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A B S T R A C T   

A coupled smoothed particle hydrodynamics (SPH) and discrete element method (DEM) scheme is presented 
herein to investigate liquefaction of saturated granular deposits during strong seismic ground motions. Irregular- 
shaped solid particles in the form of polyhedral blocks are utilized to represent soil grains using DEM. In SPH, the 
fluid domain is discretized into distinct particles carrying local properties of the fluid. Therefore, the presented 
approach is a fully particle-based technique ideal for handling free-surface and moving boundary problems. The 
phase coupling is achieved through local averaging techniques and well-established semi-empirical relations 
quantifying fluid-particle interaction. Level and mildly sloped deposits were subjected to seismic ground motions 
introduced into the system through the base wall. The results of the performed simulations suggest that both 
deposits liquefied during strong base excitation due to the contraction of pore spaces leading to large increases in 
the excess pore fluid pressure that in turn results in significant loss of interparticle contacts and degradation of 
soil strength and stiffness. In addition, the sloping deposit experienced large lateral displacements, especially, at 
the shallow soil layers which completely liquefied during the seismic loading.   

1. Introduction 

The devastating effects of soil liquefaction are manifested during 
past major seismic events such as the 1989 Loma Prieta (California), the 
1995 Kobe (Japan), the 1999 Kocaeli (Turkey), and the 2011 Christ
church (New Zealand) earthquakes (Seed et al., 1991; Erdik, 2000; Sato 
et al., 1995; Cubrinovski et al., 2011). Strong seismic ground motions 
may lead to the densification of the saturated granular deposits and 
reduction of the particle packing porosity. This contraction of pore space 
potentially results in generation of high excess pore water pressure, 
degradation of soil strength, and, in extreme cases, liquefaction. The 
onset of liquefaction is marked by the complete loss of soil strength and 
stiffness due to significant pore pressure build-up that counterbalances 
the initial confining stress at a certain depth of the deposit. Some of the 
recognized destructive impacts of the soil liquefaction are excessive 
ground settlement, tilting and sliding of structures founded on the liq
uefied soil due to the loss of its bearing capacity, and large horizontal 
ground movements, ranging up to several meters, caused by 
liquefaction-induced lateral spreading. 

Constructing a reliable model for the coupled response of saturated 
granular soils as multiphase mixtures is a difficult task to undertake. The 

complicated nature of particle–particle and fluid-particle interactions, 
and constant movements of soil particles constituting the solid skeleton 
are some of the contributing factors to the complexity of the problem. As 
a result of these complications, fully continuum models used for 
modeling the fluid-particle systems utilize highly sophisticated plasticity 
constitutive models (Desai and Siriwardane, 1984; Wood, 1990; Elgamal 
et al., 2002; Prevost, 1985; Dafalias, 1982; Klisiński, 1988; Andrade, 
2009; Seid-Karbasi and Byrne, 2007; Regueiro and Borja, 1999; Borja, 
2006; Borja et al., 1999; Madabhushi and Zeng, 1998; Boulanger and 
Ziotopoulou, 2013; Ziotopoulou and Boulanger, 2013; Wang et al., 
2014; Tasiopoulou and Gerolymos, 2016). Various meshless numerical 
techniques have been developed recently for large-strain problems in 
geotechnical engineering including landslide, liquefaction and lateral 
spreading. Some of these techniques are: element free Galerkin method 
(EFGM) (e.g., Jie et al., 2008), material point method (MPM) (e.g., 
Kenichi Soga et al., 2016; Yamaguchi et al., 2020), smoothed particle 
hydrodynamics (SPH) (e.g., Naili et al., 2005) and reproducing kernel 
particle method (RKPM) (e.g., Wei et al., 2020). 

The discrete element method has gained widespread recognition in 
geotechnical engineering over the past decades as a powerful tool 
capable of addressing complicated issues involving simulation of 
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discontinuous media, such as soil nonlinear behavior and non
homogeneity. It is demonstrated through numerous studies that particle 
surface topography, usually referred as the particle shape, can heavily 
affect the macro-mechanical behavior of granular media (e.g., Shin and 
Santamarina, 2013; Pena et al., 2007; Szarf et al., 2009; Cavarretta et al., 
2010; Jiang et al., 2014; Liang and Ren, 2011). Soil grains are usually 
idealized as spherical particles in DEM to make the numerical simula
tions more manageable. However, this simplification has proven to lead 
to large fictitious particle rotations that in turn have significant impact 
on the macroscopic properties of the particle assembly such as shear 
strength and dilation (Zhou et al., 2013). Therefore, in order to address 
this issue, different techniques have been adopted to incorporate 
irregular-shaped particles into DEM. One approach is to incorporate 
rolling friction to reduce particle spinning (e.g., Bardet, 1994; Calvetti 
et al., 1997; El Shamy and Sizkow, 2021; Iwashita and Oda, 1998; Misra 
and Jiang, 1997; Oda et al., 1982). Alternatively, the grains could be 
modeled as polyhedron-shaped particles. For this type of particles, it is 
well-recognized that most of the computational effort goes into the 
contact detection routine and computation of the overlap length be
tween contacting particles. Cundall (1988) presented a technique called 
the "common plane method" to identify the touching polyhedral blocks 
and to calculate the contact forces between them. Other improved ver
sions of the common plane method were presented by other researchers 
(e.g., Nezami et al., 2004; Wachs et al., 2012; Nezami et al., 2006; Chang 
and Chen, 2008). 

Several numerical schemes have been developed to simulate the fluid 
interaction with DEM particles. Two commonly employed techniques 
are: (1) using a continuum description of the fluid (e.g., El Shamy and 
Zeghal, 2005; El Shamy et al., 2010; Ravichandran et al., 2010) and (2) 
simulating the fluid at the pore scale (e.g., Zhu et al., 1999; Potapov 
et al., 2001; Han and Cundall, 2011; El Shamy and Abdelhamid, 2014; 
Abdelhamid and Shamy, 2016; Han et al., 2007; Zhong et al., 2016). The 
continuum-discrete description of the saturated granular deposits (FVM- 
DEM approach) uses a fixed coarse grid mesh which limits its scope and 
application to the fixed boundary problems. On the other hand, the high 
accuracy of the pore scale models comes at the price of being compu
tationally expensive, to a degree that makes it impractical to perform 
numerical simulations with realistic particle sizes on normal desktop 
computers. 

In recent years a new coupled SPH-DEM scheme has been developed 
that, instead of modeling the fluid flow at the pore scale, uses averaged 
Navier–Stokes equations to describe the fluid phase behavior and well- 
established semi-empirical formulas for fluid-particle interactions. Due 
to the meshless nature of the SPH-DEM technique, it can relatively easily 
analyze fluid–structure interaction problems where, for example, FVM- 
DEM has some obvious limitations. Sun et al. (2013) presented a 
Lagrangian-Lagrangian SPH-DEM coupled model for the multiphase 
flows with free surfaces. They performed dam break and rotational cy
lindrical tank simulations to showcase the proposed method abilities. 
Robinson et al. (2014) presented a meshless simulation technique based 
on coupled SPH-DEM algorithm and validated the model by conducting 
simulations of single particle and constant porosity block sedimentation 
in a fluid column. Many more examples of coupled SPH-DEM applica
tion to various chemistry, physics and engineering problems can be 
found in the recent literature (e.g., (Markauskas et al., 2018; Markauskas 
and Kruggel-Emden, 2019; Fernandez et al., 2011; Sinnott et al., 2017; 
Cleary, 2015; Karunasena et al., 2014; Wu et al., 2016)). 

Different researchers have investigated soil liquefaction phenome
non using DEM. Most of these studies are concerned with the undrained 
behavior of saturated granular soil subjected to monotonic or cyclic 
shearing (Johnson et al., 2017; El Shamy and Denissen, 2010; Huang 
et al., 2019; Foroutan and Mirghasemi, 2020; Salimi and Lashkari, 2020; 
Gu et al., 2020; Wang et al., 2019; Huang et al., 2020; Gong et al., 2012; 
Martin et al., 2019; Kuhn et al., 2014; Ng and Dobry, 1994; Sitharam 
et al., 2009; Wang and Wei, 2016; Wei et al., 2018; Shafipour and Sor
oush, 2008). Two main approaches used for this purpose are the fluid- 

particle coupling methods and the constant volume technique. The 
constant volume method can only be employed for a specimen under 
undrained condition and the presence of the fluid is indirectly accounted 
for by controlling the displacements at the boundaries to keep the 
specimen volume constant. Apart from liquefaction under undrained 
conditions, to the best of authors’ knowledge, there have only been few 
studies regarding the soil liquefaction using DEM coupled with an actual 
pore-fluid model (e.g., El Shamy and Zeghal, 2005; El Shamy et al., 
2010; El Shamy and Abdelhamid, 2014). 

This paper presents the results of a soil liquefaction model using a 
coupled SPH-DEM algorithm. In this method, the soil is modeled at the 
microscale level as an assembly of polyhedral rigid blocks using DEM 
and SPH is utilized to solve the fluid phase equations. It is assumed that 
the averaged Navier–Stokes equations govern the fluid behavior and the 
interaction forces between fluid and solid particles are quantified 
through well-known semi empirical relationships. The proposed 
approach was used to investigate the responses of level and sloping 
saturated granular deposits to low and high amplitude base excitations. 
The obtained results suggest that liquefaction is a result of reduction in 
void spaces during strong ground motions leading to high pore pressure 
buildup and consequent loss of interparticle contacts and degradation of 
soil strength and stiffness. Furthermore, the liquefied top layers in the 
sloping deposit experienced large lateral displacement due to the inertia 
force component in the downslope direction. 

2. Coupled SPH-DEM model 

A fully Lagrangian particle-based method is presented herein to 
analyze the dynamic response of saturated granular deposits subjected 
to horizontal seismic base excitations. In SPH scheme, the fluid domain 
is discretized into a set of individual particles carrying local properties of 
the fluid such as density and pressure (Gingold and Monaghan, 1977; 
Lucy, 1977; Monaghan, 1992). A SPH kernel function is utilized to 
interpolate the averaged forms of continuity and momentum equations 
over all neighboring particles within the smoothing length of a given 
point. The fluid pressure is obtained from the weakly compressible 
equation of state. Therefore, a large value is assigned to the speed of 
sound to ensure negligible fluctuations in the fluid density. The phase 
coupling is achieved through semi-empirical relationships between the 
fluid-particle interaction forces and parameters such as the local 
porosity and relative velocity between the two phases. These interaction 
forces are directly applied to the solid particles as external forces and are 
accounted for in the fluid phase formulation by adding an associated 
term to the momentum equation. An explicit time integration scheme is 
used to solve the equation of motion for both solid and fluid particles. 
Model components are described in detail in the following sections. 

2.1. Fluid phase 

The two-fluid model presented by Anderson and Jackson (1967) is 
used here to describe the governing equations for the multiphase 
mixture (Robinson et al., 2014): 

∂(nρf )

∂t
+ ∇.(nρf u) = 0 (1)  

∂(nρf u)

∂t
+ ∇.(nρf uu) = − ∇P + ∇.τ + nρf g − fint (2)  

in which ρf is the fluid density, n is the porosity, P is the fluid pressure, τ 
is the viscous stress tensor, fint is the fluid particle interaction force, g is 
the gravitational acceleration vector and u is the fluid velocity. 

The SPH formulation is based on the mathematical principle of 
interpolant integration. This principle states that a field quantity A at the 
location r can be approximated through convolution with the smoothing 
function W: 
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A(r) =

∫

Ω
A(r′)W(r − r′, h)dr′ (3)  

where h is the smoothing length and Ω is the surrounding volume. In 
SPH, the continuum is lumped into discrete particles moving with the 
flow velocity and each holding information regarding the physical 
properties of the fluid. Therefore, in a further approximation, the 
interpolant integral of Eq. **(3) is transformed into the summation of 
weighted contribution of all particles inside the supporting domain of 
particle i: 

Ai =
∑

j
Aj

mj

ρj
W(

⃒
⃒rij

⃒
⃒, h) (4)  

where 
⃒
⃒rij

⃒
⃒ is the distance between two particles, mj is the mass of par

ticle j and ρj is the density of particle j. To avoid confusion, hereafter, the 
subscripts i and j are used for the SPH particles and a and b indicate the 
DEM particles. In this study the Wendland kernel function is chosen as 
the smoothing function (Dehnen and Aly, 2012): 
⎧
⎨

⎩

W(|r|, h) = αD(1 −
q
2

)
4
(1 + 2q) 0⩽q⩽2

0 2 < q
(5)  

in which q =
|r|

h and αD = 21
16πh3. Applying SPH particle summation, Eqs. 

**(1) and (2) can be rewritten as: 

d(niρi)

dt
=

∑

j
mjuij.∇iW(

⃒
⃒rij

⃒
⃒, h) (6)   

dui

dt
= −

∑

j
mj[

Pi

(niρi)
2 +

Pj

(njρj)
2 +Rij(

W(
⃒
⃒rij

⃒
⃒,h)

W(Δp,h)
)

4
]∇iW(

⃒
⃒rij

⃒
⃒,h)+Πij +

fint

mi
+g

(7)  

with uij being the relative velocity vector, Pi fluid pressure evaluated at 
the location of particle i, Rij the tensile instability term to prevent par
ticles from forming small clumps and Πij the non-artificial viscosity 
term. Rij and Πij are defined as (Morris et al., 1997; Monaghan, 2000): 

Πij =
∑

j

mj(μi + μj)rij.∇iW(
⃒
⃒rij

⃒
⃒, h)

ρiρj(
⃒
⃒rij

⃒
⃒2

+ 0.01h2)
uij (8)  

Rij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.01[
Pi

(niρi)
2 +

Pj

(njρj)
2] Pi > 0 and Pj > 0

0.2[

⃒
⃒
⃒
⃒

Pi

(niρi)
2

⃒
⃒
⃒
⃒ +

⃒
⃒
⃒
⃒

Pj

(njρj)
2

⃒
⃒
⃒
⃒

]

otherwise
(9)  

The porosity at the position of a fluid particles can be estimated by 
particle summation over all DEM particles present within its kernel 
radius: 

ni = 1 −
∑

a
W(|rai|, h)Va (10)  

in which |rai| is the distance between fluid particle i and DEM particle a 
and Va is the volume of the DEM particle. The weakly compressible 
equation of state is used to calculate the fluid pressure. This equation 
provides a relationship between the fluid pressure and its density 
(Monaghan, 1994): 

Pi = B((
ρi

ρ0
)

γ
− 1) (11)  

where ρ0 is the reference density, B is the pressure constant and γ = 7. 
In order to minimize the density variations and to keep the fluid 
behavior as close as possible to incompressible, the proper value for B 

must be determined. B is defined in terms of the local sound speed cs as: 

B =
ρ0c2

s

γ
(12)  

The variations in the fluid density can be obtained from (Monaghan, 
1994): 

|Δρi|

ρ0
=

|ui|
2

c2
s

= M2 (13)  

where ui is the fluid velocity and M is the Mach number. Therefore, the 
numerical speed of sound is usually considered to be 10 times higher 
than the maximum fluid velocity to limit the fluctuations of the fluid 
density to less than 1% of its initial value. 

Up to now, several boundary treatment techniques have been pro
posed to enforce no-slip, impenetrable conditions including dummy 
boundary particles with repulsive forces, mirror particles, fluid particles 
that move with the boundary and the application of distance functions 
(Monaghan, 1994; Randles and Libersky, 1996; Chen et al., 1999; 
Crespo et al., 2007; Gómez-Gesteira et al., 2005; Sun et al., 2013). In this 
paper, the solid boundaries for SPH particles are treated in the same 
manner as described by Adami et al. (2012). In this approach, the solid 
boundary is represented by two layers of dummy particles. These par
ticles compensate for the domain truncation near the boundary and 
provide kernel support for the adjacent fluid particles. To ensure no-slip 
boundary condition the velocities of the dummy particles are extrapo
lated from the surrounding fluid particles: 

uw = 2u0 − ũw (14)  

ũw =

∑

j
ujW(

⃒
⃒rwj

⃒
⃒, h)

∑

j
W(

⃒
⃒rwj

⃒
⃒, h)

(15)  

in which u0 is the prescribed wall velocity. In addition, in order for the 
dummy particles to produce correct pressure gradient near the bound
ary, the pressure and density of wall particles should also be calculated 
from the neighboring fluid particles: 

Pw =

∑

j
PjW(

⃒
⃒rwj

⃒
⃒, h) + (g − aw).

∑

j
ρjrwjW(

⃒
⃒rwj

⃒
⃒, h)

∑

j
W(

⃒
⃒rwj

⃒
⃒, h)

(16)  

ρw = ρ0(
Pw

B
+ 1)

1
γ (17) 

Periodic boundaries represent a condition where the domain is 
extended infinitely on the sides. The implementation of this type of 
boundary condition is rather straight forward in SPH. In this case, the 
two sides of the model are considered adjacent to each other and, 
therefore, the truncated support domain of a particle close to one side is 
completed by contributing particles on the opposite side. In addition, if a 
particle crosses a periodic boundary it will re-enter the domain from the 
other side with the same velocity. 

2.2. Solid phase 

The discrete element method was used to model the soil deposits. In 
DEM the most common approach is to idealize the soil grains as rigid 
spherical bodies to reduce the computational cost and eliminate the 
complexities arising from irregular particle shapes. However, this 
simplification may produce highly inaccurate rotational inertia which is 
proven to have major impact on the energy dissipation during rotational 
movements of particles and micromechanical behavior of the granular 
materials (Bardet and Huang, 1992; Bardet, 1994; Iwashita and Oda, 
1998; Oda et al., 1982; Calvetti et al., 1997; Misra and Jiang, 1997). 
Therefore, naturally, an assemblage of irregular-shaped blocks can be 
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the most realistic representation of a soil deposit. In this study, rigid 
blocks, as described by Itasca (2018), are used to create the non- 
spherical particles. 

A rigid block is a closed, convex-shaped body composed of multiple 
triangular facets. Each rigid block is treated as a single piece, meaning 
there can only be one contact point between two rigid blocks or between 
a rigid block and a wall. Non-sphericity of these particles eliminates the 
need for application of rolling friction, and therefore, the linear elastic 
contact model suffices to describe their interaction. The contact detec
tion between rigid blocks are done using the Gilbert-Johnson-Keerthi 
(GJK) algorithm (Ong and Gilbert, 1997) which is an iterative method 
that uses Minkowski difference to find the overlapping particles. That is, 
two convex bodies are in contact if the origin is located inside the 
constructed Minkowski difference of them. For contacts between wall 
facets and rigid blocks, a point at the center of the facet is added to the 
collection of points used in the GJK algorithm. After detecting the 
overlaps, the contact point located at the centroid of the overlap volume 
must be determined to compute the associated contact forces. This is 
done using the method presented by Shamos and Hoey (1976). 

2.3. Fluid–solid interaction 

The total force exerted by the fluid on the solid particle a can be 
written as the sum of the drag force (FD

a ) and pressure gradient force (FP
a ) 

(Markauskas et al., 2017): 

Fint
a = FD

a + FP
a (18)  

The drag force can be estimated through a verity semi-empirical re
lationships. The well-known equation recommended by Ergun (1952) 
was used in this study. This equation evaluates the drag force based on 
the local porosity and the relative velocity between fluid and solid 
particles and was developed using hundreds of experimental results on 
spherical and non-spherical particles: 

FD
a =

βVa

1 − na
(ua − ua) (19)  

where β is the interphase momentum exchange coefficient, ua is the 
average flow velocity around the solid particle a, Va is the volume of the 
solid particle, ua is the velocity of the solid particle and na is the mean 
porosity. The average flow velocity can be calculated by interpolating 
the nearby fluid particle velocities as: 

ua =

∑

j
uj

mj
ρj

W(
⃒
⃒raj

⃒
⃒, h)

∑

j

mj
ρj

W(
⃒
⃒raj

⃒
⃒, h)

(20)  

The mean porosity at the location of a solid particle can also be esti
mated from the porosities of the surrounding SPH particles: 

na =

∑

j
nj

mj
ρj

W(
⃒
⃒raj

⃒
⃒, h)

∑

j

mj
ρj

W(
⃒
⃒raj

⃒
⃒, h)

(21)  

β follows two different regimes devided by the local porosity ranges 
(Ergun, 1952): 

β =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

150
(1 − na)

2

na

μ
d2

a
+ 1.75(1 − na)

ρ
da

|ua − ua| na⩽0.8

0.75Cd
na(1 − na)

da
ρ|ua − ua|n−2.65

a na > 0.8

(22)  

in which μ is the dynamic viscosity of the fluid, da is the equivalent 
diameter of the solid particle and Cd is the drag coefficient given by: 

Cd =

⎧
⎪⎨

⎪⎩

24
Rea

(1 + 0.15Re0.687
a ) Rea⩽1000

0.44 Rea > 1000
(23)  

Rea is the particle Reynolds number that can be calculated from (Trussell 
and Chang, 1999): 

Rea =
|ua − ua|naρda

μ (24)  

If the interaction between fluid and solid particles is the only source for 
the generation of pressure gradient, the total interaction force can be 
simplified as (Markauskas et al., 2017): 

Finta = FD
a + FP

a =
FD

a
na

− Vaρf g (25)  

Due to the momentum exchange with solid particles, a coupling force 
will also be applied to the fluid particle i which can be estimated by the 
weighted average of contributions from all surrounding DEM particles 
inside its influence domain: 

fint
i = −

mi

ρi

∑

a

W(|rai|, h)
∑

j

mj
ρj

W(
⃒
⃒raj

⃒
⃒, h)

Fint
a (26)  

2.4. Computational scheme 

The PFC3D software was used to handle the DEM calculation cycles 
(Itasca, 2018). The SPH part of the coupled algorithm was carried out by 
a Cython code written by the authors and linked to the PFC3D envi
ronment. Use was made of the Open Multi-Processing (OpenMP) tech
nology to parallelize the SPH code and reduce the computational time. 
Note that the DEM software already utilizes parallel computing. In 
addition, to accelerate the neighbor searching process, the fluid domain 
was divided into cubic cells with sides at least two times larger than the 
kernel radius (h). All DEM and SPH particles were then mapped into 
these cells. This way, only a maximum of 27 cells were needed to be 
probed to find all particles within the support domain of any given SPH 
particle. Special attention must be paid to the cell size. Using larger cells 
leads to having more particles inside each cell and slower neighbor 
searching routines. However, on the other hand, it reduces the number 
of particle mapping updates required during the simulation. Therefore, 
an optimum cell size creates a balance between the time spent in a single 
neighbor searching process and the frequency of particle mapping. 

The fluid and solid phase equations were solved using explicit time 
integration schemes. A constant value was selected for the DEM time
step. This value must be smaller than the critical DEM timestep to 
guarantee stable simulations. The SPH timestep must also satisfy several 
timestep criteria including CFL condition (Morris et al., 1997) and is 
usually larger than the DEM timestep. Therefore, the SPH timestep was 
assumed to be N times the DEM timestep, where N is an integer. This 
means that N DEM computation cycles should be performed per one SPH 
cycle. The first step in a single SPH-DEM computational loop is to 
calculate the fluid particle properties such as porosity and pressure. The 
interaction forces are next obtained based on the latest positions and 
velocities of DEM particles, and the interpolated porosities at their lo
cations. Then the SPH particle densities, velocities and positions are 
updated according to the variation rates of density and velocity 
computed from their pressure, superficial density and the coupling 
forces. Finally, the interaction forces are applied to the solid particles 
and N DEM cycles are performed to get the updated particle positions 
and velocities. The new positions and velocities are then sent as inputs to 
the SPH algorithm and the next loop begins. 
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3. Validation cases 

In view of the complexity of the goal of this study to model soil 
liquefaction of a saturated soil deposit, a building block approach was 
adopted herein to validate the proposed coupled SPH-DEM model. The 
main coupling parameters between the fluid and particles in this model 
stem from porosity calculation, averaged solid particle velocities and the 
resulting drag force. Therefore, a simulation was performed to examine 
the ability of the model to correctly predict the drag force on a few 
settling particles in a fluid column. Since this system has a diluted 
concentration of particles, it presents an extreme in computing porosity 
and associated drag forces. It also include the challenge of large solid 
particle velocities. Additionally, another extreme situation in which 
flow in a dense stagnant arrangement of a porous medium was consid
ered to examine the ability of the fluid code to accurately predict fluid 

velocities in such a dense packing. 

3.1. Particle sedimentation 

Particle sedimentation test was performed to examine the accuracy 
of the coupled SPH-DEM algorithm. A fluid column with dimensions of 
4.8 × 4.8 × 6 cm was created using SPH particles with initial spacing of 
4 mm, density of 103 kg/m3 and dynamic viscosity of 5.0 Pa.s. Three 
solid particles with density of 2 × 103 kg/m3, and radii of 0.5 mm, 0.75 
mm and 1 mm were placed within the fluid domain and allowed to settle 
under the gravitational acceleration of 9.81 m/s2 (Fig. 1). Assuming 
na ≈ 1 and Re≪1, the drag force can be calculated from Eqs. **(19), 
(22), (23) and (24) as: 

FD
z = 3πμdavz (27) 

Fig. 2. Comparison between the analytical and numerical results for the vertical velocities of the particles.  

Fig. 1. Initial setup for particle sedimentation test.  

Fig. 3. Normalized pressure time histories at two different locations along the 
fluid column. 
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Using Eq. **(27) and solving the differential equation obtained from 
Newton’s second law, the velocity of a falling particle inside a fluid can 
be computed by: 

vz(t) =
2(ρp − ρf )gr2

9μ [1 − exp( −
−9μt

2(ρp − ρf )r2)] (28)  

where ρp and ρf are solid and fluid particle densities, μ is the dynamic 
viscosity, r is the solid particle radius and g is the vertical gravitational 
acceleration. Fig. 2 shows a close agreement between the results of 
numerical and analytical solutions. Fig. 3 shows the transient average 
pressures normalized by the total weight of particles divided by the 
cross-sectional area of the water column at two different points: one near 
the base wall and one near the top of the container (hydrostatic pressure 
is neglected here). It can be observed that the normalized pressure at the 
point near the base underwent a relatively small fluctuations before 
reaching the value of one. The pressure near the free surface also 
experienced some fluctuations and returned to zero. 

3.2. Flow through a porous block 

In this test a submerged cubic packing of identical solid particles was 
created within a three-dimensional periodic box. That is, the boundary 
conditions for both DEM and SPH particles were considered to be peri
odic in all three directions. The diameter of the solid particles was 2 mm 
and the periodic box had the dimensions of 4.8 × 4.8 × 7.2 cm (Fig. 4). 
The analytically calculated porosity of the cubic packing is approxi
mately 47.6%. The domain was filled with SPH particles with densities 
of 103 kg/m3 and an initial distance of 4 mm. The fluid particles were 
subjected to constant body forces of 1 m/s2 in the vertical direction. A 
range of particle Reynolds numbers was achieved by varying the fluid 
dynamic viscosity between 0.0001 Pa.s and 0.04 Pa.s. The friction factor 
(fp) inside a packed assembly of particles can be related to the modified 
particle Reynolds number Grp by (Ergun, 1952): 

fp =
150
Grp

+ 1.75 (29) 

Fig. 5. Friction factor as a function of modified Reynolds number obtained from the analytical and numerical solutions.  

Fig. 4. Porous block model (only DEM particles are illustrated).  
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The friction factor and modified Reynolds number are defined as: 

fp =
ΔP
H

dp

ρv2
s
(

n3

1 − n
) (30)  

Grp =
ρvsdp

(1 − n)μ (31)  

where ΔP is pressure drop, n is the porosity, dp is solid particle diameter, 
H is height of the column, ρ is fluid density, vs is the superficial fluid 
velocity and μ is dynamic viscosity. A comparison between the numer
ical and analytical solutions is provided in Fig. 5. This figure shows that 
the results are compatible for a wide range of Reynold numbers. 

4. Liquefaction of saturated granular soil 

The validated coupled SPH-DEM approach was used to analyze the 
response of level and mildly sloped saturated granular deposits to 
seismic base excitations. Periodic boundaries were employed at four 
sides of the model for both DEM and SPH particles to simulate an infinite 
medium with a limited number of particles. In addition, use was made of 
the high g-level concept commonly used in centrifuge testing to further 
decrease the dimensions of the domain that needed to be filled with 
particles and benefit from a shorter simulation time (Iai et al., 2005). 
This approach was found to be very effective in DEM simulations to 
model boundary value problems and has been adopted in several ap
plications (e.g., El Shamy and Zeghal, 2005; El Shamy and Aydin, 2008). 
The lower boundary represents the bedrock and was modeled by a rigid 
wall in DEM and by a no-slip, impermeable boundary in SPH. One of the 
advantages of the SPH method is its ability to simulate free surface 
boundaries without the need of special treatments. Therefore, the free 
surface condition is automatically applied to the top boundary by filling 
the domain with fluid particles. The seismic excitations were applied to 

the fluid and solid phases through the base boundaries. A detailed 
description of the model and its components is provided in the following 
section. 

4.1. Model description 

The simulations were conducted on 190 mm high (in model units) 
level and sloping deposits. The lateral dimensions of the periodic de
posits were chosen to be 48 × 48 mm. The deposits were created using 
polyhedral blocks with equivalent diameters ranging from 1.5 mm to 
2.5 mm which is close to coarse sand grain size. The average sphericity 
of the particles used in this study was determined to be approximately 
0.98. First, the approximate number of particles needed to fill the 
domain was calculated. Then these particles were generated in a rela
tively large space and allowed to settle under high gravitational field of 
30 g. The porosity of the final assembly can be controlled by applying 
different values to the local damping and/or adjusting the friction co
efficient during the particle settlement process. The average porosity 
and saturated unit weight of the deposits were determined to be, 
respectively, around 43% and 19.4 kg/m3. 

To saturate the deposits, a fluid domain with a height of 200 mm and 
lateral dimensions of 48 × 48 mm was introduced within the periodic 
domain using SPH particles. The initial spacing of the fluid particles and 
the kernel radius were chosen to be 4 mm and 5 mm, respectively. A 3D 
view of the saturated level deposit is shown in Fig. 6. The ratio between 
the smoothing length (h) and the average particle diameter (d) can have 
significant effects on the accuracy of the numerical simulations. Rob
inson et al. (2014) conducted single particle and porosity block sedi
mentation tests using a coupled SPH-DEM algorithm and concluded that 
a kernel radius of h⩾2d leads to a smooth porosity field, however, the 
model can suffer from too strong smoothing and the ensuing errors if a 
considerably higher value is used. The parameters used in the following 
simulations gives a ratio of h/d = 2.5, which is within the optimum 
range. Note that the same kernel radius was used in the two validation 
simulations discussed in Section 3, in which two extreme porosity cases 

Fig. 6. 3D view of the saturated granular deposit.  

Table 1 
Simulations details in model units.  

Soil deposit  
Particle size 1.5 mm to 2.5 mm 
Normal stiffness 5.0×105 N/m  
Shear stiffness 5.0×105 N/m  
Normal critical damping ratio 0.1 
Shear critical damping ratio 0.0 
Friction coefficient 0.5 
Rolling friction coefficient 0.2 
Density 2650 kg/m3 

Number of particles 56,000  

Viscous Fluid  
Initial spacing 4 mm 
Kernel radius 5 mm 
Dynamic viscosity 0.6 Pa.s 
Density 1000 kg/m3  

Computation parameters  
g-level 30 
Time step for DEM 6×10−7 s  
Time step for SPH 6×10−6 s   

Table 2 
Amplification factors obtained from DEM solution and analytical expression.  

Input Frequency Amplification Factor Amplification Factor 
(Hz) (DEM) (Analytical) 

3 2.03 2.08 
4 5.68 6.43 
5 4.1 4.24 
6 2.37 1.79  
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Fig. 7. Time histories of excess pore water pressure at the selected depth locations (level deposit).  

Fig. 8. Excess pore pressure profiles at the selected time instants (level deposit).  

Fig. 9. Time histories of average horizontal acceleration at the selected depths (level deposit).  
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Fig. 10. Time histories of vertical fluid drag force normalized by the average particle weight at the selected depths (level deposit).  

Fig. 11. Snapshots of interparticle contact chain at different time instants (level deposit).  
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were considered. Therefore, for the porosity range expected in these 
simulations, this kernel radius would be sufficient to accurately capture 
the porosity at different locations. In the case of the gently sloped de
posit, to mimic a mild slope of 2 degrees, the DEM and SPH particles 
were subjected to a gravitational acceleration which deviates from the 
vertical axis by 2 degrees. 

According to the centrifuge scaling laws, application of a gravita
tional field of 30 g in the model leads to a prototype with dimensions and 
time scale 30 times higher than the model. Thus, the analyzed model 
corresponds to a periodic prototype of a 5.7 m high granular deposit 
with lateral dimensions of 1.44 m in each direction. The deposits were 
saturated with a highly viscous fluid to compensate for the effects of the 
employed 30 g field and comply with the scaling laws for permeability. 
For the prototype fluid viscosity of 0.02 Pa.s and the employed particle 
size range, the initial permeability of the deposit was estimated to be 2.6 
mm/s (same order of coarse sand permeability when saturated with 
water) using the Kozeny-Carmen equation (Carman, 1937): 

k =
ρgn3

5μ(1 − n)
2(

∑ 4
3 πr3

∑
4πr2 )

2 (32)  

where ρ is the fluid density, r is the equivalent particle radius, n is the 
average deposit porosity, and g is the gravitational acceleration. A 
summary of parameters used in the conducted simulations is provided in 

Table 1. 
The deposits were subjected to sinusoidal base excitations with 

amplitudes of 0.01 g and 0.25 g with durations of 13 s. The sinusoidal 
input signal gradually increases until it reaches the maximum acceler
ation amplitude at 4.5 s, where it remains constant for an additional 7.5 
s before it gradually decreases to zero at 13 s. The small amplitude of 
0.01 g was selected as an event that was not expected to produce any 
significant deformations in the system. Simulations conducted with this 
amplitude are valuable in determination of the fundamental frequency 
of the deposit as well as the dynamic soil properties (shear wave velocity 
and low strain shear modulus). The maximum amplitude of 0.25 g 
represents a strong seismic event that may induce large deformations 
and lead to a catastrophic failure. 

Applying the scaling laws for centrifuge testing results in accelera
tion frequencies and amplitudes that are 30 times higher in the model 
while the duration of the loading is 30 times smaller compared to the 
prototype. Several parameters at various depth locations of the deposit 
were monitored throughout the simulations such as averaged solid and 
fluid particle accelerations, averaged excess pore pressure, averaged 
drag force as well as stress and strain rate tensors. The data was recorded 
at constant time intervals of 0.0006 s in model units (0.018 s in proto
type units). The simulation results provided in the following sections are 
in prototype units unless otherwise specified. 

Fig. 12. Shear stress–strain loops at the selected depths (level deposit).  

Fig. 13. Time histories of effective stress path at the selected depths (level deposit).  

S.F. Sizkow and U. El Shamy                                                                                                                                                                                                                



Computers and Geotechnics 134 (2021) 104060

11

4.2. Dynamic properties of the deposit 

The shear strains induced by the base excitations with maximum 
amplitude of 0.01 g were in the order of 10−4%. Therefore, the corre
sponding shear stress-shear strain loops were used to obtain the low 
strain shear moduli along the depth of the deposit. The average value for 
the low strain shear modulus was determined to be around 19.8 MPa. 
This means that the low strain shear wave velocity and the fundamental 
frequency of the deposit were approximately 100 m/s and 4.38 Hz, 
respectively. The amplification of the input motion toward the surface of 
the deposit was also observed during these simulations. The maximum 
amplification, as expected, occurred during the base excitation with the 
frequency of 4 Hz, since it was close to the fundamental frequency of the 
deposit. A comparison between the amplification factors at the surface 
of the deposit obtained form DEM simulations with maximum acceler
ation of 0.01 g and those of analytical expression (Kramer, 1996) for the 
transfer of a shear wave propagating in linear elastic soil underlain by 

rigid bedrock are provided in Table 2. It can be seen that there is a 
relatively good agreement between the results. 

4.3. Liquefaction simulations 

To investigate liquefaction of the granular deposits, the numerical 
models were subjected to strong ground motions with maximum 
amplitude of 0.25 g and frequency of 3 Hz. This amplitude of input 
motion was expected to cause enough densification of the loose deposit 
to cause liquefaction. From a macro-mechanical point of view, studies 
suggest that liquefaction is triggered by a significant buildup in the pore 
fluid pressure and the consequent reduction of vertical effective stress 
and degradation of soil strength. Several averaging volumes (measure
ment spheres) were created at various elevations inside the deposits. The 
radius of the measurement spheres was considered to be 2 cm (in model 
units) which is 10 times the average particle size in order to guarantee 
the presence of enough particles inside them. The mean fluid properties 

Fig. 14. Zoomed-in time window for (a) volumetric strain; (b) excess pore pressure ratio; (c) effective stress path; and (d) shear stress–strain at the depth location of 
0.6 m of the level deposit. 
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were obtained by simply averaging over all SPH particles inside the 
measurement sphere. For more information regarding the averaging 
procedures for the DEM particles please see Itasca (2018). Data was 
collected on important variables such as pore water pressure, horizontal 
and vertical drag forces, average particle acceleration as well as stress 
and strain tensors. The results and discussions are provided in the 
following sections. 

4.3.1. Level deposit response 
The time histories of excess pore pressure ratio (the ratio of the 

excess pore pressure to the initial vertical effective stress) at different 
depth locations inside the deposit are shown in Fig. 7. Note that the 
presence of the particles and associated momentum transfer (Eq. (19)) as 
well as the gradual changes in porosity in response to shaking led to a 
stable pore-pressure that did not suffer from oscillation. A pore pressure 
ratio of 1.0 is usually used as an indicator of the occurrence of lique
faction which corresponds to a moment when the excess pore pressure 
counterbalances the vertical effective stress. The results show that, 
except for the bottom layer, the pore pressure ratio of 1.0 is practically 

reached during the simulation. Fig. 7 also shows that moving toward the 
ground surface, the pore pressure ratio increases at a higher rate. This 
means that liquefaction first took place near the surface and then 
propagated downward. These observations can also be confirmed by 
Fig. 8 showing the profiles of pore pressure at different times during the 
course of simulation. The excess pore pressure reached values close to 
the local vertical effective stress first in the shallow layers and as the 
loading continued liquefaction was spread toward the base. It can also 
be observed from Figs. 7 and 8 that the excess pore pressure ratio slightly 
decreased at the top layers after it reached the value of 1.0. This can be 
attributed to the proximity of these layers to the free surface and water 
drainage. 

The average particle acceleration at different depths along the ver
tical axis of the deposit was recorded and is presented in Fig. 9. It was 
observed that the acceleration of the top 3 m of the deposit significantly 
diminished after the first 4 s of the base excitation. This reduction in 
acceleration amplitude was more evident in the upper strata where it 
completely vanished progressing toward the end of the simulations. 
These patterns are consistent with those observed in the shaking table 

Fig. 15. Time histories of excess pore water pressure at the selected depth locations (sloping deposit).  

Fig. 16. Time histories of (a) average horizontal velocity and (b) average horizontal acceleration at the selected depths (sloping deposit).  
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tests and case histories of site liquefaction (e.g., Elgamal et al., 1996; 
Arulanandan and Scott, 1993). The drop in the acceleration amplitude 
was less noticeable for the depth location of 4.8 m. 

To explain the observed acceleration patterns at a microscale level, 
the drag forces normalized by the average particle weight and the 
snapshots of interparticle contact chains at different time instants are 
provided in Figs. 10 and 11, respectively. The difference between the 
excess pore pressures generated inside two subsequent layers creates a 
pressure gradient that applies upward drag force on the particles. These 
forces lead to loss of some interparticle contacts. Provided that the 
pressure gradient is large enough, the corresponding drag forces can 
reach values that counterbalance the weight of particles and make them 
practically floating in the mixture. Fig. 10 shows that the normalized 

drag force drastically increased during the shaking as a result of the pore 
pressure buildup and reached 1.0 in all layers. However, it can be seen 
that at the bottom layer, while normalized drag force surpassed the 
value of 1.0 at several time instants, it had a considerably lower average 
value throughout the simulation. The significant loss of interparticle 
contacts can clearly be seen in Fig. 11. According to this figure, during 
the first few seconds of base excitation, the interparticle contacts van
ished near the surface where the excess pore pressure ratio and 
normalized drag force first reached the value of 1.0. Fewer interparticle 
contacts makes soil layers only partially resting on each other and, 
therefore, the input excitation cannot be fully transmitted to the layers 
above and this leads to reduction of average particle acceleration. The 
same pattern was also observed at the deeper depths, except for the 
bottom layer, only with a time delay. At the bottom layer, as shown in 
Fig. 10, the drag force induced by the pressure gradient generally was 
not large enough to significantly reduce the number of contacts. Fig. 11 
shows that after the first 4 s through the end of shaking (13 s), inter
particle contacts stayed at a very low level almost in the entire deposit 
(except the bottom layer). This is consistent with the fact that the 
normalized drag force remained at its maximum level in the top layers 
between 4 s and 13 s (Fig. 10). It also confirms the previous observation 
that the acceleration amplitude almost vanished in these layers after the 
first 4 s of shaking. It is also worth noting that after the end of shaking 
(13 s), interparticle contacts significantly increased starting from the 
model base. This can be explained by the reduction of vertical drag force 
that, according to Fig. 10, first occurred at the bottom layers due to the 
dissipation of pore water pressure. 

The cyclic shear stress–strain loops are presented in Fig. 12. For the 
input motion of 0.25 g, due to development of large strains, the soil 
behavior can no longer be considered linear and a reduction of 
maximum shear modulus and a shift in the natural frequency of the 
deposit was expected. Fig. 12 shows a progressive degradation of soil 
stiffness and a continuous decrease in the shear modulus at various 
depth locations. Fig. 13 shows the plots of cyclic shear stress versus 
vertical effective stress. The results show that the vertical effective stress 
vanished in the entire deposit by the end of the simulations except for 
the bottom layer. 

In order to take a closer look at the liquefaction mechanism and to 
investigate the correlation between the different parameters, a relatively 
short time interval during pore pressure buildup period is selected and a 
point-to-point relationship between volumetric strain, excess pore 
pressure ratio, shear stress–strain loops and effective stress path at the 
depth of 0.6 m is presented in Fig. 14. It is obvious from this figure that 
the peaks of pore pressure correspond to the points of maximum 

Fig. 17. Time histories of vertical fluid drag force normalized by the average particle weight at the selected depths (sloping deposit).  

Fig. 18. Lateral displacement profiles at the selected time instants 
(sloping deposit). 
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Fig. 19. Snapshots of lateral displacement profiles at (a) 3s, (b) 6s, (c) 9s, and (d) 15s (sloping deposit).  

Fig. 20. Shear stress–strain loops at the selected depths (sloping deposit).  
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contraction (Fig. 14 a and b). In addition, pore pressure evidently drops 
when dilation occurs. Fig. 14(c and d) show that the vertical effective 
and shear stresses reached their minimum values at the points of 
maximum contraction due to buildup in pore pressure. On the other 
hand, during the dilation phase they recover to higher values and a 
regain in soil strength is observed. These patterns are repeatedly 
observed throughout the simulation. 

4.3.2. Sloping deposit response 
The previously described gently sloped deposit was subjected to the 

same seismic base excitation and various averaged quantities were 
recorded during the simulation. The time histories of pore fluid pressure 
at different depths are presented in Fig. 15. The patterns are similar to 
the level deposit response. In addition, negative spikes reflecting the 
dilative behavior near the surface and associated regain in soil stiffness 
can be observed in the time histories of pore fluid pressure at the shallow 
layers of the deposit. The dilative behavior is a result of particles near 
the surface rolling on top of each others after the onset of liquefaction 
and the tendency of the top layer of soil to move downslope. The time 
histories of averaged particle accelerations and velocities at different 
levels are provided in Fig. 16. The acceleration time histories suggest 
that the deposit demonstrated a dilative behavior reflected by a regain in 
shear strength and the resulting negative acceleration spikes after 
liquefaction occurred in the top layers. These negative sharp peaks have 
been observed in several computational and experimental studies (e.g., 
Elgamal et al., 2002; El Shamy et al., 2010). In addition, the velocity 
time histories show that after the onset of liquefaction, the velocities of 
the top layers became generally positive which means these layers were 
continuously moving downslope. Fig. 17 shows the plot of the normal
ized drag forces. It can be deduced from Fig. 17 that the top 3.0 m of the 
deposit liquefied during seismic excitation. It is worth noting the 
instantaneous gain in strength that is marked by the reduction in 
normalized drag force corresponding to the negative spikes in the ac
celeration and dips in pore pressure time histories. 

The lateral spreading reflects a significant interparticle sliding at a 
particular depth location. As sliding takes place, the cyclic motion 
vanishes, and the displacement continues to increase with time as a 
result of the movement of the sliding mass downslope. Fig. 18 shows the 
computed lateral displacement profiles at various time instants. The 
results show relatively small lateral displacement during the first 3 s 
which is prior to the onset of liquefaction. For the other selected time 
instants, liquefaction has already occurred and large lateral displace
ments can be seen. The deposit experienced maximum permanent lateral 
displacement of around 80 cm. According to Fig. 18, the slope of the 

lateral spreading line has noticeably increased for the top 4 m of the 
deposit which completely liquefied during the simulations. A column of 
particles located in the middle of the deposit was colored in red for 
visualization purpose and the position of particles inside this column 
was tracked throughout the simulations. The snapshots of lateral parti
cle displacements are also presented in Fig. 19. 

The plots of shear stress versus shear strain are shown in Fig. 20. It 
was observed that after the first few seconds of loading, shear stresses 
gradually reduced and large shear strains were accumulated in the de
posit. Permanent shear strains as high as 22% were observed in the 
liquefied layers. The loops also show the instantaneous gain in stiffness 
(marked by the steep increase in shear stress) as the soil dilates even 
after the onset of liquefaction corresponding to the negative spikes 
observed in the acceleration and pore pressure time histories (Fig. 16). 
The effective stress paths are shown in Fig. 21. The results show that, 
apart from the bottom layer, the zero value for the vertical effective 
stress was reached. It also shows indications of dilative behavior marked 
by the regain of effective stress as it was approaching zero in top layers. 
Note the non-symmetric shape of the effective stress path due to the 
static component of shear stress in the slope direction. 

Fig. 22 presents a point-to-point relationship between cyclic volu
metric strain, excess pore pressure ratio, effective stress path and shear 
stress–strain loops at the depth of 0.6 m over a short time window during 
the simulation of the sloping deposit. Here, the time interval is chosen 
near the end of shaking to investigate the previously mentioned dips and 
peaks observed in the time histories of excess pore pressure. Similar to 
what was observed for the level deposit, the contraction of the pore 
spaces leads to an increase in the pore pressure and, conversely, the dips 
in pore pressure correspond to the points of peak dilation (Fig. 22 a and 
b). Dilatation occurs as the soil mass is moving upslope while contrac
tion occurs mostly as the mass is moving downslope (El Shamy and 
Abdelhamid, 2017). Fig. 22(c and d) show that the vertical effective and 
shear stresses reached their minimum values at the points of maximum 
contraction. In addition, regains in the soil strength clearly corresponds 
to the points of maximum dilation. Peaks of excess pore pressure 
correspond to near-complete loss of soil strength marked by the signif
icant reduction in vertical effective stress (Fig. 22 b and c). 

5. Conclusions 

A three-dimensional Lagrangian-Lagrangian approach is utilized to 
analyze the dynamic response and liquefaction of saturated level and 
gently sloped granular deposits. A microscale idealization of the solid 
phase is achieved using the discrete element method. Considering the 

Fig. 21. Effective stress path at the selected depths (sloping deposit).  
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non-sphericity of real soil grains, irregular-shaped particles are chosen 
as the most realistic representation of the soil particles. The fluid phase 
is modeled using the smoothed particle hydrodynamics. In this method, 
the interstitial pore fluid is idealized using averaged Navier–Stokes 
equations and the fluid-particle interaction forces are quantified using 
well-known semi-empirical relationships. The presented model is 
computationally far less demanding compared to the pore-scale level 
models and its meshless nature makes it a powerful tool for analyzing 
moving boundary and free surface problems. In addition, the presented 
model is seamlessly capable of predicting the response at small and large 
strains. The proposed approach was used to model the response of 
saturated soil deposits subjected to seismic excitation. The results show 
that liquefaction took place in both deposits marked by several response 
mechanisms including excess pore-pressure buildup approaching the 
value of one, increase in the vertical drag forces that counterbalance the 
weight of solid particles, reduction of interparticle contacts causing the 
instability of the packing, diminishing averaged particle acceleration 

time histories and continuous degradation of soil stiffness and strength. 
Large lateral displacements were observed during the sloping deposit 
simulation as a result of the sliding of liquefied soil layers downslope. A 
dilative behavior was observed in the shallow layers of the gently sloped 
deposit reflected by sharp negative acceleration and pore fluid pressure 
dips after the occurrence of liquefaction and nonsymmetric loops in the 
effective stress path plots as the mean vertical effective stress 
approached zero. The macro-mechanical behavior of the numerical 
model exhibits similar trends to those observed in published experi
mental studies and case histories of soil liquefaction. 
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