
Open Access. © 2021 M. Badger and V. Vellis, published by De Gruyter. This work is licensed under the Creative Commons Attribution
alone 4.0 License.

Anal. Geom. Metr. Spaces 2021; 9:90–119

Research Article Open Access

Matthew Badger* and Vyron Vellis

Hölder Parameterization of Iterated Function
Systems and a Self-A�ne Phenomenon
https://doi.org/10.1515/agms-2020-0125
Received November 1, 2020; accepted May 25, 2021

Abstract:We investigate the Hölder geometry of curves generated by iterated function systems (IFS) in a com-
plete metric space. A theorem of Hata from 1985 asserts that every connected attractor of an IFS is locally
connected and path-connected. We give a quantitative strengthening of Hata’s theorem. First we prove that
every connected attractor of an IFS is (1/s)-Hölder path-connected, where s is the similarity dimension of the
IFS. Then we show that every connected attractor of an IFS is parameterized by a (1/α)-Hölder curve for all
α > s. At the endpoint, α = s, a theorem of Remes from 1998 already established that connected self-similar
sets in Euclidean space that satisfy the open set condition are parameterized by (1/s)-Hölder curves. In a
secondary result, we show how to promote Remes’ theorem to self-similar sets in complete metric spaces,
but in this setting require the attractor to have positive s-dimensional Hausdor� measure in lieu of the open
set condition. To close the paper, we determine sharp Hölder exponents of parameterizations in the class of
connected self-a�ne Bedford-McMullen carpets and build parameterizations of self-a�ne sponges. An inter-
esting phenomenon emerges in the self-a�ne setting. While the optimal parameter s for a self-similar curve
inRn is always at most the ambient dimension n, the optimal parameter s for a self-a�ne curve inRn may be
strictly greater than n.

Keywords: Hölder curves; parameterization; iterated function systems; self-a�ne sets

MSC: Primary 28A80; Secondary 26A16, 28A75, 53A04

1 Introduction
A special feature of one-dimensional metric geometry is the compatibility of intrinsic and extrinsic measure-
ments of the length of a curve. Indeed, a theoremofWażewski [30] from the 1920s asserts that in ametric space
a connected, compact set Γ admits a continuous parameterization of �nite total variation (intrinsic length)
if and only if the set has �nite one-dimensional Hausdor� measure H1 (extrinsic length). In fact, any curve
of �nite length admits parameterizations f : [0, 1] → Γ, which are closed, Lipschitz, surjective, degree zero,
constant speed, essentially two-to-one, and have total variation equal to 2H1(Γ); see Alberti and Ottolini [1,
Theorem 4.4]. Unfortunately, this property—compatibility of intrinsic and extrinsic measurements of size—
breaks down for higher-dimensional curves. While every curve parameterized by a continuous map of �nite
s-variation has �nite s-dimensional Hausdor� measureHs, for each real-valued dimension s > 1 there exist
curves with 0 < Hs(Γ) < ∞ that cannot be parameterized by a continuous map of �nite s-variation; e.g. see
the “Cantor ladders" in [6, §9.2]. Beyond a small zoo of examples, there does not yet exist a comprehensive
theory of curves of dimension greater than one. Partial investigations on Hölder geometry of curves from a
geometric measure theory perspective include [20], [21], [24], [5], [6], and [7] (also see [3]). For example, in
[6] with Naples, we established aWażewski-type theorem for higher-dimensional curves under an additional
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geometric assumption (�atness), which is satis�ed e.g. by von Koch snow�akes with small angles. The fun-
damental challenge is to develop robust methods to build good parameterizations.

Twowell-known examples of higher-dimensional curveswithHölder parameterizations are the vonKoch
snow�ake and the square (a space-�lling curve). A common feature is that both examples can be viewed as
the attractors of iterated function systems (IFS) in Euclidean space that satisfy the open set condition (OSC);
for a quick review of the theory of IFS, see §2. Remes [25] proved that this observation is generic in so far
as every connected self-similar set in Euclidean space of Hausdor� dimension s ≥ 1 satisfying the OSC is a
(1/s)-Hölder curve, i.e. the image of a continuous map f : [0, 1]→ Rn satisfying

|f (x) − f (y)| ≤ H|x − y|1/s for all x, y ∈ [0, 1]

for some constant H < ∞. As an immediate consequence, for every integer n ≥ 2 and real number s ∈ (1, n],
we can easily generate a plethora of examples of (1/s)-Hölder curves in Rn with 0 < Hs(Γ) < ∞ (see Fig-
ure 1). However, with the view of needing a better theory of curves of dimension greater than one, we may

Figure 1: First and fourth iterations generating a self-similar (1/s)-Hölder curve Γ in R2 with 0 < Hs(Γ) < ∞; adjusting λ ∈
[0, 1 − µ] and µ = 1/k (where k ≥ 2 is an integer) yields examples of every dimension s ∈ (1, 2].

ask whether Remes’ method is �exible enough to generate Hölder curves under less stringent requirements,
e.g. canwe parameterize connected self-similar sets inmetric spaces, or more generally, connected attractors
of IFS? The naive answer to this question is no, in part because measure-theoretic properties of IFS attractors
in general metric or Banach spaces are less regular than in Euclidean space (see Schief [27]). Nevertheless,
combining ideas from Remes [25] and Badger-Vellis [5] (or Badger-Schul [4]), we establish the following pair
of results in the general metric setting. We emphasize that Theorems 1.1 and 1.2 do not require the IFS to be
generated by similarities nor do they require the OSC. In the statement of the theorems, extending usual ter-
minology for self-similar sets, we say that the similarity dimension of an IFS generated by contractions F is
the unique number s such that ∑

ϕ∈F
(Lipϕ)s = 1, (1.1)

where Lipϕ = supx≠y dist(ϕ(x), ϕ(y))/ dist(x, y) is the Lipschitz constant of ϕ.

Theorem 1.1 (Hölder connectedness). Let F be an IFS over a complete metric space; let s be the similarity
dimension of F. If the attractor KF is connected, then every pair of points is connected in KF by a (1/s)-Hölder
curve.

Theorem 1.2 (Hölder parameterization). Let F be an IFS over a complete metric space; let s be the similarity
dimension of F. If the attractor KF is connected, then KF is a (1/α)-Hölder curve for every α > s.

Early in the development of fractals, Hata [12] proved that if the attractor KF of an IFS over a complete
metric space X is connected, then KF is locally connected and path-connected. By the Hahn-Mazurkiewicz
theorem, it follows that if KF is connected, then KF is a curve, i.e. KF the image of a continuous map from
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[0, 1] into X. Theorems 1.1 and 1.2, which are our main results, can be viewed as a quantitative strengthening
of Hata’s theorem. We prove the two theorems directly, in §3, without passing through Hata’s theorem. A bi-
Hölder variant of Theorem1.1 appears in Iseli andWildrick’s study [15] of self-similar arcswithquasiconformal
parameterizations.

Roughly speaking, to prove Theorem 1.1, we embed the attractor KF into `∞ and then construct a (1/s)-
Hölder path between a given pair of points as the limit of a sequence of piecewise linear paths, mimicking the
usual parameterization of the von Koch snow�ake. Although the intermediate curves live in `∞ and not nec-
essarily in KF, each successive approximation becomes closer to KF in the Hausdor� metric so that the �nal
curve is entirely contained in the attractor. Building the sequence of intermediate piecewise linear paths is a
straightforward application of connectedness of an abstract word space associated to the IFS. The essential
point to ensure the limit map is Hölder is to estimate the growth of the Lipschitz constants of the intermediate
maps (see §2.2 for an overview). Condition (1.1) gives us a natural way to control the growth of the Lipschitz
constants, and thus, the similarity dimension determines the Hölder exponent of the limiting map (see §3). A
similar technique allows us to parameterize the whole attractor of an IFSwithout branching by a (1/s)-Hölder
arc (see §4 for de�nitions and results).

To prove Theorem 1.2, we view the attractor KF as the limit of a sequence of metric trees T1 ⊂ T2 ⊂ · · ·
whose edges are (1/s)-Hölder curves. Using condition (1.1), one can easily show that

Sα := sup
n

∑
E∈Tn

(diam E)α < ∞ for all α > s. (1.2)

We then prove (generalizing a construction from [5, §2]) that (1.2) ensures KF is a (1/α)-Hölder curve for all
α > s. Unfortunately, because the constants Sα in (1.2) diverge as α ↓ s, we cannot use this method to obtain a
Hölder parameterization at the endpoint. We leave the question of whether or not one can always take α = s
in Theorem 1.2 as an open problem. The central issue is �nd a good way to control the growth of Lipschitz or
Hölder constants of intermediate approximations for connected IFS with branching.

For self-similar sets with positiveHs measure, we can build Hölder parameterizations at the endpoint in
Theorem 1.2. The following theorem should be attributed to Remes [25], who established the result for self-
similar sets in Euclidean space, where the conditionHs(KF) > 0 is equivalent to the OSC (see Schief [26]). In
metric spaces, it is known that Hs(KF) > 0 implies the (strong) open set condition, but not conversely (see
Schief [27]). A key point is that self-similar sets KF with positiveHs measure are necessarilyAhlfors s-regular,
i.e. rs . Hs(KF ∩ B(x, r)) . rs for all balls B(x, r) centered on KF with radius 0 < r . diam KF. This fact is
central to Remes’ method for parameterizing self-similar sets with branching. See §5 for a details.

Theorem 1.3 (Hölder parameterization for self-similar sets). Let F be an IFS over a complete metric space
that is generated by similarities; let s be the similarity dimension of F. If the attractor KF is connected and
Hs(KF) > 0, then KF is a (1/s)-Hölder curve.

As a case study, in §6, to further illustrate the results above, we determine the sharp Hölder exponents
in parameterizations of connected self-a�ne Bedford-McMullen carpets. We also build parameterizations of
connected self-a�ne sponges in Rn (see Corollary 6.7).

Theorem 1.4. Let Σ ⊂ [0, 1]2 be a connected Bedford-McMullen carpet (see §6).

• If Σ is a point, then Σ is (trivially) an α-Hölder curve for all α > 0.
• If Σ is a line, then Σ is (trivially) a 1-Hölder curve.
• If Σ is the square, then Σ is (well-known to be) a (1/2)-Hölder curve.
• Otherwise, Σ is a (1/s)-Hölder curve, where s is the similarity dimension of Σ.

The Hölder exponents above are sharp, i.e. they cannot be increased.

Of some note, the best Hölder exponent 1/s in parameterizations of a self-a�ne carpet can be strictly less
than 1/2 (see Figure 2). A similar phenomenon occurs for self-a�ne arcs in R2 (see §4.3). We interpret this as
follows:
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Figure 2: First, second, and �fth iterations of a Bedford-McMullen carpet Σ that is a self-a�ne (1/s)-Hölder curve (withHs(Σ) =
0) precisely when s ≥ log2(5) > 2.

If the supremum of all exponents appearing in the set of Hölder parameterizations of a curve Γ in a met-
ric space is 1/s, then we may say that Γ has parameterization dimension s. (If Γ admits no Hölder param-
eterizations, then we say that Γ has in�nite parameterization dimension.) Intuitively, the parameterization
dimension is a rough gauge of how fast a denizen of a curve must walk to visit every point in the curve. Ev-
ery non-degenerate recti�able curve has parameterization dimension 1 and a square has parameterization
dimension 2. More generally, every self-similar curve in R2 that satis�es the OSC has parameterization di-
mension equal to its Hausdor� dimension. Theorem 1.4 implies that there exist self-a�ne curves in R2 of
arbitrarily large parameterization dimension.

2 Preliminaries

2.1 Iterated function systems

Let X be a complete metric space. A contraction in X is a Lipschitz map ϕ : X → X with Lipschitz constant
Lipϕ < 1, where

Lipϕ := sup
x≠y

dist(ϕ(x), ϕ(y))
dist(x, y) ∈ [0,∞]. (2.1)

An iterated function system (IFS)F is a �nite collection of contractions in X. We say thatF is trivial if Lipϕ = 0
for every ϕ ∈ F; otherwise, we say that F is non-trivial. The similarity dimension s-dim(F) of F is the unique
number s such that ∑

ϕ∈F
(Lipϕ)s = 1, (2.2)

with the convention s-dim(F) = 0wheneverF is trivial. Iterated function systemswere introducedbyHutchin-
son [14] and encode familiar examples of fractal sets such as the Cantor ternary set, Sierpiński carpet, and
Sierpiński gasket. For an extended introduction to IFS, see Kigami’s Analysis on Fractals [17]. Hutchinson’s
original paper as well as Hata’s paper [12] are gems in geometric analysis and excellent introductions to the
subject in their own right.

Theorem 2.1 (Hutchinson [14]). IfF is an IFS over a complete metric space, then there exists a unique compact
set KF in X (the attractor of F) such that

KF =
⋃
ϕ∈F

ϕ(KF). (2.3)

Furthermore, if s = s-dim(F), thenHs(KF) ≤ (diam KF)s < ∞ and dimH(KF) ≤ s.
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Above and below, the s-dimensional Hausdor� measure Hs on a metric space is the Borel regular outer
measure de�ned by

Hs(E) = lim
δ↓0

inf
{ ∞∑
i=1

(diam Ei)s : E ⊂
∞⋃
i=1
Ei , sup

i
diam Ei ≤ δ

}
for all E ⊂ X. (2.4)

The Hausdor� dimension dimH(E) of a set E in X is the unique number given by

dimH(E) := inf{α ∈ [0,∞) : Hα(E) < ∞} = sup{β ∈ [0,∞) : Hβ(E) > 0}. (2.5)

For background on the �ne properties of Hausdor� measures, Hausdor� dimension, and related elements of
geometric measure theory, see Mattila’s Geometry of Sets and Measures in Euclidean Spaces [22].

We say that an IFS F over a metric space X satis�es the open set condition (OSC) if there exists an open
set U ⊂ X such that

ϕ(U) ⊂ U and ϕ(U) ∩ ψ(U) = ∅ for every ϕ, ψ ∈ F with ϕ ≠ ψ. (2.6)

If there exists an open set U ⊂ X satisfying (2.6), and in addition, KF ∩U ≠ ∅, then we say that F satis�es the
strong open set condition (SOSC). We say that the attractor KF of an IFS F over X is self-similar if each ϕ ∈ F

is a similarity, i.e. there exists a constant 0 ≤ Lϕ < 1 such that

dist(ϕ(x), ϕ(y)) = Lϕ dist(x, y) for all x, y ∈ X. (2.7)

Theorem 2.2 (Schief [26], [27]). Let KF be a self-similar set in X; let s = s-dim(F). If X is a complete metric
space, then

Hs(KF) > 0⇒ SOSC⇒ dimH(KF) = s. (2.8)

If X = Rn, then
Hs(KF) > 0⇔ SOSC⇔ OSC⇒ dimH(KF) = s. (2.9)

Moreover, the implications above are the best possible (unlisted arrows are false).

Given a metric space X, a set E ⊂ X, and radius ρ > 0, let N(E, ρ) denote the maximal number of disjoint
closed balls with center in E and radius ρ. Following Larman [18], X is called a β-space if for all 0 < β < 1
there exist constants 1 ≤ Nβ < ∞ and rβ > 0 such that N(B, βr) ≤ Nβ for every open ball B of radius 0 < r ≤ rβ.

Theorem 2.3 (Stella [29]). Let KF be a self-similar set in X; let s = s-dim(F). If X is a complete β-space, then

SOSC⇒ Hs(KF) > 0. (2.10)

The following pair of lemmas are easy exercises, whose proofs we leave for the reader.

Lemma 2.4. Let KF be a self-similar set in X; let s = s-dim(F). If Hs(KF) > 0, then KF is Ahlfors s-regular,
i.e. there exists a constant 1 ≤ C < ∞ such that

C−1rs ≤ Hs(KF ∩ B(x, r)) ≤ Crs for all x ∈ KF and 0 < r ≤ diam KF . (2.11)

Lemma 2.5. Let F be an IFS over a complete metric space. If KF is connected, diam KF > 0, and ϕ ∈ F has
Lip(ϕ) = 0, then KF agrees with the attractor of F \ {ϕ}.

2.2 Hölder parameterizations

Let s ≥ 1, let X be a metric space, and let f : [0, 1]→ X. We de�ne the s-variation of f (over [0, 1]) by

‖f‖s-var :=
(
sup
P

∑
I∈P

(diam f (I))s
)1/s

∈ [0, +∞], (2.12)
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where the supremum ranges over all �nite interval partitions P of [0, 1]. Here and below a �nite interval par-
tition of an interval I is a collection of (possibly degenerate) intervals {J1, . . . , Jk} that are mutually disjoint
with I = ⋃k

i=1 Ji. We say that the map f is (1/s)-Hölder continuous provided that the associated (1/s)-Hölder
constant

Höld1/s(f ) := sup
x≠y

dist(f (x), f (y))
|x − y|1/s < ∞. (2.13)

By now, the following connection between continuousmaps of �nite s-variation and (1/s)-Hölder continuous
maps is a classic exercise; for a proof and some historical remarks, see Friz and Victoir’s Multidimensional
Stochastic Processes as Rough Paths: Theory and Applications [11, Chapter 5]. Although, we do not invoke
Lemma 2.6 directly below, behind the scenes many estimates that we carry out are motivated by trying to
bound a discrete s-variation adapted to �nite trees that we used in [6, §4].

Lemma 2.6 ([11, Proposition 5.15]). Let s ≥ 1 and let f : [0, 1]→ X be continuous.

1. If f is (1/s)-Hölder, then ‖f‖s-var ≤ Höld1/s f .
2. If ‖f‖s-var < ∞, then there exists a continuous surjection ψ : [0, 1] → [0, 1] and a (1/s)-Hölder map F :

[0, 1]→ X such that f = F ◦ ψ and Höld1/s F ≤ ‖f‖s-var.

The standard method to build a Hölder parameterization of a curve in a Banach space that we employ
below is to exhibit the curve as the pointwise limit of a sequence of Lipschitz curves with controlled growth
of Lipschitz constants; see e.g. [28, Lemma VII.2.8]. We will use this principle frequently, and also on one
occasion in §3, the following extension where the intermediate maps are Hölder continuous.

Lemma 2.7. Let 1 ≤ t < s, M > 0, 0 < ξ1 ≤ ξ2 < 1, α > 0, β > 0, and j0 ∈ Z. Let (X, | · |) be a Banach space.
Suppose that ρj (j ≥ j0) is a sequence of scales and fj : [0,M] → X (j ≥ j0) is a sequence of (1/t)-Hölder maps
satisfying

1. ρj0 = 1 and ξ1ρj ≤ ρj+1 ≤ ξ2ρj for all j ≥ j0,
2. |fj(x) − fj(y)| ≤ Aj|x − y|1/t for all j ≥ j0, where Aj ≤ αρ1−s/tj , and
3. |fj(x) − fj+1(x)| ≤ Bj for all j ≥ j0, where Bj ≤ βρj.

Then fj converges uniformly to a map f : [0,M]→ X such that

|f (x) − f (y)| ≤ H|x − y|1/s for all x, y ∈ [0,M],

where H is a �nite constant depending on at mostmax(M,M−1), ξ1, ξ2, α, and β. In particular, we may take

H = α
ξ1

max(1,M) + 2β
ξ1(1 − ξ2)

max(1,M−1). (2.14)

Proof. The statement and proof in the case t = 1 is written in full detail in [6, Lemma B.1]. The proof of the
general case followsmutatis mutandis.

Corollary 2.8. Let fj0 , . . . , fj1 be a �nite sequence of functions and ρj0 , . . . , ρj1 be a �nite sequence of scales
satisfying the hypothesis of Lemma 2.7, i.e. assume that (1) and (3) hold for all j0 ≤ j ≤ j1 − 1 and (2) holds for
all j0 ≤ j ≤ j1. Then the function fj1 is (1/s)-Hölder continuous with Höld1/s fj1 ≤ H, where H is given by (2.14).

Proof. Extend the sequence of functions fj0 , . . . , fj1 to an in�nite sequence by setting fj ≡ fj1 for all j > j1.
Also choose any extension of the sequence of scales ρj0 , . . . , ρj1 satisfying (1). Then the full sequence (fj , ρj)∞j0
satis�es the hypothesis of the lemma with Aj ≡ Aj1 and Bj ≡ 0 for all j > j1. Therefore, fj1 ≡ limj→∞ fj is
(1/s)-Hölder with Höld1/s fj1 ≤ H.
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2.3 Words

Suppose we are given an IFS F = {ϕ1, . . . , ϕk} over a complete metric space X such that Lipϕi > 0 for all
1 ≤ i ≤ k. Set s := s-dim(F), and for each i ∈ {1, . . . , k}, set Li := Lip(ϕi). Relabeling, wemay assumewithout
loss of generality that

0 < L1 ≤ · · · ≤ Lk < 1. (2.15)
By de�nition of the similarity dimension, we have Ls1 + · · · + Lsk = 1.

De�ne the alphabet A = {1, . . . , k}. Let An = {i1 · · · in : i1, . . . , in ∈ A} denote the set of words in A and
of length n. Also let A0 = {ϵ} denote the set containing the empty word ϵ of length 0. Let A* = ⋃n≥0 An denote
the set of �nite words in A. Given any �nite word w ∈ A* and length n ∈ N, we assign

A*w := {u ∈ A* : u = wv} and Anw = {wv ∈ A*w : |wv| = n}. (2.16)

The setA*w canbe viewed in anaturalway as a treewith root atw.We also letAN denote the set of in�nitewords
in A. Given an in�nite word w = i1i2 · · · ∈ AN and integer n ≥ 0, we de�ne the truncated word w(n) = i1 · · · in
with the convention that w(0) = ϵ.

We now organize the set of �nite words in A, according to the Lipschitz norms of the associated contrac-
tions. This will be used pervasively throughout the rest of the paper. For each word w = i1 · · · in ∈ A*, de�ne
the map

ϕw := ϕi1 ◦ · · · ◦ ϕin (2.17)
and the weight

Lw := Li1 · · · Lin . (2.18)
By convention, for the empty word, we assign ϕϵ := IdX and Lϵ := 1. For all w ∈ A*, de�ne the cylinder Kw to
be the image of the attractor K := KF under ϕw,

Kw := ϕw(K). (2.19)

Note that Luv = LuLv for every pair of words u and v, where uv denotes the concatenation of u followed by v.
For each δ ∈ (0, 1), de�ne

A*(δ) := {i1 · · · in ∈ A* : n ≥ 1 and Li1 · · · Lin < δ ≤ Li1 · · · Lin−1} (2.20)

with the convention L1 · · · Lin−1 = 1 if n = 1. Also de�ne A*(1) := {ϵ}. Finally, given any �nite word w ∈ A*,
set A*w(δ) := A*w ∩ A*(δ).

Lemma 2.9. Given �nite words w ∈ A* and w′ = wi1 · · · in and a number Lw′ < δ ≤ Lw, there exists a unique
�nite word u = wi1 · · · im (m ≤ n) such that u ∈ A*w(δ).

Proof. Existence of u follows from the fact that the sequence an = Lwi1···in is decreasing. Uniqueness of u
follows from the fact that ifwi1 · · · im ∈ A*w(δ), then for every l < m, Lwi1···il ≥ δ, whencewi1 · · · il ∉ A*w(δ).

Lemma 2.10. For every �nite word w ∈ A* and number 0 < δ ≤ Lw,∑
w′∈A*w(δ)

Lsw′ = Lsw . (2.21)

Proof. By (2.15), we can choose N ∈ N su�cient large so that Lu < L1δ for all words u ∈ AN (any integer
N > logLk (L1δ) will su�ce). In particular, if wv = wv1 . . . vn ∈ ANw, then wv ∈ ̸ A*w(δ) (since Lwv1 ...vn−1 < δ) but
wv has an ancestor wv1 . . . vm ∈ A*w(δ) by Lemma 2.9. Hence the subtree T = ⋃N

l=|w| Alw of A*w contains A*w(δ).
To establish (2.21), we repeatedly use the de�ning condition Ls1 + · · · + Lsk = 1 for the similarity dimension,
�rst working “down" the tree T from each word w′ ∈ A*(δ) to its descendants in ANw and then working “up"
the tree T level by level: ∑

w′∈A*w(δ)
Lsw′ =

∑
w′′∈ANw

Lsw′′ =
∑

w′′′∈AN−1w

Lsw′′′ = · · · = Lsw .
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Lemma 2.11. For all 0 < R ≤ 1, w ∈ A*(R), and 0 < r ≤ Lw,

Ls1(R/r)s < cardA*w(r) < L−s1 (R/r)s . (2.22)

In particular, if 0 < r ≤ 1, then

Ls1r−ms < cardA*(rm) < L−s1 r−ms for all m ∈ N. (2.23)

Proof. Fix 0 < R ≤ 1, w ∈ A*(R), and 0 < r ≤ Lw. Then Lw < R ≤ Lw/L1, and similarly, for all w′ ∈ A*w(r), we
have Lw′ < r ≤ Lw′ /L1. By Lemma 2.10,

Ls1rs(cardA*w(r)) ≤
∑

w′∈A*w(r)
Lsw′ = Lsw < Rs .

Similarly,
rs(cardA*w(r)) >

∑
w′

Lsw′ = Lsw ≥ Ls1Rs

This establishes (2.22). To derive (2.23), simply take 0 < r ≤ 1 = R and w = ϵ.

3 Hölder connectedness of IFS attractors
In this section, we �rst prove Theorem 1.1, and afterwards, we derive Theorem 1.2 as a corollary. To that end,
for the rest of this section, �x an IFS F = {ϕ1, . . . , ϕk} over a complete metric space (X, d) whose attractor
K := KF is connected and has positive diameter. Set s := s-dim(F), and for each i ∈ {1, . . . , k}, set Li :=
Lip(ϕi). By Lemma 2.5, we may assume without loss of generality that

0 < L1 ≤ · · · ≤ Lk < 1. (3.1)

In particular, we may adopt the notation, conventions, and lemmas in §2.3.

3.1 Hölder connectedness (Proof of Theorem 1.1)

Lemma 3.1 (chain lemma). Assume that KF is connected. Let w ∈ A* and 0 < δ < Lw. If x, y ∈ Kw, then there
exist distinctwords w1, . . . , wn ∈ A*w(δ) such that x ∈ Kw1 , y ∈ Kwn , and Kwi∩Kwi+1 ≠ ∅ for all i ∈ {1, . . . , n−1}.

Proof. We �rst remark that Kw = ⋃u∈A*w(δ) Ku by Lemma 2.9. De�ne

E1 := {u ∈ A*w(δ) : x ∈ Ku}.

Assuming we have de�ned E1, . . . , Ei ⊂ A*w(δ) for some i ∈ N, de�ne

Ei+1 := {u ∈ A*w(δ) \ Ei : Ku ∩ Kv ≠ ∅ for some v ∈ Ei}.

Because Kw is connected (since KF is connected), if ⋃j
i=1 Ei ≠ A*w(δ), then Ej+1 ≠ ∅. Since A*w(δ) is �nite, it

follows that⋃N
i=1 Ei = A*w(δ) for some N ∈ N.

Choose a word v ∈ A*w(δ) such that y ∈ Kv. Then v ∈ En for some 1 ≤ n ≤ N. Label v =: wn. By design
of the sets Ei, we can �nd a chain of distinct words w1, . . . , wn with Kwi ∩ Kwi+1 for all 1 ≤ i ≤ n − 1. Finally,
x ∈ Kw1 , because w1 ∈ E1.

Theorem 1.1 is a special case of the following more precise result (take w to be the empty word). Recall
that a metric space (X, d) is quasiconvex if any pair of points x and y can be joined by a Lipschitz curve
f : [0, 1]→ X with Lip(f ) .X d(x, y). By analogy, the following proposition may be interpreted as saying that
connected attractors of IFS are “(1/s)-Hölder quasiconvex".
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Proposition 3.2. For any w ∈ A* and x, y ∈ Kw, there exists a (1/s)-Hölder continuous map f : [0, Lsw]→ Kw
with f (0) = x, f (Lsw) = y, and Höld1/s f .s,L1 diam K.

Proof. By rescaling the metric on X, wemay assumewithout loss of generality that diam K = 1. Furthermore,
it su�ces to prove the proposition for w = ϵ and Kw = K. For the general case, �x w ∈ A* and x, y ∈ Kw.
Choose x′, y′ ∈ K such that ϕw(x′) = x and ϕw(y′) = y. De�ne

ζw : [0, Lsw]→ [0, 1], ζw(t) = (Lw)−s t for all t ∈ [0, Lsw].

If the proposition holds forw = ϵ, then there exists a (1/s)-Höldermap g : [0, 1]→ Kwith g(0) = x′, g(1) = y′,
and Höld1/s g .s,L1 1. Then the map f ≡ ϕw ◦ g ◦ ζw : [0, Lsw] → Kw plainly satis�es f (0) = x and f (Lsw) = y.
Moreover, for any p, q ∈ [0, Lsw],

d(f (p), f (q)) ≤ Lw d(g(ζw(p)), g(ζw(q))) .s,L1 Lw|ζw(p) − ζw(q)|
1/s = |p − q|1/s .

Thus, Höld1/s(f ) .s,L1 1, independent of the word w.
To proceed, observe that by the Kuratowski embedding theorem, wemay view K as a subset of `∞, whose

norm we denote by | · |∞. Fix any r > 0 with L1 . r ≤ L1 (which ensures that rm+1 ≤ L1rm ≤ Lw whenever
w ∈ A*(rm)) and �x x, y ∈ K. Themap f will be a limit of piecewise linear maps fn : [0, 1]→ `∞. In particular,
for each m ∈ N, we will construct a subsetWm ⊂ A*(rm), a family of nondegenerate closed intervals Em, and
a continuous map fm : [0, 1]→ `∞ satisfying the following properties:

(P1) The intervals in Em havemutually disjoint interiors and their union⋃ Em = [0, 1]. Furthermore, fm(0) = x
and fm(1) = y.

(P2) For each I ∈ Em, fm|I is linear and there exists u ∈ Wm such that fm(∂I) ⊂ Ku and |I| ≥ Lsu. Moreover, if
I, I′ ∈ Em are distinct, then the corresponding words u, u′ ∈Wm are also distinct.

(P3) For each I ∈ Em+1, there exists J ∈ Em such that fm+1|∂J = fm|∂J. Moreover, |fm(p) − fm+1(p)|∞ < 3rm for
all p ∈ [0, 1].

Let us �rst see how to complete the proof, assuming the existence of family of such maps. On one hand,
property (P3) gives

‖fm − fm+1‖∞ < 3rm . (3.2)

On the other hand, by property (P2), |I| ≥ Ls1rms and diam fm(I) < rm for all I ∈ Em. Therefore, for all p, q ∈
[0, 1],

|fm(p) − fm(q)|∞ ≤ L−s1 rm(1−s)|p − q|. (3.3)

By (3.2), (3.3), and Lemma 2.7, the sequence (fm)∞m=1 converges uniformly to a (1/s)-Höldermap f : [0, 1]→ `∞
with f (0) = x, f (1) = y, and Höld1/s f .s,L1 ,r 1 's,L1 1. Finally, by (P2) and (3.3),

dist(fm(p), K) .s,L1 r
m for all m ∈ N and p ∈ [0, 1].

Therefore, f ([0, 1]) ⊂ K and the proposition follows.
It remains to construct Wm, Em, and fm satisfying properties (P1), (P2), and (P3). The construction is in

an inductive manner.
By Lemma 3.1, there is a set W1 = {w1, . . . , wn} of distinct words in A*(r), enumerated so that x ∈ Kw1 ,

y ∈ Kwn , and Kwi ∩ Kwi+1 ≠ ∅ for i ∈ {1, . . . , n − 1}. For each i ∈ {1, . . . , n − 1}, choose pi ∈ Kwi ∩ Kwi+1 . To
proceed, de�ne E1 = {I1, . . . , In} to be closed intervals in [0, 1] with disjoint interiors, enumerated according
to the orientation of [0, 1], whose union is [0, 1], and such that |Ij| ≥ Lswi for all i ∈ {1, . . . , n}. We are able to
�nd such intervals, since by Lemma 2.10,

1 =
∑

u∈A*(r)
Lsu ≥

∑
u∈W1

Lsu .

Next, de�ne f1 : [0, 1]→ `∞ in a continuous fashion so that f1 is linear on each Ii and:

1. f1(0) = x and f1(I1) is the segment that joins x with p1;
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2. f1(1) = y and f1(In) is the segment that joins pn−1 with y; and,
3. for j ∈ {2, . . . , n − 1}, if any, f1(Ij) is the segment that joins pj−1 with pj.

Suppose that for somem ∈ N, we have de�nedWm ⊂ A*(rm), a collection Em, and a piecewise linearmap
fm : [0, 1] → `∞ that satisfy (P1)–(P3). For each I ∈ Em, we will de�ne a collection of intervals Em+1(I) and a
collection of words Wm+1(I) ⊂ A*(rm+1). We then set Em+1 = ⋃I∈Em

Em+1(I) and Wm+1 = ⋃I∈Em
Wm+1(I). In

the process, we will also de�ne fm+1. To proceed, suppose that I ∈ Em, say I = [a, b], with I corresponding to
the word w ∈Wm. Since K is connected, by Lemma 3.1, there exist distinct wordsWm+1(I) = {w1, . . . , wl} ⊂
A*w(rm+1) such that fm(a) ∈ Kw1 , fm(b) ∈ Kwl , and Kwj ∩ Kwj+1 ≠ ∅ for all j ∈ {1, . . . , l − 1}. Let Em+1(I) =
{I1, . . . , Il} be closed intervals in I with mutually disjoint interiors, enumerated according to the orientation
of I, whose union is I, and such that a ∈ I1, b ∈ Il and |Ij| ≥ Lswj for all j ∈ {1, . . . , l}. We are able to �nd such
intervals, since by our inductive hypothesis and Lemma 2.10,

|I| ≥ Lsw =
∑

u∈A*w(rm+1)
Lsu ≥

l∑
i=1

Lswi .

For each j ∈ {1, . . . , l − 1}, choose pj ∈ Kwj ∩ Kwj+1 .
With the choices above, now de�ne fm+1|I : I → `∞ in a continuous fashion so that fm+1|J is linear for

each J ∈ Em+1(I) and:

1. fm+1(a) = fm(a) and fm+1(I1) is the segment that joins y with p1;
2. fm+1(b) = fm(b) and fm+1(Il) is the segment that joins pl−1 with fm(b); and,
3. for j ∈ {2, . . . , l − 1} (if any), fm+1(Ij) is the segment that joins pj−1 with pj.

Properties (P1), (P2), and the �rst claim of (P3) are immediate. To verify the second claim of (P3), �x z ∈ [0, 1].
By (P1), there exists I ∈ Em+1 such that z ∈ I. Let J be the unique element of Em such that I ⊂ J. Then there
exists w ∈ A*(rm) such that I ∈ Em+1(J) and fm(∂J) ⊂ Kw. Since fm+1(∂I) ⊂ Ku for some u ∈ A*w(rm+1), we
have that fm+1(∂I). Let y1 ∈ ∂I and y2 ∈ ∂J. We have

|fm(z) − fm+1(z)|∞ ≤ |fm(z) − fm(y2)|∞ + |fm(y2) − fm+1(y1)|∞ + |fm+1(y1) − fm+1(z)|∞ ≤ 3diam Kw < 3rm .

3.2 Hölder parameterization (Proof of Theorem 1.2)

The proof of Theorem 1.2 is modeled after the proof of [5, Theorem 2.3], which gave a criterion for the set of
leaves of a “tree of sets" in Euclidean space to be contained in a Hölder curve. Here we view the attractor KF

as the set of leaves of a tree, whose edges are Hölder curves.

Proof of Theorem 1.2. Rescaling the metric d, we may assume for the rest of the proof that diam K = 1. Fix
q ∈ K, and for each w ∈ A*, set qw := ϕw(q) with the convention qϵ = q. Fix α > s = s-dimF and �x
L1 . r ≤ L1 (once again ensuring that rm+1 ≤ L1rm ≤ Lw for all w ∈ A*(rm)). By Lemma 2.11, for every integer
m ≥ 0, the set A(rm) has fewer than L−s1 r−ms words, and moreover, for every w ∈ A*(rm), the set A*w(rm+1) has
at least 1 and fewer than L−s1 r−s words. Since r ' L1,

∞∑
m=0

∑
w∈A*(rm)

∑
u∈A*w(rm+1)

d(qw , qu)α ≤
∞∑
m=0

∑
w∈A*(rm)

∑
u∈A*w(rm+1)

Lαw < L−s1 r−s
∞∑
m=0

∑
w∈A*(rm)

Lαw

< L−s1 r−s
∞∑
m=0

∑
w∈A*(rm)

rαm ≤ L−2s1 r−s
∞∑
m=0

r(α−s)m .L1 ,s,α 1.
(3.4)

Below we call the elements of A*w(rm+1) the children of w ∈ A*(rm), and we call w their parent; if u ∈
A*w(rm+1), then we write w =: p(u). For each w ∈ A*(rm) and u ∈ A*w(rm+1), let fw,u : [0, Lsw] → Kw be the
(1/s)-Hölder map with fw,u(0) = qw and fw,u(Lsw) = qu given by Proposition 3.2. Let also γw,u be the image of
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fw,u. We can write K as the closure of the set

Γ◦ :=
∞⋃
m=0

⋃
w∈A*(rm)

⋃
u∈A*w(rm+1)

γw,u .

For each integer m ≥ 0 and w ∈ A*(rm) de�ne

Mw := 2
∞∑

j=m+1

∑
u∈A*w(rj)

Lαp(u) .L1 ,s,α r
mα ,

wherewe sumover all descendants ofw. SettingM := Mϵ, by (3.4),wehave thatM .L1 ,s,α 1.Wewill construct
a (1/α)-Hölder continuous surjective map F : [0,M] → K by de�ning a sequence Fm : [0,M] → K (m ∈ N)
whose limit is F and whose image is the truncated tree

Γm :=
m−1⋃
i=0

⋃
w∈A*(ri)

⋃
u∈A*w(ri+1)

γw,u .

Lemma 3.3. For each m ∈ N, there exist two collections Bm, Nm of nondegenerate closed intervals in [0, 1], a
bijection ηm : Nm → A*(rm), and a map Fm : [0,M]→ Γm with the following properties.

(P1) The familiesNm andBm are disjoint, the elements inNm∪Bm havemutually disjoint interiors, and⋃(Nm∪
Bm) = [0,M]. Moreover, Fm([0,M]) = Γm.

(P2) If I ∈ Nm+1, then there is J ∈ Nm such that I ⊂ J and ηm+1(I) ∈ A*ηm(J)(r
m+1). Conversely, if J ∈ Nn, then

there exist J1 ∈ Nm+1 and J2 ∈ Bm+1 such that J1 ⊂ I and J2 ⊂ I and card{I ∈ Bm+1 ∪Nm+1 : I ⊂ J} ≤
L−s1 rs.

(P3) If I ∈ Bm+1, then either I ∈ Bm or there exists J ∈ Nm such that I ⊂ J. Conversely, Bm ⊂ Bm+1.
(P4) For each I ∈ Nm, |I| = Mηm(I), Fm|I is constant and equal to qη(I) and Fm+1|∂I = Fm|∂I.
(P5) For each I ∈ Bm, there exists w ∈ A*(rm−1) and u ∈ A*w(rm) such that |I| = Lαw and Fm|I = fw,u ◦ ψI where

ψI is (s/α)-Hölder with Hölds/α ψI = 1. Conversely, for any w ∈ A*(rm−1) and u ∈ A*w(rm) there exists
I ∈ Bm as above. Finally, Fm+1|I = Fm|I for all I ∈ Bm.

Wenow complete the proof of Theorem 1.2, assuming Lemma 3.3. LetBm,Nm, ηm and Fm be as in Lemma
3.3. Notice by (P2) that if I ∈ Nm, then for all Fn(I) ⊂ Kηm(I). We claim that

|Fm(x) − Fm+1(x)|∞ ≤ 2rm . (3.5)

Equation (3.5) is clear by (P5) if x ∈ Bm. If x ∈ Nm, then by (P2) and (P4) there exists w ∈ A*(rm) such that
Fm(I) is an element of Kw and Fm(I) ⊂ Fm+1(I) ⊂ Kw. Therefore,

|Fm(x) − Fm+1(x)|∞ ≤ 2diam Kw < 2rm .

We now claim that for all m ∈ N and all x, y ∈ [0, 1],

|Fm(x) − Fm(y)|∞ .L1 ,s,α r
m(1−α/s)|x − y|1/s . (3.6)

To prove (3.6) �x x, y ∈ [0,M] and consider the following cases.
Case 1. Suppose that there exists I ∈ Bm ∪Nm such that x, y ∈ I. If I ∈ Nm, (3.6) is immediate since Fm|I

is constant. If I ∈ Bm, then by (P5)

|Fm(x) − Fm(y)|∞ .L1 ,s
diam fm(I)
|I|1/s |x − y|1/s = rm(1−α/s)|x − y|1/s .

Case 2. Suppose that there exist I1, I2 ∈ Bm ∪Nm such that I1∩ I2 is a single point {z}, x ∈ I1 and y ∈ I2.
Then, by triangle inequality and Case 1,

|Fm(x) − Fm(y)|∞ ≤ |Fm(x) − Fm(z)|∞ + |Fm(z) − Fm(y)|∞ .L1 ,s 2r
m(1−α/s)|x − y|1/s .
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Case 3. Suppose that Case 1 and Case 2 do not hold. Let m0 be the smallest positive integer m such that
there exists I ∈ Bm ∪Nm with x ≤ z ≤ y for all z ∈ I. In particular, suppose that

a1 ≤ x ≤ a2 < a3 < · · · < an ≤ y < an+1,

where [ai , ai+1] ∈ Bm0 ∪Nm0 for all i ∈ {1, . . . , n}. By minimality of m0 and (P2), n ≤ 2L−s1 r−s. By (P4) and
(P5), |ai − ai+1| &L1 ,s,α rαm0 and Fm(ai) = Fm0 (ai) for all i. Furthermore, by (P2), (P3) and (P5) we have

max{|Fm(x) − Fm(a2)|∞, |Fm(y) − Fm(an)|∞} ≤ rm0 .

Therefore, by Case 1 and the triangle inequality,

|Fm(x) − Fm(y)|∞ ≤ |Fm(x) − Fm(a2)|∞ +
n−1∑
i=2
|Fm(ai) − Fm(ai+1)|∞ + |Fm(y) − Fm(an)|∞

.L1 ,s 2r
m0 + rm0(1−α/s)

n−1∑
i=2
|ai − ai+1|1/s

.L1 ,s r
m0(1−α/s)

n−1∑
i=2
|ai − ai+1|1/s

.L1 ,s r
m0(1−α/s)

(n−1∑
i=2
|ai − ai+1|

)1/s

≤ rm0(1−α/s)|x − y|1/s .

By (3.5), (3.6) and Lemma 2.7, we have that Fm converges pointwise to a (1/α)-Hölder continuous F :
[0,M]→ K with Höld1/α(F) .L1 ,s,α,M,r 1 'L1 ,s,α 1. By (P1), we have that F([0,M]) ⊂ K and that⋃m∈N Γm ⊂
F([0, 1]). Therefore, F([0,M]) = K. This completes the proof of Theorem 1.2, assuming Lemma 3.3.

Proof of Lemma 3.3. We give the construction of Bm, Nm, ηm and Fm in an inductive manner.
Suppose that A*(r) = {w1, . . . , wn}. Decompose [0,M] as

[0,M] = I1 ∪ J1 ∪ I′1 ∪ · · · ∪ In ∪ Jn ∪ I′n ,

a union of closed intervals withmutually disjoint interiors, enumerated according to the orientation of [0,M]
such that |Ij| = |I′j | = 1 and |Jj| = Mwj . Set B1 = {I1, I′1, . . . , In , I′n}, N1 = {J1, . . . , Jn} and η1(Jj) = wj.

We now de�ne F1 : [0,M] → Γ1 as follows. For each Ji ∈ N1 let F1|Ji ≡ qwi . For each i ∈ {1, . . . , n}, let
ψi : Ii → [0, 1] (resp. ψ′i : I′i → [0, 1]) be a (s/α)-Hölder orientation preserving (resp. orientation reversing)
homeomorphismwithHölds/α ψi = 1 (resp. Hölds/α ψ′i = 1). De�ne now F1|Ii = fϵ,wi ◦ψi and F1|I′i = fϵ,wi ◦ψ′i.
The properties (P1)–(P5) are easy to check.

Suppose now that for some m ≥ 1, we have constructed Bm, Nm, ηm and Fm satisfying (P1)–(P5). For
each I ∈ Bm de�ne Fm+1|I = Fm|I. For each I ∈ Nm we construct families Bm+1(I) and Nm+1(I) and then we
set

Bm+1 = Bm ∪
⋃
I∈Nm

Bm+1(I), Nm+1 =
⋃
I∈Nm

Nm+1(I).

In the process we also de�ne Fm+1 and ηm.
Suppose that I ∈ Nm and write I = [a, b]. By the inductive hypothesis (P3), there exists w ∈ A*(rm) such

that Fm(I) = qw. Suppose that A*w(r) = {w1, . . . , wn}. Decompose I as

I = I1 ∪ J1 ∪ I′1 ∪ · · · ∪ Il ∪ Jl ∪ I′l ,

a union of closed intervals withmutually disjoint interiors, enumerated according to the orientation of I such
that |Ij| = Lαw and |Jj| = Mwj . Set Bm+1(I) = {I1, I′1, . . . , Il , I′l}, Nm+1(I) = {J1, . . . , Jl} and ηm+1|A*w(rm+1)(Ji) =
wi.

For each Ji ∈ Nm+1(I) let Fm+1|Ji ≡ qwi . For each i ∈ {1, . . . , l}, let ψi : Ii → [0, Lsw] (resp.
ψ′i : I′i → [0, Lsw]) be a (s/α)-Hölder orientation preserving (resp. orientation reversing) homeomorphism
with Hölds/α ψi = 1 (resp. Hölds/α ψ′i = 1). De�ne now Fm+1|Ii = fw,wi ◦ ψi and F1|I′i = fw,wi ◦ ψ′i. The proper-
ties (P1)–(P5) are easy to check and are left to the reader.
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4 Hölder parameterization of IFS without branching by arcs
On the way to the proof of Theorem 1.3 (see §5), we �rst parameterize IFS attractors without branching by
(1/s)-Hölder arcs (see §4.1), where s is the similarity dimension. We then discuss how under the assumption
of bounded turning, self-similar sets without branching are (1/s)-bi-Hölder arcs (see §4.2). Finally, we give a
family of examples of self-a�ne snow�ake curves in the plane, for which the Hölder exponents in Theorem
1.1 and Proposition 4.1 are sharp and may exceed 2 (see §4.3).

4.1 IFS without branching

Given an IFS F = {ϕi : i ∈ A} over a complete metric space, we say that F has no branching or is without
branching if for every m ∈ N and word w ∈ Am (see §2.3), there exist at most two words u ∈ Am \ {w} such
that ϕw(KF) ∩ ϕu(KF) ≠ ∅.

Proposition 4.1 (parameterization of connected IFS without branching). Let F be an IFS over a complete
metric space; let s = s-dim(F). If KF is connected, diam KF > 0, and F has no branching, then there exists a
(1/s)-Hölder homeomorphism f : [0, 1]→ K with Höld1/s f .L1 ,s diam K, where L1 = minϕ∈F Lipϕ.

For the rest of §4.1, �x an IFS F = {ϕ1, . . . , ϕk} over a complete metric space (X, d) whose attractor
K := KF is connected andhas positive diameter. Adopt the notation and conventions set in the �rst paragraph
of §3 as well as in §2.3. In addition, assume that F has no branching. Since diam K > 0, k ≥ 2. Replacing F

with the iterated IFSF′ = {ϕw : w ∈ A2} if needed, wemay assumewithout loss generality that k ≥ 4. Finally,
rescaling the metric d, we may assume without loss of generality that diam K = 1.

Given n ∈ N, we denote by Gn the graph with vertices the set An and (undirected) edges {{w, u} : w ≠
u and Kw ∩ Ku ≠ ∅}. For each n ∈ N and w ∈ An, the valence val(u, Gn) of w in Gn is the number of all edges
of Gn containing w.

Lemma 4.2. Each Gn is a combinatorial arc. Moreover, there exist exactly two distinct i0, j0 ∈ A such that for
any n ∈ N the following properties hold.

1. If w has valence 1 in Gn, then there exists unique i ∈ {i0, j0} such that wi has valence 1 in Gn+1.
2. If {w, u} is an edge of Gn, then there exist unique i, j ∈ {i0, j0} such that {wi, uj} is an edge in Gn+1.

Proof. Because F has no branching, val(i, G1) ∈ {1, 2} for all i ∈ A1. Therefore, either G1 is a combinatorial
circle or G1 is a combinatorial arc. If G1 is a combinatorial circle and {1, i} is any edge in G1, then there exists
i1, i2, i3, j1 ∈ A such that {1i1, 1i2}, {1i2, 1i3}, and {1i2, ij1} are edges in G2; this implies val(1i2, G2) ≥ 3
and we reach a contradiction. Thus, in fact, G1 is a combinatorial arc. In particular, there exist exactly two
words in Awhose valence in G1 is 1, say i0 and j0. The rest of the proof follows from a simple induction, which
we leave the reader.

From Lemma 4.2, we obtain two simple corollaries.

Lemma 4.3. For all n ∈ N and all w, u ∈ An, Kw ∩ Ku is at most a point.

Proof. Fix w, u ∈ An such that Kw ∩ Ku ≠ ∅. We �rst claim that there exists unique i ∈ A and unique j ∈ A
such that Kwi ∩ Kuj ≠ ∅. Assuming the claim to be true, we have

diam(Kw ∩ Ku) = diam(Kwi ∩ Kuj) ≤ Lk diam(Kw ∩ Ku) < diam(Kw ∩ Ku),

which implies that diam(Kw ∩ Ku) = 0.
To prove the claim, �x i ∈ A such that Kwi ∩ Ku ≠ ∅. By Lemma 4.2, we have that i ∈ {i0, j0} where

{i0, j0} are the unique elements of A with valence 1 in G1; say i = i0. If there exists w′ ∈ A \ {w, u} such that



Hölder Parameterization of IFS | 103

Kw′ ∩ Kw ≠ ∅, then by Lemma 4.2 Kw′ ∩ Kwj0 ≠ ∅ and Kwj0 ∩ Ku = ∅. If no such w′ exists, then val(w, Gn) = 1
which implies that val(wj0, Gn+1) = 1 which also implies Kwj0 ∩ Ku = ∅. In either case, Kwj0 ∩ Ku = ∅ and i is
unique.

Lemma 4.4. For all n ∈ N, there exist exactly two words w ∈ An such that the set Kw ∩ K \ Kw contains only
one point.

Proof. By Lemma 4.2, for each n ∈ N, there exist exactly two distinct words w, u ∈ An that have valence 1 in
Gn. Fix one such word, say w. Then there exists a unique w′ ∈ An \ {w} such that Kw ∩ Kw′ = Kw ∩ K \ Kw. By
Lemma 4.3, the latter intersection is a single point.

We are ready to prove Proposition 4.1.

Proof of Proposition 4.1. By Lemma 4.4, there exist two in�nite words w0, w1 ∈ AN such that for all n ∈ N,
w0(n) and w1(n) are the unique vertices of valence 1 in Gn. Set

{v0} =
∞⋂
n=1

Kw0(n) and {v1} =
∞⋂
n=1

Kw1(n).

Fix r ∈ (0, 1) and let f : [0, 1] → K be the map given by Proposition 3.2 with x = v0 and y = v1. We
already have that f ([0, 1]) ⊂ K. We claim that for all m ∈ N and all w ∈ A*(rm), we have f ([0, 1]) ∩ Kw ≠ ∅.
Assuming the claim, it follows that dist(x, f ([0, 1])) ≤ rm for all x ∈ K and all m ∈ N. Hence K ⊂ f ([0, 1]) and
K = f ([0, 1]).

Let N = max{n ∈ N : A*(rm) ∩ An ≠ ∅}. To prove the claim �x w ∈ A*(rm). By Lemma 2.9, there exists
u ∈ AN such that Ku ⊂ Kw. If u ∈ {w0(N), w1(N)}, then Kw contains one of v0, v1, so f ([0, 1]) ∩ Kw ≠ ∅. If
u ∈ ̸ {w0(N), w1(N)}, then val(u, GN) = 2 and by Lemma 4.2, K \ Ku has two components, one containing v0
and the other containing v1. Since f ([0, 1]) is connected and contains v0, v1, ∅ ≠ f ([0, 1])∩Ku ⊂ f ([0, 1])∩Kw.

It remains to show that f is ahomeomorphismand su�ces to show that f is injective. Recall thede�nitions
of Em and fm from the proof of Proposition 3.2. By (P2) and (P3) therein, for eachm ∈ N and I ∈ Em, there exists
wI ∈ A*(rm) such that f (I) ⊂ KwI . Moreover, wI ≠ wJ if I ≠ J. In conjunction with the fact that f ([0, 1]) = K,
we have that f (I) = KwI . By design of the map f , it is easy to see that KwI ∩ KwJ if and only if I ∩ J. Assume
x, y ∈ [0, 1] with x ≠ y. Then there exists m ∈ N and disjoint I, J ∈ Em such that x ∈ I and y ∈ J. Hence
KwI ∩ KwJ = ∅. Therefore, f (I) ∩ f (J) = ∅, which yields f (x) ≠ f (y).

4.2 Bounded turning and self-similar bi-Hölder arcs

With additional information on the contractions of F and how the components Ki = ϕi(K) of the attractor K
intersect, the map f constructed in Proposition 4.1 is actually a (1/s)-bi-Hölder homeomorphism.We say that
K has bounded turning if there exists C ≥ 1 such that for all distinct i, j ∈ A with Ki ∩ Kj ≠ ∅: if x ∈ Ki, y ∈ Kj
and z ∈ Ki ∩ Kj, then

d(x, y) ≥ C−1max{d(x, z), d(y, z)}. (4.1)

In general, self-similar curves (even inR2) do not have the bounded turning property; see [2, Example 2.3] or
[31, Theorem 2].

The following proposition follows from Theorem 1.5 and Lemma 3.2 of [15].

Proposition 4.5 (self-similar sets without branching and with bounded turning). Let F be an IFS over a
complete metric space that is generated by similarities; let s = s-dim(F). If KF is connected, diam KF > 0,F has
no branching, and KF is bounded turning, then there exists a (1/s)-bi-Hölder homeomorphism f : [0, 1]→ K.
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4.3 Sharp exponents for self-a�ne snowflake curves in the plane

For each line segment l ⊂ R2 and α ∈ (0, 1), de�ne the diamondDα(l) with axis l and aperture α,

Dα(l) := {x ∈ R2 : dist(x, l) ≤ αmin(|x − p|, |x − q|)},

where p, q are the endpoints of l. We will build a family of self-a�ne snow�ake curves as the IFS attractor
of a chain of diamonds. Let l0 := [0, 1] × {0} and let P = l1 ∪ · · · ∪ lk, k ≥ 2, be a polygonal arc lying in
{0, 1} ∪ intD1/2(l0), enumerated so that

• li ∩ lj ≠ ∅ if and only if |i − j| ≤ 1,
• (0, 0) is an endpoint of l1 and (1, 0) is an endpoint of lk.

Choose apertures αi ∈ (0, 1/2) small enough so that

Dαi (li) ∩Dαj (lj) = li ∩ lj for all 1 ≤ i < j ≤ k. (4.2)

For each i ∈ {1, . . . , k}, �x an a�ne homeomorphism ϕi : R2 → R2 such that ϕi(l0) = li and ϕi(D1/2(l0)) =
Dαi (li). Because each aperture αi < 1/2,

Lip(ϕi) = |li| < 1 for all 1 ≤ i ≤ k,

where |li| denotes the length of li. In particular, F = {ϕi : 1 ≤ i ≤ k} is an IFS over R2; see Figure 3. Let

Figure 3: Generators of an IFS for a self-a�ne snowflake curve.

s = s-dim(F) and let K = KF denote the attractor of F. Since F has no branching, the snow�ake curve K is a
(1/s)-Hölder arc by Proposition 4.1; the endpoints of K are p0 = (0, 0) and p1 = (1, 0). We now show that the
exponent cannot be increased.

Lemma 4.6. If p0, p1 are connected by a (1/α)-Hölder curve in K, then α ≥ s-dim(F).

Proof. Fix a (1/α)-Hölder map f : [0, 1] → K such that f (0) = p0 and f (1) = p1 and write H := Höld1/α(f ).
Since K has positive diameter,H > 0. Let A = {1, . . . , k} denote the alphabet associated toF. Fix a generation
n ∈ N, and for each w ∈ An, choose an interval Iw ⊂ [0, 1] such that f (Iw) = ϕw(K). The intervals {Iw : w ∈
An} have mutually disjoint interiors by (4.2). Thus,

1 ≥
∑
w∈An

|Iw| ≥ H−α
∑
w∈An

(diamϕw(K))α = H−α
∑
w∈An

|ϕw(l0)|α = H−α
(∑
i∈A
|li|α

)n
.

Since n can be arbitrarily large,∑i∈A |li|α ≤ 1. Therefore, α ≥ s-dim(F).

As a �nal remark, we note that it is possible to choose P so that |l1|2 + · · · + |lk|2 > 1, in which case
s-dim(F) > 2. In particular, by Lemma 4.6, there exist self-a�ne snow�ake curves Γ ⊂ R2 such that Γ is a
(1/α)-Hölder curve if and only if α ≥ α0(Γ) > 2.



Hölder Parameterization of IFS | 105

5 Hölder parameterization of self-similar sets (Remes’ method)
Our goal in this section is to record a proof of Theorem 1.3 that combines original ideas of Remes [25] with our
style of Hölder parameterization from above. To aid the reader wishing to learn the proof, we have attempted
to include a clear description of the key properties of parameterizations that approximate the �nal map (see
Lemma 5.7), which are obscured in Remes’ thesis.

Fix an IFS F = {ϕ1, . . . , ϕk} over a complete metric space (X, d); let s = s-dim(F). Assume that F is
generated by similarities, K = KF is connected, diam K > 0, and Hs(K) > 0, where s = s-dim(F). Recall that
Hs(K) > 0 implies F satis�es the strong open set condition by Theorem 2.2. Moreover, by Lemma 2.4, K is
Ahlfors s-regular; thus, we can �nd constants 0 < C1 ≤ C2 < ∞ such that

C1ρs ≤ Hs(K ∩ B(x, ρ)) ≤ C2ρs for all x ∈ K and all 0 < ρ ≤ diam K. (5.1)

As usual, we adopt the notation and conventions set in the �rst paragraph of §3 as well as in §2.3. Rescaling
the metric, we may assume without loss of generality that diam K = 1. Since K is self-similar, it follows that

diam Kw = Lw for all w ∈ A*, (5.2)

L1δ ≤ diam Kw < δ for all w ∈ A*(δ). (5.3)

If F has no branching (see §4.1 ), then a (1/s)-Hölder parameterization of K already exists by Proposition 4.1.
Thus, we shall assume F has branching, i.e. there exists m ∈ N and distinct words w1, . . . , w4 ∈ Am such
that Kw1 ∩ Kwi ≠ ∅ for each i ∈ {2, 3, 4}. In the event that m ≥ 2 (see Example 5.1), we replace F with the
self-similar IFS F′ = {ϕw : w ∈ Am}. This causes no harm to the proof, because the attractors coincide,
i.e. KF′ = KF, and s-dim(F′) = s-dim(F). Therefore, without loss of generality, we may assume that there
exist distinct letters i1, i2, i3, i4 ∈ A such that

Ki1 ∩ Kij ≠ ∅ for each j ∈ {2, 3, 4}. (5.4)

Example 5.1. Divide the unit square into 3 × 3 congruent subsquares with disjoint interiors Si (1 ≤ i ≤ 9).
Let S9 denote the central square and for each 1 ≤ i ≤ 8, let ψi : R2 → R2 be the unique rotation-free and
re�ection-free similarity that maps [0, 1]2 onto Si. The attractor of the IFS G = {ψ1, . . . , ψ8} is the Sierpiński
carpet. Looking only at the intersection pattern of the �rst iterates ψ1(KG),. . . ,ψ8(KG), it appears that G has
no branching. However, upon examining the intersections of the second iterates ψi ◦ ψj(KG) (1 ≤ i, j ≤ 8), it
becomes apparent that G has branching.

To continue, use the Kuratowski embedding theorem to embed (K, d) into (`∞, | · |∞). (If K already lies
in some Euclidean or Banach space, or in a complete quasiconvex metric space, then the construction below
can be carried out in that space instead.) Let dH denote the Hausdor� distance between compact sets in `∞.
By theArzelá-Ascoli theorem, to complete the proof of Theorem 1.3, it su�ces to establish the following claim.

Proposition 5.2. There exists a sequence (FN)∞N=1 of (1/s)-Hölder continuous maps FN : [0, 1] → `∞ with
uniformly bounded Hölder constants such that

lim
N→∞

dH(FN([0, 1]), K) = 0.

Remark 5.3. It is perhaps unfortunate that we have to invoke the Arzelá-Ascoli theorem to implement Remes’
method. We leave as an open problem to �nd a proof of Theorem 1.3 that avoids taking a subsequential limit
of the intermediate maps; cf. the proofs in §3 above or the proof of the Hölder traveling salesman theorem in
[6].

We devote the remainder of this section to proving Proposition 5.2.
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Figure 4: Schematic for points in the sets Y1 (left), Y2 = V2 (center), and V1 (right) for a self-similar IFS for the square and
generation N = 2. Possible realizations of the trees T1 (right) and T2 (center).

5.1 Start of the Proof of Proposition 5.2

To start, since F satis�es the strong open set condition, there exists an open set U ⊂ X such that U ∩ K ≠ ∅,
ϕi(U) ⊂ U for all i ∈ A and ϕi(U) ∩ ϕj(U) = ∅ for all i, j ∈ A with i ≠ j. Fix a point v ∈ U ∩ K, choose
τ ∈ (0, 1/2) such that BX(v, τ) ⊂ U, and assign r := 1

4L1τ. Then, since F consists of similarities,

|ϕw(v) − ϕu(v)|∞ ≥ (Lw + Lu)τ ≥ 2L1τrm = (8r)rm for all distinct w, u ∈ A*(rm), (5.5)

because the balls ϕw(B(v, τ)) = B(ϕw(v), Lwτ) and ϕu(B(v, τ)) = B(ϕu(v), Luτ) in X are disjoint. Indeed,
if w0 is the longest word in A* such that Kw , Ku ⊂ Kw0 , then for some distinct i, j ∈ A, ϕw(B(v, τ)) ⊂
ϕw0 i(B(v, τ)) ⊂ ϕw0 i(U) and ϕu(B(v, τ)) ⊂ ϕw0 j(B(v, τ)) ⊂ ϕw0 j(U).

For all m ∈ N, de�ne the set
Ym := {ϕw(v) : w ∈ A*(rm)}. (5.6)

The separation condition (5.5) ensures that the words in A*(rm) and points in Ym are in one-to-one correspon-
dence. Unfortunately, the sets Ym are not necessarily nested.

To proceed, �x an index N ∈ N. We will construct a map FN : [0, 1]→ `∞ with Höld1/s FN .L1 ,s,τ,C1 ,C2 1
and dH(FN([0, 1]), K) .L1 ,τ rN .

5.2 Nets

Following an idea of Remes [25], starting from YN and working backwards through Y1, we now produce a
nested sequence of sets V1 ⊂ · · · ⊂ VN recursively, as follows. Set VN := YN . Next, assume we have de�ned
Vm , . . . , VN for some 2 ≤ m ≤ N so that

1. Vm ⊂ Vm+1 ⊂ · · · ⊂ VN = YN ; and,
2. for each i ∈ {m, . . . , N} and each w ∈ A*(ri), there exists a unique x ∈ Kw ∩ Vi.

Replace each x ∈ Ym−1 by an element x′ ∈ Vm ∩ Kux of shortest distance to x, where ux ∈ A*(rm−1) satis�es
ϕux (v) = x. This produces the set Vm−1. See Figure 4.

Remark 5.4. The recursive de�nition of the sets V1 ⊂ · · · ⊂ VN starting from a �xed level YN is one obstacle
to proving Theorem 1.3 without using the Arzelá-Ascoli theorem.

Lemma 5.5 (properties of the sets Vm). Let m ∈ {1, . . . , N}.

1. For each w ∈ A*(rm), there exists a unique x ∈ Vm ∩ Kw.
2. If m ≤ N − 1, then Vm ⊂ Vm+1 and for every x ∈ Vm+1 there exists x′ ∈ Vm such that |x − x′|∞ < rm.
3. If w ∈ A*(rm) and x ∈ Vm ∩ Kw, then |x − ϕw(v)|∞ < (2r)rm.
4. For all distinct a, b ∈ Vm, we have |a − b|∞ > (4r)rm.
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Proof. The �rst claim and nesting property Vm ⊂ Vm+1 follow immediately by the design of the sets Vm.
Suppose that 1 ≤ m ≤ N − 1 and x ∈ Vm+1. By (1), there exists w ∈ A*(rm+1) such that x ∈ Kw, say w =
i1 . . . in ∈ An. Set w′ = i1 . . . in−1. Then Lw < rm+1 ≤ Lw′ ≤ Lw/L1, since w ∈ A*(rm+1). If Lw < rm ≤ Lw′ , as
well, then w ∈ A*(rm), x ∈ Vm, and we take x′ = x. Otherwise, Lw′ < rm. Choose w′′ = i1 . . . il, l ≤ n − 1 to be
the shortest word such that Lw′′ < rm. Then w′′ ∈ A*(rm). By (1), there exists a unique x′ ∈ Vm ∩ Kw′′ . Then
|x − x′|∞ ≤ diam Kw′′ < rm by (5.3). This establishes the second claim.

For the third claim, we �rst prove that for all w ∈ A*(rm) and x ∈ Vm ∩ Kw,

|x − ϕw(v)| ≤
{
rm+1 + · · · + rN if m ≤ N − 1,
0 if m = N, (5.7)

by backwards induction onm. Equation (5.7) holds in the base case, because VN = YN . Suppose for induction
that we have established (5.7) for some 2 ≤ m +1 ≤ N, and let w ∈ A*(rm) and x ∈ Vm ∩Kw. There exists wu ∈
A*(rm+1) such that ϕw(v) ∈ Kwu. Also, by (2), there exists y ∈ Vm+1 ∩ Kwu. On one hand, |ϕwu(v) − ϕw(v)|∞ ≤
diam Kwu < rm+1 by (5.3). On the other hand, by the induction hypothesis, |y − ϕwu(v)|∞ ≤ rm+2 + · · · + rN .
Thus, since x is by de�nition a point in Vm+1 that is nearest to ϕw(v),

|x − ϕw(v)| ≤ |y − ϕw(v)| ≤ rm+1 + rm+2 + · · · + rN .

Therefore, (5.7) holds for all m. Claim (3) follows, because

rm+1 + · · · + rN = rm+1(1 − rN−m)/(1 − r) < 2rm+1,

where the last inequality holds since r < 1/2.
Finally, for the last claim, if a, b ∈ Vm are distinct, say with a ∈ Kw ∩ Vm and b ∈ Ku ∩ Vm for some

w, u ∈ A*(rm), then by (5.5),

|a − b|∞ ≥ |ϕw(v) − ϕu(v)|∞ − |a − ϕw(v)|∞ − |b − ϕu(v)|∞ > (8r)rm − 2(2rm+1) = (4r)rm .

5.3 Trees

Next, we de�ne a �nite sequence of trees Tm = (Vm , Em)m=1,...,N inductively, where the vertices Vm were
de�ned in the previous section and the edges Em will be speci�ed below. By Lemma5.5, for allm ∈ {1, . . . , N}
and all x ∈ Vm, there exists a unique w ∈ A*(rm) such that x ∈ Kw; we denote this word w by x(m).

Let G1 = (V1, Ê1) be the graph whose edge set is given by

Ê1 = {{x, y} : x ≠ y and Kx(1) ∩ Ky(1) ≠ ∅}.

The connectedness of K implies that G1 is a connected graph, but not necessarily a tree. Now, removing some
edges from Ê1, we obtain a new set E1 so that T1 = (V1, E1) is a connected tree. Because we assumed F

has branching, see (5.4), we may assume that T1 has at least one branch point, i.e. there exists x ∈ V1 with
valence in T1 at least 3.

Suppose that we have de�ned Tm = (Vm , Em) for somem ∈ {1, . . . , N −1}. For each x ∈ Vm, let Vm+1,x =
Vm+1 ∩ Kx(m) and let Tm+1,x = (Vm+1,x , Em+1,x) be a connected tree such that {y, z} ∈ Em+1,x only if y, z ∈
Vm+1,x, y ≠ z and Ky(m+1) ∩ Kz(m+1) ≠ ∅. Moreover, since Kx(m) is homothetic to K, we may require that Tm+1,x
has at least one branch point. Now, if {a, b} ∈ Em, there exists a′ ∈ Vm+1,a and b′ ∈ Vm+1,b such that
Ka′(m+1) ∩ Kb′(m+1) ≠ ∅. There is not a canonical choice, so we select one pair {a′, b′} for each pair {a, b} in
an arbitrary fashion. Set

Em+1 :=
⋃
x∈Vm

Em+1,x ∪
⋃

{a,b}∈Em

{{a′, b′}}.

This completes the de�nition of the trees T1, . . . , TN . Below all trees Tm are realized in `∞ through the natural
identi�cation of {a, b} ∈ Em with the line segment [a, b].
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Lemma 5.6 (length of edges). For all m ∈ N, the length |x − y|∞ of each edge [x, y] in Tm is at least (8r)rm and
less than 2rm.

Proof. By construction, for each edge [x, y] in Tm, we have Kx(m) ∩ Ky(m) ≠ ∅. Hence |x − y|∞ ≤ diam Kx(m) +
diam Ky(m) < 2rm by (5.3). The lower bound on the length is taken from (5.5).

5.4 Parameterization of TN and the map FN

For each 1 ≤ m ≤ N, we denote by TN,m the minimal subgraph of TN that contains Vm. See Figure 5. Clearly,
TN,m is a connected subtree of TN,n whenever m ≤ n and TN,N = TN .

Figure 5: The tree T2,1 (in blue) for the IFS for the square in Fig. 3.

Lemma5.7 (intermediate parameterizations). There exists a constant c > 0depending only on L1, s, τ, C1, C2,
and there exists a collection Em of closed nondegenerate intervals in [0, 1] and a continuous map fm : [0, 1]→
TN for each 1 ≤ m ≤ N with the following properties.

(P1) The intervals in Em have mutually disjoint interiors and their union⋃ Em = [0, 1].
(P2) The map fm is a 2-to-1 piecewise linear tour of edges of a subtree T̃N,m of TN containing TN,m.
(P3) For every I = [a, b] ∈ Em, we have the image of the endpoints fm(a), fm(b) are vertices of T̃N,m.
(P4) For every I = [a, b] ∈ Em and x ∈ [a, b],

(2r)rm ≤ |fm(a) − fm(b)|∞ ≤ (4/r)rm and |fm(a) − fm(x)|∞ ≤ (5/r)rm .

(P5) For all 1 ≤ m ≤ N − 1 and for every I ∈ Em, we have fm+1|∂I = fm|∂I and fm(I) ⊂ fm+1(I).
(P6) For all 1 ≤ m ≤ N and I ∈ Em, fN |I tours at least cr−(N−m)s edges in TN .
(P7) When m = N, T̃N,N = TN,N = TN and fN(I) is an edge in TN for each I ∈ EN .

We now show how to use Lemma 5.7 to construct a (1/s)-Hölder continuous surjection FN : [0, 1] → TN
with Höld1/s FN .L1 ,s,τ,C1 ,C2 1 and dH(FN([0, 1]), K) .L1 ,τ rN , where dH is the Hausdor� distance in `∞. This
reduces the proof of Proposition 5.2 to veri�cation of Lemma 5.7.

First of all, by (P2) and (P7), card EN = 2(card(VN) − 1). Let ψ : [0, 1]→ [0, 1] be the unique continuous,
nondecreasing function such that ψ|I is linear and |ψ(I)| = (card EN)−1 for all I ∈ EN . Let FN : [0, 1]→ TN be
the unique map satisfying fN = FN ◦ ψ (i.e. FN := fN ◦ ψ−1). Thus, FN is a 2-to-1 piecewise linear tour of the
edges of TN in the order determined by fN , where the preimage of each edge has equal length. By (P2), (P7),
the de�nition of the set VN , and the fact that |x − y| ≤ 2rN for any two adjacent vertices of TN ,

dH(FN([0, 1]), K) = dH(TN , K) ≤ dH(TN , VN) + dH(VN , K) ≤ 3rN . (5.8)

It remains to show that FN is (1/s)-Hölder with Hölder constant independent of N.
To that purpose, we de�ne an auxiliary sequence F1N , . . . , FNN ≡ FN to which we can apply Corollary 2.8.

As already noted, we simply set FNN := FN . Next, suppose that 1 ≤ m ≤ N−1. LetNm = {a1, a2, . . . , al} denote
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the set of endpoints of intervals in Em, enumerated according to the orientation of [0, 1]. Let f̃j : [0, 1] → `∞
be de�ned by linear interpolation and the rule f̃j(ai) = fj(ai) for all i. We then let F jN be the unique map such
that f̃j = F jN ◦ ψ = fj (i.e. F jN := f̃j ◦ ψ−1). By (P3), (P4) and (P5), for all 1 ≤ j ≤ N − 1,

|F jN(x) − F
j+1
N (x)|∞ .L1 ,τ r

j for all x ∈ [0, 1]. (5.9)

Next, we claim that for all 1 ≤ j ≤ N and all x, y ∈ [0, 1],

|F jN(x) − F
j
N(y)|∞ .L1 ,s,τ,C1 ,C2 r

j(1−s)|x − y|. (5.10)

Since each map F jN is continuous and linear on each interval ψ(I), I ∈ Ej, the Lipschitz constant is given by

Lip(F jN) = max
I∈Ej

diam F jN(ψ(I))
|ψ(I)| .L1 ,τ max

I∈Ej

rj
|ψ(I)|

by (P3). Fix I ∈ Ej. To estimate |ψ(I)|, by (P6), (P7), and Lemma 2.11 we have

|ψ(I)| = card{J ∈ EN : J ⊂ I}
2(card(VN) − 1)

&L1 ,s,τ,C1 ,C2
r−(N−j)s
r−Ns &L1 ,s,τ,C1 ,C2 r

js .

Thus, we have established (5.10).
Therefore, by (5.9), (5.10), and Corollary 2.8, FN ≡ FNN is a (1/s)-Hölder map with Hölder constant de-

pending only on L1, s, τ, C1, C2. This completes the proof of Proposition 5.2 and Theorem 1.3, up to verifying
Lemma 5.7.

5.5 Remes’ Branching Lemma and the Proof of Lemma 5.7

Wenow recall a key lemma fromRemes [25],which lets us build the intermediate parameterizations in Lemma
5.7. In the remainder of this section, we frequently use the following notation and terminology. Given a, b ∈
Vm with a ≠ b, we let Rm(a, b) denote the unique arc (the “road") in Tm with endpoints a and b. A branch
B of Tm with respect to Rm(a, b) is a maximal connected subtree of Tm with at least two vertices such that B
contains precisely one vertex x in Rm(a, b) and x is terminal in B (i.e. x has valency 1 in B). See Figure 6. More
generally, if T is a connected tree and S is a connected subtree of T, we de�ne a branch B of T with respect to
S to be a maximal connected subtree of T with at least two vertices such that B contains precisely one vertex
x in S, and x is terminal in B.

Figure 6: A road R2(a, b) (in red) and the 5 branches in T2 with respect to R2(a, b) (in blue) for the IFS for the square in Fig. 3.
Branches 2 and 3 contain a point in V1 \ R2(a, b); branches 1, 4, and 5 do not.

Lemma 5.8 (Remes’ branching lemma [25, Lemma 4.11]). Let a, b ∈ VN with a ≠ b and let R ⊂ VN be the set
of vertices of RN(a, b). Suppose that there exists m ≤ N such that |a − b|∞ ≥ (2r)rm and |a − x|∞ ≤ (4/r)rm for
all x ∈ R.
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1. Control on number of branches from above: There exists C ≥ 1 depending only on L1, s, τ, C1, C2 such
that the number of the branches of TN with respect to RN(a, b) containing points in Vm \ R is less than C.

2. Control of the road length: There exists C′ ≥ 1 depending only on L1, s, τ, C1, C2 such that if S =
{z1, . . . , zl} is a subset of R, enumerated relative to the ordering induced by RN(a, b), and |zi − zi+1|∞ ≥
(2r)rm for all 1 ≤ i ≤ l − 1, then l ≤ C′.

3. Control on number of branches from below: There is t ∈ N depending only on L1, τ, s, C1, C2 such that if
m ≤ N − t, then the number of branches of TN with respect to RN(a, b) that contain some vertex in Vm+t \ R
is at least 2C + C′ + 2. Moreover, if c ∈ Vm+t \ R is such a vertex and c′ ∈ Kxt+m(c), then c and c

′ belong to
the same branch of TN with respect to RN(a, b).

Proof. From the inductive construction, it is easy to see that the trees T1, . . . , TN satisfy the following prop-
erty, which Remes calls the branch-preserving property:

[25, p. 23] Let 1 ≤ m ≤ n ≤ N, let x1 , x2 ∈ Vm, let B be a branch of Tm with respect to Rm(x1 , x2), and let x3 be a vertex of
the branch B. Let x′1 , x′2 ∈ Vn with x′1 ∈ Kx1(m) and x

′
2 ∈ Kx2(m). Then all vertices in Vn ∩ Kx3(m) belong to the same branch of Tn

with respect to Rn(x′1 , x′2).

Since we arranged for the attractor in our setting to satisfy (5.1), the proof of Lemma 5.8 follows exactly as the
proof of [25, Lemma 4.11] in Euclidean space. This is the only place in the proof of Theorem 1.3 where we use
the assumption thatHs(K) > 0.

(1) Denote byB the set of branches of TN with respect to RN(a, b) containing points in Vm \ R. Let B ∈ B

and let zB be the common vertex of the road and the branch B. Among all vertices in B ∩ (Vm \ R) choose
xB ∈ B ∩ (Vm \ R) that minimizes |xB − zB|∞.

We claim that |xB−zB|∞ ≤ 2rm. To prove the claim, note �rst that if |zB−y|∞ > rm for any vertex y ∈ B∩VN ,
then zB and y belong to two di�erent sets Kw, Ku, respectively, with w, u ∈ A*(rm). By design of TN and the
branch-preserving property, we have that VN∩Kw ⊂ B, because theminimal connected subgraph containing
those vertices contains no other vertices. Because one of those vertices belongs to Vm, we get the claim.

By the claim above and the assumption |a − zB|∞ ≤ (4/r)rm, we obtain |a − xB|∞ ≤ (2 + 4r−1)rm for all
B ∈ B. By Lemma 5.5(4), the balls B(xB , (2r)rm) are mutually disjoint. Since 2r < 1, we have B(xB , (2r)rm) ⊂
B0 := B(a, (3 + 4r−1)rm) for all B ∈ B. Applying (5.1) twice,

(3 + 4r−1)srms ≥ C−12 Hs(K ∩ B0) ≥ C−12
∑
B∈B

Hs(K ∩ B(xB , (2r)rm)) ≥ C1C−12 card(B)(2r)srms

and we obtain that card(B) ≤ C−11 C2(3 + 4r−1)s(2r)−s .L1 ,s,τ,C1 ,C2 1.
(2) The proof is similar to that of (1). If zi , zi+1 are as in (2), then

|zi − zi+1|∞ ≥ (2r)rm > rm+1,

so there exist distinct wi , wi+1 ∈ A*(rm+1) (if m + 1 ≤ N) or distinct wi , wi+1 ∈ A*(rN) (if m + 1 > N) such
that zi ∈ Kwi and zi+1 ∈ Kwi+1 . Because TN is a tree, it follows that if i, j ∈ {1, . . . , l} with i ≠ j, then wi ≠ j.
Therefore, all z1, . . . , zl belong to di�erent sets Kw1 , . . . , Kwl . Nowwe can use (5.1) andwork as in (1) to obtain
an upper bound for l.

(3) Set C′′ = 2C+C′ +1 and set t′ = dlogr
(
2r/C′′

)
e. Because |a−b|∞ ≥ (2r)rm ≥ C′′rm+t

′ , the road RN(a, b)
contains at least C′′ elements of Vm+t′ . Since F has branching (recall (5.4)), there exist at least C′′ branches of
TN,m+t′ with respect to RN(a, b). By the branch-preserving property, for each such branch, there exists w ∈
A*(rm+t′+1) such that the said branch contains all vertices inVN∩Kw. Thus,wemay take t = dlogr

(
2r/C′′

)
e+1,

which ultimately depends at most on L1, τ, s, C1, C2, and (3) holds.

With Remes’ branching lemma (Lemma 5.8) in hand, we devote the remainder of this section to a proof
of Lemma 5.7. Throughout what follows, we let t 'L1 ,τ,s,C1 ,C2 1 denote the integer given by Lemma 5.8(3).
Instead of proving (P1)–(P7), it is enough to prove (P1)–(P5), (P7), and the following property:

(P6′) For 1 ≤ m ≤ N − t and I ∈ Em, there exists w ∈ A*(rm+t) such that fm(I) traces the vertices of Kw ∩ VN .
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Indeed, let us quickly check that (P6) follows from (P5) and (P6′). Fix m ∈ {1, . . . , N} and I ∈ Em. Suppose
�rst that m ≤ N − t. Then, by (P6′), fm(I) is a connected subtree of TN that contains VN ∩ Kw for some w ∈
A*(rm+t). Working as in Lemma 2.11 we get card(VN ∩ Kw) &L1 ,s r−(N−m)s. So fm(I) contains at least cr−(N−m)s
edges of TN for some c &L1 ,s 1.Now, by (P5), fm(I) ⊂ fN(I) and (P6) followswhenm ≤ N−t. Suppose otherwise
thatm > N − t. Then fm(I) contains at least one edge of TN and 1 = r−tsrts 'L1 ,τ,s,C1 ,C2 r−ts ≥ r−(N−m)s and (P6)
follows when t > N − m.

The construction of the intervals Em and the maps fm satisfying (P1)–(P5) and (P6′) is in an inductive
manner. We verify (P7) after the construction of the �nal map fN .

5.5.1 Initial step.

De�ne a collection of nondegenerate closed intervals E1 as well as auxilliary map g1 : [0, 1] → TN,1 so that
the following properties hold.

1. The intervals in E1 have mutually disjoint interiors and⋃ E1 = [0, 1].
2. The map g1 is a 2-to-1 piecewise linear tour of edges of TN,1.
3. For each I ∈ E1, g1 maps the endpoints of I onto two vertices in V1 and maps I piecewise linearly onto

the road that joins the two vertices in TN,1.

If N − t < 1, we simply set f1 = g1 and proceed to the inductive step. Otherwise, 1 ≤ N − t and to de�ne
f1, we modify the map g1 on each interval in E1 by inserting branches. Let {I1, . . . , In} be an enumeration of
E1. Let C be as in Lemma 5.8(1).

Lemma 5.9. Let I1 = [x, y], a = g1(x) and b = g1(y). Let {B1, . . . , Bp} be the branches of TN with respect to the
road RN(a, b) that contain a set Kw ∩ VN for some w ∈ A*(rt+1). There exist at most C indices j ∈ {1, . . . , p},
for which Bj has parts that are traced by g1.

Proof. If Bj is a branch as in the assumption of the lemma, then Bj contains a point in V1. However, by Lemma
5.8(1), we know that no more than C such branches exist.

Writing I1 = [x, y], since |g1(x) − g1(y)|∞ > (2r)r and |g1(x) − z|∞ ≤ (1/r)r for every vertex z of
RN(g1(x), g1(y)) in TN , we can invoke Lemma 5.8(3). Thus, we can �nd a branch B of RN(g1(x), g1(y)) with
respect to TN that contains all vertices of VN ∩ Kw for some w ∈ A*(rt) such that no part of it is traced by g1.
We de�ne f1|I1 so that the following properties are satis�ed.

1. The map f1|I1 is piecewise linear and traces all the edges of B ∪ g1(I1) ⊂ TN . (Necessarily, every edge of
B is traced exactly twice, once in each direction.)

2. We have f1|∂I1 = g1|∂I1.

Suppose that we have de�ned f1 on I1, . . . , Ii. To de�ne f1|Ii+1, we �rst verify the following analogue of
Lemma 5.9.

Lemma 5.10. Write Ii+1 = [x, y], a = g1(x) and b = g1(y). Let {B1, . . . , Bp} be the branches of TN with respect
to the road RN(a, b) that contain a set Kw ∩ VN for some w ∈ A*(rt+1). There exist at most 2C + 1 indices
j ∈ {1, . . . , p} for which Bj has been traced by f1|I1 ∪ · · · ∪ Ii.

Proof. There are two cases in which a branch Bj has been traced by f1|I1 ∪ · · ·∪ Ii. The �rst case occurs when
part of Bj is already traced by g1 (and hence by f1|I1 ∪ · · · ∪ Ii). As in Lemma 5.9, at most C such branches Bj
exist. The second case occurs when we are traveling on the road RN(a, b) backwards. More speci�cally, the
second case occurs when there exists i1 ∈ {1, . . . , i} such that there is a part of g1(I1) lying on RN(a, b) and
part of Bj is being traced by f1|Ii1 . In this situation, there are two possible subcases:

1. the right endpoint of Ii1 is mapped by g1 into one of the branches of TN,1 with respect to RN(a, b) and by
Lemma 5.8(1) at most C such branches exist; and,
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2. f1|Ii1 contains a and since f1 is essentially 2-1, at most one such interval exists.

In total, there exist at most 2C + 1 indices j ∈ {1, . . . , p} for which Bj has been traced by f1|I1 ∪ · · · ∪ Ii.

For Ii+1, we now work exactly as with I1, but we choose a branch Bj that has no edge being traced by
f1|I1 ∪ · · ·∪ Ii. We can do so because by Lemma 5.8(3), there exist at least 2C + 2 branches of TN with respect
to the road RN(a, b) that contain a set Kw ∩ VN for some w ∈ A*(rt+1). Modifying g1 on each Ii completes the
de�nition of f1.

Properties (P1), (P2), (P3) follow by design of f1 and E1. For property (P4), given I = [a, b] ∈ E1 we have
that f1(a), f1(b) ∈ V1 and by Lemma 5.5(4), |f1(a) − f1(b)|∞ ≥ (4r)r. On the other hand, since diam K = 1
and f1([0, 1]) ⊂ K, we trivially have |f1(x) − f1(y)| ≤ (4/r)r which settles (P4). Property (P5) is vacuous in the
initial step (as f2 has not yet been de�ned). Finally, property (P6′) holds, because when 1 ≤ N − t, we used
Remes’ branching lemma to ensure that each I ∈ E1 there exists w ∈ A*(rt+1) such that f1 traces all vertices
of VN ∩ Kw.

5.5.2 Inductive step

Suppose that for some 1 ≤ m ≤ N − 1 we have de�ned fm and Em so that properties (P1)–(P5) and (P6′) hold.
We start by de�ning an auxiliary map gm+1 that visits the image of fm and TN,m+1. In particular, de�ne

gm+1 : [0, 1] → TN and an auxiliary collection of intervals Bm+1 of nondegenerate closed intervals in [0, 1]
so that the following properties hold.

1. The intervals inBm+1 havemutually disjoint interiors and collectively⋃Bm+1 = [0, 1]. Moreover, for any
I ∈ Bm+1 there exists unique J ∈ Em such that J ⊆ I.

2. The map gm+1 is a 2-to-1 piecewise linear tour of edges of TN in fm([0, 1]) ∪ TN,m+1. For any I ∈ Bm+1,
gm+1|I maps I linearly onto an edge of TN in fm([0, 1]) ∪ TN,m+1.

3. For each I ∈ Em, we have gm+1|∂I = fm|∂I and fm(I) ⊂ gm+1(I).

Note that if TN,m+1 ⊂ fm([0, 1]) we can choose gm+1 = fm.
To de�ne Em+1, we will �rst identify the endpoints of its intervals. Towards this goal, let Wm+1 denote

the set of endpoints of the intervals in Bm+1 and let Pm denote the set of endpoints of the intervals in Em. By
de�nition of Bm+1, we have Pm ⊂ Wm+1.

Lemma5.11. There exists amaximal set Pm+1 contained inWm+1 with Pm+1 ⊃ Pm such that for any consecutive
points x, y ∈ Pm+1,

1. |gm+1(x) − gm+1(y)|∞ ≥ (2r)rm+1, and
2. if z ∈ [x, y], then |gm+1(x) − gm+1(z)|∞ ≤ (4/r)rm+1.

Proof. We start by making a simple remark. By design of Bm+1, for any two consecutive points x, y ∈ Wm+1,
there exists w, u ∈ A*(rN) such that gm+1(x) ∈ Kw, gm+1(y) ∈ Ku and Kw ∩ Ku ≠ ∅. Hence

|gm+1(x) − gm+1(y)|∞ ≤ 2rN . (5.11)

To prove the lemma, it su�ces (as Wm+1 is �nite) to construct a set P′m+1 such that Pm ⊂ P′m+1 ⊂ Wm+1 and
P′m+1 satis�es the conclusions of the lemma. The de�nition of P′m+1 will be in an inductivemanner. Set P(1)m+1 =
Pm. By the inductive hypothesis (P4), we have that |gm+1(x) − gm+1(y)|∞ ≥ (2r)rm+1 for any two consecutive
points x, y ∈ P(1)m+1. Assume now that for some i ∈ N we have de�ned P(i)m+1 so that |gm+1(x) − gm+1(y)|∞ ≥
(2r)rm+1 for any two consecutive points x, y ∈ P(i)m+1. To de�ne the next set P(i)m+1, we consider two alternatives.

Suppose �rst that for any two consecutive points x, y ∈ P(i)m+1 with x < y and for any z ∈ Wm+1 ∩ [x, y],
we have |gm+1(x) − gm+1(z)|∞ ≤ (4/r)rm+1. In this case, we set P(i+1)m+1 := P(i)m+1.

Suppose now that there exist consecutive x, y ∈ P(i)m+1 with x < y for which the previous situation fails.
We claim that there exists z ∈ Wm+1 ∩ [x, y] such that

max{|gm+1(x) − gm+1(z)|∞, |gm+1(y) − gm+1(z)|∞} ≥ rm+1. (5.12)
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To prove (5.12), assume �rst that |gm+1(x) − gm+1(y)|∞} ≥ 4rm+1. Since gm([x, y]) is connected, there exists
x ∈ Wm+1 ∩ [x, y] such that gm+1(z) is not contained in B(x, rm+1) ∪ B(y, rm+1) and (5.12) holds. Assume now
that |gm+1(x) − gm+1(y)|∞ < 4rm+1 and let z ∈ Wm+1 ∩ [x, y] be such that |gm+1(x) − gm+1(z)|∞ > (4/r)rm+1.
Since r < 1/4,

|gm+1(y) − gm+1(z)|∞ ≥ |gm+1(x) − gm+1(z)|∞ − |gm+1(x) − gm+1(y)|∞ > (4/r)rm+1 − 4rm+1 > 4rm+1.

Having proved (5.12), we set P(i+1)m+1 := P(i)m+1 ∪ {z}.
In view of (5.11) and �niteness of the set Wm+1, there exists a minimal n ∈ N with P(n+1)m+1 = P(n)m+1. Set

P′m+1 := P(n)m+1. It is straight forward to see using induction that the set P′m+1 satis�es the conclusions of the
lemma.

De�ne Em+1 to be themaximal collection of nondegenerate closed intervals in [0, 1] whose endpoints are
consecutive points in the set Pm+1. If m + 1 > N − t, set fm+1 := gm+1. Otherwise, m + 1 ≤ N − t and to de�ne
fm+1, we modify gm+1 on each I ∈ Em+1 like we did in the initial step.

Assume m + 1 ≤ N − t and let {I1, . . . , Iq} be an enumeration of Em+1. We start with I1. If gm+1(I1) traces
a branch of TN with respect to RN(a, b) that contains all vertices of VN ∩ Kw for some w ∈ A*(rm+t+1), then
we set fm+1|I1 = gm+1|I1. Suppose now that gm+1(I1) does not trace such a branch.

Lemma 5.12 (cf. Lemma 5.9). Let I1 = [x, y], a = gm+1(x) and b = gm+1(y). Let {B1, . . . , Bp} denote the
branches of TN with respect to the road RN(a, b) that contain a set Kw ∩ VN for some w ∈ A*(rm+t+1). Then
there exist at most C indices j ∈ {1, . . . , p} for which Bj has parts that are traced by gm+1.

Proof. Thebranches of RN(a, b)with respect to gm+1([0, 1]) that are not in fm([0, 1]) are branches that contain
points in Vm+1. Therefore, by Lemma 5.8(1), there are at most C of them.

Since |a − b|∞ > (2r)rm+1 and |a − z|∞ ≤ (4/r)rm+1 for every vertex z of RN(a, b) in TN , we can invoke
Lemma 5.8(3). In particular, there exist at least 2C + 2 branches of TN with respect to the road RN(a, b) such
that for every branch there exists w ∈ A*(rm+t+1) such that all vertices of Kw are in that branch. Fix such a
branch B and de�ne fm+1|I1 so that the following properties are satis�ed.

1. The map fm+1|I1 is piecewise linear and traces all the edges of B∪ gm+1(I1) ⊂ TN . In fact, every edge of B
is traced exactly twice. Moreover, for any edge e of B∪ gm+1(I1) there exists J ⊂ I1 such that fm+1|I1 maps
J linearly onto e.

2. We have fm+1|I1(x) = gm+1(x) and fm+1|I1(y) = gm+1(y).

Suppose that we have de�ned fm+1 on I1, . . . , Ii. Write Ii+1 = [x, y], let a = gm+1(x) and let b = gm+1(y).
If gm+1(Ii+1) traces a branch of TN with respect to RN(a, b) that contains all vertices of VN ∩ Kw for some
w ∈ A*(rm+t+1), then we set fm+1|Ii+1 = gm+1|Ii+1. Suppose now that gm+1(Ii+1) does not trace such a branch.

Lemma 5.13 (cf. Lemma 5.10). Let {B1, . . . , Bp} be the branches of TN with respect to the road RN(a, b) that
contain a set Kw ∩ VN for some w ∈ A*(rt+m+1). There exist at most 2C + C′ + 1 indices j ∈ {1, . . . , p} for which
Bj has been traced by fm+1|I1 ∪ · · · ∪ Ii.

Proof. There are two cases in which a branch Bj has been traced by f1|I1 ∪ · · ·∪ Ii. The �rst case is when part
of Bj is already traced by by gm+1 (and hence fm+1|I1∪ · · · Ii). As in Lemma 5.12, at most C such branches exist.

The second case is when we are traveling on the road RN(a, b) backwards. Speci�cally, this case occurs
when there exists i1 ∈ {1, . . . , i} such that there is a part of gm+1(I1) lying on RN(a, b) and part of Bj is being
traced by fm+1|Ii1 . There are three possible subcases:

1. the right endpoint of Ii1 is mapped by gm+1 into one of the branches of TN,1 with respect to RN(a, b) and
by Lemma 5.8(1) at most C such branches exist;

2. the right endpoint of Ii1 is mapped onto the road RN(a, b) and by Lemma 5.8(2) at most C′ such points
exist; and,

3. fm+1|Ii1 contains a, and since fm+1 is essentially 2-to-1, at most one such interval exists.
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In total, there exist at most 2C + C′ + 1 indices j ∈ {1, . . . , p}, for which Bj has been traced by fm+1|I1 ∪ · · ·∪
Ii.

For Ii+1 wework exactly as with I1, but we choose a branch B that has not been traced by fm+1|I1∪ · · ·∪ Ii.
We can do so because by Lemma 5.8(3), there exist at least 2C+C′ +2 such branches. Modifying gm+1 on each
Ii completes the de�nition of fm+1.

5.5.3 Properties (P1)–(P5) and (P6′) for the inductive step

We complete the inductive step by proving properties (P1)–(P5) and (P6′). Properties (P1), (P2), (P3) and (P6′)
follow immediately by design of Em+1 and fm+1.

For (P4), �x I = [a, b] ∈ Em+1. The �rst claim of (P4) follows by Lemma 5.11 and the fact that fm+1|∂I =
gm+1|∂I. For the second claim, let x ∈ [a, b]. If fm+1(x) ∈ gm+1([a, b]) (which e.g. always happens when
m + 1 > N − t), then

|fm+1(x) − fm+1(a)|∞ ≤ (4/r)rm+1

by Lemma 5.11. If fm+1(x) ∉ gm+1([a, b]) (which can only happenwhenm+1 ≤ N− t), then fm+1(x) is contained
in a branch B of TN with respect to RN(fm+1(a), fm+1(b)). Thus, diam B ≤ rm, and if z ∈ [a, b] with fm+1(z) ∈
B ∩ gm+1([a, b]), then

|fm+1(x) − fm+1(a)|∞ ≤ |fm+1(z) − fm+1(a)|∞ + |fm+1(x) − fm+1(z)|∞
≤ (4/r)rm+1 + diam B
≤ (4/r)rm+1 + (rm+2 + · · · + rN) ≤ (5/r)rm+1.

For (P5), �x I ∈ Em. By design of fm+1 and gm+1, we have fm(I) ⊂ gm+1(I) and gm+1(I) ⊂ fm+1(I). Thus,
fm(I) ⊂ fm+1(I). Let x be an endpoint of I. On one hand, gm+1(x) = fm(x). On the other hand, there exists
J ∈ Em+1 with x as its endpoint, and by construction, fm+1|∂J = gm+1|∂J. Therefore, fm+1|∂I = fm|∂I.

5.5.4 Property (P7)

To prove (P7), suppose thatm+1 = N. Sincem+1 = N > N− t, themap fm+1 = gm+1. By de�nition, gm+1([0, 1])
contains TN,N = TN , so T̃N,m+1 = T̃N,N = fm+1([0, 1]) = TN . Moreover, since Wm+1 satis�es both conclusions
of Lemma 5.11, Wm+1 = Pm+1. Hence Em+1 = Bm+1. Thus, since every interval from Bm+1 is mapped by gm+1
linearly onto an edge of TN , every interval from Em+1 is mapped by fm+1 linearly onto an edge of TN .

With persistence, we have completed the proof of Lemma 5.7.

6 Bedford-McMullen carpets and self-a�ne sponges
Self-a�ne carpets were introduced and studied independently by Bedford [8] andMcMullen [23]. Fix integers
2 ≤ n1 ≤ n2. For each pair of indices i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2}, let ϕi,j : R2 → R2 be the a�ne
contraction given by

ϕi,j(x, y) = (n−11 (i − 1 + x), n−12 (j − 1 + y)) with Lipϕi,j = n−11 .

For each nonempty set A ⊂ {1, . . . , n1} × {1, . . . , n2}, we associate the iterated function system FA = {ϕi,j :
(i, j) ∈ A} over R2 and let SA denote the attractor of FA, called a Bedford-McMullen carpet. In general, we
have SA ⊂ [0, 1]2.

The following proposition serves as a brief overview of how the similarity dimension of FA compares to
the Hausdor�, Minkowski, and Assouad dimensions of the carpet SA; for de�nitions of these dimensions, we
refer the reader to [23] and [19].
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Proposition 6.1. Let 2 ≤ n1 ≤ n2 and A be as above. For all i ∈ {1, . . . , n1}, de�ne

ti := card{j : (i, j) ∈ A}.

Also de�ne t := maxi ti and r := card{i : ti ≠ 0}.

1. The similarity dimension is

s-dim(FA) = logn1

( n1∑
i=1

ti

)
= logn1 (cardA).

2. [23] The Hausdor� dimension is

dimH(SA) = logn1

( n1∑
i=1

tlogn2 n1i

)
.

3. [23] The Minkowski dimension is

dimM(SA) = logn1 r + logn2

(
r−1

n1∑
i=1

ti

)
= logn1 r + logn2 (r

−1 cardA).

4. [19] If n1 < n2, then the Assouad dimension is

dimA(SA) = logn1 r + logn2 t.

We remark that when n1 = n2, the carpet SA is self-similar and the similarity, Hausdor�, Minkowski, and
Assouad dimensions agree. In general, for any Bedford-McMullen carpet,

dimH(SA) ≤ dimM(SA) ≤ min{dimA(SA), s-dim(FA)}. (6.1)

However, there is no universal comparison between the Assouad and similarity dimensions. In fact, there are
examples of self-a�ne carpets showing that dimA(SA) < s-dim(FA), dimA(SA) = s-dim(FA), and dimA(SA) >
s-dim(FA) are each possible. We emphasize that the similarity dimension of a self-a�ne carpet can exceed 2
(see Figure 2).

6.1 Hölder parameterization of connected Bedford-McMullen carpets with sharp
exponents

For each index i ∈ {1, . . . , n1}, de�ne Ai := {i} × {1, . . . , n2} and A0 :=
⋃n1
i=1 Ai. Note that the carpet SA0 =

[0, 1]2, and for each i ∈ {1, . . . , n1}, the carpet SAi is the vertical line segment {(i − 1)/(n1 − 1)} × [0, 1] (see
Figure 7).

Our goal in this section is to establish the following statement, which encapsulates Theorem 1.4 from the
introduction.

Theorem 6.2 (Hölder parameterization). Let 2 ≤ n1 ≤ n2 be integers and let A be as above. If SA is connected,
then there exists a surjective (1/α)-Hölder map F : [0, 1]→ SA with

α =


arbitrary, if card(A) = 1;
1, if A = Ai for some i ∈ {1, . . . , n1};
2, if A = A0;
s-dim(FA), otherwise.

Furthermore, the exponent 1/α is sharp.
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Figure 7: First iteration of Bedford-McMullen carpets with generators A. On the left, A = A0 (the square). In the middle, A = A1
(a vertical line). On the right, A = {(1, 1), . . . , (1, 6), (2, 1), (2, 6), (3, 1), . . . , (3, 6)}.

Note that the conclusion of Theorem 6.2 is trivial in the case that A ∈ {A0, . . . , An1} or in the case that
cardA = 1. Below we give a proof of the sharpness of the exponent α, and in §6.2 we show why such a
surjection exists.

Lemma 6.3. If SA is connected and A ∉ {A0, . . . , An1}, then there exists a pair of indices (i, j) ∈ A such that
j < n2 and (i, j + 1) ∈ ̸ A or such that j > 1 and (i, j − 1) ∉ A.

Proof. To establish the contrapositive, suppose that the conclusion of the lemma fails. Then A = B ×
{1, . . . , n2} for some nonempty set B ⊂ {1, . . . , n1}. If card(B) = 1, then A = Ai for some 1 ≤ i ≤ n1. If
1 < card(B) < n1, then the carpet SA is disconnected. Finally, if card(B) = n1, then A = A0.

Lemma 6.4. Suppose that SA is connected, cardA ≥ 2, and A ∉ {A1, . . . , An1}. Then the “�rst iteration"⋃
(i,j)∈A ϕi,j([0, 1]2) is a connected set that intersects both the left and the right edge of [0, 1]2.

Proof. If cardA ≥ 2, A ∉ {A1, . . . , An1}, and the “�rst iteration" ⋃(i,j)∈A ϕi,j([0, 1]2) does not touch the left
or right edge, then the “second iteration"⋃(i,j),(k,l)∈A ϕi,j ◦ ϕj,k([0, 1]2) is disconnected. We leave the details
as a useful exercise for the reader. It may help to visualize the diagrams in Figures 2 or 7.

Corollary 6.5. Suppose that SA is connected, cardA ≥ 2, and A ∈ ̸ {A1, . . . , An1}. Then SA intersects both left
and right edge of [0, 1]2.

We are ready to prove Theorem 6.2.

Proof of Theorem 6.2. With the conclusion being straightforward otherwise, let us assume that SA is a con-
nected Bedford-McMullen carpet with cardA ≥ 2 and A ∉ {A0, . . . , An1}. Let s = s-dimFA. We defer the proof
of existence of a (1/s)-Hölder parameterization of SA to §6.2, where we prove existence of Hölder parameter-
izations for self-a�ne sponges in RN (see Corollary 6.7). It remains to prove the sharpness of the exponent
1/s.

Set k = cardA and suppose that f : [0, 1] → SA is a (1/α)-Hölder surjection for some exponent α >
0. Since SA has positive diameter, the Hölder constant H := Höld1/α f > 0. By Proposition 6.1, s-dimFA =
logn1 (k). Thus, we must show that α ≥ logn1 k.

Fix m ∈ N and let Am, A*, and ϕw be de�ned as in §2.3 relative to the alphabet {(i, j) : 1 ≤ i ≤ n1, 1 ≤
j ≤ n2}. For each m ∈ N and each word w = (i1, j1) · · · (im , jm), set Sw = ϕw([0, 1]2). Let (i0, j0) ∈ A be an
index given by Lemma 6.3, i.e. an address in the �rst iterate such that the rectangle either immediately above
or below is omitted from the carpet. Without loss of generality, we assume that j0 < n2 and (i0, j0 + 1) ∉ A
(there is no rectangle below (i0, j0)). Moreover, we assume that

j0 = min{j : (i0, j) ∈ A and (i0, j + 1) ∉ A}.

For each word w ∈ Am, we now de�ne a “column of rectangles" S̃w, as follows.
Case 1. If Sw intersects the bottom edge of [0, 1]2, then set S̃w = ⋃j0

j=0 Sw(i0 ,j).
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Case 2. Suppose that Sw does not intersect the bottom edge of [0, 1]2. Let u = (i1, j1) · · · (im , jm) with

(i1, j1), . . . , (im , jm) ∈ {1, . . . , n1} × {1, . . . , n2}

such that the upper edge of Su is the same as the lower edge of Sw. This case is divided into three subcases.
Case 2.1. Suppose that u ∈ ̸ Am. Then, as in Case 1, set S̃w = ⋃j0

j=0 Sw(i0 ,j).
Case 2.2. Suppose that u ∈ A and u(i0, n2) ∉ Am+1. Then we set S̃w = ⋃j0

j=0 Sw(i0 ,j).
Case 2.3. Suppose that u ∈ Am and u(i0, n2) ∈ Am+1. Let j1 = max{j : (i0, j − 1) ∉ A}. Then we set

S̃w =
(⋃j0

j=0 Sw(i0 ,j)
)
∪
(⋃n2

j=j1 Su(i0 ,j)
)
.

In each case, S̃w ∩ SA is a connected set that intersects both the left and right edges of S̃w, but does not
intersect the rectangles Su immediately above and below S̃w. Moreover, the sets S̃w have mutually disjoint
interiors. If τw is the line segment joining the midpoints of upper and lower edges of S̃w, then τw contains a
point of SA, which we denote by xw.

Consequently, there exists Iw ⊂ [0, 1] such that f (Iw) is a curve in S̃w joining xw with one of the left/right
edges of S̃w. Clearly, the intervals Iw are mutually disjoint and

1 ≥
∑
w∈Am

diam Iw ≥ H−α
∑
w∈Am

(diam f (Iw))α &H,α
∑
w∈Am

(2nm+11 )−α &n1 ,α (kn−α1 )m .

Since m is arbitrary, α ≥ logn1 k.

6.2 Lipschitz lifts and Hölder parameterization of connected self-a�ne sponges

Analogues of the Bedford-McMullen carpets in higher dimensional Euclidean spaces are called self-a�ne
sponges; for background and further references, see [16], [9], [10]. To describe a self-a�ne sponge, let N ≥ 2
and let 2 ≤ n1 ≤ · · · ≤ nN be integers. For each n-tuple i = (i1, . . . , iN) ∈ {1, . . . , n1} × · · · × {1, . . . , nN}, we
de�ne an a�ne contraction ϕi : RN → RN by

ϕi(x1, . . . xN) = (n−11 (i1 − 1 + x1), . . . , n−1N (iN − 1 + xN)) with Lipϕi = n−11 .

For every nonempty set A ⊂ {1, . . . , n1} × · · · × {1, . . . , nN}, we associate an iterated function system FA =
{ϕi : i ∈ A} over RN and let SA denote the attractor of FA, which we call a self-a�ne sponge.

Our strategy to parameterize a connected Bedford-McMullen carpet or self-a�ne sponge is to construct
a Lipschitz lift of the set to a self-similar set in a metric space for which we can invoke Theorem 1.3. Then the
Hölder parameterization of the self-similar set descends to a Hölder parameterization of the carpet or sponge.

Lemma 6.6 (Lipschitz lifts). Let N ≥ 2 be an integer, let 2 ≤ n1 ≤ · · · ≤ nN be integers, and let A be a nonempty
set as above. There exists a doubling metric d on RN such that if S̃A denotes the attractor of the IFS F̃A = {ϕi :
i ∈ A} over (RN , d), then

1. the identity map Id : S̃A → SA is a 1-Lipschitz homeomorphism;
2. s-dim F̃A = s-dimFA = logn1 (cardA) =: s, S̃A is self-similar, andHs(S̃A) > 0.

Proof. Consider the product metric d on RN given by

d((x1, . . . , xN), (x′1, . . . , x′N)) =
( N∑
i=1
|xi − x′i|2 logni n1

)1/2

.

In other words, d is a metric obtained by “snow�aking" the Euclidean metric separately in each coordinate.
Note that if n1 = · · · = nN , then d is the Euclidean metric. It is straightforward to check that (RN , d) is a
doubling metric space and the identity map Id : (SA , d) → SA is a 1-Lipschitz homeomorphism; e.g. see
Heinonen [13]. We now claim that the a�ne contractions ϕi generating the sponge SA become similarities in
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the metric space (RN , d). Indeed, let i = (i1, . . . , iN) ∈ A. Then

d(ϕi(x1, . . . , xN), ϕi(x′1, . . . , x′N)) =
( N∑
i=1

n−2 logni n1i |xi − x′i|2 logni n1
)1/2

= n−11 d((x1, . . . , xN), (x′1, . . . , x′N)).

Since each of the similarities ϕi have scaling factor n−11 , it follows that

s-dim(F̃A) = s-dimFA = logn1 (cardA) =: s

Finally, F̃A satis�es the strong open set condition (SOSC) with U = (0, 1)N . Therefore,Hs(S̃A) > 0 by Theorem
2.3, since doubling metric spaces are β-spaces.

Corollary 6.7. If SA is a connected self-a�ne sponge in RN , then SA is a (1/s)-Hölder curve, where s =
logn1 (cardA) is the similarity dimension of FA.

Proof. Let S̃A denote the lift of the sponge SA in Euclidean space RN to the metric space (RN , d) given by
Lemma 6.6. By Lemma 6.6 (2), the lifted sponge S̃A is a self-similar set andHs(S̃A) > 0, where s = s-dim F̃A =
s-dimFA = logn1 (cardA). By Remes’ theorem in metric spaces (Theorem 1.3), there exists a (1/s)-Hölder sur-
jection F : [0, 1] → S̃A. By Lemma 6.6 (1), the identity map Id : S̃A → SA is a Lipschitz homeomorphism.
Therefore, the composition G = [0, 1]→ SA, G := Id ◦ F is a (1/s)-Hölder surjection.
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