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ABSTRACT

A coupled smoothed particle hydrodynamics (SPH) and discrete element method (DEM) scheme is presented
herein to investigate liquefaction of saturated granular deposits during strong seismic ground motions. Irregular-
shaped solid particles in the form of polyhedral blocks are utilized to represent soil grains using DEM. In SPH, the
fluid domain is discretized into distinct particles carrying local properties of the fluid. Therefore, the presented
approach is a fully particle-based technique ideal for handling free-surface and moving boundary problems. The
phase coupling is achieved through local averaging techniques and well-established semi-empirical relations
quantifying fluid-particle interaction. Level and mildly sloped deposits were subjected to seismic ground motions
introduced into the system through the base wall. The results of the performed simulations suggest that both
deposits liquefied during strong base excitation due to the contraction of pore spaces leading to large increases in
the excess pore fluid pressure that in turn results in significant loss of interparticle contacts and degradation of
soil strength and stiffness. In addition, the sloping deposit experienced large lateral displacements, especially, at
the shallow soil layers which completely liquefied during the seismic loading.

1. Introduction

The devastating effects of soil liquefaction are manifested during
past major seismic events such as the 1989 Loma Prieta (California), the
1995 Kobe (Japan), the 1999 Kocaeli (Turkey), and the 2011 Christ-
church (New Zealand) earthquakes (Seed et al., 1991; Erdik, 2000; Sato
et al., 1995; Cubrinovski et al., 2011). Strong seismic ground motions
may lead to the densification of the saturated granular deposits and
reduction of the particle packing porosity. This contraction of pore space
potentially results in generation of high excess pore water pressure,
degradation of soil strength, and, in extreme cases, liquefaction. The
onset of liquefaction is marked by the complete loss of soil strength and
stiffness due to significant pore pressure build-up that counterbalances
the initial confining stress at a certain depth of the deposit. Some of the
recognized destructive impacts of the soil liquefaction are excessive
ground settlement, tilting and sliding of structures founded on the liq-
uefied soil due to the loss of its bearing capacity, and large horizontal
ground movements, ranging up to several meters, caused by
liquefaction-induced lateral spreading.

Constructing a reliable model for the coupled response of saturated
granular soils as multiphase mixtures is a difficult task to undertake. The
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complicated nature of particle-particle and fluid-particle interactions,
and constant movements of soil particles constituting the solid skeleton
are some of the contributing factors to the complexity of the problem. As
a result of these complications, fully continuum models used for
modeling the fluid-particle systems utilize highly sophisticated plasticity
constitutive models (Desai and Siriwardane, 1984; Wood, 1990; Elgamal
et al., 2002; Prevost, 1985; Dafalias, 1982; Klisinski, 1988; Andrade,
2009; Seid-Karbasi and Byrne, 2007; Regueiro and Borja, 1999; Borja,
2006; Borja et al., 1999; Madabhushi and Zeng, 1998; Boulanger and
Ziotopoulou, 2013; Ziotopoulou and Boulanger, 2013; Wang et al.,
2014; Tasiopoulou and Gerolymos, 2016). Various meshless numerical
techniques have been developed recently for large-strain problems in
geotechnical engineering including landslide, liquefaction and lateral
spreading. Some of these techniques are: element free Galerkin method
(EFGM) (e.g., Jie et al., 2008), material point method (MPM) (e.g.,
Kenichi Soga et al., 2016; Yamaguchi et al., 2020), smoothed particle
hydrodynamics (SPH) (e.g., Naili et al., 2005) and reproducing kernel
particle method (RKPM) (e.g., Wei et al., 2020).

The discrete element method has gained widespread recognition in
geotechnical engineering over the past decades as a powerful tool
capable of addressing complicated issues involving simulation of
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discontinuous media, such as soil nonlinear behavior and non-
homogeneity. It is demonstrated through numerous studies that particle
surface topography, usually referred as the particle shape, can heavily
affect the macro-mechanical behavior of granular media (e.g., Shin and
Santamarina, 2013; Pena et al., 2007; Szarf et al., 2009; Cavarretta et al.,
2010; Jiang et al., 2014; Liang and Ren, 2011). Soil grains are usually
idealized as spherical particles in DEM to make the numerical simula-
tions more manageable. However, this simplification has proven to lead
to large fictitious particle rotations that in turn have significant impact
on the macroscopic properties of the particle assembly such as shear
strength and dilation (Zhou et al., 2013). Therefore, in order to address
this issue, different techniques have been adopted to incorporate
irregular-shaped particles into DEM. One approach is to incorporate
rolling friction to reduce particle spinning (e.g., Bardet, 1994; Calvetti
et al., 1997; El Shamy and Sizkow, 2021; Iwashita and Oda, 1998; Misra
and Jiang, 1997; Oda et al., 1982). Alternatively, the grains could be
modeled as polyhedron-shaped particles. For this type of particles, it is
well-recognized that most of the computational effort goes into the
contact detection routine and computation of the overlap length be-
tween contacting particles. Cundall (1988) presented a technique called
the "common plane method" to identify the touching polyhedral blocks
and to calculate the contact forces between them. Other improved ver-
sions of the common plane method were presented by other researchers
(e.g., Nezami et al., 2004; Wachs et al., 2012; Nezami et al., 2006; Chang
and Chen, 2008).

Several numerical schemes have been developed to simulate the fluid
interaction with DEM particles. Two commonly employed techniques
are: (1) using a continuum description of the fluid (e.g., EI Shamy and
Zeghal, 2005; El Shamy et al., 2010; Ravichandran et al., 2010) and (2)
simulating the fluid at the pore scale (e.g., Zhu et al., 1999; Potapov
et al., 2001; Han and Cundall, 2011; El Shamy and Abdelhamid, 2014;
Abdelhamid and Shamy, 2016; Han et al., 2007; Zhong et al., 2016). The
continuum-discrete description of the saturated granular deposits (FVM-
DEM approach) uses a fixed coarse grid mesh which limits its scope and
application to the fixed boundary problems. On the other hand, the high
accuracy of the pore scale models comes at the price of being compu-
tationally expensive, to a degree that makes it impractical to perform
numerical simulations with realistic particle sizes on normal desktop
computers.

In recent years a new coupled SPH-DEM scheme has been developed
that, instead of modeling the fluid flow at the pore scale, uses averaged
Navier-Stokes equations to describe the fluid phase behavior and well-
established semi-empirical formulas for fluid-particle interactions. Due
to the meshless nature of the SPH-DEM technique, it can relatively easily
analyze fluid-structure interaction problems where, for example, FVM-
DEM has some obvious limitations. Sun et al. (2013) presented a
Lagrangian-Lagrangian SPH-DEM coupled model for the multiphase
flows with free surfaces. They performed dam break and rotational cy-
lindrical tank simulations to showcase the proposed method abilities.
Robinson et al. (2014) presented a meshless simulation technique based
on coupled SPH-DEM algorithm and validated the model by conducting
simulations of single particle and constant porosity block sedimentation
in a fluid column. Many more examples of coupled SPH-DEM applica-
tion to various chemistry, physics and engineering problems can be
found in the recent literature (e.g., (Markauskas et al., 2018; Markauskas
and Kruggel-Emden, 2019; Fernandez et al., 2011; Sinnott et al., 2017;
Cleary, 2015; Karunasena et al., 2014; Wu et al., 2016)).

Different researchers have investigated soil liquefaction phenome-
non using DEM. Most of these studies are concerned with the undrained
behavior of saturated granular soil subjected to monotonic or cyclic
shearing (Johnson et al., 2017; El Shamy and Denissen, 2010; Huang
et al., 2019; Foroutan and Mirghasemi, 2020; Salimi and Lashkari, 2020;
Gu et al., 2020; Wang et al., 2019; Huang et al., 2020; Gong et al., 2012;
Martin et al., 2019; Kuhn et al., 2014; Ng and Dobry, 1994; Sitharam
et al., 2009; Wang and Wei, 2016; Wei et al., 2018; Shafipour and Sor-
oush, 2008). Two main approaches used for this purpose are the fluid-
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particle coupling methods and the constant volume technique. The
constant volume method can only be employed for a specimen under
undrained condition and the presence of the fluid is indirectly accounted
for by controlling the displacements at the boundaries to keep the
specimen volume constant. Apart from liquefaction under undrained
conditions, to the best of authors’ knowledge, there have only been few
studies regarding the soil liquefaction using DEM coupled with an actual
pore-fluid model (e.g., El Shamy and Zeghal, 2005; El Shamy et al.,
2010; El Shamy and Abdelhamid, 2014).

This paper presents the results of a soil liquefaction model using a
coupled SPH-DEM algorithm. In this method, the soil is modeled at the
microscale level as an assembly of polyhedral rigid blocks using DEM
and SPH is utilized to solve the fluid phase equations. It is assumed that
the averaged Navier-Stokes equations govern the fluid behavior and the
interaction forces between fluid and solid particles are quantified
through well-known semi empirical relationships. The proposed
approach was used to investigate the responses of level and sloping
saturated granular deposits to low and high amplitude base excitations.
The obtained results suggest that liquefaction is a result of reduction in
void spaces during strong ground motions leading to high pore pressure
buildup and consequent loss of interparticle contacts and degradation of
soil strength and stiffness. Furthermore, the liquefied top layers in the
sloping deposit experienced large lateral displacement due to the inertia
force component in the downslope direction.

2. Coupled SPH-DEM model

A fully Lagrangian particle-based method is presented herein to
analyze the dynamic response of saturated granular deposits subjected
to horizontal seismic base excitations. In SPH scheme, the fluid domain
is discretized into a set of individual particles carrying local properties of
the fluid such as density and pressure (Gingold and Monaghan, 1977;
Lucy, 1977; Monaghan, 1992). A SPH kernel function is utilized to
interpolate the averaged forms of continuity and momentum equations
over all neighboring particles within the smoothing length of a given
point. The fluid pressure is obtained from the weakly compressible
equation of state. Therefore, a large value is assigned to the speed of
sound to ensure negligible fluctuations in the fluid density. The phase
coupling is achieved through semi-empirical relationships between the
fluid-particle interaction forces and parameters such as the local
porosity and relative velocity between the two phases. These interaction
forces are directly applied to the solid particles as external forces and are
accounted for in the fluid phase formulation by adding an associated
term to the momentum equation. An explicit time integration scheme is
used to solve the equation of motion for both solid and fluid particles.
Model components are described in detail in the following sections.

2.1. Fluid phase

The two-fluid model presented by Anderson and Jackson (1967) is
used here to describe the governing equations for the multiphase
mixture (Robinson et al., 2014):

o(np;)

o +V.(np;u) =0 1)
6(npfu) int
T—G—V(np,uu) = —-VP+Va+npg—Tf (2)

in which p is the fluid density, n is the porosity, P is the fluid pressure,
is the viscous stress tensor, f™ is the fluid particle interaction force, g is
the gravitational acceleration vector and u is the fluid velocity.

The SPH formulation is based on the mathematical principle of
interpolant integration. This principle states that a field quantity A at the
location r can be approximated through convolution with the smoothing
function W:
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where h is the smoothing length and Q is the surrounding volume. In
SPH, the continuum is lumped into discrete particles moving with the
flow velocity and each holding information regarding the physical
properties of the fluid. Therefore, in a further approximation, the
interpolant integral of Eq. **(3) is transformed into the summation of
weighted contribution of all particles inside the supporting domain of
particle i:

A= ZAJ% W(|ry|, ) )
J J

where |r;| is the distance between two particles, m; is the mass of par-
ticle j and p; is the density of particle j. To avoid confusion, hereafter, the
subscripts i and j are used for the SPH particles and a and b indicate the
DEM particles. In this study the Wendland kernel function is chosen as
the smoothing function (Dehnen and Aly, 2012):

q.\4
w h) = 1—2)"(1+2 0<¢g<2
(el h) = ap(1 = 5)°(1 +2q)  0<g< s
0 2<gq

in which q = % and ap = 72%. Applying SPH particle summation, Egs.

**(1) and (2) can be rewritten as:
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with u;; being the relative velocity vector, P; fluid pressure evaluated at

the location of particle i, R; the tensile instability term to prevent par-

ticles from forming small clumps and II; the non-artificial viscosity

term. Ry and II; are defined as (Morris et al., 1997; Monaghan, 2000):
e )y VW (g )
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The porosity at the position of a fluid particles can be estimated by
particle summation over all DEM particles present within its kernel
radius:

n=1-"> W(lral,h)V, 10)

in which [ry| is the distance between fluid particle i and DEM particle a
and V, is the volume of the DEM particle. The weakly compressible
equation of state is used to calculate the fluid pressure. This equation
provides a relationship between the fluid pressure and its density
(Monaghan, 1994):

Pivr
P, = B((— 1 11
((po) ) 1D

where p, is the reference density, B is the pressure constant and y = 7.
In order to minimize the density variations and to keep the fluid
behavior as close as possible to incompressible, the proper value for B
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must be determined. B is defined in terms of the local sound speed c; as:

_ Pocs
14

B 12)

The variations in the fluid density can be obtained from (Monaghan,
1994):
|Ap] _ |wl®

e M a3
0 s

where u; is the fluid velocity and M is the Mach number. Therefore, the
numerical speed of sound is usually considered to be 10 times higher
than the maximum fluid velocity to limit the fluctuations of the fluid
density to less than 1% of its initial value.

Up to now, several boundary treatment techniques have been pro-
posed to enforce no-slip, impenetrable conditions including dummy
boundary particles with repulsive forces, mirror particles, fluid particles
that move with the boundary and the application of distance functions
(Monaghan, 1994; Randles and Libersky, 1996; Chen et al., 1999;
Crespo et al., 2007; Gémez-Gesteira et al., 2005; Sun et al., 2013). In this
paper, the solid boundaries for SPH particles are treated in the same
manner as described by Adami et al. (2012). In this approach, the solid
boundary is represented by two layers of dummy particles. These par-
ticles compensate for the domain truncation near the boundary and
provide kernel support for the adjacent fluid particles. To ensure no-slip
boundary condition the velocities of the dummy particles are extrapo-
lated from the surrounding fluid particles:

U, = 2uy — Uy, 14
ZujW(‘rij ]’l)
J

LW (| 1)

Uy = (15)

in which uy is the prescribed wall velocity. In addition, in order for the
dummy particles to produce correct pressure gradient near the bound-
ary, the pressure and density of wall particles should also be calculated
from the neighboring fluid particles:

SPW (|| h) + (g8 — aw)-prwW(|ry|, h)

ZW(|rW_]|’h)

P, = (16)

P, 1
Pu =Pyl + 1) a7

Periodic boundaries represent a condition where the domain is
extended infinitely on the sides. The implementation of this type of
boundary condition is rather straight forward in SPH. In this case, the
two sides of the model are considered adjacent to each other and,
therefore, the truncated support domain of a particle close to one side is
completed by contributing particles on the opposite side. In addition, if a
particle crosses a periodic boundary it will re-enter the domain from the
other side with the same velocity.

2.2. Solid phase

The discrete element method was used to model the soil deposits. In
DEM the most common approach is to idealize the soil grains as rigid
spherical bodies to reduce the computational cost and eliminate the
complexities arising from irregular particle shapes. However, this
simplification may produce highly inaccurate rotational inertia which is
proven to have major impact on the energy dissipation during rotational
movements of particles and micromechanical behavior of the granular
materials (Bardet and Huang, 1992; Bardet, 1994; Iwashita and Oda,
1998; Oda et al., 1982; Calvetti et al., 1997; Misra and Jiang, 1997).
Therefore, naturally, an assemblage of irregular-shaped blocks can be
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the most realistic representation of a soil deposit. In this study, rigid
blocks, as described by Itasca (2018), are used to create the non-
spherical particles.

A rigid block is a closed, convex-shaped body composed of multiple
triangular facets. Each rigid block is treated as a single piece, meaning
there can only be one contact point between two rigid blocks or between
arigid block and a wall. Non-sphericity of these particles eliminates the
need for application of rolling friction, and therefore, the linear elastic
contact model suffices to describe their interaction. The contact detec-
tion between rigid blocks are done using the Gilbert-Johnson-Keerthi
(GJK) algorithm (Ong and Gilbert, 1997) which is an iterative method
that uses Minkowski difference to find the overlapping particles. That is,
two convex bodies are in contact if the origin is located inside the
constructed Minkowski difference of them. For contacts between wall
facets and rigid blocks, a point at the center of the facet is added to the
collection of points used in the GJK algorithm. After detecting the
overlaps, the contact point located at the centroid of the overlap volume
must be determined to compute the associated contact forces. This is
done using the method presented by Shamos and Hoey (1976).

2.3. Fluid-solid interaction

The total force exerted by the fluid on the solid particle a can be
written as the sum of the drag force (FE) and pressure gradient force (Ff)
(Markauskas et al., 2017):

Fmt FD + FP (18)

The drag force can be estimated through a verity semi-empirical re-
lationships. The well-known equation recommended by Ergun (1952)
was used in this study. This equation evaluates the drag force based on
the local porosity and the relative velocity between fluid and solid
particles and was developed using hundreds of experimental results on
spherical and non-spherical particles:

(ﬁa - ua) (19)

where g is the interphase momentum exchange coefficient, u, is the
average flow velocity around the solid particle a, V, is the volume of the
solid particle, u, is the velocity of the solid particle and n, is the mean
porosity. The average flow velocity can be calculated by interpolating
the nearby fluid particle velocities as:

Zuj 7h)

=]

(20)

a

./7
7

The mean porosity at the location of a solid particle can also be esti-
mated from the porosities of the surrounding SPH particles:

an% W( |raj }7 h)
J

m, (21)
S ZW([eg] )
J

n, =

B follows two different regimes devided by the local porosity ranges
(Ergun, 1952):

1—n, 2 _
150%5% 1.75(1 7”“%'““ —u| n,<08
p= (22)
0.75C Mp\ﬁﬂ — |26 fa > 0.8

in which y is the dynamic viscosity of the fluid, d, is the equivalent
diameter of the solid particle and Cjy is the drag coefficient given by:
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Re, is the particle Reynolds number that can be calculated from (Trussell
and Chang, 1999):

|ﬁa — U, |ndpda
H

Re, = (24)

If the interaction between fluid and solid particles is the only source for
the generation of pressure gradient, the total interaction force can be
simplified as (Markauskas et al., 2017):
FD
int, __ D P _
F" =F, +F, 7’1—*‘7 aPr (25)

a

Due to the momentum exchange with solid particles, a coupling force
will also be applied to the fluid particle i which can be estimated by the
weighted average of contributions from all surrounding DEM particles
inside its influence domain:

mt ‘ ral | h int
o e ] s

a

(26)

2.4. Computational scheme

The PFC3D software was used to handle the DEM calculation cycles
(Itasca, 2018). The SPH part of the coupled algorithm was carried out by
a Cython code written by the authors and linked to the PFC3D envi-
ronment. Use was made of the Open Multi-Processing (OpenMP) tech-
nology to parallelize the SPH code and reduce the computational time.
Note that the DEM software already utilizes parallel computing. In
addition, to accelerate the neighbor searching process, the fluid domain
was divided into cubic cells with sides at least two times larger than the
kernel radius (h). All DEM and SPH particles were then mapped into
these cells. This way, only a maximum of 27 cells were needed to be
probed to find all particles within the support domain of any given SPH
particle. Special attention must be paid to the cell size. Using larger cells
leads to having more particles inside each cell and slower neighbor
searching routines. However, on the other hand, it reduces the number
of particle mapping updates required during the simulation. Therefore,
an optimum cell size creates a balance between the time spent in a single
neighbor searching process and the frequency of particle mapping.

The fluid and solid phase equations were solved using explicit time
integration schemes. A constant value was selected for the DEM time-
step. This value must be smaller than the critical DEM timestep to
guarantee stable simulations. The SPH timestep must also satisfy several
timestep criteria including CFL condition (Morris et al., 1997) and is
usually larger than the DEM timestep. Therefore, the SPH timestep was
assumed to be N times the DEM timestep, where N is an integer. This
means that N DEM computation cycles should be performed per one SPH
cycle. The first step in a single SPH-DEM computational loop is to
calculate the fluid particle properties such as porosity and pressure. The
interaction forces are next obtained based on the latest positions and
velocities of DEM particles, and the interpolated porosities at their lo-
cations. Then the SPH particle densities, velocities and positions are
updated according to the variation rates of density and velocity
computed from their pressure, superficial density and the coupling
forces. Finally, the interaction forces are applied to the solid particles
and N DEM cycles are performed to get the updated particle positions
and velocities. The new positions and velocities are then sent as inputs to
the SPH algorithm and the next loop begins.
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Periodic Boundaries

Fig. 1. Initial setup for particle sedimentation test.
3. Validation cases

In view of the complexity of the goal of this study to model soil
liquefaction of a saturated soil deposit, a building block approach was
adopted herein to validate the proposed coupled SPH-DEM model. The
main coupling parameters between the fluid and particles in this model
stem from porosity calculation, averaged solid particle velocities and the
resulting drag force. Therefore, a simulation was performed to examine
the ability of the model to correctly predict the drag force on a few
settling particles in a fluid column. Since this system has a diluted
concentration of particles, it presents an extreme in computing porosity
and associated drag forces. It also include the challenge of large solid
particle velocities. Additionally, another extreme situation in which
flow in a dense stagnant arrangement of a porous medium was consid-
ered to examine the ability of the fluid code to accurately predict fluid

Computers and Geotechnics 134 (2021) 104060

velocities in such a dense packing.

3.1. Particle sedimentation

Particle sedimentation test was performed to examine the accuracy
of the coupled SPH-DEM algorithm. A fluid column with dimensions of
4.8 x 4.8 x 6 cm was created using SPH particles with initial spacing of
4 mm, density of 10® kg/m® and dynamic viscosity of 5.0 Pa.s. Three
solid particles with density of 2 x 103 kg/m?, and radii of 0.5 mm, 0.75
mm and 1 mm were placed within the fluid domain and allowed to settle
under the gravitational acceleration of 9.81 m/s? (Fig. 1). Assuming
ng, ~ 1 and Rex1, the drag force can be calculated from Egs. **(19),
(22), (23) and (24) as:

F? =3aud,v, 27)

1.2 T T T T T T T

AN

0.6

04r b

Normalized pressure

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time [s]

Fig. 3. Normalized pressure time histories at two different locations along the
fluid column.

0.6 w w x

Velocity (mm/s)
s o o
(8] I W

e
[

—— Analytical
o SPH-DEM

0.15

0 1
0 0.05 0.1

0.2 0.25 0.3 0.35 0.4

Time (ms)

Fig. 2. Comparison between the analytical and numerical results for the vertical velocities of the particles.
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Periodic Boundaries

%P
2

Fig. 4. Porous block model (only DEM particles are illustrated).

Newton’s second law, the velocity of a falling particle inside a fluid can

be computed by:

2(p, — pyler
o

—Out

V(1) = 20, — )

[1—exp(— )] (28)

where p, and p; are solid and fluid particle densities, 4 is the dynamic
viscosity, r is the solid particle radius and g is the vertical gravitational
acceleration. Fig. 2 shows a close agreement between the results of
numerical and analytical solutions. Fig. 3 shows the transient average
pressures normalized by the total weight of particles divided by the
cross-sectional area of the water column at two different points: one near
the base wall and one near the top of the container (hydrostatic pressure
is neglected here). It can be observed that the normalized pressure at the
point near the base underwent a relatively small fluctuations before
reaching the value of one. The pressure near the free surface also
experienced some fluctuations and returned to zero.

3.2. Flow through a porous block

In this test a submerged cubic packing of identical solid particles was
created within a three-dimensional periodic box. That is, the boundary
conditions for both DEM and SPH particles were considered to be peri-
odic in all three directions. The diameter of the solid particles was 2 mm
and the periodic box had the dimensions of 4.8 x 4.8 x 7.2 cm (Fig. 4).
The analytically calculated porosity of the cubic packing is approxi-
mately 47.6%. The domain was filled with SPH particles with densities
of 10% kg/m® and an initial distance of 4 mm. The fluid particles were
subjected to constant body forces of 1 m/s? in the vertical direction. A
range of particle Reynolds numbers was achieved by varying the fluid
dynamic viscosity between 0.0001 Pa.s and 0.04 Pa.s. The friction factor
(fy) inside a packed assembly of particles can be related to the modified
particle Reynolds number Gr, by (Ergun, 1952):

150
=g, +175

Tp

(29)

T

T

—_
S

T

Friction Factor

10’

T

— Analytical
o SPH

E——————

10" S——
10 10 10

Modified Reynolds Number

Fig. 5. Friction factor as a function of modified Reynolds number obtained from the analytical and numerical solutions.
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Viscous fluid

Periodic boundaries

5.7m

1.44M

Base'rock

Fig. 6. 3D view of the saturated granular deposit.

The friction factor and modified Reynolds number are defined as:

AP d, ,
h=ir ) (30)
pvsd,
Gry = —+— BD
" (T=nu

where AP is pressure drop, n is the porosity, d,, is solid particle diameter,
H is height of the column, p is fluid density, v; is the superficial fluid
velocity and u is dynamic viscosity. A comparison between the numer-
ical and analytical solutions is provided in Fig. 5. This figure shows that
the results are compatible for a wide range of Reynold numbers.

4. Liquefaction of saturated granular soil

The validated coupled SPH-DEM approach was used to analyze the
response of level and mildly sloped saturated granular deposits to
seismic base excitations. Periodic boundaries were employed at four
sides of the model for both DEM and SPH particles to simulate an infinite
medium with a limited number of particles. In addition, use was made of
the high g-level concept commonly used in centrifuge testing to further
decrease the dimensions of the domain that needed to be filled with
particles and benefit from a shorter simulation time (Iai et al., 2005).
This approach was found to be very effective in DEM simulations to
model boundary value problems and has been adopted in several ap-
plications (e.g., El Shamy and Zeghal, 2005; El Shamy and Aydin, 2008).
The lower boundary represents the bedrock and was modeled by a rigid
wall in DEM and by a no-slip, impermeable boundary in SPH. One of the
advantages of the SPH method is its ability to simulate free surface
boundaries without the need of special treatments. Therefore, the free
surface condition is automatically applied to the top boundary by filling
the domain with fluid particles. The seismic excitations were applied to
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Table 1
Simulations details in model units.

Soil deposit

Particle size 1.5 mm to 2.5 mm

Normal stiffness 5.0x10° N/m
Shear stiffness 5.0x10° N/m
Normal critical damping ratio 0.1

Shear critical damping ratio 0.0

Friction coefficient 0.5

Rolling friction coefficient 0.2

Density 2650 kg/m>
Number of particles 56,000
Viscous Fluid

Initial spacing 4 mm

Kernel radius 5 mm
Dynamic viscosity 0.6 Pa.s
Density 1000 kg/m°®

Computation parameters
g-level 30
Time step for DEM 6x1077 s

Time step for SPH 6x107° s

the fluid and solid phases through the base boundaries. A detailed
description of the model and its components is provided in the following
section.

4.1. Model description

The simulations were conducted on 190 mm high (in model units)
level and sloping deposits. The lateral dimensions of the periodic de-
posits were chosen to be 48 x 48 mm. The deposits were created using
polyhedral blocks with equivalent diameters ranging from 1.5 mm to
2.5 mm which is close to coarse sand grain size. The average sphericity
of the particles used in this study was determined to be approximately
0.98. First, the approximate number of particles needed to fill the
domain was calculated. Then these particles were generated in a rela-
tively large space and allowed to settle under high gravitational field of
30 g. The porosity of the final assembly can be controlled by applying
different values to the local damping and/or adjusting the friction co-
efficient during the particle settlement process. The average porosity
and saturated unit weight of the deposits were determined to be,
respectively, around 43% and 19.4 kg/m°.

To saturate the deposits, a fluid domain with a height of 200 mm and
lateral dimensions of 48 x 48 mm was introduced within the periodic
domain using SPH particles. The initial spacing of the fluid particles and
the kernel radius were chosen to be 4 mm and 5 mm, respectively. A 3D
view of the saturated level deposit is shown in Fig. 6. The ratio between
the smoothing length (h) and the average particle diameter (d) can have
significant effects on the accuracy of the numerical simulations. Rob-
inson et al. (2014) conducted single particle and porosity block sedi-
mentation tests using a coupled SPH-DEM algorithm and concluded that
a kernel radius of h>2d leads to a smooth porosity field, however, the
model can suffer from too strong smoothing and the ensuing errors if a
considerably higher value is used. The parameters used in the following
simulations gives a ratio of h/d = 2.5, which is within the optimum
range. Note that the same kernel radius was used in the two validation
simulations discussed in Section 3, in which two extreme porosity cases

Table 2
Amplification factors obtained from DEM solution and analytical expression.

Input Frequency Amplification Factor Amplification Factor

(Hz) (DEM) (Analytical)
3 2.03 2.08
4 5.68 6.43
5 4.1 4.24
6 2.37 1.79
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were considered. Therefore, for the porosity range expected in these
simulations, this kernel radius would be sufficient to accurately capture
the porosity at different locations. In the case of the gently sloped de-
posit, to mimic a mild slope of 2 degrees, the DEM and SPH particles
were subjected to a gravitational acceleration which deviates from the
vertical axis by 2 degrees.

According to the centrifuge scaling laws, application of a gravita-
tional field of 30 g in the model leads to a prototype with dimensions and
time scale 30 times higher than the model. Thus, the analyzed model
corresponds to a periodic prototype of a 5.7 m high granular deposit
with lateral dimensions of 1.44 m in each direction. The deposits were
saturated with a highly viscous fluid to compensate for the effects of the
employed 30 g field and comply with the scaling laws for permeability.
For the prototype fluid viscosity of 0.02 Pa.s and the employed particle
size range, the initial permeability of the deposit was estimated to be 2.6
mm/s (same order of coarse sand permeability when saturated with
water) using the Kozeny-Carmen equation (Carman, 1937):

pgn’ 3 %‘ﬂr3)z

k=—"" 32
5u(1 —n)* > 4nr? (32

where p is the fluid density, r is the equivalent particle radius, n is the
average deposit porosity, and g is the gravitational acceleration. A
summary of parameters used in the conducted simulations is provided in
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Table 1.

The deposits were subjected to sinusoidal base excitations with
amplitudes of 0.01 g and 0.25 g with durations of 13 s. The sinusoidal
input signal gradually increases until it reaches the maximum acceler-
ation amplitude at 4.5 s, where it remains constant for an additional 7.5
s before it gradually decreases to zero at 13 s. The small amplitude of
0.01 g was selected as an event that was not expected to produce any
significant deformations in the system. Simulations conducted with this
amplitude are valuable in determination of the fundamental frequency
of the deposit as well as the dynamic soil properties (shear wave velocity
and low strain shear modulus). The maximum amplitude of 0.25 g
represents a strong seismic event that may induce large deformations
and lead to a catastrophic failure.

Applying the scaling laws for centrifuge testing results in accelera-
tion frequencies and amplitudes that are 30 times higher in the model
while the duration of the loading is 30 times smaller compared to the
prototype. Several parameters at various depth locations of the deposit
were monitored throughout the simulations such as averaged solid and
fluid particle accelerations, averaged excess pore pressure, averaged
drag force as well as stress and strain rate tensors. The data was recorded
at constant time intervals of 0.0006 s in model units (0.018 s in proto-
type units). The simulation results provided in the following sections are
in prototype units unless otherwise specified.
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4.2. Dynamic properties of the deposit

The shear strains induced by the base excitations with maximum
amplitude of 0.01 g were in the order of 10~#%. Therefore, the corre-
sponding shear stress-shear strain loops were used to obtain the low
strain shear moduli along the depth of the deposit. The average value for
the low strain shear modulus was determined to be around 19.8 MPa.
This means that the low strain shear wave velocity and the fundamental
frequency of the deposit were approximately 100 m/s and 4.38 Hz,
respectively. The amplification of the input motion toward the surface of
the deposit was also observed during these simulations. The maximum
amplification, as expected, occurred during the base excitation with the
frequency of 4 Hz, since it was close to the fundamental frequency of the
deposit. A comparison between the amplification factors at the surface
of the deposit obtained form DEM simulations with maximum acceler-
ation of 0.01 g and those of analytical expression (Kramer, 1996) for the
transfer of a shear wave propagating in linear elastic soil underlain by
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rigid bedrock are provided in Table 2. It can be seen that there is a
relatively good agreement between the results.

4.3. Liquefaction simulations

To investigate liquefaction of the granular deposits, the numerical
models were subjected to strong ground motions with maximum
amplitude of 0.25 g and frequency of 3 Hz. This amplitude of input
motion was expected to cause enough densification of the loose deposit
to cause liquefaction. From a macro-mechanical point of view, studies
suggest that liquefaction is triggered by a significant buildup in the pore
fluid pressure and the consequent reduction of vertical effective stress
and degradation of soil strength. Several averaging volumes (measure-
ment spheres) were created at various elevations inside the deposits. The
radius of the measurement spheres was considered to be 2 cm (in model
units) which is 10 times the average particle size in order to guarantee
the presence of enough particles inside them. The mean fluid properties
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were obtained by simply averaging over all SPH particles inside the
measurement sphere. For more information regarding the averaging
procedures for the DEM particles please see [tasca (2018). Data was
collected on important variables such as pore water pressure, horizontal
and vertical drag forces, average particle acceleration as well as stress
and strain tensors. The results and discussions are provided in the
following sections.

4.3.1. Level deposit response

The time histories of excess pore pressure ratio (the ratio of the
excess pore pressure to the initial vertical effective stress) at different
depth locations inside the deposit are shown in Fig. 7. Note that the
presence of the particles and associated momentum transfer (Eq. (19)) as
well as the gradual changes in porosity in response to shaking led to a
stable pore-pressure that did not suffer from oscillation. A pore pressure
ratio of 1.0 is usually used as an indicator of the occurrence of lique-
faction which corresponds to a moment when the excess pore pressure
counterbalances the vertical effective stress. The results show that,
except for the bottom layer, the pore pressure ratio of 1.0 is practically
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reached during the simulation. Fig. 7 also shows that moving toward the
ground surface, the pore pressure ratio increases at a higher rate. This
means that liquefaction first took place near the surface and then
propagated downward. These observations can also be confirmed by
Fig. 8 showing the profiles of pore pressure at different times during the
course of simulation. The excess pore pressure reached values close to
the local vertical effective stress first in the shallow layers and as the
loading continued liquefaction was spread toward the base. It can also
be observed from Figs. 7 and 8 that the excess pore pressure ratio slightly
decreased at the top layers after it reached the value of 1.0. This can be
attributed to the proximity of these layers to the free surface and water
drainage.

The average particle acceleration at different depths along the ver-
tical axis of the deposit was recorded and is presented in Fig. 9. It was
observed that the acceleration of the top 3 m of the deposit significantly
diminished after the first 4 s of the base excitation. This reduction in
acceleration amplitude was more evident in the upper strata where it
completely vanished progressing toward the end of the simulations.
These patterns are consistent with those observed in the shaking table
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tests and case histories of site liquefaction (e.g., Elgamal et al., 1996;
Arulanandan and Scott, 1993). The drop in the acceleration amplitude
was less noticeable for the depth location of 4.8 m.

To explain the observed acceleration patterns at a microscale level,
the drag forces normalized by the average particle weight and the
snapshots of interparticle contact chains at different time instants are
provided in Figs. 10 and 11, respectively. The difference between the
excess pore pressures generated inside two subsequent layers creates a
pressure gradient that applies upward drag force on the particles. These
forces lead to loss of some interparticle contacts. Provided that the
pressure gradient is large enough, the corresponding drag forces can
reach values that counterbalance the weight of particles and make them
practically floating in the mixture. Fig. 10 shows that the normalized
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drag force drastically increased during the shaking as a result of the pore
pressure buildup and reached 1.0 in all layers. However, it can be seen
that at the bottom layer, while normalized drag force surpassed the
value of 1.0 at several time instants, it had a considerably lower average
value throughout the simulation. The significant loss of interparticle
contacts can clearly be seen in Fig. 11. According to this figure, during
the first few seconds of base excitation, the interparticle contacts van-
ished near the surface where the excess pore pressure ratio and
normalized drag force first reached the value of 1.0. Fewer interparticle
contacts makes soil layers only partially resting on each other and,
therefore, the input excitation cannot be fully transmitted to the layers
above and this leads to reduction of average particle acceleration. The
same pattern was also observed at the deeper depths, except for the
bottom layer, only with a time delay. At the bottom layer, as shown in
Fig. 10, the drag force induced by the pressure gradient generally was
not large enough to significantly reduce the number of contacts. Fig. 11
shows that after the first 4 s through the end of shaking (13 s), inter-
particle contacts stayed at a very low level almost in the entire deposit
(except the bottom layer). This is consistent with the fact that the
normalized drag force remained at its maximum level in the top layers
between 4 s and 13 s (Fig. 10). It also confirms the previous observation
that the acceleration amplitude almost vanished in these layers after the
first 4 s of shaking. It is also worth noting that after the end of shaking
(13 s), interparticle contacts significantly increased starting from the
model base. This can be explained by the reduction of vertical drag force
that, according to Fig. 10, first occurred at the bottom layers due to the
dissipation of pore water pressure.

The cyclic shear stress—strain loops are presented in Fig. 12. For the
input motion of 0.25 g, due to development of large strains, the soil
behavior can no longer be considered linear and a reduction of
maximum shear modulus and a shift in the natural frequency of the
deposit was expected. Fig. 12 shows a progressive degradation of soil
stiffness and a continuous decrease in the shear modulus at various
depth locations. Fig. 13 shows the plots of cyclic shear stress versus
vertical effective stress. The results show that the vertical effective stress
vanished in the entire deposit by the end of the simulations except for
the bottom layer.

In order to take a closer look at the liquefaction mechanism and to
investigate the correlation between the different parameters, a relatively
short time interval during pore pressure buildup period is selected and a
point-to-point relationship between volumetric strain, excess pore
pressure ratio, shear stress-strain loops and effective stress path at the
depth of 0.6 m is presented in Fig. 14. It is obvious from this figure that
the peaks of pore pressure correspond to the points of maximum
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contraction (Fig. 14 a and b). In addition, pore pressure evidently drops
when dilation occurs. Fig. 14(c and d) show that the vertical effective
and shear stresses reached their minimum values at the points of
maximum contraction due to buildup in pore pressure. On the other
hand, during the dilation phase they recover to higher values and a
regain in soil strength is observed. These patterns are repeatedly
observed throughout the simulation.

4.3.2. Sloping deposit response

The previously described gently sloped deposit was subjected to the
same seismic base excitation and various averaged quantities were
recorded during the simulation. The time histories of pore fluid pressure
at different depths are presented in Fig. 15. The patterns are similar to
the level deposit response. In addition, negative spikes reflecting the
dilative behavior near the surface and associated regain in soil stiffness
can be observed in the time histories of pore fluid pressure at the shallow
layers of the deposit. The dilative behavior is a result of particles near
the surface rolling on top of each others after the onset of liquefaction
and the tendency of the top layer of soil to move downslope. The time
histories of averaged particle accelerations and velocities at different
levels are provided in Fig. 16. The acceleration time histories suggest
that the deposit demonstrated a dilative behavior reflected by a regain in
shear strength and the resulting negative acceleration spikes after
liquefaction occurred in the top layers. These negative sharp peaks have
been observed in several computational and experimental studies (e.g.,
Elgamal et al., 2002; El Shamy et al., 2010). In addition, the velocity
time histories show that after the onset of liquefaction, the velocities of
the top layers became generally positive which means these layers were
continuously moving downslope. Fig. 17 shows the plot of the normal-
ized drag forces. It can be deduced from Fig. 17 that the top 3.0 m of the
deposit liquefied during seismic excitation. It is worth noting the
instantaneous gain in strength that is marked by the reduction in
normalized drag force corresponding to the negative spikes in the ac-
celeration and dips in pore pressure time histories.

The lateral spreading reflects a significant interparticle sliding at a
particular depth location. As sliding takes place, the cyclic motion
vanishes, and the displacement continues to increase with time as a
result of the movement of the sliding mass downslope. Fig. 18 shows the
computed lateral displacement profiles at various time instants. The
results show relatively small lateral displacement during the first 3 s
which is prior to the onset of liquefaction. For the other selected time
instants, liquefaction has already occurred and large lateral displace-
ments can be seen. The deposit experienced maximum permanent lateral
displacement of around 80 cm. According to Fig. 18, the slope of the
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lateral spreading line has noticeably increased for the top 4 m of the
deposit which completely liquefied during the simulations. A column of
particles located in the middle of the deposit was colored in red for
visualization purpose and the position of particles inside this column
was tracked throughout the simulations. The snapshots of lateral parti-
cle displacements are also presented in Fig. 19.

The plots of shear stress versus shear strain are shown in Fig. 20. It
was observed that after the first few seconds of loading, shear stresses
gradually reduced and large shear strains were accumulated in the de-
posit. Permanent shear strains as high as 22% were observed in the
liquefied layers. The loops also show the instantaneous gain in stiffness
(marked by the steep increase in shear stress) as the soil dilates even
after the onset of liquefaction corresponding to the negative spikes
observed in the acceleration and pore pressure time histories (Fig. 16).
The effective stress paths are shown in Fig. 21. The results show that,
apart from the bottom layer, the zero value for the vertical effective
stress was reached. It also shows indications of dilative behavior marked
by the regain of effective stress as it was approaching zero in top layers.
Note the non-symmetric shape of the effective stress path due to the
static component of shear stress in the slope direction.

Fig. 22 presents a point-to-point relationship between cyclic volu-
metric strain, excess pore pressure ratio, effective stress path and shear
stress-strain loops at the depth of 0.6 m over a short time window during
the simulation of the sloping deposit. Here, the time interval is chosen
near the end of shaking to investigate the previously mentioned dips and
peaks observed in the time histories of excess pore pressure. Similar to
what was observed for the level deposit, the contraction of the pore
spaces leads to an increase in the pore pressure and, conversely, the dips
in pore pressure correspond to the points of peak dilation (Fig. 22 a and
b). Dilatation occurs as the soil mass is moving upslope while contrac-
tion occurs mostly as the mass is moving downslope (El Shamy and
Abdelhamid, 2017). Fig. 22(c and d) show that the vertical effective and
shear stresses reached their minimum values at the points of maximum
contraction. In addition, regains in the soil strength clearly corresponds
to the points of maximum dilation. Peaks of excess pore pressure
correspond to near-complete loss of soil strength marked by the signif-
icant reduction in vertical effective stress (Fig. 22 b and c).

5. Conclusions

A three-dimensional Lagrangian-Lagrangian approach is utilized to
analyze the dynamic response and liquefaction of saturated level and
gently sloped granular deposits. A microscale idealization of the solid
phase is achieved using the discrete element method. Considering the
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non-sphericity of real soil grains, irregular-shaped particles are chosen
as the most realistic representation of the soil particles. The fluid phase
is modeled using the smoothed particle hydrodynamics. In this method,
the interstitial pore fluid is idealized using averaged Navier-Stokes
equations and the fluid-particle interaction forces are quantified using
well-known semi-empirical relationships. The presented model is
computationally far less demanding compared to the pore-scale level
models and its meshless nature makes it a powerful tool for analyzing
moving boundary and free surface problems. In addition, the presented
model is seamlessly capable of predicting the response at small and large
strains. The proposed approach was used to model the response of
saturated soil deposits subjected to seismic excitation. The results show
that liquefaction took place in both deposits marked by several response
mechanisms including excess pore-pressure buildup approaching the
value of one, increase in the vertical drag forces that counterbalance the
weight of solid particles, reduction of interparticle contacts causing the
instability of the packing, diminishing averaged particle acceleration
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time histories and continuous degradation of soil stiffness and strength.
Large lateral displacements were observed during the sloping deposit
simulation as a result of the sliding of liquefied soil layers downslope. A
dilative behavior was observed in the shallow layers of the gently sloped
deposit reflected by sharp negative acceleration and pore fluid pressure
dips after the occurrence of liquefaction and nonsymmetric loops in the
effective stress path plots as the mean vertical effective stress
approached zero. The macro-mechanical behavior of the numerical
model exhibits similar trends to those observed in published experi-
mental studies and case histories of soil liquefaction.
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