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Abstract. The automatic evaluation and extraction of financial doc-
uments is a key process in business efficiency. Most of the extraction
relies on the Optical Character Recognition (OCR), whose outcome is
dependent on the quality of the document image. The image data fed
to the automated systems can be of unreliable quality, inherently low-
resolution or downsampled and compressed by a transmitting program.
In this paper, we illustrate a novel Gaussian Process (GP) upsampling
model for the purposes of improving OCR process and extraction through
upsampling low resolution documents.

1 Introduction

The retrieval of textual information from images of the document is a very
important and hard computer vision task. It has applications in search engines,
accessibility tools for the visually impaired, and for processing of financial and
legal documents. In general, the technology to do this is known as OCR engines.
The OCR capabilities have come a long way with increased training data, better
machine learning algorithms and improved image processing techniques. Despite
these advances most of the OCR engines expect well formed images, which are
noise free and of high resolution for high accuracy. In many cases, the resolution
of the document image plays a role in how well the characters are extracted.
In this paper we present a novel GP Modeling based algorithm to upsample
the low resolution document images which shows improvement in the increased
performance. For the study and experiments done in this paper we have used
the popular open-source OCR framework Tesseract.

This manuscript is organized in the following sections, we begin with an
introduction of the state-of-the-art OCR extraction software Tesseract. Next,
the GP based upsampling method is discussed, along with a brief study on the
choice of covariance kernels and the use of a maximum likelihood estimate for
the mean. Finally, we summarize the results by comparing our algorithms with
a baseline (the bicubic upsampling technique), for measurement we analyze the
produced OCR accuracy resulting from these upsampled images.
© Springer Nature Switzerland AG 2020

G. Bebis et al. (Eds.): ISVC 2020, LNCS 12510, pp. 263-274, 2020.
https://doi.org/10.1007/978-3-030-64559-5_20


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64559-5_20&domain=pdf
https://doi.org/10.1007/978-3-030-64559-5_20

264 S. I. Reeves et al.

2 Background

2.1 OCR

Optical Character Recognition is the conversion of pixel represented words and
characters within images into machine-encoded text. As previously mentioned,
the OCR framework Tesseract [11] is used to extract text in the document images
used in this manuscript. Tesseract was originally formulated by HP research
between 1984 and 1994. Since then it has changed hands and now is an open-
source software package managed by Google [5] — under the Apache 2.0 License.
We use Tesseract 4.1.1, which generates text based utilizing a Long-Short Term
Memory (LSTM) network. Tesseract ingests single-channel images and generates
feature-maps based on these images. Then these feature maps are embedded into
an input for the LSTM [5,11].

2.2 The GP Upsampling Algorithm

This interpolation method has taken inspiration from a new interpolation
method for computation fluid dynamics proposed in [8], an evolution of the algo-
rithms shown in [9,10]. The authors used a windowed GP method to upsample
simulation data from coarse to fine computational meshes. For our application
we define text in single-channel document images by pixels with low intensity
values (close to 0 or black), surrounded by pixels of high intensity (closer to 255
or white in an 8 bit context). Specifically, pixel values are low in the interior
of a character, and pixel values are comparatively high outside of characters.
Because of this specific structure, the type of GP modeling will change. Instead
of modeling the raw values, the deviation from a mean intensity will be modeled.
This allows the upsampling algorithm to better maintain these intensities in the
presence of characters. This structure is discussed in more detail in Subsects. 2.2
and 3. Mathematically, we define the upsampling operator to be

fo=fo+ kKK (f—f) (1)

which follows the formula for the posterior mean [7]. In Eq. (1), k, is a vector of
covariances between the sample pixel locations and the location of the pixel we
wish to interpolate. Furthermore K is a matrix of pairwise covariances between
sample points. The term fy is the estimate for the prior mean pixel intensity
over the sample, and f = fy1, calculation of these terms is found in Subsect. 2.2.
In Subsect. 2.2, we discuss the choice of covariance kernel to generate k, and K.

Choice of Covariance Kernel. The commonly used squared exponential ker-
nel [7] is often used when the underlying function is continuous and is the de-facto
covariance function when building a GP. Image data on the other hand, is inher-
ently discontinuous and is comprised of 8 or 16 bit integers. So instead of the
SE kernel, a member of Matérn family of kernels is used. In the Matérn fam-
ily of covariance functions, there are three hyper-parameters that dictate their
character — as indicated in Eq. (2).
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For the Matérn kernels, there are three hyper-parameters Y, ¢, and v. The
hyper-parameter X' related to the output variance function, and is widely used
for uncertainty quantification. The term £ is the inherent length scale of covari-
ance in for the underlying function space. The hyper-parameter v on the other
hand, relates the level of “continuousness” of the functions that are sampled.
The function K, is the modified Bessel function of the second kind of order v.
The Matérn family of covariance functions give continuity properties ranging
infinitely differentiable functions, as produced by the SE kernel, and nowhere
differentiable — such as those generated by the Ornstein-Uhlenbeck covariance
kernel.

Consideration of the input and output datatypes of the GP are key when
choosing or building a covariance function. The datatype for this application are
document images, which contain sharp contrasts that are handled better by a
low v Matérn kernel. The Matérn kernel with v = 3/2 is used in this algorithm.
For this specific value, Eq. (2) can be simplified. By setting v = 3/2,

(Y (et

Ks3)5(x,y) = X° (1 + ﬁW) exp (—\/§”XZY|> . (3)

We choose X = 1 as the uncertainty portion of GP modeling will not be used
for this application.

In order to discuss the practical difference between the Matern 3/2 kernel
and the Squared Exponential, Figs. 1a and 1b are generated utilizing functions
from the Scikit Learn framework [6]. These figures contain prior and posterior
mean functions of the GP generated using the aforementioned covariance ker-
nels. The prior mean functions sampled from the GP offer illustrations of typical
functions that “live” in the function spaces that the covariance kernels expect.
The sampled response variable follows the formula ¥ = sin ((X — 2.5)?), with
10 independent variable samples that follow X ~ #(0,5). Figure la contains
the prior and posterior mean functions generated from GP with the SE Kernel
using these response and independent variables. The gray space represents the
uncertainty of the GP models. For Fig. 1b the above process is repeated utilizing
the Matérn 3/2 kernel instead of SE. Note that in Fig. la, the prior and pos-
terior mean functions are much smoother than the functions sampled from and
produced by the GP with the Matérn kernel, as represented in Fig. 1b.

Maximum Likelihood Estimate for the Prior Mean. The prior mean
function that will be used is the mazimum likelihood estimate for the prior mean,
calculated over the 5 x 5 square patch of pixels. This is done to change the
character of the upsampling model so the model predicts the variation about
the mean intensity in each sample. Typically, non-zero mean functions are used
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Fig. 1. Two GP models fit to 10 samples. Left: GP model with Squared Exponential
Kernel, Right: GP model with Mateérn.

when there is an observed or assumed trend in the data. In the case of document
images, pixel data is expected to retain certain intensities when inside a character
or in the white space of a document. Because of these characteristics, a constant
non-zero mean is chosen. Note that the derived prior mean functions is only
constant over a single window, the prior mean will be constructed over each
sample varies over the image.

To calculate the maximum likelihood estimate (MLE) for a constant prior
mean, f = fy1, the Gaussian log-likelihood function is optimized with respect
to fo. The log-likelihood is

Ing = _% (f—F)TKT (f—f) - %ln(det IK|) - gln(%r). ()

The maximum is calculated by setting the derivative of Eq.4 with respect to
fo and solving for fy. Therefore the maximum likelihood estimate for the prior

mean is: r L
1'K—'f
= —. 5
fo= 11 (5)

Also, this maximum likelihood estimate for the prior mean can be recast as
(D) ¢
T -1

Zi,j K[l}j]

This interpretation is simply a weighted average with respect to the GP model.

fo=

3 Algorithm

In this upsampling algorithm, single channel grayscale document images are
used. The GP upsampling algorithm begins with the construction of the model



A Gaussian Process Upsampling Model for Improvements in OCR 267

weights with a length scale parameter derived from the original resolution of
the image — ¢ = 20min(1/h, 1/w). The upsampling ratio dictates the number of
weight vectors needed, for example, when upsampling 4x, 16 new pixels are gen-
erated and therefore 16 weight vectors are needed. These vectors are generated
by utilizing the Cholesky factorization of K and then applying back substitution
to calculate each k' K~!. The key factor is that the covariance kernel utilized in
this methodology is isotropic— it only depends on the distance between samples.
Since a sliding window is used, the upsampling weights only need to be calcu-
lated once and can be used throughout the image. This is because the distance
between sample pixels are related to their pixel index (¢,7) and the distance
between each of the upsampled pixels and the rest of the window is identical for
every window.

When performing upsampling over the document image, a sliding 5 x 5 pixel
window is used as the sample for the GP model. Figure2 helps illustrate the
sliding window GP method. The figure contains 3 grids of pixels. The first grid
represents the constant maximum likelihood estimate for the prior mean over
this pixel grid. The second grid represents the deviation of the sampled pixel
values from the MLE. Together, these grids combine to interpolate 16 new pixels,
replacing the pixel in the (i, 7) location.

In the implementation of this algorithm, the maximum likelihood estimate
for the prior mean is generated when the 5 x 5 sample is loaded. Then each GP
weight vector kI K~! is applied to the residual between the MLE and pixels in
the sampled window to model the deviation. The deviation and the MLE are
combined to generate each new pixel f,.

As an example, Fig. 3 is used to illustrate the upsampling results utilizing this
GP algorithm. The top image in the figure is the low resolution image (resized
by copying the nearest pixels to be the same size as the GP image), and bottom
text is from the GP upsampled image. When Tesseract is used on these images,
it yields the following texts. The low resolution image Tesseract output is:

“desigm £rédacimice en fiflanEm, Et le chiet”,

which is not an accurate representation of the ground truth. However, for the
GP upsampled image, Tesseract generates

“design et regactnce en << Azzmuts >>. est le chef”.

It is clear that the GP upsampled version is much closer to the ground truth
text of

“design et rédactrice en << Azimuts >>, est le chef”.

Tesseract works best when used on near-binary images as an input. In this
case, near binary means that the majority of the pixels in the image are close
to 0 if they are within a character, or 255 otherwise. However, sometimes the
single channel images are calculated from RGB images that yield other shades
of gray. In this case some images processing techniques can be used to better
“binarize” these images. Aside from binarization, images can contain noise or
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Fig. 2. Schematic for the 5x5 GP model for four times upsampling. The dark gray
grid (left) illustrates the computation of fy over the sample, while the GP model
combination on the middle grid. The fine grid on the right, illustrates the 16 new f.
generated by combining the two, effectively replacing the pixel (i, j)

desigm &t rédactnice en

o Azmmmats », est le chet
design et rédactnce en .
« Azzmuts ». est le chef

Fig. 3. Section of Page 154 of the LRDE dataset. Top: Four times downsampled image
crop. Bottom: Four times GP upsampled.

textures within them, which can negatively effect the detection of characters. A
common way to handle excess noise and textures is to use a blurring operation
to smooth out those regions. However, utilizing these blur convolutions can lead
to unwanted removal of edges.

To remove noise and textures without compromising edges the bilateral fil-
tering approach illustrated by Tomasi and Manduchi is used [12]. Bilateral filters
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reduce noise and textures without compromising edges, that is, without compro-
mising the upsampled edges generated in the GP upsampling.

If the image is not approximately binary, a thresholding technique can be
used to force the text to be truly black. An adaptive Gaussian threshold process
is used to generate binary images. Thresholding utilizes a set intensity value and
replaces all pixels below that value to black and all pixels above the threshold to
white. If there are shadows in the image, global thresholding can lead to large
portions of the image to be blacked out. This could result in the majority of words
in a document image to become inaccessible. An adaptive-thresholding technique
utilizes a neighborhood of pixels and calculates the threshold value locally to
perform binarization. With Adaptive Gaussian thresholding, the threshold value
is the weighted sum of neighborhood pixels in a Gaussian window [1,2].

Figure4 contains the results of the pipeline for processing low resolution
images and is a visual explanation why filtering is necessary, especially when
performing binarization. The top image is a GP upsampled version of a noisy low
resolution image. The middle image is a thresholded version of the noisy image
without using the bilateral image filter. Binarization, in this case, enhances the
inherent noise, resulting in Tesseract to detect no characters. The bottom image
is the noisy input image with bilateral filtering applied, and then thresholded.
With the last image the Tesseract engine can detect every character.

The OCR pipeline used is as follows. First, a low resolution image is upsam-
pled using the GP model presented earlier. Then, noise and unwanted textures
from the high resolution image are removed while preserving edges by utilizing
bilateral filtering. After the GP upsampled image is filtered, if the image is not
approximately binary, an adaptive thresholding technique is used to convert the
filtered high resolution image into a binary image to be ingested by the Tesser-
act OCR engine. For clarity, Fig.5 contains an algorithmic diagram with each
process.

4 Experiments

In order to test the methodology, the EPITA Research and Development Lab-
oratory (LRDE) dataset from [4] is used. This dataset is publicly available but
is copyrighted, (©2012 EPITA Research and Development Laboratory (LRDE)
with permission from Le Nouvel Observateur. This dataset is based on the French
magazine Le Nouvel Observateur, issue 2402, November 18th-2th, 2010. The
original images come from this magazine, and LRDE has generated the ground
truth OCR from these images. This dataset is free for research, evaluation, and
illustration and can be downloaded from LRDE’s website.

To test the proposed GP upsampling algorithm, the original images’ resolu-
tion is downsampled four times in width and height. Then these low resolution
representations are combined with Gaussian noise. Next, the noisy low resolu-
tion images are upsampled using the GP method illustrated in this manuscript.
Finally, the upsampled images are then passed through the image processing
pipeline illustrated in Fig. 5, to extract detected characters.


https://www.lrde.epita.fr/dload/olena/datasets/dbd/1.0/
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Fig. 4. Top: Noisy grayscale GP upsampled text block. Middle: Adaptive threshold-
ing with no filter. Bottom: GP upsampled image with bilateral filter and adaptive
thresholding.
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Fig. 5. The image processing pipeline used for higher quality OCR.

For this purpose, accuracy is calculated by comparing the number of words
detected in the upsampled document to those that are present in the ground
truth text. This is a fairly conservative measure, as increased accuracy in upsam-
pling can lead to increased similarity in generated words with the true words.
However, in this case, number of true words matched is a more direct mea-
surement of accuracy that will effect applications that utilize image extracted
text.

First, the accuracy of the GP method is compared to the OCR, extracted
utilizing the low resolution images. Figure6 contains a graph comparing the
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accuracy of OCR obtained from the GP upsampled images against OCR from
the low resolution images, for each image in the dataset. In the figure, the blue
line represents the OCR accuracy for each GP upsampled image, whereas the
red line is the OCR accuracy of the low resolution images. Flat dashed lines are
included to illustrate the mean accuracy of each set. There are several dips in the
graph where both the upsampled accuracy and the low resolution accuracy are
very low, these pages of the magazine are comprised of mostly images where text
is not the dominant feature. The extraneous information limits the capabilities
of the Tesseract OCR engine.
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Fig. 6. GP upsampled OCR accuracy vs. the Low Resolution accuracy with dashed
lines denoting average accuracies.

Most applications that require OCR will upsample sufficiently low resolution
images. So, naturally, the GP algorithm is compared against the bicubic interpo-
lation method, a common baseline in upsampling algorithms. For this implemen-
tation the bicubic method used is contained in the Python Image Library [3].
In this test, the text generated by the GP based pipeline is compared against
an analogous bicubic interpolation based pipeline. Figure7 contains a plot of
the relative gain in accuracy when utilizing GP over bicubic interpolation over
the LRDE dataset. In the figure, the relative gain is depicted by the blue dots
for each image in the dataset. Additionally, a line denoting equal performance
is plotted as an orange line for reference. For the majority of images, the pro-
posed algorithm’s extracted text better matches the ground truth text over the
baseline interpolation. Some summary statistics are included in Table 1. The GP
algorithm performs the best over the base low resolution images, and the bicubic
interpolation based pipeline. The GP algorithm had the highest average accu-
racy, lowest variance and the highest minimum and maximum accuracy out of
the three tests. The last column in the table is the relative gain in OCR accuracy
by using the GP algorithm instead of Bicubic or just using the low resolution
image. There is a 6.26% increase in character recognition against the bicubic
upsampling.
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Fig. 7. The relative gain utilizing GP upsampling vs bicubic over the noisy low reso-
lution test set. The blue dots are the individual accuracy gains, and a reference line
corresponding to equal accuracy is plotted in orange. (Color figure online)

Table 1. Summary statistics of the OCR accuracy over the LRDE subsampled dataset.

Average | Variance | Max Min GP Relative Increase
GP 0.735020 | 0.012018 | 0.844515 | 0.214765 | N/A
Bicubic 0.695874 | 0.013746 | 0.835996 | 0.175597 | 6.26%
Low Resolution | 0.345170 | 0.014018 | 0.725663 | 0.003584 | 195%

5 Conclusion

In this paper, a new GP based interpolation model was produced for the explicit
purpose of upsampling single-channel document images. Evaluation over a real-
word data set revealed an increase in OCR accuracy over the baseline upsampling
method, bicubic interpolation, when used in conjunction with the Tesseract OCR
engine.

GP model could be built over the entire low resolution image which could
generate new pixels with inputs in a non-local sense. This provides issues in
multiple areas. The kernel utilized in this context decay rapidly as distance
is increased, so the new information gained will become less of a contribution
than a hinderance when it comes to computation. Even though the weights are
calculated using the Cholesky Factorization of the covariance matrix K, the
computational complexity of factorization is still n®/3 where n is the size of row
and column size of K [13]. So even on a relatively small resolution image, say
500 x 500, K will have size 250,000, which will require 5.208 x 10'® operations.
This is realistically infeasible, which leads well into the approach described in
this paper. The windowed GP model can be reinterpreted as a Sparse Gaussian
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Processes that only utilizes information that is local to the interpolation pixels,
which will have the most relevant information in both models.

Some minor improvements could be gained by optimizing the length scale
parameter, which could be found by maximizing the log-likelihood with respect
to £. However, each window may have a different optimal length scale, which
again, leads to an unwanted increase in computational complexity. Additionally,
one can tune ¢ for the dataset, but the value in this paper appears to be general,
as it depends on the size of the low resolution image. As mentioned previously,
we use an ¢ that is proportional to the initial resolution. This allows for a charac-
teristic length scale to mostly take into acount the pixels used by the convolution
kernel, while allowing invertibility of the covariance kernel matrix.

Utilizing the proposed GP algorithm as an upsampling method for OCR
yields on average a positive gain in accuracy versus a more traditional bicubic
method when used to upsample the images for inputs to the Tesseract OCR
engine. The GP algorithm uses a sliding window of 5 x 5 pixel sampled across
the image. The yield in accuracy against bicubic can help text based Natural
Language Processing (NLP) models perform better when placed in an end-to-
end environment, like in financial applications, or for accessibility of documents
and scanned images for people who are visually impaired. We further believe
that image enhancement through this method can be beneficial to many types
of pre-trained object recognition problems, and is a subject of research of the
primary authors.
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