on data collected prior
to the current data collection period. The second term in our formula depends on both the
prior data and the new experimental data. We note that although our criterion averages
across all nodes here, it effectively gives more weight to high variance or a high mean nodes
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Fia 2. Illustration of the differences in optimal designs decided by criterion IMSE (left panel) and criterion
E-IMSE (right panel). The small dots are the storm characteristics used in the round 0 experiment projected
onto the dimensions MWS and R34. The circles with stars represent the 20 new chosen storm characteristics.
The background contours represent the 10%,20%, . ..,90% highest density regions of the forecast as of round
1. The dashed lines are the marginal means for each landfall characteristic. The solid lines are the marginal
sample averages of the selected landfall characteristics.

because these will have larger values of w;(z, 7). This focuses attention to nodes with the
largest surges.

Comparing the IMSE in (4.1) and the proposed E-IMSE in (4.2), there are two key
differences. First, 1 —exp (—ﬁ?mp(a}i, ﬁ)) is not the same as ;" (Z;, 7;). However, at values
of @?TOP(:iti) close to 0, where we hope our emulator lies, the first order behavior of these
functions is the same. The major difference then lies in the weight function. The IMSE
criterion does not give varying weight to different areas of the x space. The E-IMSE criterion,
on the contrary, gives an increased weight to those xs with large mean values. In our context,
minimizing E-IMSE naturally selects storms with higher predicted surge in addition to filling
gaps in the data and adhering to the forecast distribution.

To illustrate the real effect of our criterion, Figure 2 shows the results for round 1 of
the Michael study using IMSE and E-IMSE, each selecting 20 new storms by minimizing
the respective criterion. For illustrative purposes, only the landfall characteristics that most
affect the storm strength are modified: the maximum wind speed (MWS) and the radius of
the 34kt isotach (R34). Increasing either MWS or R34 gives an increased storm strength
that, in turn, induces larger surge levels. The resulting designs in Figure 2 show a clear
trend that IMSE emphasizes weaker storms compared to E-IMSE. Focusing on storms
with larger, more catastrophic surge is a desired behavior when examining storm surge.
This feature naturally occurs in importance sampling of storm surge (Dawson and Hall,
2006). Here, minimizing E-IMSE replicates this behavior by acknowledging that a reasonable
statistical model has a structure where larger mean values also have higher variances. When
we minimize E-IMSE, we place storms near regions with larger surges which have high-
variance.

Computationally, we rely on a randomized search algorithm. Random search is common
in design of experiments in a continuous domain as the criterion’s surface is highly non-
convex (see, e.g., Gramacy and Lee, 2009). Our algorithm had to fit under the constraint
of one hour of overhead computation. The whole procedure takes roughly 15 minutes on a
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desktop computer. A more precise description of the approach is found in Supplement B and
the exact code is included in Supplement D. The unknown parameters that implicitly inform
this function are set to their maximum likelihood values from the most recent optimization.

The resulting designs are presented in Figure 3. There are a few interesting features of
Michael that become apparent. First, because of the complex coastline in this region, our
round 0 approach resulted in off-coast simulations that did not align with the remainder
of the selected storms, as demonstrated in the LAT/LONG plot of the samples. Second,
the distributions indicate that Michael was originally forecast to be quite weak, but rapidly
strengthened closer to landfall. This poor forecast makes Michael a challenging test case.
Improving the properties of the hurricane forecast distribution provided by the NHC is
considered outside the scope of this article. Lastly, we note that as Michael gets closer to
landfall, both forecast distributions and designed experiment runs get more concentrated.
This means that the prediction region gets smaller and thus the emulation problem gets
easier closer to landfall.

5. Design and emulation performance analysis. This section describes the perfor-
mance analysis of both the emulation strategy from Section 3 and of the designed experiment
strategy from Section 4. One question is the effectiveness of the partial parallel approach
compared to the more popular decomposition-type approach, where the surge response is
dimension reduced through a tool like principal component analysis (PCA). The reduced
dimension components are then modeled with individual Gaussian processes (potentially
with different parameters). Examples of this type of approach are Higdon et al. (2008) and
Chang et al. (2014), and the exact method is described in Supplement B.

To assess emulator accuracy, we ran through extra storms with the same counts as de-
signed storms for the last three efforts of data collection (see Table 1). These storms were
drawn from the forecast distribution with random landfall characteristics. This block of 40
storms can be used as a holdout set with the 120 other storms being the training set. These
random storm runs also permit a formal investigation of the relative value of designed ex-
periments versus randomly chosen storms. For the randomly chosen storms, we can treat
them as a (poorly) designed experiment and replace the original designed runs with their
random counterparts in rounds 3, 4 and 5. If we leave out a single storm and build a new
emulator, this would recreate an emulator built by choosing 39 storms at random in place
of our carefully chosen 40 storms. This yields a benchmark to compare our experimental
design approach, but understand there is also a small sample size discrepancy (39 storms
in the random approach versus 40 storms in our designed experiment approach).

Five different measures of accuracy are reported for completeness of understanding. In
our comparison, only nodes with ground elevation greater than one meter are investigated.
This focuses our analysis metrics closer to habitable areas that have a notable surge signal.
For this study, we are considering our ability to predict the imputed values, thus evaluating
the emulation not the quality of the imputation. The study in the next section will eval-
uate the overall performance that accounts for both imputation and emulation. The four
metrics are the typical root mean squared error, mean absolute error, which is often used
in meteorological forecasting (Willmott and Matsuura, 2005), the Dawid-Sebastiani score,
which evaluates adequacy of both the forecast variance and the mean (Gneiting and Raftery,
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F1c 3. Diagram of the predictive forecast distributions of the six landfall characteristics alongside the storms
chosen via the mechanism described in Section 4. The bottom left panels show the 90% high density region
contours for the forecast distribution for forecast periods 60,48,36,24, and 12 from landfall, where darker
lines imply closer to landfall. The diagonal panels show the one dimensional marginal forecast densities for
each landfall characteristic where darker lines imply a later round. The upper right panels show the selected
design storms. The open circles are the round 0 storms. The smaller dots are the storms chosen by E-IMSE,
where darker dots imply a later round.
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E-IMSE Minimizing Storms Randomly Selected Storms
Partial Parallel PCA Based Partial Parallel PCA Based
Root mean squared error 0.1234 (-) 0.1245 (0.350) | 0.1684 (0.007)  0.1567 (0.018)
Mean absolute error 0.0732 (-) 0.0780 (0.007) | 0.0945 (0.009) 0.0930 (0.008)
Mean Dawid-Sebastiani score | -4.0516 (-) -3.5220 (0.000) | -3.6650 (0.003)  -3.1852 (0.000)
95 % coverage 0.9086 0.8558 0.8899 0.8510
95 % interval score 0.5713 (-) 0.6827 (0.001) | 0.8453 (0.015) 0.9475 (0.005)
TABLE 2

The accuracy of the emulator measures as described in Section 5. The number in parentheses is the p-value
of a one-sided paired t-test with the null that the far left column has a larger mean.

2007), and the 95% coverage rate and interval score. More details of these evaluations are
provided in Appendix A.

The results are presented in Table 2, where the proposed storms do better than randomly
selected storms and the partial parallel approach does better than a PCA-based approach
for this case. We conduct hypothesis testing using a t-test with a sample size of 40 and
find significant results for chosen storms against randomly selected storms at the 0.05 level.
The partial parallel approach does better than the PCA-based approach in general, often
at a statistically significant level. Our explanation is that the PCA-based approach tends to
focus the weights on high surge areas, meaning that it tends to mischaracterize variation in
low surge areas. This is perhaps because the first few principal components can be estimated
based on the sample covariance (a similar discussion can be found in Sansé and Forest, 2009).
That our surge response (at least a log-transformed version) can reasonably be modeled
with a separable covariance function implies that the partial parallel can get near optimal
predictions without modelling the inter-node covariance structure, which agrees with the
findings of (Gu and Berger, 2016). In Table 2, both methods and designs yield confidence
intervals that give slight under-coverage, which can be interpreted as overconfidence. One
reviewer for this article suggested this result could be due to inadequate smoothness of
the covariance function or using plug-in maximum likelihood estimators of the covariance
parameters. We have no evidence for a single cause, but concur these are plausible and
add three more potential causes: it is at least slightly incorrect to use the same covariance
parameters across all nodes in the partial parallel approach; the log-transform only yields
approximate Gaussian behavior; and/or this could be due to random chance since the
confidence intervals are evaluated on correlated observations with a relatively small sample
size (40 storms). More theoretical details are given in Supplement B.

6. Hindcast prediction performance analysis. This section discusses the efficacy
of the approach in terms of accurate surge forecasts, not just accurate emulation. We also
note that a comparison to P-Surge using a small number of real surge readings is sum-
marized in Supplement C where the conclusions are similar. Our gold standard hindcast
uses Michael’s operational best track data from the NHC because these data come from the
same source as the forecasts, providing the most level comparison. The results are, overall,
positive. This was somewhat surprising because the accuracy of the surge forecast can be
corrupted by several factors outside of the statistical approach described in this article.
These include the NHC forecast accuracy, the forecast distribution, and the algorithm that
fills in missing information in the forecast. While the latter two have been designed and
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Fic 4. The ADCIRC hindcast peak surge (bottom right panel) and predictive median peak surge (other three
panels) using the predictive distribution in (3.2) at the marked latitude and longitude. Color is shown only
if the storm surge is above the node’s ground elevation. Color is also shown only for nodes whose ground
elevation is above —4 meters. The black line is the coastline.

tested to ensure reasonableness, the first one remains outside of our control. Figure 4 shows
the geographic layout near the eastern Florida Panhandle of our forecasted surge versus
the gold standard hindcast results. Nodes shown are in our M emulation sites, discussed
in Section 2, so these figures include some surges over the ocean as well as land. The bend
in the coastline on the right portion of the map represents a region exceptionally sensitive
to storm surge due to funneling effects mentioned in the beginning of this article. One im-
portant observation from this plot is despite the node independence assumption used for
our emulator, the forecast surfaces remain smooth and reasonably behaved. This agrees
with the observations from Gu and Berger (2016) that the predictive mean of the surface
structure can be preserved from the emulator despite assuming node independence. As dis-
cussed in Section 1.4, the NHC underforecasted Michael’s intensity and this propagates
into our median forecast which is low throughout the storm, especially over 48 hours before
landfall. Once the NHC’s forecasted storm intensity increased, our median forecasted surge
responded with a corresponding increase. Overall, this prediction appears to fall in line with
reasonable surge forecasts.

To quantitatively understand the overall forecasting performance, we would like to de-
termine not only how well we predict at wet nodes but also how well we predict dry nodes.
Thus we introduce two quantitative measures. Define a prediction that at j contains either
a numerical water level if it is wet or the label ‘dry’ if it is dry, call it h;. Let the true
hindcast run at j be labeled h} have the same structure as h;. The elevation at a node be
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Fic 5. Accuracy quantification of the median of the predictive distribution for both the proposed approach
(solid lines) and NHC' forecast mechanism P-Surge (dashed lines) as described in Section 6.

labeled e;. Then let

\hj —hj| if hy # dry, h} # dry
|h; —ej| if hy = dry, h} # dry
|hj — €j| if hj # dry, h; = dry
0 if hj = dry, hj = dry

1
number of nodes . Z

j€nodes

Surge Score =

and

0 if by # dry, h} # dry
1 Z 1 if hj =dry, hj #dry

1

0

Misclassification Rate = .
number of nodes . if hj # dry, h} =dry

j€nodes
if hj = dry, hj =dry

To our understanding, the definition of Surge Score is unique to this article, but was needed
to study both the magnitude of error in our censored data environment and errors in wet/dry
classification. Otherwise, for example, one could create a better numerical prediction by
reporting the elevation at a node.

We also compared our method to the probabilistic storm surge forecasts from P-Surge,
the NHC’s forecasting surge forecasting tool, as a benchmark. We acknowledge that we are
unfairly using our ADCIRC model as the gold standard, but this will give us an idea if the
overall procedure meets the current practice. Exact comparisons of the potential model error
between P-Surge’s SLOSH and our ADCIRC are difficult. As mentioned in the introduction,
P-Surge’s SLOSH has a coarser mesh compared to our ADCIRC. However, P-Surge leverages
SLOSH simulations from multiple overlapping meshes of differing resolutions and extents;
thus its exact resolution cannot be ascertained. When examining P-Surge’s data, we found
P-Surge may not report a median and thus we performed analysis on nodes with elevation
above 0 meter where P-Surge reported some value during the comparison. We also only
considered nodes that at some point during our simulation were wetted to remove trivial
nodes.

The quantitative measures of our forecast, using the median as the prediction, are pre-
sented in Figure 5. The results are positive both in magnitude and trend over the course
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of our study. It should be noted that overland surge prediction at elevations above 1 me-
ter is particularly challenging because these areas experience the largest variance in surge.
Moreover, our imputation approach has significant impact at these nodes because they are
often unwetted. Closer to landfall, 36 hours out, our accuracy measures get better as the
NHC forecast improves. The results are promising in favor of the proposed approach, which
better captures the anticipated surge earlier compared to P-Surge. An observation outside
these figures that is neither negative nor positive: the proposed surge forecasts are more con-
sistent than P-Surge. The proposed approach appears less sensitive to forecast-to-forecast
fluctuations, and one theory is that data reuse in our method induces some hysteresis. The
medians of our predictive distributions are persistently below the actual measurements.
This is expected due to the under-prediction of Michael’s intensity before landfall. When
Michael strengthened, this resulted in rising surge at all sensors. As discussed in the previous
subsection, this effectively is a sample size of one: a single storm. The lack of convergence
of P-Surge in Figure 5 is at least partially due to the fact that our reference solution came
from an ADCIRC model and P-Surge employs multiple overlapping SLOSH model grids.
We also suspect P-Surge’s performance oscillates because of how it handles the irregular
timing of NHC forecast information. Nonetheless, that our results have similar accuracy is
encouraging.

7. Conclusions. Storm surge forecasting for tropical cyclones is challenging because
of the short turnaround time, substantial computational requirements and large forecast
uncertainties. This article explains how, using a limited number of high-fidelity model runs
with new and existing computer experiment technology, we can forecast storm surge hazard
probabilities. Our results indicate that using an emulator with a targeted experimental
design is an effective strategy to leverage limited sampling of a high-fidelity computer model
of storm surge. We have completed a case study on Hurricane Michael (2018) which required
only 40 model runs per day to get adequate predictive performance. This mitigates the
computational cost of running the high-fidelity model with only a small amount of overhead
statistical computation. Our solution performed as well as or better than the primary data
product currently available which uses more runs of a lower-fidelity model. This existing data
product has over a decade of supporting development underneath it. The proposed method’s
performance relative to an operational product suggests that using a higher-fidelity model
of storm surge with statistical tools could improve surge forecasting.

There is extensive potential future research for both forecasting of storm surge and general
statistics. In terms of forecasting storm surge, there are potential emulator improvements,
better storm forecast distributions, and consideration of other storm parameterizations. In
addition, it might be possible to reduce the current data-model discrepancies for ADCIRC
through model calibration efforts (e.g. Tuo et al., 2015; Plumlee, 2017; Chang et al., 2016;
Gu and Wang, 2018; Gu, Xie and Wang, 2018; Chang et al., 2019). Another direction on the
statistical side is the development of more powerful methods to handle the missing surge
values at unwetted nodes. For in-surface imputation, we did try using Nearest Neighbor
Gaussian Process interpolation (Datta et al., 2016) for imputation and we saw a slight
decrease in overall accuracy in addition to taking over 30 times longer. Other potential
tools, like laGP (Gramacy, 2016), were too slow to be considered viable options. We imagine
that significant improvement in the imputation of unwetted nodes requires a specialized
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method that uses some physical understanding of storm surge. Another possibility is a
fully Bayesian approach that enables emulation and imputation based on a joint posterior
distribution for all the unknowns (i.e. emulation parameters and missing values). Developing
such a scheme without causing excessive computational burden poses a significant statistical
challenge and merits more investigation. Some Markovian model that induces sparsity in
the covariance structure (e.g. Lindgren, Rue and Lindstrom, 2011) might be useful for
formulating a computationally feasible approach.

On the subject of designing sequential experiments, we have shown that a transformation
of the response leads to a new experimental design criterion with desirable properties.
This could lead to similar approaches with different transformations or generalizations to
families of transformations. Our experimental design criterion is based on the predictive
variance, which agrees with our setting where the magnitude of the prediction error is
critical. Reducing the predictive variance from 100 cm? to 10 cm? at one location provides
more benefit than reducing the predictive variance from 10 cm? to 1 cm? at another location.
Currin et al. (1991) popularized an alternative, entropy-based criterion (Lindley, 1956). Beck
and Guillas (2016) demonstrated an iterative algorithm like the one we use (Supplement
B) was an effective approach but it may be slower than an algorithm that uses an entropy-
based criterion. We selected a design algorithm that was sufficiently fast to be employed in
our setting when the main computational cost was running the computer model (see Table
1). Perhaps a faster experimental design algorithm would be advantageous in a setting with
larger sample sizes or a cheaper computer model.
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APPENDIX A: DETAILS ON QUANTITATIVE PREDICTION COMPARISONS

Let mean;, med; and var; be the median and variance of the predictive distribution at
node j. Let U; and L; be the 97.5% quantile and 2.5% quantile of the predictive distribution.
Let a; be the imputed peak surge value held out for testing. Root mean squared error is

given by \/M*1 Zjﬂ/il (a; — meanj)2. Mean absolute error is given by
M1 Zjﬂil la; — med;|. The Dawid-Sebastiani score is given by

M*l % (a] - meanj)2 +1 ( )
————— +log(var;) | .
1 vars; & J
ji
The 95% coverage rate is M ! ij‘/il I(Lj <aj <Uj) (where I is the indicator function)
and the 95% interval score (Gneiting and Raftery, 2007) is given by

m(Lj —aj)I(a; < Lj)) :

M
_ 1
M 1]21 (Uj -Lj+ 70.025(%‘ = Uj)(a; > Uy) +
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SUPPLEMENTARY MATERIAL

Supplement A: Details on forecasting
(attached with submission). Submitted with this article is a description of the conversion of
NHC forecasts to forecast distributions as well as the updating process for NHC forecasts
given different landfall characteristics.

Supplement B: Additional statistical and algorithmic details
(attached with submission). Submitted with this article is a description of some additional
statistical and algorithmic details that could not fit in the main article due to length con-
straints.

Supplement C: More predictive performance analysis
(attached with submission). Submitted with this article is a description of a more prediction
performance analysis and a comparison of our approach to P-Surge using surge readings
from water level meters.

Supplement D: Exemplar Code
(attached with submission). Submitted with this article is Matlab code and data that illus-
trate the predictive algorithm at a subset of nodes.
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