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Decentralized Frequency Alignment
for Collaborative Beamforming
in Distributed Phased Arrays
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Abstract—A new approach to distributed syntonization (fre-
quency alignment) for the coordination of nodes in open loop
coherent distributed antenna arrays to enable distributed beam-
forming is presented. This approach makes use of the concept
of consensus optimization among nodes without requiring a
centralized control. Decentralized frequency consensus can be
achieved through iterative frequency exchange among nodes. We
derive a model of the signal received from a coherent distributed
array and analyze the effects on beamforming of phase errors in-
duced by oscillator frequency drift. We introduce and discuss the
average consensus protocol for frequency transfer in undirected
networks where each node transmits and receives frequency
information from other nodes. We analyze the following cases:
1) undirected networks with a static topology; 2) undirected
networks with dynamic topology, where connections between
nodes are made and lost dynamically; and 3) undirected networks
with oscillator frequency drift. We show that all the nodes in a
given network achieve average consensus and the number of
iterations needed to achieve consensus can be minimized for a
given cluster of nodes. Numerical simulations demonstrate that
the consensus algorithm enables tolerable errors to obtain high
coherent gain of greater that 90% of the ideal gain in an error-
free distributed phased array.

Index Terms—Syntonization, distributed arrays, distributed
beamforming, collaborative beamforming, consensus averaging.

I. INTRODUCTION

COHERENT distributed arrays (CDAs) are clusters of
cooperating wireless nodes whose radiated signals add

up constructively at a designated destination. For instance,
distributed beamforming [1], [2], virtual antenna arrays [3],
distributed MIMO arrays [4] are all implicit applications of
CDAs. These distributed schemes have been proven to be
technically feasible and bring improvements on three fronts:

1) Enhanced energy efficiency: A transmit cluster focuses
the emitted energy spatially toward the intended direc-
tion, yielding high directivity and thus better signal-to-
noise ratio at the destination.
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2) Increased reliability: Having many transmitters allows
for more signal path diversity and helps mitigate the
multipath fading and shadowing.

3) Increased range: Aggregate transmit power growth pro-
portional to the square (and cube) of N transmitters (i.e.,
radars) enables longer communication range.

The major technical challenge in realizing these benefits
consists of synchronizing the radio frequency (RF) signals on
the array transmitters, so that they are coherently combined
at the destination. This implies synchronization of the fre-
quency and phase of these signals. In a distributed array, each
RF signal is generated from an independent local oscillator.
These oscillators have intrinsic frequency offsets and undergo
stochastic frequency drifts over time (i.e., because of manufac-
turing tolerances and temperature variations) inducing phase
offset variations. Therefore, it is necessary to compensate
these clock offsets to frequency lock the transmitters and
then implement phase calibration and channel estimation to
achieve coherent transmission. CDAs generally require precise
alignment of the phases of the transmitted signals to ensure
energy-efficient transmissions to the destination [2], with total
phase errors of less than 18◦ required to achieve 90% ideal
coherent gain, or a degradation of less than 0.5 dB from the
ideal case [1].

Many techniques have been developed to achieve distributed
transmitter synchronization, including receiver-coordinated
explicit-feedback [5], one-bit feedback [6], master-slave syn-
chronization [2], reciprocity (i.e., channel state estimation by a
transmit cluster from signals emitted by the target receiver) [7],
[8], round-trip synchronization [9], and two-way synchroniza-
tion [10]. Most of these techniques use explicit/implicit feed-
back from the destination, and are thus closed loop CDAs [1].
These feed-back schemes undergo latency and overhead, and
most importantly are unsuitable for remote sensing and radar
applications, where feedback is generally not available.

In [1], the open loop CDA (OL-CDA) concept was intro-
duced, where the array self-aligns without the use of feedback
from the destination. Although this array uses zero feedback,
it does involve inter-node coordination and phase alignment
to achieve coherent beam steering. Indeed, it operates as
distributed phased array, but the array geometry and element
locations must be known. OL-CDA enables the develop-
ment of future (fixed and mobile) wireless communication
networks, which are energy efficient, secure, and can be
built with low synchronization overheads. While closed loop
CDA approaches have been heavily studied, the OL-CDA
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concept is still in its infancy, and more effort needs to be
devoted to explore its potential. Recent theoretical studies
and experiments have begun demonstrating the feasibility and
potential applications of OL-CDAs (e.g. [11]–[13]). OL-CDAs
are inherently sparse antenna arrays, and while there has been
considerable work done in the design and analysis of the
radiation patterns of distributed antenna arrays in terms of the
antenna locations and sidelobe levels (e.g. [14]–[21]), there has
not been a focused effort on the design of inter-node frequency
alignment approaches and the effects on distributed beamform-
ing of frequency mismatch in the nodes in distributed antenna
arrays in a decentralized sense.

A well-known frequency synchronization technique is the
aforementioned master-slave architecture, where slave trans-
mitters lock to a reference signal broadcast by the master
transmitter. Despite its simplicity, this approach has the fol-
lowing limitations: (1) the technique is fragile to failures of
the master node (if the master node fails, then the whole RF
synchronization fails); (2) the architecture requires a dedicated
master node, and thus limits the flexibility of the array. While
GPS has been considered in some works as a master node,
GPS is only adequate for coherent distributed transmissions
at very low frequencies [22] (∼10 MHz); (3) the master-slave
architecture is not scalable.

This paper presents a new approach to distributed frequency
alignment (syntonization) using decentralized (distributed)
consensus averaging. Consensus, i.e., group agreement, has
been considered in contexts such as flocking [23], formation
control [24], flight of unmanned air vehicles (UAVs), and
clusters of satellites. The proposed consensus scheme involves
iterative frequency exchange (e.g., via local broadcast) among
cooperating nodes to reach (asymptotically) a common agreed
frequency, i.e., the average of all nodes’ initial frequencies.
In other words, the frequency of each node converges to
the global average. Note that unlike centralized master-slave
schemes, the distributed scheme is robust to node failures and
is scalable for large networks.

This paper is organized as follows. Section II presents an
analysis of the effect on coherent array gain of the phase error
resulting from frequency misalignment. Section III models the
network and introduces a distributed approach for frequency
synchronization. For a static network topology, numerical
results showing the effectiveness of the proposed algorithm
are presented. Then Section IV employs the algorithm to deal
with dynamic networks, where the connectivity of the network
changes and the frequencies change due to oscillator drift.
Numerical results show that a consensus can be reached in the
presence of oscillator drift on low-cost oscillators to achieve
above 90% of the ideal level of coherent gain.

II. SYNTONIZATION (FREQUENCY ALIGNMENT) IN
COHERENT DISTRIBUTED ARRAYS

This work focuses on OL-CDAs, in which individual nodes
self-align to achieve distributed coherence. As noted ear-
lier, open-loop operation necessitates more information than
closed-loop systems (where feedback from the destination
is available). There are a few basic drivers of coordination

(a) (b)

Fig. 1: (a) Sparse array layout for N = 20 elements and (b) broadside
radiation pattern.

(a) (b)

Fig. 2: (a) Sparse array layout for N = 60 elements and (b) broadside
radiation pattern.

(a) (b)

Fig. 3: (a) Sparse array layout for N = 100 elements and (b)
broadside radiation pattern.

errors in open-loop distributed arrays, which are errors in the
measurement of the distances between node pairs; in aligning
the phases of the nodes; in aligning the timing of the nodes;
and in aligning the frequencies of the nodes. In previous
work, we analyzed the effects on achieving coherent gain of
errors in distance, phase, and time [1], [25]. In this work,
we focus on the effects of errors in frequency alignment and
present an approach for decentralized consensus optimization
of the frequency. As such it is assumed that the errors due
to distance, relative phasing, and timing are accounted for and
thus negligible; because such errors are generally independent,
their contributions can be analyzed individually and combined
for a total error budget.

In a coherent distributed transmit operation, the set of nodes
in the array transmit waveforms with the appropriate relative
phasing and timing such that the transmitted waveforms arrive
at the target in-phase, ensuring that the waveforms add con-
structively at the destination node. We consider sparse planar
arrays of transmitters, placed randomly within a 10λ × 10λ
domain on a λ/2 grid. While the application space is general,
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notional use cases are communications from a set of compact
radios (e.g. [2]) or remote sensing from an array of UAVs (e.g.
[26]–[29]); operating at a frequency of 100 MHz, the domain
represents a 30m×30m space, within which it is certainly
feasible to locate nodes within half of a wavelength (1.5m).
Figs. 1-3 show random array layouts for arrays with 20, 60,
and 100 nodes, and the corresponding array radiation patterns.
The randomness in the array layout ensures that no significant
sidelobes are present. When implementing frequency align-
ment between nodes, it is desired that the mainbeam gain
remains as high as possible in the presence of errors. In the
following we assess the degradation of the mainbeam gain in
the presence of phase errors due to frequency misalignment.

A. Distributed Array Model
To model the relative effects of errors in a coherent

distributed radar operation, we assess the relative coherent
summation of the signals that is achieved in the presence of
errors and determine the resulting signal gain at a destination
point relative to an ideal summation of signals without errors.
We consider the array to comprise vertically polarized small
dipoles (antenna element factors could be included later in a
straightforward manner), whose current density is

J = ẑejωt
∑
n

Inlnδ(x− dxn)δ(y − dyn)δ(z − dzn), (1)

where In is the current on element n, ln is the length of the
nth dipole, and (dxn, dyn, dzn) is the displacement from the
origin. The electric field intensity is found in terms of the
far-field magnetic vector potential

A ≈ e−jkr

4πr
J̃, (2)

through

E = −jωµA +
1

jωε
∇ (∇ · A) , (3)

where

J̃ = ẑejωt
∑
n

Inlne
−j(kxdxn+kydyn+kzdzn) (4)

is the Fourier transform of the current density.
Beamsteering in a distributed array requires relative phase

coordination between all elements in the array. Separate from
aligning the frequency of the elements, phase coordination
is what enables transmitted signals to arrive in-phase at the
desired destination. The beamsteering phase of each element
can be implemented in relative to a global array origin, or
relative to other nodes in the array. When implementing a
beamstearing phase to one element relative to the reference
point, the wavenumber vector can be given by [1]

kn = ẑn
2π

λ
dncosθn (5)

and the far-field electric field intensity is thus

Eθ = jkηsinθ

N∑
n=1

Inln
4πrn

ejωte−j
2π
λ dncosθn

=

N∑
n=1

hnαne
j(ωt− 2π

λ dncosθn), (6)

where N is the number of elements in the array, hn contains
the amplitude terms relating to the channel propagation effects
and constant scalars, and αn accounts for the amplitude of the
current elements. The signal s(t) (V) received at a point in
space is proportional to the electric field intensity E (V/m). If
the receiving point is far-field to the array, and the array emits
continuous-wave signals such that relative timing effects can
be neglected, the total ideal signal can be written

si(t) = C

N∑
n=1

ej(2πft−
2π
λ dncosθn). (7)

If errors are present in the coordination, the total received
signal is given by

sr(t) = C
N∑
n=1

ej[2π(f+δfn)(t−δtn)+φn+φs,n], (8)

where δtn is the time alignment error, δfn is the frequency
error, φs,n is the phase added for beamsteering (from (5)), and
φn is the phase error, given by

φn =
2π

λ
(dn + δdn) cos (θn + δθn) + φc, (9)

where δdn is the error in the antenna separation measurement,
δθn is the error in estimating the desired beamsteering angle
relative to the platform attitude, and φc is the relative phase
error of the oscillator.

B. Signal Model with Frequency Errors

While it is ultimately the differences in phase that cause
degradation of the coherent gain, in this work the focus is
on aligning the frequencies of the systems, or syntonization,
between the separate platforms. In a system where continuous
syntonization can be implemented, phase-locked loops (PLLs)
can be used. In theory, the phase error of a PLL is zero, thus
with continuous syntonization it can be expected that the phase
error resulting from frequency differences will be negligible. In
practice, however, syntonization may have to be implemented
periodically, due to the nature of information transfer between
the nodes. In this case, the frequencies of the oscillators on
each node will drift between updates. The total phase error due
to the evolution of the frequency drift in a time T is given by

δφn = 2πδfnT. (10)

With other error terms corrected, the received signal in the
presence of frequency drift is thus

sr(t) = C

N∑
n=1

ej(2πft+δφn+φs,n). (11)

If the frequency error is constant, the total phase error will
be the frequency error multiplied by the time interval. In
practice, the frequency will drift from zero error to some
maximum value, thus estimating the frequency error as a
constant represents an upper bound on the total error.
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Fig. 4: Probability of the coherent gain exceeding 0.9 versus clock
phase error (100,000 Monte Carlo simulations). The threshold for
achieving P (Gc ≥ 0.9) = 1 approaches 18°.

C. Inter-Node Phase Error Tolerance Resulting From Fre-
quency Drift

To evaluate the effect of the error terms, the coherent gain
Gc, which is the received signal power of (11) relative to (7),
and is given by

Gc =
|srs∗r |
|sis∗i |

, (12)

is evaluated. The standard deviations of the frequency-induce
phase error is varied, and the probability that the signal power
exceeds a given threshold

P (Gc ≥ X), (13)

where 0 ≤ X ≤ 1 is the fraction of the ideal coherent signal
power gain, is determined through Monte Carlo simulations. In
this work, we evaluate the probability that the received signal
will exceed 0.9 of the ideal gain (X = 0.9), corresponding to
a coherent gain degradation of 0.5 dB.

In Fig. 4, the probability of the received signal power
exceeding 0.9 is shown for errors in the oscillator phase
σφ for coherent distributed arrays consisting of N = 2, 3,
5, 10, 20, 100, and 1000 nodes. As the number of nodes
in the system increases, the line marking the area where
P (Gc ≥ 0.9) becomes sharper, converging to a point below
which P (Gc ≥ 0.9) is approximately 1, and above which
is zero. The area where P (Gc ≥ 0.9) ≈ 1 also increases
as the number of platforms increases. This is due to the
decreasing variance of the received signal power as the number
of elements in the network increases. As N →∞, this cutoff
error below which P (Gc ≥ 0.9) ≈ 1 approaches 18°.

The effect of phase errors on the array beampattern is shown
in Figs. 5-7. For relatively small arrays (N = 20), the main-
beam degradation relative to the sidelobe levels is significant
when the phase error is above 36°, and the mainbeam gain is in
the order of the sidelobe gain. At lower errors, the mainbeam
increases, and at 18° the mainbeam gain is degraded by only

(a) (b)

(c) (d)

Fig. 5: Broadside beamforming for the N = 20 element array with
phase standard deviations of (a) 180°, (b) 90°, (c) 36°, (d) 18°.

(a) (b)

(c) (d)

Fig. 6: Broadside beamforming for a N = 60 element array with
phase standard deviations of (a) 180°, (b) 90°, (c) 36°, (d) 18°.

0.5 dB. The sidelobe levels are low for larger arrays of N = 60
and N = 100, thus the beam can still be formed with errors
up to 90°, albeit with significant gain degradation.

III. DECENTRALIZED FREQUENCY ALIGNMENT

A. System Model

The distributed antenna array is modeled as a network
(connected undirected graph) G = {N , E} consisting of a set
of nodes N = {1, · · · , n} and a set of undirected edges E . An
edge (i, j) ∈ E means that there is a connection between nodes
i and j and the communication is bidirectional. We assume that
the nodes are equipped with hardware clocks subject to clock
drift.
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(a) (b)

(c) (d)

Fig. 7: Broadside beamforming for the N = 100 element array with
phase standard deviations of (a) 180°, (b) 90°, (c) 36°, (d) 18°.

Each node i has an associated RF signal xi(t) = cos(2πfit),
the frequency of which the network must reach a consensus.
It has an initial estimate for the true frequency fc, which
is denoted as fi(0). Then decentralized averaging algorithms
update the estimates at all nodes during each iteration. We say
that the nodes reach a consensus if

fi = f̄ =
1

n

n∑
i=1

fi(0), ∀i = 1, . . . , n. (14)

We assume that fi(0) = fc + σiX where σi = 1 × 10−4fc
is the error in frequency: 1 × 10−4 i.e., 100 ppm (parts per
millions) represents crystal clock accuracy, and X is a random
variable with normal distribution N(0, 1).

B. Average Consensus Model

The proposed decentralized frequency alignment consensus
(DFAC) scheme with a fixed graph is described in Algorithm 1.
We denote f(k) = {f1(k), · · · , fn(k)} as the estimates from
all nodes at iteration k.

Algorithm 1 Decentralized frequency alignment consensus

Input: k = 0, the initial estimates f(0), mixing matrix W
while stopping criteria is not satisfied do

k = k + 1
f(k) = Wf(k − 1)

end while
return f(k)

The mixing matrix W = [wij ], where wij is the (i, j)
element of the matrix, satisfies the following assumptions:
• (Symmetry) W = W>.
• (Doubly stochastic) W1 = 1, 1>W = 1>, where 1 is

the n× 1 vector of all ones. That is, each row sums to 1
and each column sums to 1.

Fig. 8: A sparsely connected network of 20 nodes and r = 0.1.

• (Decentralized property) wij = 0 if i 6= j and nodes i
and j are not connected, i.e., (i, j) /∈ E .

C. Numerical Results

In this section, we evaluate the performance of the proposed
DFAC algorithm in a simulated environment with a fixed
network. The algorithm is implemented in MATLAB; the
initial states of the nodes are selected at fc = 1 GHz. We
evaluate the quantitative performance of the decentralized
algorithm by computing the normalized error (f − fc)/(fc)
along the iteration number. We vary the number of nodes N
and the network connectivity.

1) Varying number of nodes: The network is randomly
generated with connectivity ratio r, where r is defined as the
number of edges divided by the total number of all possible
edges N(N − 1)/2. When r is small, the network presents
a cluster of sparsely connected nodes. As r increases, the
network becomes more and more connected. Fig. 8 is a sparse
network of 20 nodes. The total number of possible edges is
190, and this network has 19 edges. We fix r = 0.1 and change
the number of nodes n to 5, 20, and 100. The result is shown in
Fig. 9. This figure shows that as n increases, the final absolute
value of error decreases. In addition, the algorithm converges
faster with more nodes (100 nodes and 20 nodes). It is worth
noting that the r value for 5 nodes is 0.4 (the minimum number
of edges is 4) resulting in faster convergence than 20 nodes.

Fig. 10 shows the RMS Error over 10,000 simulations for
different numbers of nodes n between 5 and 100. i.e., we
averaged the normalized error at all 10,000 simulations for
all n values. The case n = 5 gives the highest error with
the largest variability. As the number of nodes increases, the
error decreases and its variability lessens. Large values of N
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Fig. 9: Normalized error comparison under varying number of nodes
of sparse networks with r = 0.1 (20 and 100 nodes) and r = 0.4 (5
nodes).

achieve similar performance; in particular, they have small
errors. Indeed, the RMS Error for a small size network with 5
nodes is 12.8 ppm, it reaches about 2.9 ppm and 4.1 ppm for
large networks with 100 and 60 nodes, respectively, while 6.5
ppm error is obtained by a medium size network (20 nodes).
Thus the large 60 and 100 nodes networks save 43% and 55%
of the error, respectively comparing to a 20 node network.

It is important to note that the error holds irrespective of the
connectivity r of the network, as will be demonstrated later.

Fig. 10: RMS error for varying networks.

Then we compare the convergence speed for different
connectivity. We measure the number of iterations required
for consensus. We evaluate the stopping criteria for DFAC
algorithm as max |f(k) − f̄ | < 2 × 10−3. The results for
n = 5, 20, 60, and 100 are shown in Fig. 11. We plotted the
means and variances for 10,000 simulations. For all values
of r ≥ 0.1, the two large clusters (60 and 100 nodes)
perform better than the other two (5 and 20 nodes). For
example, with r = 0.1, the number of iterations for 100
nodes is about 57. It reaches 819 for 20 nodes, while the
second smallest number is attained by 60 nodes that requires

Fig. 11: Convergence iterations for varying networks.

around 108 iterations. Hence the 100 nodes network saves
about 47% of the iterations comparing to 60 nodes, and this
induces 47% less transmissions among the nodes. Though the
number of iterations is smaller for 100 nodes, the number
of communications is larger for each iteration, compared to
60 nodes. This is because the number of edges is bigger (on
average there are 6 nodes connected to one node for a 60
nodes network, while the number increases to 10 for a 100
node network). As the connectivity r increases, the number
of iterations decreases for all networks. A large connectivity
(high density of links) is probably unrealistic as it would
promote interference among the nodes. In fact, reducing the
convergence time is important, as it leads to a smaller number
of messages exchanged among the nodes and to a reduced
energy cost of the algorithm.

2) Varying connectivity: For n = 100, the sparsity of the
network is changed from a sparse connectivity (r = 0.05)
to a dense connectivity (r = 0.9). The state trajectories are
shown in Fig. 12. It is clear that as the number of edges
increases, connectivity increases, and the settling time of the
state trajectories decreases. An explanation of this trend can be
inferred by looking at λ2(W) (the second largest eigenvalue in
magnitude) of the undirected graph that is tightly linked to the
convergence speed of the algorithm. Indeed, λ2 is relatively
small for dense networks and is relatively large for sparse
networks. Therefore, a dense network solves a consensus
problem faster than a sparse network.

It can be seen that the error remains unchanged for changing
connectivity r. This is solely due to the rational of the average
consensus, i.e., the average consensus algorithm guarantees
that the iterative procedure f(k) = Wf(k − 1) leads all the
estimates to converge to f̄ , irrespective of the connectivity of
the network as long as this network is connected.

IV. DYNAMIC FREQUENCY ALIGNMENT IN
COHERENT DISTRIBUTED ARRAYS

To investigate the performance of the average consensus
algorithm in a realistic environment, we consider two scenar-
ios: changing mixing matrix and changing frequencies due to
oscillator drift.
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(a)

(b)

(c)

Fig. 12: State trajectories of all nodes corresponding to network with
n = 100. (a) r = 0.05. (b) r = 0.3. (c) r = 0.9.

A. Dynamic Array Connectivity

In Section III, the network topology is assumed stationary.
But wireless networks are intrinsically dynamic, i.e., due to
the presence of obstructions, or fluctuating detection range. In
this regard, the effects on the consensus of a dynamic network,

i.e., a network with a time-varying topology, should be taken
into consideration. Herein we are interested to investigate the
convergence time of a dynamic network. We assume a varying
interconnection topology in which the number of nodes is fixed
but the communication links are changing; links are restored
and failed. i.e., edges are added and removed from the graph.
Algorithm 2 describes the detailed operation of changing the
mixing matrix.

Algorithm 2 DFAC with dynamic networks

Input: k = 0, the initial estimates f(0), mixing matrix W,
probabilities P1 ≤ 1
while stopping criteria is not satisfied do

k = k + 1
Generate a random number in α ∈ [0, 1] from the

uniform distribution
if α ∈ (P1, P1 + (1− P1)/2] then

Randomly choose one node i
Randomly choose another node j in its neighbor
Change the submatrix of W with i, j rows and

columns: [wii, wij , wji, wjj ]→ [wii + wij , 0, 0, wji + wjj ]
else if α > P1 + (1− P1)/2] then

Randomly choose one node i
Randomly choose another not connected node j
Change the submatrix of W with i, j rows and

columns: [wii, 0, 0, wjj ] → [wii − w,w,w,wjj − w], with
w = 0.2×min{wii, wjj}

end if
f(k) = Wf(k − 1)

end while
return f(k)

We consider a network with n = 100 nodes and connec-
tivity r = 0.03. At every iteration k, the topology of the
network is reconfigured. A number α is randomly generated
from a uniform distribution from [0, 1]. If α < 1, then we
do not change the mixing matrix. Otherwise, depending on
the value of α, we either add or remove one edge from
the network. When we remove one edge (i, j), we move
the weight wij and wji onto the nodes i and j. That is
[wii, wij , wji, wjj ] → [wii + wij , 0, 0, wji + wjj ]. When we
add a new edge (i, j), we move the weight w from nodes i and
j to the edge, i.e., [wii, 0, 0, wjj ]→ [wii−w,w,w,wjj −w],
with w = 0.2 × min{wii, wjj}. These operations keep the
properties of the mixing matrix. When P1 = 1, no changes
occur and the matrix is not reconfigured. Fig. 13(a) shows the
state trajectories of this dynamic network. One can observe
that a consensus is asymptotically reached. The results of the
original case (static network with n = 100 and r = 0.03 are
shown in Fig. 13(b) for comparison). As can be seen from both
graphs, the reconfiguration decreases the settling time of the
state trajectories. This character is consistent with the above
results that explain the decrease in convergence time by the
relatively unpronounced eigenvalue λ2 of the network. Assume
that the matrix W1 is changed to W . Then λ2(W ·W1) of
the product of changing mixing matrix from W1 to W is
consistently less than λ2(W ·W ) of the product of the matrix
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(a)

(b)

Fig. 13: State trajectories of all nodes corresponding to network with
N = 100 with r = 0.03. (a) Dynamic network. (b) Static network.

by itself (no changes in the matrix). To support this argument,
Fig. 14 compares the normal distribution curves of 10,000
sampled λ2 of changing and unchanging mixing matrices. It
can be seen that λ2(W · W1) < λ2(W · W ) with a high
probability.

We extended Algorithm 2’s performance in relation to
different values of network connectivity for different values
of P1. The results presented in Fig. 15 are achieved in a
network consisting of 100 nodes. Results shown on the figure
are illustrating the algorithm’s performance for P ∈

〈
zero W

change, add edge, remove edge
〉
. In the same case with con-

nectivity r = 0.03, the average convergence iterations is 6400
for the static network, 5312 for P =

〈
0.9, 0.05, 0.05

〉
, 884 for

P =
〈
0.3, 0.35, 0.35

〉
, and 821 for P =

〈
0.0, 0.5, 0.5

〉
. With

r = 0.08, the average is 159 for P =
〈
0.0, 0.5, 0.5

〉
, 154 for

P =
〈
0.3, 0.35, 0.35

〉
, 140 for P =

〈
0.9, 0.05, 0.05

〉
, and 126

for static case. For r ≥ 0.13, the difference between average
convergence of dynamic and static networks narrows down.
A key observation of these results is that the convergence
depends strongly on the connectivity and the network dynamic.
As the probability of dynamic connectivity decreases, and

Fig. 14: Normal distribution of the second largest eigenvalue λ2

samples of changing and unchanging mixing matrices. N = 100, r =
0.05.

Fig. 15: Convergence iterations for dynamic networks.

the network connectivity increases, the convergence iterations
decreases.

B. Oscillator drift

The previous sections established the ability to syntonize
the oscillators in the absence of oscillator frequency drift.
In practice, the wireless syntonization signals may be imple-
mented periodically, thus the frequencies will be aligned and
then drift for some period of time before being aligned again.
In this section, the convergence of the decentralized consensus
averaging algorithm in the presence of such oscillator drift is
analyzed.

The rate at which the frequency of an oscillator drifts is
strongly dependent on the design of the oscillator. A common
metric is the Allan deviation (ADEV), which is the square-root
of the two-sample variance of the oscillator frequency drift,
thus a lower ADEV indicates a more stable oscillator. The
ADEV of common temperature-controlled crystal oscillators
(TCXOs) is on the order of 1 × 10−9 to 1 × 10−10 over a
1s interval. At short intervals, the frequency drift is heavily
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influenced by noise fluctuations, and as the interval increases
these fluctuations tend to average out, resulting in a decreased
ADEV and a more stable frequency. Eventually, long-term
drift causes the ADEV to increase. In syntonizing systems
in a coherent distributed array, it is necessary to perform
coordination updates relatively frequently since the nodes in
the array may be in motion. Algorithm 3 describes the detailed
operation of the consensus algorithm with oscillator drift.

Algorithm 3 DFAC with oscillator drift

Input: k = 0, the initial estimates f(0), mixing matrix W
while stopping criteria is not satisfied do

k = k + 1
Generate random vector in α ∈ [0, σφ] from uniform

distribution, where σφ is the phase error due to random
frequency drift

f(k − 1) = α + f(k − 1)
f(k) = Wf(k − 1)

end while
return f(k)

For this work, the decentralized consensus algorithm is
investigated using a 1s interval time, over which the ADEV
is taken to be 1× 10−9. The frequencies of each node in the
array are updated at each processing interval with a frequency
drift randomly drawn from a distribution matching the ADEV
at a carrier frequency of 1 GHz. The array was set up with a
connectivity ratio of 0.15 (or greater if a connectivity of 0.15
was not possible due to the array size being too small). The
convergence, standard deviation of the total phase error, and
the coherent gain (12) were evaluated for array sizes of 20,
60, and 100 nodes.

Fig. 16 shows the evolution of the phases for the cases with
N = 20, N = 60, and N = 100, respectively. The phase
differences are quite large initially for both, but converge to
a tight cluster around 130, 55, and 25 iterations, respectively.
The standard deviation of these phases determines the level of
coherent gain achieved. Fig. 17 shows the standard deviation
of the phases of all the oscillators in the array as a function
of iteration. It can be seen that as the array size increases the
convergence time decreases. This is because the connectivity
ratio was fixed to be 0.15, meaning that larger arrays enable
the information to propagate more quickly through the array.
The dotted line indicates the 18° requirement discussed in
Section II, and clearly the decentralized algorithm enables
phase errors below this level even with the relatively poor
frequency stability of 1 × 10−9. Fig. 18 shows the level
of coherent gain supported by the array in the presence of
phase errors, showing that in each case the algorithm enables
coherent gain levels well above 90% of the ideal coherent gain,
indicated by the dotted line.

C. Discussion

The numerical results demonstrate that the decentralized
consensus protocol can be applied to other topologies that
realistically model arrays dynamics, and should allow coherent
gain of the distributed beamformer when (a) there is a high
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Fig. 16: Phases of the oscillators per iteration. (a) N = 20. (b)
N = 60. (c) N = 100.

probability of link failure and restoration (b) low frequency
stability of the oscillators is present. From the above results,
it can be concluded that oscillator drift can be considered
as the main source of errors in frequency. In systems with
mobility, minimizing the number of convergence iterations is
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Fig. 17: Standard deviation of the phases in the arrays. The dotted line
indicates the 18° requirement to achieve 90% of the ideal coherent
gain.
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Fig. 18: Coherent beamforming gain in the antenna mainbeam
enabled with the total phase errors given in Fig. 17. The dotted line
indicates 90% of the ideal coherent gain.

necessary to reduce energy consumption. This can be achieved
by insuring that sufficient communication links are restored.

V. CONCLUSION

Herein, we have proposed a decentralized average consensus
method for distributed achieving frequency synchronization,
which is vital for distributed beamforming in open loop
coherent distributed arrays, without relying on a centralized
approach. We have analyzed the performance of the algorithm
in undirected (full duplex) networks with static and dynamic
topologies. The algorithm is scalable, in that convergence time
decreases with the increasing number of participating nodes.
The algorithm is found to provide good performance even
under adverse conditions such as link failure or oscillator
drift. Our ongoing work regards hardware implementation
of the promising properties of the suggested protocol and
exploration of the decentralized consensus in directed (half-
duplex) networks.
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