
Learning Latent Space Energy-Based Prior Model

Bo Pang∗1 Tian Han∗2 Erik Nijkamp∗1 Song-Chun Zhu1 Ying Nian Wu1

1University of California, Los Angeles 2Stevens Institute of Technology
{bopang, enijkamp}@ucla.edu than6@stevens.edu {sczhu, ywu}@stat.ucla.edu

Abstract

We propose to learn energy-based model (EBM) in the latent space of a generator
model, so that the EBM serves as a prior model that stands on the top-down
network of the generator model. Both the latent space EBM and the top-down
network can be learned jointly by maximum likelihood, which involves short-run
MCMC sampling from both the prior and posterior distributions of the latent vector.
Due to the low dimensionality of the latent space and the expressiveness of the
top-down network, a simple EBM in latent space can capture regularities in the
data effectively, and MCMC sampling in latent space is efficient and mixes well.
We show that the learned model exhibits strong performances in terms of image
and text generation and anomaly detection. The one-page code can be found in
supplementary materials.

1 Introduction

In recent years, deep generative models have achieved impressive successes in image and text
generation. A particularly simple and powerful model is the generator model [39, 22], which assumes
that the observed example is generated by a low-dimensional latent vector via a top-down network, and
the latent vector follows a non-informative prior distribution, such as uniform or isotropic Gaussian
distribution. While we can learn an expressive top-down network to map the prior distribution to the
data distribution, we can also learn an informative prior model in the latent space to further improve
the expressive power of the whole model. This follows the philosophy of empirical Bayes where the
prior model is learned from the observed data. Specifically, we assume the latent vector follows an
energy-based model (EBM). We call this model the latent space energy-based prior model.

Both the latent space EBM and the top-down network can be learned jointly by maximum likelihood
estimate (MLE). Each learning iteration involves Markov chain Monte Carlo (MCMC) sampling of
the latent vector from both the prior and posterior distributions. Parameters of the prior model can then
be updated based on the statistical difference between samples from the two distributions. Parameters
of the top-down network can be updated based on the samples from the posterior distribution as well
as the observed data.

Due to the low-dimensionality of the latent space, the energy function can be parametrized by a
small multi-layer perceptron, yet the energy function can capture regularities in the data effectively
because the EBM stands on an expressive top-down network. Moreover, MCMC in the latent space
for both prior and posterior sampling is efficient and mixes well. Specifically, we employ short-run
MCMC [55, 54, 56, 26] which runs a fixed number of steps from a fixed initial distribution. We
formulate the resulting learning algorithm as a perturbation of MLE learning in terms of both objective
function and estimating equation, so that the learning algorithm has a solid theoretical foundation.
Within our theoretical framework, the short-run MCMC for posterior and prior sampling can also
be amortized by jointly learned inference and synthesis networks. However, in this initial paper, we
prefer keeping our model and learning method pure and self-contained, without mixing in learning
∗Equal contribution.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

ar
X

iv
:2

00
6.

08
20

5v
2

 [s
ta

t.M
L]

 2
9

O
ct

 2
02

0

tricks from variational auto-encoder (VAE) [39, 62] and generative adversarial networks (GAN)
[22, 60]. Thus we shall rely on short-run MCMC for simplicity. The one-page code can be found in
supplementary materials. See our follow-up development on amortized inference in the context of
semi-supervised learning [59].

We test the proposed modeling, learning and computing method on tasks such as image synthesis,
text generation, as well as anomaly detection. We show that our method is competitive with prior art.
See also our follow-up work on molecule generation [58].

Contributions. (1) We propose a latent space energy-based prior model that stands on the top-down
network of the generator model. (2) We develop the maximum likelihood learning algorithm that
learns the EBM prior and the top-down network jointly based on MCMC sampling of the latent
vector from the prior and posterior distributions. (3) We further develop an efficient modification
of MLE learning based on short-run MCMC sampling. (4) We provide theoretical foundation for
learning based on short-run MCMC. The theoretical formulation can also be used to amortize short-
run MCMC by extra inference and synthesis networks. (5) We provide strong empirical results to
illustrate the proposed method.

Figure 1: Generated images for CelebA (128× 128× 3).

2 Model and learning

2.1 Model

Let x be an observed example such as an image or a piece of text, and let z ∈ Rd be the latent
variables. The joint distribution of (x, z) is

pθ(x, z) = pα(z)pβ(x|z), (1)

where pα(z) is the prior model with parameters α, pβ(x|z) is the top-down generation model with
parameters β, and θ = (α, β).

The prior model pα(z) is formulated as an energy-based model,

pα(z) =
1

Z(α)
exp(fα(z))p0(z). (2)

where p0(z) is a known reference distribution, assumed to be isotropic Gaussian in this paper. fα(z)
is the negative energy and is parameterized by a small multi-layer perceptron with parameters α.
Z(α) =

∫
exp(fα(z))p0(z)dz = Ep0 [exp(fα(z))] is the normalizing constant or partition function.

The prior model (2) can be interpreted as an energy-based correction or exponential tilting of the
original prior distribution p0, which is the prior distribution in the generator model in VAE.

The generation model is the same as the top-down network in VAE. For image modeling, assuming
x ∈ RD,

x = gβ(z) + ε, (3)

where ε ∼ N(0, σ2ID), so that pβ(x|z) ∼ N(gβ(z), σ2ID). As in VAE, σ2 takes an assumed value.
For text modeling, let x = (x(t), t = 1, ..., T) where each x(t) is a token. Following previous text
VAE model [6], we define pβ(x|z) as a conditional autoregressive model,

pβ(x|z) =
T∏
t=1

pβ(x(t)|x(1), ..., x(t−1), z) (4)

which is parameterized by a recurrent network with parameters β.

In the original generator model, the top-down network gβ maps the unimodal prior distribution p0 to
be close to the usually highly multi-modal data distribution. The prior model in (2) refines p0 so that

2

gβ maps the prior model pα to be closer to the data distribution. The prior model pα does not need to
be highly multi-modal because of the expressiveness of gβ .

The marginal distribution is pθ(x) =
∫
pθ(x, z)dz =

∫
pα(z)pβ(x|z)dz. The posterior distribution

is pθ(z|x) = pθ(x, z)/pθ(x) = pα(z)pβ(x|z)/pθ(x).

In the above model, we exponentially tilt p0(z). We can also exponentially tilt p0(x, z) =
p0(z)pβ(x|z) to pθ(x, z) = 1

Z(θ) exp(fα(x, z))p0(x, z). Equivalently, we may also exponentially
tilt p0(z, ε) = p0(z)p(ε), as the mapping from (z, ε) to (z, x) is a change of variable. This leads to
an EBM in both the latent space and data space, which makes learning and sampling more complex.
Therefore, we choose to only tilt p0(z) and leave pβ(x|z) as a directed top-down generation model.

2.2 Maximum likelihood

Suppose we observe training examples (xi, i = 1, ..., n). The log-likelihood function is

L(θ) =
n∑
i=1

log pθ(xi). (5)

The learning gradient can be calculated according to

∇θ log pθ(x) = Epθ(z|x) [∇θ log pθ(x, z)] = Epθ(z|x) [∇θ(log pα(z) + log pβ(x|z))] . (6)

See Theoretical derivations in the Supplementary for a detailed derivation.

For the prior model,∇α log pα(z) = ∇αfα(z)− Epα(z)[∇αfα(z)]. Thus the learning gradient for
an example x is

δα(x) = ∇α log pθ(x) = Epθ(z|x)[∇αfα(z)]− Epα(z)[∇αfα(z)]. (7)

The above equation has an empirical Bayes nature. pθ(z|x) is based on the empirical observation x,
while pα is the prior model. α is updated based on the difference between z inferred from empirical
observation x, and z sampled from the current prior.

For the generation model,

δβ(x) = ∇β log pθ(x) = Epθ(z|x)[∇β log pβ(x|z)], (8)

where log pβ(x|z) = −‖x − gβ(z)‖2/(2σ2) + const or
∑T
t=1 log pβ(x(t)|x(1), ..., x(t−1), z) for

image and text modeling respectively.

Expectations in (7) and (8) require MCMC sampling of the prior model pα(z) and the posterior
distribution pθ(z|x). We can use Langevin dynamics [51, 88]. For a target distribution π(z), the
dynamics iterates zk+1 = zk+s∇z log π(zk)+

√
2sεk, where k indexes the time step of the Langevin

dynamics, s is a small step size, and εk ∼ N(0, Id) is the Gaussian white noise. π(z) can be either
pα(z) or pθ(z|x). In either case, ∇z log π(z) can be efficiently computed by back-propagation.

2.3 Short-run MCMC

Convergence of Langevin dynamics to the target distribution requires infinite steps with infinitesimal
step size, which is impractical. We thus propose to use short-run MCMC [55, 54, 56] for approximate
sampling.

The short-run Langevin dynamics is always initialized from the fixed initial distribution p0, and only
runs a fixed number of K steps, e.g., K = 20,

z0 ∼ p0(z), zk+1 = zk + s∇z log π(zk) +
√

2sεk, k = 1, ...,K. (9)

Denote the distribution of zK to be π̃(z). Because of fixed p0(z) and fixed K and s, the distribution π̃
is well defined. In this paper, we put ˜ sign on top of the symbols to denote distributions or quantities
produced by short-run MCMC, and for simplicity, we omit the dependence on K and s in notation.
As shown in [9], the Kullback-Leibler divergence DKL(π̃‖π) decreases to zero monotonically as
K →∞.

Specifically, denote the distribution of zK to be p̃α(z) if the target π(z) = pα(z), and denote the
distribution of zK to be p̃θ(z|x) if π(z) = pθ(z|x). We can then replace pα(z) by p̃α(z) and replace

3

pθ(z|x) by p̃θ(z|x) in equations (7) and (8), so that the learning gradients in equations (7) and (8) are
modified to

δ̃α(x) = Ep̃θ(z|x)[∇αfα(z)]− Ep̃α(z)[∇αfα(z)], (10)

δ̃β(x) = Ep̃θ(z|x)[∇β log pβ(x|z)]. (11)

We then update α and β based on (10) and (11), where the expectations can be approximated by
Monte Carlo samples. See our follow-up work [59] on persistent chains for prior sampling.

2.4 Algorithm

The learning and sampling algorithm is described in Algorithm 1.

Algorithm 1: Learning latent space EBM prior via short-run MCMC.
input :Learning iterations T , learning rate for prior model η0, learning rate for generation model η1, initial

parameters θ0 = (α0, β0), observed examples {xi}ni=1, batch size m, number of prior and
posterior sampling steps {K0,K1}, and prior and posterior sampling step sizes {s0, s1}.

output : θT = (αT , βT).
for t = 0 : T − 1 do

1. Mini-batch: Sample observed examples {xi}mi=1.
2. Prior sampling: For each xi, sample z−i ∼ p̃αt(z) using equation (9), where the target distribution
π(z) = pαt(z), and s = s0, K = K0.

3. Posterior sampling: For each xi, sample z+i ∼ p̃θt(z|xi) using equation (9), where the target
distribution π(z) = pθt(z|xi), and s = s1, K = K1.

4. Learning prior model: αt+1 = αt + η0
1
m

∑m
i=1[∇αfαt(z

+
i)−∇αfαt(z

−
i)].

5. Learning generation model: βt+1 = βt + η1
1
m

∑m
i=1∇β log pβt(xi|z

+
i).

The posterior sampling and prior sampling correspond to the positive phase and negative phase of
latent EBM [1].

2.5 Theoretical understanding

The learning algorithm based on short-run MCMC sampling in Algorithm 1 is a modification or
perturbation of maximum likelihood learning, where we replace pα(z) and pθ(z|x) by p̃α(z) and
p̃θ(z|x) respectively. For theoretical underpinning, we should understand this perturbation in terms
of objective function and estimating equation.

In terms of objective function, define the Kullback-Leibler divergence DKL(p(x)‖q(x)) =
Ep[log(p(x)/q(x)]. At iteration t, with fixed θt = (αt, βt), consider the following computationally
tractable perturbation of the log-likelihood function of θ for an observation x,

l̃θ(x) = log pθ(x)−DKL(p̃θt(z|x)‖pθ(z|x)) +DKL(p̃αt(z)‖pα(z)). (12)

The above is a function of θ, while θt is fixed. Then

δ̃α(x) = ∇α l̃θ(x), δ̃β(x) = ∇β l̃θ(x), (13)

where the derivative is taken at θt. See Theoretical derivations in the Supplementary for details. Thus
the updating rule of Algorithm 1 follows the stochastic gradient (i.e., Monte Carlo approximation of
the gradient) of a perturbation of the log-likelihood. Because θt is fixed, we can drop the entropies of
p̃θt(z|x) and p̃αt(z) in the above Kullback-Leibler divergences, hence the updating rule follows the
stochastic gradient of

Q(θ) = L(θ) +
n∑
i=1

[
Ep̃θt (zi|xi)[log pθ(zi|xi)]− Ep̃αt (z)[log pα(z)]

]
, (14)

where L(θ) is the total log-likelihood defined in equation (5), and the gradient is taken at θt.

In equation (12), the first DKL term is related to the EM algorithm [14]. It leads to the more tractable
complete-data log-likelihood. The second DKL term is related to contrastive divergence [69], except
that the short-run MCMC for p̃αt(z) is initialized from p0(z). It serves to cancel the intractable
logZ(α) term.

4

In terms of estimating equation, the stochastic gradient descent in Algorithm 1 is a Robbins-Monro
stochastic approximation algorithm [63] that solves the following estimating equation:

1

n

n∑
i=1

δ̃α(xi) =
1

n

n∑
i=1

Ep̃θ(zi|xi)[∇αfα(zi)]− Ep̃α(z)[∇αfα(z)] = 0, (15)

1

n

n∑
i=1

δ̃β(xi) =
1

n

n∑
i=1

Ep̃θ(zi|xi)[∇β log pβ(xi|zi)] = 0. (16)

The solution to the above estimating equation defines an estimator of the parameters. Algorithm 1
converges to this estimator under the usual regularity conditions of Robbins-Monro [63]. If we
replace p̃α(z) by pα(z), and p̃θ(z|x) by pθ(z|x), then the above estimating equation is the maximum
likelihood estimating equation.

2.6 Amortized inference and synthesis

We can amortize the short-run MCMC sampling of the prior and posterior distributions of the latent
vector by jointly learning an extra inference network qφ(z|x) and an extra synthesis network qψ(z),
together with the original model. Let us re-define l̃θ(x) in (12) by

l̃θ,φ,ψ(x) = log pθ(x)−DKL(qφ(z|x)‖pθ(z|x)) +DKL(qψ(z)‖pα(z)), (17)
where we replace p̃θt(z|x) in (12) by qφ(z|x) and replace p̃αt(z) in (12) by qψ(z). See [28, 29]
for related formulations. Define L̃(θ, φ, ψ) = 1

n

∑n
i=1 l̃θ,φ,ψ(x), we can jointly learn (θ, φ, ψ) by

maxθ,φ minψ L̃(θ, φ, ψ). The objective function L̃(θ, φ, ψ) is a perturbation of the log-likelihood
L(θ) in (5), where −DKL(qφ(z|x)‖pθ(z|x)) leads to variational learning, and the learning of the
inference network qφ(z|x) follows VAE, except that we include the EBM prior log pα(z) in training
qφ(z|x) (logZ(α) can be discarded as a constant relative to φ). The synthesis network qψ(z) can be
taken to be a flow-based model [15, 61]. DKL(qψ(z)‖pα(z)) leads to adversarial training of qψ(z)
and pα(z). qψ(z) is trained as a variational approximation to pα(z) (again logZ(α) can be discarded
as a constant relative to ψ), while pα(z) is updated based on statistical difference between samples
from the approximate posterior qφ(z|x) and samples from the approximate prior qψ(z), i.e., pα(z) is
a critic of qψ(z). See supplementary materials for a formulation based on three DKL terms.

In this initial paper, we prefer keeping our model and learning method clean and simple, without
involving extra networks for learned computations, and without mixing in learning tricks from VAE
and GAN. See our follow-up work on joint training of amortized inference network [59]. See also
[80] for a temporal difference MCMC teaching scheme for amortizing MCMC.

3 Experiments

We present a set of experiments which highlight the effectiveness of our proposed model with (1)
excellent synthesis for both visual and textual data outperforming state-of-the-art baselines, (2) high
expressiveness of the learned prior model for both data modalities, and (3) strong performance in
anomaly detection. For image data, we include SVHN [52], CelebA [46], and CIFAR-10 [40]. For
text data, we include PTB [50], Yahoo [84], and SNLI [5]. We refer to the Supplementary for details.
Code to reproduce the reported results is available 2. Recently we extend our work to construct a
symbol-vector coupling model for semi-supervised learning and learn it with amortized inference
for posterior inference and persistent chains for prior sampling [59], which demonstrates promising
results in multiple data domains. In another followup [58], we find the latent space EBM can learn
to capture complex chemical laws automatically and implicitly, enabling valid, novel, and diverse
molecule generations. Besides the results detailed below, our extended experiments also corroborate
our modeling strategy of building a latent space EBM for powerful generative modeling, meaningful
representation learning, and stable training.

3.1 Image modeling

We evaluate the quality of the generated and reconstructed images. If the model is well-learned,
the latent space EBM πα(z) will fit the generator posterior pθ(z|x) which in turn renders realistic

2https://bpucla.github.io/latent-space-ebm-prior-project/

5

https://bpucla.github.io/latent-space-ebm-prior-project/

generated samples as well as faithful reconstructions. We compare our model with VAE [39] and
SRI [55] which assume a fixed Gaussian prior distribution for the latent vector and two recent strong
VAE variants, 2sVAE [10] and RAE [20], whose prior distributions are learned with posterior samples
in a second stage. We also compare with multi-layer generator (i.e., 5 layers of latent vectors)
model [55] which admits a powerful learned prior on the bottom layer of latent vector. We follow the
protocol as in [55].

Generation. The generator network pθ in our framework is well-learned to generate samples that
are realistic and share visual similarities as the training data. The qualitative results are shown in
Figure 2. We further evaluate our model quantitatively by using Fréchet Inception Distance (FID) [48]
in Table 1. It can be seen that our model achieves superior generation performance compared to listed
baseline models.

Figure 2: Generated samples for SVHN (32× 32× 3), CIFAR-10 (32× 32× 3), and CelebA (64× 64× 3).

Reconstruction. We evaluate the accuracy of the posterior inference by testing image reconstruction.
The well-formed posterior Langevin should not only help to learn the latent space EBM model but also
match the true posterior pθ(z|x) of the generator model. We quantitatively compare reconstructions
of test images with the above baseline models on mean square error (MSE). From Table 1, our
proposed model could achieve not only high generation quality but also accurate reconstructions.

Models VAE 2sVAE RAE SRI SRI (L=5) Ours

SVHN MSE 0.019 0.019 0.014 0.018 0.011 0.008
FID 46.78 42.81 40.02 44.86 35.23 29.44

CIFAR-10 MSE 0.057 0.056 0.027 - - 0.020
FID 106.37 72.90 74.16 - - 70.15

CelebA MSE 0.021 0.021 0.018 0.020 0.015 0.013
FID 65.75 44.40 40.95 61.03 47.95 37.87

Table 1: MSE of testing reconstructions and FID of generated samples for SVHN (32× 32× 3), CIFAR-10
(32× 32× 3), and CelebA (64× 64× 3) datasets.

3.2 Text modeling

We compare our model to related baselines, SA-VAE [37], FB-VAE [45], and ARAE [86]. SA-
VAE optimized posterior samples with gradient descent guided by EBLO, resembling the short run
dynamics in our model. FB-VAE is the SOTA VAE for text modeling. While SA-VAE and FB-VAE
assume a fixed Gaussian prior, ARAE adversarially learns a latent sample generator as an implicit
prior distribution. To evaluate the quality of the generated samples, we follow [86, 8] and recruit
Forward Perplexity (FPPL) and Reverse Perplexity (RPPL). FPPL is the perplexity of the generated
samples evaluated under a language model trained with real data and measures the fluency of the
synthesized sentences. RPPL is the perplexity of real data computed under a language model trained
with the model-generated samples. Prior work employs it to measure the distributional coverage of a
learned model, pθ(x) in our case, since a model with a mode-collapsing issue results in a high RPPL.
FPPL and RPPL are displayed in Table 2. Our model outperforms all the baselines on the two metrics,
demonstrating the high fluency and diversity of the samples from our model. We also evaluate the
reconstruction of our model against the baselines using negative log-likelihood (NLL). Our model
has a similar performance as that of FB-VAE and ARAE, while they all outperform SA-VAE.

6

SNLI PTB Yahoo
Models FPPL RPPL NLL FPPL RPPL NLL FPPL RPPL NLL

Real Data 23.53 - - 100.36 - - 60.04 - -
SA-VAE 39.03 46.43 33.56 147.92 210.02 101.28 128.19 148.57 326.70
FB-VAE 39.19 43.47 28.82 145.32 204.11 92.89 123.22 141.14 319.96
ARAE 44.30 82.20 28.14 165.23 232.93 91.31 158.37 216.77 320.09
Ours 27.81 31.96 28.90 107.45 181.54 91.35 80.91 118.08 321.18

Table 2: FPPL, RPPL, and NLL for our model and baselines on SNLI, PTB, and Yahoo datasets.

3.3 Analysis of latent space

We examine the exponential tilting of the reference prior p0(z) through Langevin samples initialized
from p0(z) with target distribution pα(z). As the reference distribution p0(z) is in the form of an
isotropic Gaussian, we expect the energy-based correction fα to tilt p0 into an irregular shape. In
particular, learning equation 10 may form shallow local modes for pα(z). Therefore, the trajectory of
a Markov chain initialized from the reference distribution p0(z) with well-learned target pα(z) should
depict the transition towards synthesized examples of high quality while the energy fluctuates around
some constant. Figure 3 and Table 3 depict such transitions for image and textual data, respectively,
which are both based on models trained with K0 = 40 steps. For image data the quality of synthesis
improve significantly with increasing number of steps. For textual data, there is an enhancement in
semantics and syntax along the chain, which is especially clear from step 0 to 40 (see Table 3).

Figure 3: Transition of Markov chains initialized from p0(z) towards p̃α(z) for K′0 = 100 steps. Top:
Trajectory in the CelebA data-space. Bottom: Energy profile over time.

judge in <unk> was not
west virginia bank <unk> which has been under N law took effect of october N
mr. peterson N years old could return to work with his clients to pay
iras must be
anticipating bonds tied to the imperial company ’s revenue of $ N million today
many of these N funds in the industrial average rose to N N from N N N
fund obtaining the the
ford ’s latest move is expected to reach an agreement in principle for the sale of its loan operations
wall street has been shocked over by the merger of new york co. a world-wide financial board of the companies said it wo
n’t seek strategic alternatives to the brokerage industry ’s directors

Table 3: Transition of a Markov chain initialized from p0(z) towards p̃α(z). Top: Trajectory in the PTB
data-space. Each panel contains a sample for K′0 ∈ {0, 40, 100}. Bottom: Energy profile.

While our learning algorithm recruits short run MCMC with K0 steps to sample from target dis-
tribution pα(z), a well-learned pα(z) should allow for Markov chains with realistic synthesis for
K ′0 � K0 steps. We demonstrate such long-run Markov chain with K0 = 40 and K ′0 = 2500
in Figure 4. The long-run chain samples in the data space are reasonable and do not exhibit the
oversaturating issue of the long-run chain samples of recent EBM in the data space (see oversaturing
examples in Figure 3 in [54]).

7

Figure 4: Transition of Markov chains initialized from p0(z) towards p̃α(z) for K′0 = 2500 steps. Top:
Trajectory in the CelebA data-space for every 100 steps. Bottom: Energy profile over time.

3.4 Anomaly detection

We evaluate our model on anomaly detection. If the generator and EBM are well learned, then the
posterior pθ(z|x) would form a discriminative latent space that has separated probability densities for
normal and anomalous data. Samples from such a latent space can then be used to detect anomalies.
We take samples from the posterior of the learned model, and use the unnormalized log-posterior
log pθ(x, z) as our decision function.

Following the protocol as in [41, 85], we make each digit class an anomaly and consider the remaining
9 digits as normal examples. Our model is trained with only normal data and tested with both normal
and anomalous data. We compare with the BiGAN-based anomaly detection [85], MEG [41] and
VAE using area under the precision-recall curve (AUPRC) as in [85]. Table 4 shows the results.

Heldout Digit 1 4 5 7 9

VAE 0.063 0.337 0.325 0.148 0.104
MEG 0.281± 0.035 0.401±0.061 0.402± 0.062 0.290± 0.040 0.342± 0.034

BiGAN-σ 0.287± 0.023 0.443± 0.029 0.514± 0.029 0.347± 0.017 0.307± 0.028
Ours 0.336± 0.008 0.630± 0.017 0.619± 0.013 0.463± 0.009 0.413± 0.010

Table 4: AUPRC scores for unsupervised anomaly detection on MNIST. Numbers are taken from [41] and
results for our model are averaged over last 10 epochs to account for variance.

3.5 Computational cost

Our method involving MCMC sampling is more costly than VAEs with amortized inference. Our
model is approximately 4 times slower than VAEs on image datasets. On text datasets, ours does
not have an disadvantage compared to VAEs on total training time (despite longer per-iteration time)
because of better posterior samples from short run MCMC than amortized inference and the overhead
of the techniques that VAEs take to address posterior collapse. To test our method’s scalability, we
trained a larger generator on CelebA (128× 128). It produced faithful samples (see Figure 1).

4 Discussion and conclusion

4.1 Modeling strategies and related work

We now put our work within the bigger picture of modeling and learning, and discuss related work.

Energy-based model and top-down generation model. A top-down model or a directed acyclic
graphical model is of a simple factorized form that is capable of ancestral sampling. The prototype
of such a model is factor analysis [65], which has been generalized to independent component
analysis [35], sparse coding [57], non-negative matrix factorization [43], etc. An early example of a
multi-layer top-down model is the generation model of Helmholtz machine [31]. An EBM defines an
unnormalized density or a Gibbs distribution. The prototypes of such a model are exponential family
distribution, the Boltzmann machine [1, 32, 66, 44], and the FRAME (Filters, Random field, And
Maximum Entropy) model [89]. [87] contrasted these two classes of models, calling the top-down
latent variable model the generative model, and the energy-based model the descriptive model. [24]
proposed to integrate the two models, where the top-down generation model generates textons, while
the EBM prior accounts for the perceptual organization or Gestalt laws of textons. Our model follows

8

such a plan. Recently, DVAEs [64, 76, 75] adopted restricted Boltzmann machines as the prior model
for binary latent variables and a deep neural network as the top-down generation model.

The energy-based model can be translated into a classifier and vice versa via the Bayes rule [25,
73, 12, 81, 36, 42, 19, 23, 59]. The energy function in the EBM can be viewed as an objective
function, a cost function, or a critic [67]. It captures regularities, rules or constrains. It is easy to
specify, although optimizing or sampling the energy function requires iterative computation such
as MCMC. The maximum likelihood learning of EBM can be interpreted as an adversarial scheme
[83, 82, 79, 29, 17], where the MCMC serves as a generator or an actor and the energy function
serves as an evaluator or a critic. The top-down generation model can be viewed as an actor [67] that
directly generates samples. It is easy to sample from, though a complex top-down model is necessary
for high quality samples. Comparing the two models, the scalar-valued energy function can be more
expressive than the vector-valued top-down network of the same complexity, while the latter is much
easier to sample from. It is thus desirable to let EBM take over the top layers of the top-down model
to make it more expressive and make EBM learning feasible.

Energy-based correction of top-down model. The top-down model usually assumes independent
nodes at the top layer and conditional independent nodes at subsequent layers. We can introduce
energy terms at multiple layers to correct the independence or conditional independence assumptions,
and to introduce inductive biases. This leads to a latent energy-based model. However, unlike
undirected latent EBM, the energy-based correction is learned on top of a directed top-down model,
and this can be easier than learning an undirected latent EBM from scratch. Our work is a simple
example of this strategy where we correct the prior distribution. We can also correct the generation
model in the data space.

From data space EBM to latent space EBM. EBM learned in data space such as image space
[53, 47, 81, 18, 27, 55, 16] can be highly multi-modal, and MCMC sampling can be difficult. We
can introduce latent variables and learn an EBM in latent space, while also learning a mapping from
the latent space to the data space. Our work follows such a strategy. Earlier papers on this strategy
are [87, 24, 4, 7, 41]. Learning EBM in latent space can be much more feasible than in data space in
terms of MCMC sampling, and much of past work on EBM can be recast in the latent space.

Short-run MCMC and amortized computation. Recently, [55] proposed to use short-run MCMC
to sample from the EBM in data space. [56] used it to sample the latent variables of a top-down
generation model from their posterior distribution. [34] used it to improve the posterior samples
from an inference network. Our work adopts short-run MCMC to sample from both the prior and the
posterior of the latent variables. We provide theoretical foundation for the learning algorithm with
short-run MCMC sampling. Our theoretical formulation can also be used to jointly train networks
that amortize the MCMC sampling from the posterior and prior distributions.

Generator model with flexible prior. The expressive power of the generator network for image and
text generation comes from the top-down network that maps a simple prior to be close to the data
distribution. Most of the existing papers [49, 70, 2, 13, 74, 41] assume that the latent vector follows a
given simple prior, such as isotropic Gaussian distribution or uniform distribution. However, such
assumption may cause ineffective generator learning as observed in [11, 72]. Some VAE variants
attempted to address the mismatch between the prior and the aggregate posterior. VampPrior [71]
parameterized the prior based on the posterior inference model, while [3] proposed to construct
priors using rejection sampling. ARAE [86] learned an implicit prior with adversarial training.
Recently, some papers used two-stage approach [10, 20]. They first trained a VAE or deterministic
auto-encoder. To enable generation from the model, they fitted a VAE or Gaussian mixture to the
posterior samples from the first-stage model. VQ-VAE [77] adopted a similar approach and an
autoregressive distribution over z was learned from the posterior samples. All of these prior models
generally follow the empirical Bayes philosophy, which is also one motivation of our work.

4.2 Conclusion

EBM has many applications, however, its soundness and its power are limited by the difficulty with
MCMC sampling. By moving from data space to latent space, and letting the EBM stand on an
expressive top-down network, MCMC-based learning of EBM becomes sound and feasible, and
EBM in latent space can capture regularities in data effectively. We may unleash the power of EBM
in the latent space for many applications.

9

Broader Impact

Our work can be of interest to researchers working on generator model, energy-based models, MCMC
sampling and unsupervised learning. It may also be of interest to people who are interested in image
synthesis and text generation.

Acknowledgments and Disclosure of Funding

We thank the four reviewers for their insightful comments and useful suggestions. The work
is supported by NSF DMS-2015577; DARPA XAI project N66001-17-2-4029; ARO project
W911NF1810296; ONR MURI project N00014-16-1-2007; and XSEDE grant ASC170063. We
thank the NVIDIA cooperation for the donation of 2 Titan V GPUs.

10

References

[1] David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning algorithm for
boltzmann machines. Cognitive Science, 9(1):147–169, 1985.

[2] Martín Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, pages 214–223, 2017.

[3] Matthias Bauer and Andriy Mnih. Resampled priors for variational autoencoders. In The 22nd
International Conference on Artificial Intelligence and Statistics, pages 66–75, 2019.

[4] Yoshua Bengio, Grégoire Mesnil, Yann Dauphin, and Salah Rifai. Better mixing via deep
representations. In International conference on machine learning, pages 552–560, 2013.

[5] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 632–642, Lisbon, Portugal, Sept.
2015. Association for Computational Linguistics.

[6] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. In Proceedings of The 20th SIGNLL
Conference on Computational Natural Language Learning, pages 10–21, Berlin, Germany, Aug.
2016. Association for Computational Linguistics.

[7] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[8] Ondřej Cífka, Aliaksei Severyn, Enrique Alfonseca, and Katja Filippova. Eval all, trust a few,
do wrong to none: Comparing sentence generation models. arXiv preprint arXiv:1804.07972,
2018.

[9] Thomas M. Cover and Joy A. Thomas. Elements of information theory (2. ed.). Wiley, 2006.
[10] Bin Dai and David Wipf. Diagnosing and enhancing vae models. In International Conference

on Learning Representations, 2019.
[11] Bin Dai and David Wipf. Diagnosing and enhancing vae models. arXiv preprint

arXiv:1903.05789, 2019.
[12] Jifeng Dai, Yang Lu, and Ying Nian Wu. Generative modeling of convolutional neural networks.

In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

[13] Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard H. Hovy, and Aaron C. Courville.
Calibrating energy-based generative adversarial networks. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings, 2017.

[14] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological),
39(1):1–22, 1977.

[15] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings, 2017.

[16] Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models.
CoRR, abs/1903.08689, 2019.

[17] Chelsea Finn, Paul F. Christiano, Pieter Abbeel, and Sergey Levine. A connection between
generative adversarial networks, inverse reinforcement learning, and energy-based models.
CoRR, abs/1611.03852, 2016.

[18] Ruiqi Gao, Yang Lu, Junpei Zhou, Song-Chun Zhu, and Ying Nian Wu. Learning generative
convnets via multi-grid modeling and sampling. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages
9155–9164, 2018.

[19] Ruiqi Gao, Erik Nijkamp, Diederik P Kingma, Zhen Xu, Andrew M Dai, and Ying Nian
Wu. Flow contrastive estimation of energy-based models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7518–7528, 2020.

[20] Partha Ghosh, Mehdi S. M. Sajjadi, Antonio Vergari, Michael Black, and Bernhard Scholkopf.
From variational to deterministic autoencoders. In International Conference on Learning
Representations, 2020.

11

[21] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

[22] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Advances
in Neural Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2672–2680,
2014.

[23] Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Mohammad
Norouzi, and Kevin Swersky. Your classifier is secretly an energy based model and you should
treat it like one. In International Conference on Learning Representations, 2019.

[24] Cheng-En Guo, Song-Chun Zhu, and Ying Nian Wu. Modeling visual patterns by integrating
descriptive and generative methods. International Journal of Computer Vision, 53(1):5–29,
2003.

[25] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sar-
dinia, Italy, May 13-15, 2010, pages 297–304, 2010.

[26] Tian Han, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Alternating back-propagation for
generator network. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California, USA., pages 1976–1984, 2017.

[27] Tian Han, Erik Nijkamp, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu.
Divergence triangle for joint training of generator model, energy-based model, and inferential
model. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019, pages 8670–8679, 2019.

[28] Tian Han, Erik Nijkamp, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu.
Divergence triangle for joint training of generator model, energy-based model, and inferential
model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 8670–8679, 2019.

[29] Tian Han, Erik Nijkamp, Linqi Zhou, Bo Pang, Song-Chun Zhu, and Ying Nian Wu. Joint train-
ing of variational auto-encoder and latent energy-based model. In The IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2020.

[30] Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14(8):1771–1800, 2002.

[31] Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The "wake-sleep"
algorithm for unsupervised neural networks. Science, 268(5214):1158–1161, 1995.

[32] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep
belief nets. Neural Computation, 18(7):1527–1554, 2006.

[33] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[34] Matthew D Hoffman. Learning deep latent gaussian models with markov chain monte carlo. In
International conference on machine learning, pages 1510–1519, 2017.

[35] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent component analysis. John Wiley
& Sons, 2004.

[36] Long Jin, Justin Lazarow, and Zhuowen Tu. Introspective classification with convolutional
nets. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages
823–833, 2017.

[37] Yoon Kim, Sam Wiseman, Andrew Miller, David Sontag, and Alexander Rush. Semi-amortized
variational autoencoders. In International Conference on Machine Learning, pages 2678–2687,
2018.

[38] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

[39] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

12

[40] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research).

[41] Rithesh Kumar, Anirudh Goyal, Aaron C. Courville, and Yoshua Bengio. Maximum entropy
generators for energy-based models. CoRR, abs/1901.08508, 2019.

[42] Justin Lazarow, Long Jin, and Zhuowen Tu. Introspective neural networks for generative
modeling. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy,
October 22-29, 2017, pages 2793–2802, 2017.

[43] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix factorization. In
Advances in neural information processing systems, pages 556–562, 2001.

[44] Honglak Lee, Roger B. Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations. In Proceedings of
the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec,
Canada, June 14-18, 2009, pages 609–616, 2009.

[45] Bohan Li, Junxian He, Graham Neubig, Taylor Berg-Kirkpatrick, and Yiming Yang. A sur-
prisingly effective fix for deep latent variable modeling of text. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3603–3614, Hong
Kong, China, Nov. 2019. Association for Computational Linguistics.

[46] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), 2015.

[47] Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Learning FRAME models using CNN filters. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016,
Phoenix, Arizona, USA, pages 1902–1910, 2016.

[48] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are gans
created equal? a large-scale study. arXiv preprint arXiv:1711.10337, 2017.

[49] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adver-
sarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

[50] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large
annotated corpus of english: The penn treebank. Comput. Linguist., 19(2):313–330, June 1993.

[51] Radford M Neal. MCMC using hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo, 2, 2011.

[52] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[53] Jiquan Ngiam, Zhenghao Chen, Pang Wei Koh, and Andrew Y. Ng. Learning deep energy
models. In Proceedings of the 28th International Conference on Machine Learning, ICML 2011,
Bellevue, Washington, USA, June 28 - July 2, 2011, pages 1105–1112, 2011.

[54] Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu. On the anatomy
of MCMC-based maximum likelihood learning of energy-based models. Thirty-Fourth AAAI
Conference on Artificial Intelligence, 2020.

[55] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Learning non-convergent
non-persistent short-run MCMC toward energy-based model. Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, 8-14 December 2019, Vancouver, Canada, 2019.

[56] Erik Nijkamp, Bo Pang, Tian Han, Alex Zhou, Song-Chun Zhu, and Ying Nian Wu. Learning
multi-layer latent variable model via variational optimization of short run mcmc for approximate
inference. In Proceedings of the European Conference on Computer Vision (ECCV), 2020.

[57] Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311–3325, 1997.

[58] Bo Pang, Tian Han, and Ying Nian Wu. Learning latent space energy-based prior model for
molecule generation. arXiv preprint arXiv:2010.09351, 2020.

[59] Bo Pang, Erik Nijkamp, Jiali Cui, Tian Han, and Ying Nian Wu. Semi-supervised learning by
latent space energy-based model of symbol-vector coupling. arXiv preprint arXiv:2010.09359,
2020.

[60] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. In 4th International Conference on Learn-
ing Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

13

[61] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, pages 1530–1538, 2015.

[62] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In Proceedings of the 31th International
Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages 1278–
1286, 2014.

[63] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

[64] Jason Tyler Rolfe. Discrete variational autoencoders. arXiv preprint arXiv:1609.02200, 2016.
[65] Donald B. Rubin and Dorothy T. Thayer. Em algorithms for ml factor analysis. Psychometrika,

47(1):69–76, Mar 1982.
[66] Ruslan Salakhutdinov and Geoffrey E. Hinton. Deep boltzmann machines. In Proceedings of

the Twelfth International Conference on Artificial Intelligence and Statistics, AISTATS 2009,
Clearwater Beach, Florida, USA, April 16-18, 2009, pages 448–455, 2009.

[67] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[68] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063, 2000.

[69] Tijmen Tieleman. Training restricted boltzmann machines using approximations to the likeli-
hood gradient. In Proceedings of the 25th international conference on Machine learning, pages
1064–1071, 2008.

[70] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein auto-
encoders. arXiv preprint arXiv:1711.01558, 2017.

[71] Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on
Artificial Intelligence and Statistics, pages 1214–1223, 2018.

[72] Jakub M. Tomczak and Max Welling. VAE with a vampprior. In Amos J. Storkey and
Fernando Pérez-Cruz, editors, International Conference on Artificial Intelligence and Statistics,
AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, volume 84 of
Proceedings of Machine Learning Research, pages 1214–1223. PMLR, 2018.

[73] Zhuowen Tu. Learning generative models via discriminative approaches. In 2007 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007),
18-23 June 2007, Minneapolis, Minnesota, USA, 2007.

[74] Ryan D. Turner, Jane Hung, Eric Frank, Yunus Saatchi, and Jason Yosinski. Metropolis-hastings
generative adversarial networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 6345–6353. PMLR, 2019.

[75] Arash Vahdat, Evgeny Andriyash, and William Macready. Dvae#: Discrete variational autoen-
coders with relaxed boltzmann priors. In Advances in Neural Information Processing Systems,
pages 1864–1874, 2018.

[76] Arash Vahdat, William Macready, Zhengbing Bian, Amir Khoshaman, and Evgeny Andriyash.
Dvae++: Discrete variational autoencoders with overlapping transformations. In International
Conference on Machine Learning, pages 5035–5044, 2018.

[77] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In Advances
in Neural Information Processing Systems, pages 6306–6315, 2017.

[78] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

[79] Ying Nian Wu, Ruiqi Gao, Tian Han, and Song-Chun Zhu. A tale of three probabilistic
families: Discriminative, descriptive, and generative models. Quarterly of Applied Mathematics,
77(2):423–465, 2019.

[80] Jianwen Xie, Yang Lu, Ruiqi Gao, and Ying Nian Wu. Cooperative learning of energy-based
model and latent variable model via MCMC teaching. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages
4292–4301, 2018.

14

[81] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. A theory of generative convnet. In
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, pages 2635–2644, 2016.

[82] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, and Ying Nian Wu.
Learning descriptor networks for 3D shape synthesis and analysis. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018, pages 8629–8638, 2018.

[83] Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu. Synthesizing dynamic patterns by spatial-
temporal generative convnet. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 1061–1069, 2017.

[84] Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick. Improved
variational autoencoders for text modeling using dilated convolutions. In Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, pages 3881–3890, 2017.

[85] Houssam Zenati, Chuan Sheng Foo, Bruno Lecouat, Gaurav Manek, and Vijay Ramaseshan
Chandrasekhar. Efficient gan-based anomaly detection. arXiv preprint arXiv:1802.06222, 2018.

[86] Junbo Zhao, Yoon Kim, Kelly Zhang, Alexander Rush, and Yann LeCun. Adversarially
regularized autoencoders. In International Conference on Machine Learning, pages 5902–5911,
2018.

[87] Song Chun Zhu. Statistical modeling and conceptualization of visual patterns. IEEE Trans.
Pattern Anal. Mach. Intell., 25(6):691–712, 2003.

[88] Song Chun Zhu and David Mumford. Grade: Gibbs reaction and diffusion equations. In
Computer Vision, 1998. Sixth International Conference on, pages 847–854, 1998.

[89] Song Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum
entropy (FRAME): towards a unified theory for texture modeling. International Journal of
Computer Vision, 27(2):107–126, 1998.

15

A Theoretical derivations

In this section, we shall derive most of the equations in the main text. We take a step by step approach,
starting from simple identities or results, and gradually reaching the main results. Our derivations are
unconventional, but they pertain more to our model and learning method.

A.1 A simple identity

Let x ∼ pθ(x). A useful identity is
Eθ[∇θ log pθ(x)] = 0, (18)

where Eθ (or Epθ) is the expectation with respect to pθ.

The proof is one liner:

Eθ[∇θ log pθ(x)] =

∫
[∇θ log pθ(x)]pθ(x)dx =

∫
∇θpθ(x)dx = ∇θ

∫
pθ(x)dx = ∇θ1 = 0.

(19)

The above identity has generalized versions, such as the one underlying the policy gradient [78, 68],
∇θEθ[R(x)] = Eθ[R(x)∇θ log pθ(x)]. By letting R(x) = 1, we get (18).

A.2 Maximum likelihood estimating equation

The simple identity (18) also underlies the consistency of MLE. Suppose we observe (xi, i =
1, ..., n) ∼ pθtrue(x) independently, where θtrue is the true value of θ. The log-likelihood is

L(θ) =
1

n

n∑
i=1

log pθ(xi). (20)

The maximum likelihood estimating equation is

L′(θ) =
1

n

n∑
i=1

∇θ log pθ(xi) = 0. (21)

According to the law of large number, as n→∞, the above estimating equation converges to
Eθtrue [∇θ log pθ(x)] = 0, (22)

where θ is the unknown value to be solved, while θtrue is fixed. According to the simple identity (18),
θ = θtrue is the solution to the above estimating equation (22), no matter what θtrue is. Thus with
regularity conditions, such as identifiability of the model, the MLE converges to θtrue in probability.

The optimality of the maximum likelihood estimating equation among all the asymptotically unbiased
estimating equations can be established based on a further generalization of the simple identity (18).

We shall justify our learning method with short-run MCMC in terms of an estimating equation, which
is a perturbation of the maximum likelihood estimating equation (21).

A.3 MLE learning gradient for θ

Recall that pθ(x, z) = pα(z)pβ(x|z), where θ = {α, β}. The learning gradient for an observation x
is as follows:
∇θ log pθ(x) = Epθ(z|x) [∇θ log pθ(x, z)] = Epθ(z|x) [∇θ(log pα(z) + log pβ(x|z))] . (23)

The above identity is a simple consequence of the simple identity (18).
Epθ(z|x) [∇θ log pθ(x, z)] = Epθ(z|x) [∇θ log pθ(z|x) +∇θ log pθ(x)] (24)

= Epθ(z|x) [∇θ log pθ(z|x)] + Epθ(z|x) [∇θ log pθ(x)] (25)

= 0 +∇θ log pθ(x), (26)
because of the fact that Epθ(z|x) [∇θ log pθ(z|x)] = 0 according to the simple identity (18), while
Epθ(z|x) [∇θ log pθ(x)] = ∇θ log pθ(x) because what is inside the expectation only depends on x,
but does not depend on z.

The above identity (23) is related to the EM algorithm [14], where x is the observed data, z is the
missing data, and log pθ(x, z) is the complete-data log-likelihood.

16

A.4 MLE learning gradient for α

For the prior model pα(z) = 1
Z(α) exp(fα(z))p0(z), we have log pα(z) = fα(z) − logZ(α) +

log p0(z). Applying the simple identity (18), we have

Eα[∇α log pα(z)] = Eα[∇αfα(z)−∇α logZ(α)] = Eα[∇αfα(z)]−∇α logZ(α) = 0. (27)

Thus

∇α logZ(α) = Eα[∇αfα(z)]. (28)

Hence the derivative of the log-likelihood is

∇α log pα(x) = ∇αfα(z)−∇α logZ(α) = ∇αfα(z)− Eα[∇αfα(z)]. (29)

According to equation (23) in the previous subsection, the learning gradient for α is

∇α log pθ(x) = Epθ(z|x) [∇α log pα(z)] (30)

= Epθ(z|x)[∇αfα(z)− Epα(z)[∇αfα(z))]] (31)

= Epθ(z|x)[∇αfα(z)]− Epα(z)[∇αfα(z)]. (32)

A.5 Re-deriving simple identity in terms of DKL

We shall provide a theoretical understanding of the learning method with short-run MCMC in terms
of Kullback-Leibler divergences. We start from some simple results.

The simple identity (18) also follows from Kullback-Leibler divergence. Consider

D(θ) = DKL(pθ∗(x)‖pθ(x)), (33)

as a function of θ with θ∗ fixed. Suppose the model pθ is identifiable, thenD(θ) achieves its minimum
0 at θ = θ∗, thus D′(θ∗) = 0. Meanwhile,

D′(θ) = −Eθ∗ [∇θ log pθ(x)]. (34)

Thus

Eθ∗ [∇θ log pθ∗(x)] = 0. (35)

Since θ∗ is arbitrary in the above derivation, we can replace it by a generic θ, i.e.,

Eθ[∇θ log pθ(x)] = 0, (36)

which is the simple identity (18).

As a notational convention, for a function f(θ), we write f ′(θ∗) = ∇θf(θ∗), i.e., the derivative of
f(θ) at θ∗.

A.6 Re-deriving MLE learning gradient in terms of perturbation by DKL terms

We now re-derive MLE learning gradient in terms of perturbation of log-likelihood by Kullback-
Leibler divergence terms. Then the learning method with short-run MCMC can be easily understood.

At iteration t, fixing θt, we want to calculate the gradient of the log-likelihood function for an
observation x, log pθ(x), at θ = θt. Consider the following computationally tractable perturbation of
the log-likelihood

lθ(x) = log pθ(x)−DKL(pθt(z|x)‖pθ(z|x)) +DKL(pαt(z)‖pα(z)). (37)

In the above, as a function of θ, with θt fixed, DKL(pθt(z|x)‖pθ(z|x)) is minimized at θ = θt, thus
its derivative at θt is 0. As a function of α, with αt fixed, DKL(pαt(z)‖pα(z)) is minimized at
α = αt, thus its derivative at αt is 0. Thus

∇θ log pθt(x) = ∇θlθt(x). (38)

17

We now unpack lθ(x) to see that it is computationally tractable, and we can obtain its derivative at θt.

∇θlθ(x) = log pθ(x) + Epθt (z|x)[log pθ(z|x)]− Epαt (z)[log pα(z)] + c (39)

= Epθt (z|x)[log pθ(x, z)]− Epαt (z)[log pα(z)] + c (40)

= Epθt (z|x)[log pα(z) + log pβ(x|z)]− Epαt (z)[log pα(z)] + c (41)

= Epθt (z|x)[log pα(z)]− Epαt (z)[log pα(z)] + Epθt (z|x)[log pβ(x|z)] + c (42)

= Epθt (z|x)[fα(z)]− Epαt (z)[fα(z)] + Epθt (z|x)[log pβ(x|z)] + c+ c′, (43)

where logZ(α) term gets canceled,

c = −Epθt (z|x)[log pθt(z|x)] + Epαt (z)[log pαt(z)], (44)

c′ = Epθt (z|x)[log p0(z)]− Epαt (z)[log p0(z)], (45)

do not depend on θ. c consists of two entropy terms. Now taking derivative at θt, we have

δαt(x) = ∇αl(θt) = Epθt (z|x)[∇αfαt(z)]− Epαt (z)[∇αfαt(z)], (46)

δβt(x) = ∇βl(θt) = Epθt (z|x)[∇β log pβt(x|z)]. (47)

Averaging over the observed examples {xi, i = 1, ..., n} leads to MLE learning gradient.

In the above, we calculate the gradient of log pθ(x) at θt. Since θt is arbitrary in the above derivation,
if we replace θt by a generic θ, we get the gradient of log pθ(x) at a generic θ, i.e.,

δα(x) = ∇α log pθ(x) = Epθ(z|x)[∇αfα(z)]− Epα(z)[∇αfα(z)], (48)

δβ(x) = ∇β log pθ(x) = Epθ(z|x)[∇β log pβ(x|z)]. (49)

The above calculations are related to the EM algorithm [14] and the learning of energy-based model.

In EM algorithm, the complete-data log-likelihood Q serves as a surrogate for the observed-data
log-likelihood log pθ(x), where

Q(θ|θt) = log pθ(x)−DKL(pθt(z|x)‖pθ(z|x)), (50)

and θt+1 = arg maxθ Q(θ|θt), where Q(θ|θt) is a lower-bound of log pθ(x) or minorizes the latter.
Q(θ|θt) and log pθ(x) touch each other at θt, and they are co-tangent at θt. Thus the derivative of
log pθ(x) at θt is the same as the derivative of Q(θ|θt) at θ = θt.

In EBM, DKL(pαt(z)‖pα(z)) serves to cancel logZ(α) term in the EBM prior, and is related to the
second divergence term in contrastive divergence [30].

A.7 Maximum likelihood estimating equation for θ = (α, β)

The MLE estimating equation is

1

n

n∑
i=1

∇θ log pθ(xi) = 0. (51)

Based on (48) and (49), the estimating equation is

1

n

n∑
i=1

δα(xi) =
1

n

n∑
i=1

Epθ(zi|xi)[∇αfα(zi)]− Epα(z)[∇αfα(z)] = 0, (52)

1

n

n∑
i=1

δβ(xi) =
1

n

n∑
i=1

Epθ(zi|xi)[∇β log pβ(xi|zi)] = 0. (53)

A.8 Learning with short-run MCMC as perturbation of log-likelihood

Based on the above derivations, we can see that learning with short-run MCMC is also a perturbation
of log-likelihood, except that we replace pθt(z|x) by p̃θt(z|x), and replace pαt(z) by p̃αt(z), where
p̃θt(z|x) and p̃αt(z) are produced by short-run MCMC.

18

At iteration t, fixing θt, the updating rule based on short-run MCMC follows the gradient of the
following function, which is a perturbation of log-likelihood for the observation x,

l̃θ(x) = log pθ(x)−DKL(p̃θt(z|x)‖pθ(z|x)) +DKL(p̃αt(z)‖pα(z)). (54)

The above is a function of θ, while θt is fixed.

In full parallel to the above subsection, we have

l̃θ(x) = Ep̃θt (z|x)[fα(z)]− Ep̃αt (z)[fα(z)] + Ep̃θt (z|x)[log pβ(x|z)] + c+ c′, (55)

where c and c′ do not depend on θ. Thus, taking derivative of the function l̃θ(x) at θ = θt, we have

δ̃αt(x) = ∇α l̃(θt) = Ep̃θt (z|x)[∇αfαt(z)]− Ep̃αt (z)[∇αfαt(z)], (56)

δ̃βt(x) = ∇β l̃(θt) = Ep̃θt (z|x)[∇β log pβt(x|z)]. (57)

Averaging over {xi, i = 1, ..., n}, we get the updating rule based on short-run MCMC. That is, the
learning rule based on short-run MCMC follows the gradient of a perturbation of the log-likelihood
function where the perturbations consists of two DKL terms.

DKL(p̃θt(z|x)‖pθ(z|x)) is related to VAE [39], where p̃θt(z|x) serves as an inference model, except
that we do not learn a separate inference network. DKL(p̃αt(z)‖pα(z)) is related to contrastive
divergence [30], except that p̃αt(z) is initialized from the Gaussian white noise p0(z), instead of the
data distribution of observed examples.

DKL(p̃θt(z|x)‖pθ(z|x)) and DKL(p̃αt(z)‖pα(z)) cause the bias relative to MLE learning. MLE is
impractical because we cannot do exact sampling with MCMC.

However, the bias may not be all that bad. In learning β, DKL(p̃θt(z|x)‖pθ(z|x)) may force the
model to be biased towards the approximate short-run posterior p̃θt(z|x), so that the short-run
posterior is close to the true posterior. In learning α, the update based on Ep̃θ(z|x)[∇αfα(z)] −
Ep̃α(z)[∇αfα(z)] may force the short-run prior p̃α(z) to match the short-run posterior p̃θ(z|x).

A.9 Perturbation of maximum likelihood estimating equation

The fixed point of the learning algorithm based on short-run MCMC is where the update is 0, i.e.,

1

n

n∑
i=1

δ̃α(xi) =
1

n

n∑
i=1

Ep̃θ(zi|xi)[∇αfα(zi)]− Ep̃α(z)[∇αfα(z)] = 0, (58)

1

n

n∑
i=1

δ̃β(xi) =
1

n

n∑
i=1

Ep̃θ(zi|xi)[∇β log pβ(xi|zi)] = 0. (59)

This is clearly a perturbation of the MLE estimating equation in (52) and (53). The above estimating
equation defines an estimator, where the learning algorithm with short-run MCMC converges.

A.10 Three DKL terms

We can rewrite the objective function (54) in a more revealing form. Let (xi, i = 1, ..., n) ∼ pdata(x)
independently, where pdata(x) is the data distribution. At time step t, with fixed θt, learning based
on short-run MCMC follows the gradient of

1

n

n∑
i=1

[log pθ(xi)−DKL(p̃θt(zi|xi)‖pθ(zi|xi)) +DKL(p̃αt(z)‖pα(z))]. (60)

Let us assume n is large enough, so that the average is practically the expectation with respect to pdata.
Then MLE maximizes 1

n

∑n
i=1 log pθ(xi)

.
= Epdata(x)[log pθ(x)], which is equivalent to minimizing

DKL(pdata(x)‖pθ(x)). The learning with short-run MCMC follows the gradient that minimizes

DKL(pdata(x)‖pθ(x)) +DKL(p̃θt(z|x)‖pθ(z|x))−DKL(p̃αt(z)‖pα(z)), (61)

where, with some abuse of notation, we now define

DKL(p̃θt(z|x)‖pθ(z|x)) = Epdata(x)Ep̃θt (z|x)

[
log

p̃θt(z|x)

pθ(z|x)

]
, (62)

19

where we also average over x ∼ pdata(x), instead fixing x as before.

The objective (61) is clearly a perturbation of the MLE, as the MLE is based on the first DKL in (61).
The signs in front of the remaining two DKL perturbations also become clear. The sign in front of
DKL(p̃θt(z|x)‖pθ(z|x)) is positive because

DKL(pdata(x)‖pθ(x)) +DKL(p̃θt(z|x)‖pθ(z|x)) = DKL(pdata(x)p̃θt(z|x)‖pα(x)pβ(x|z)),
(63)

where the DKL on the right hand side is about the joint distributions of (x, z), and is more tractable
than the first DKL on the left hand side, which is for MLE. This underlies EM and VAE. Now
subtracting the third DKL, we have the following special form of contrastive divergence

DKL(pdata(x)p̃θt(z|x)‖pα(z)pβ(x|z))−DKL(p̃αt(z)‖pα(z)), (64)

where the negative sign in front of DKL(p̃αt(z)‖pα(z)) is to cancel the intractable logZ(α) term.

The above contrastive divergence also has an adversarial interpretation. When pα(z) or α is updated,
pα(z)pβ(x|z) gets closer to pdata(x)p̃θt(z|x), while getting away from p̃αt(z), i.e., pα seeks to
criticize the samples from p̃αt(z) by comparing them to the posterior samples of z inferred from the
real data.

As mentioned in the main text, we can also exponentially tilt p0(x, z) = p0(z)pβ(x|z) to pθ(x, z) =
1

Z(θ) exp(fα(x, z))p0(x, z), or equivalently, exponentially tilt p0(z, ε) = p0(z)p(ε). The above
derivations can be easily adapted to such a model, which we choose not to explore due to the
complexity of EBM in the data space.

A.11 Amortized inference and synthesis networks

We can jointly train two extra networks together with the original model to amortize the short-run
MCMC for inference and synthesis sampling. Specifically, we use an inference network qφ(z|x)
to amortize the short-run MCMC that produces p̃θ(z|x), and we use a synthesis network qψ(z) to
amortize the short-run MCMC that produces p̃α(z).

We can then define the following objective function in parallel with the objective function (61) in the
above subsection,

∆(θ, φ, ψ) = DKL(pdata(x)‖pθ(x)) +DKL(qφ(z|x)‖pθ(z|x))−DKL(qψ(z)‖pα(z)), (65)

and we can jointly learn θ, φ and ψ by

min
θ

min
φ

max
ψ

∆(θ, φ, ψ). (66)

See [28, 29] for related formulations. The learning of the inference network qφ(z|x) follows VAE.
The learning of the synthesis network qψ(z) is based on variational approximation to pα(z). The pair
pα(z) and qψ(z) play adversarial roles, where qψ(z) serves as an actor and pα(z) serves as a critic.

B Experiments

B.1 Experiment details

Data. Image datasets include SVHN [52] (32 × 32 × 3), CIFAR-10 [40] (32 × 32 × 3), and
CelebA [46] (64× 64× 3). We use the full training split of SVHN (73, 257) and CIFAR-10 (50, 000)
and take 40, 000 examples of CelebA as training data following [55]. The training images are resized
and scaled to [−1, 1]. Text datasets include PTB [50], Yahoo [84], and SNLI [5], following recent
work on text generative modeling with latent variables [37, 86, 45].

Model architectures. The architecture of the EBM, fα(z), is displayed in Table 6. For text data, the
dimensionality of z is set to 32. The generator architectures for the image data are also shown in
Table 6. The generators for the text data are implemented with a one-layer unidirectional LSTM [33]
and Table 7 lists the number of word embeddings and hidden units of the generators for each dataset.

Short run dynamics. The hyperparameters for the short run dynamics are depicted in Table 5
where K0 and K1 denote the number of prior and posterior sampling steps with step sizes s0 and

20

s1, respectively. These are identical across models and data modalities, except for the model for
CIFAR-10 which is using K1 = 40 steps.

Short Run Dynamics Hyperparameters
Hyperparameter Value

K0 60
s0 0.4
K1 20
s1 0.1

Table 5: Hyperparameters for short run dynamics.

Optimization. The parameters for the EBM and image generators are initialized with Xavier nor-
mal [21] and those for the text generators are initialized from a uniform distribution, Unif(−0.1, 0.1),
following [37, 45]. Adam [38] is adopted for all model optimization. The models are trained until
convergence (taking approximately 70, 000 and 40, 000 parameter updates for image and text models,
respectively).

EBM Model
Layers In-Out Size Stride
Input: z 100

Linear, LReLU 200 -
Linear, LReLU 200 -

Linear 1 -
Generator Model for SVHN, ngf = 64

Input: x 1x1x100
4x4 convT(ngf x 8), LReLU 4x4x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU 8x8x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 16x16x(ngf x 2) 2

4x4 convT(3), Tanh 32x32x3 2
Generator Model for CIFAR-10, ngf = 128

Input: x 1x1x128
8x8 convT(ngf x 8), LReLU 8x8x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU 16x16x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 32x32x(ngf x 2) 2

3x3 convT(3), Tanh 32x32x3 1
Generator Model for CelebA, ngf = 128

Input: x 1x1x100
4x4 convT(ngf x 8), LReLU 4x4x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU 8x8x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 16x16x(ngf x 2) 2
4x4 convT(ngf x 1), LReLU 32x32x(ngf x 1) 2

4x4 convT(3), Tanh 64x64x3 2

Table 6: EBM model architectures for all image and text datasets and generator model architectures
for SVHN (32× 32× 3), CIFAR-10 (32× 32× 3), and CelebA (64× 64× 3). convT(n) indicates
a transposed convolutional operation with n output feature maps. LReLU indicates the Leaky-ReLU
activation function. The leak factor for LReLU is 0.2 in EBM and 0.1 in Generator.

SNLI PTB Yahoo
Word Embedding Size 256 128 512

Hidden Size of Generator 256 512 1024

Table 7: The sizes of word embeddings and hidden units of the generators for SNLI, PTB, and Yahoo.

21

C Ablation study

We investigate a range of factors that are potentially affecting the model performance with SVHN as
an example. The highlighted number in Tables 8, 9, and 10 is the FID score reported in the main
text and compared to other baseline models. It is obtained from the model with the architecture and
hyperparameters specified in Table 5 and Table 6 which serve as the reference configuration for the
ablation study.

Fixed prior. We examine the expressivity endowed with the EBM prior by comparing it to models
with a fixed isotropic Gaussian prior. The results are displayed in Table 8. The model with an
EBM prior clearly outperforms the model with a fixed Gaussian prior and the same generator as
the reference model. The fixed Gaussian models exhibit an enhancement in performance as the
generator complexity increases. They however still have an inferior performance compared to the
model with an EBM prior even when the fixed Gaussian prior model has a generator with four times
more parameters than that of the reference model.

Model FID
Latent EBM Prior 29.44
Fixed Gaussian
same generator 43.39

generator with 2 times as many parameters 41.10
generator with 4 times as many parameters 39.50

Table 8: Comparison of the models with a latent EBM prior versus a fixed Gaussian prior. The
highlighted number is the reported FID for SVHN and compared to other baseline models in the main
text.

MCMC steps. We also study how the number of short run MCMC steps for prior inference (K0)
and posterior inference (K1). The left panel of Table 9 shows the results for K0 and the right panel
for K1. As the number of MCMC steps increases, we observe improved quality of synthesis in terms
of FID.

Steps FID

K0 = 40 31.49
K0 = 60 29.44
K0 = 80 28.32

Steps FID

K1 = 20 29.44
K1 = 40 27.26
K1 = 60 26.13

Table 9: Influence of the number of prior and posterior short run steps K0 (left) and K1 (right). The
highlighted number is the reported FID for SVHN and compared to other baseline models in the main
text.

Prior EBM and generator complexity. Table 10 displays the FID scores as a function of the number
of hidden features of the prior EBM (nef) and the factor of the number of channels of the generator
(ngf, also see Table 6). In general, enhanced model complexity leads to improved generation.

nef 50 100 200

ngf
32 32.25 31.98 30.78
64 30.91 30.56 29.44

128 29.12 27.24 26.95

Table 10: Influence of prior and generator complexity. The highlighted number is the reported FID for
SVHN and compared to other baseline models in the main text. nef indicates the number of hidden
features of the prior EBM and ngf denotes the factor of the number of channels of the generator (also
see Table 6).

22

D PyTorch code

i m p o r t t o r c h as t , t o r c h . nn as nn
i m p o r t t o r c h v i s i o n as tv , t o r c h v i s i o n . t r a n s f o r m s as t fm

img_s ize , b a t c h _ s i z e = 32 , 100
nz , nc , ndf , ngf = 100 , 3 , 200 , 64
K_0 , a_0 , K_1 , a_1 = 60 , 0 . 4 , 40 , 0 . 1
l l h d _ s i g m a = 0 . 3
n _ i t e r = 70000
d e v i c e = t . d e v i c e (’ cuda ’ i f t . cuda . i s _ a v a i l a b l e () e l s e ’ cpu ’)

c l a s s _G (nn . Module) :
d e f _ _ i n i t _ _ (s e l f) :

s u p e r () . _ _ i n i t _ _ ()
s e l f . gen = nn . S e q u e n t i a l (nn . ConvTranspose2d (nz , ngf *8 , 4 , 1 , 0) , nn . LeakyReLU () ,

nn . ConvTranspose2d (ngf *8 , ngf *4 , 4 , 2 , 1) , nn . LeakyReLU () ,
nn . ConvTranspose2d (ngf *4 , ngf *2 , 4 , 2 , 1) , nn . LeakyReLU () ,
nn . ConvTranspose2d (ngf *2 , nc , 4 , 2 , 1) , nn . Tanh ())

d e f f o r w a r d (s e l f , z) :
r e t u r n s e l f . gen (z)

c l a s s _E (nn . Module) :
d e f _ _ i n i t _ _ (s e l f) :

s u p e r () . _ _ i n i t _ _ ()
s e l f . ebm = nn . S e q u e n t i a l (nn . L i n e a r (nz , ndf) , nn . LeakyReLU (0 . 2) ,

nn . L i n e a r (ndf , ndf) , nn . LeakyReLU (0 . 2) ,
nn . L i n e a r (ndf , 1))

d e f f o r w a r d (s e l f , z) :
r e t u r n s e l f . ebm (z . s q u e e z e ()) . view (−1 , 1 , 1 , 1)

t r a n s f o r m = tfm . Compose ([t fm . R e s i z e (i m g _ s i z e) , t fm . ToTensor () , t fm . Normal i ze (([0 . 5] * 3) , ([0 . 5] * 3)) ,])
d a t a = t . s t a c k ([x [0] f o r x i n t v . d a t a s e t s .SVHN(r o o t = ’ d a t a / svhn ’ , t r a n s f o r m = t r a n s f o r m)]) . t o (d e v i c e)

G, E = _G () . t o (d e v i c e) , _E () . t o (d e v i c e)
mse = nn . MSELoss (r e d u c t i o n = ’sum ’)
optE = t . op t im . Adam(E . p a r a m e t e r s () , l r =0 .00002 , b e t a s = (0 . 5 , 0 . 9 9 9))
optG = t . op t im . Adam (G. p a r a m e t e r s () , l r =0 .0001 , b e t a s = (0 . 5 , 0 . 9 9 9))

d e f s a m p l e _ p _ d a t a () :
r e t u r n d a t a [t . LongTensor (b a t c h _ s i z e) . random_ (0 , d a t a . s i z e (0))] . d e t a c h ()

d e f sample_p_0 (n= b a t c h _ s i z e) :
r e t u r n t . r andn (* [n , nz , 1 , 1]) . t o (d e v i c e)

d e f s a m p l e _ l a n g e v i n _ p r i o r (z , E) :
z = z . c l o n e () . d e t a c h () . r e q u i r e s _ g r a d _ (True)
f o r i i n r a n g e (K_0) :

en = E (z)
z _ g ra d = t . a u t o g r a d . g r ad (en . sum () , z) [0]
z . d a t a = z . d a t a − 0 . 5 * a_0 * a_0 * (z _g ra d + 1 . 0 / z . d a t a) + a_0 * t . r a n d n _ l i k e (z) . d a t a

r e t u r n z . d e t a c h ()

d e f s a m p l e _ l a n g e v i n _ p o s t e r i o r (z , x , G, E) :
z = z . c l o n e () . d e t a c h () . r e q u i r e s _ g r a d _ (True)
f o r i i n r a n g e (K_1) :

x _ h a t = G(z)
g _ l o g _ l k h d = 1 . 0 / (2 . 0 * l l h d _ s i g m a * l l h d _ s i g m a) * mse (x_ha t , x)
g rad_g = t . a u t o g r a d . g r ad (g_ log_ lkhd , z) [0]
en = E (z)
g r a d_ e = t . a u t o g r a d . g r ad (en . sum () , z) [0]
z . d a t a = z . d a t a − 0 . 5 * a_1 * a_1 * (grad_g + g ra d _ e + 1 . 0 / z . d a t a) + a_1 * t . r a n d n _ l i k e (z) . d a t a

r e t u r n z . d e t a c h ()

f o r i i n r a n g e (n _ i t e r) :
x = s a m p l e _ p _ d a t a ()
z_e_0 , z_g_0 = sample_p_0 () , sample_p_0 ()
z_e_k , z_g_k = s a m p l e _ l a n g e v i n _ p r i o r (z_e_0 , E) , s a m p l e _ l a n g e v i n _ p o s t e r i o r (z_g_0 , x , G, E)

optG . z e r o _ g r a d ()
x _ h a t = G(z_g_k . d e t a c h ())
l o s s _ g = mse (x_hat , x) / b a t c h _ s i z e
l o s s _ g . backward ()
optG . s t e p ()

optE . z e r o _ g r a d ()
en_pos , en_neg = E (z_g_k . d e t a c h ()) . mean () , E (z_e_k . d e t a c h ()) . mean ()
l o s s _ e = en_pos − en_neg
l o s s _ e . backward ()
optE . s t e p ()

23

	1 Introduction
	2 Model and learning
	2.1 Model
	2.2 Maximum likelihood
	2.3 Short-run MCMC
	2.4 Algorithm
	2.5 Theoretical understanding
	2.6 Amortized inference and synthesis

	3 Experiments
	3.1 Image modeling
	3.2 Text modeling
	3.3 Analysis of latent space
	3.4 Anomaly detection
	3.5 Computational cost

	4 Discussion and conclusion
	4.1 Modeling strategies and related work
	4.2 Conclusion

	A Theoretical derivations
	A.1 A simple identity
	A.2 Maximum likelihood estimating equation
	A.3 MLE learning gradient for
	A.4 MLE learning gradient for
	A.5 Re-deriving simple identity in terms of DKL
	A.6 Re-deriving MLE learning gradient in terms of perturbation by DKL terms
	A.7 Maximum likelihood estimating equation for = (,)
	A.8 Learning with short-run MCMC as perturbation of log-likelihood
	A.9 Perturbation of maximum likelihood estimating equation
	A.10 Three DKL terms
	A.11 Amortized inference and synthesis networks

	B Experiments
	B.1 Experiment details

	C Ablation study
	D PyTorch code

