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A B S T R A C T   

In this paper, a fully Lagrangian particle-based method for coupled fluid-particle interaction is utilized to 
evaluate liquefaction of saturated granular soils subjected to dynamic base excitations. The discrete element 
method (DEM) is employed to model the solid particles and the fluid motion is simulated using the smoothed 
particle hydrodynamics (SPH). A coupled SPH-DEM scheme is achieved through local averaging techniques and 
well-established semi-empirical formulas for fluid-particle interaction. A key feature of the employed technique 
is that it does not presume undrained conditions for the granular deposit and allows for spatial fluid movements 
within the deposit. The responses of loose and dense granular deposits to seismic excitation are first analyzed. As 
expected, the loose deposit exhibited significant pore pressure development and liquefaction while the dense 
deposit barely showed any considerable buildup of pore pressure and did not liquefy. Liquefaction of the loose 
deposit resulted in significant surface settlement while that experienced by the dense deposit was within 
tolerable limits. A liquefaction mitigation technique through the installation of gravel drains was then introduced 
to the loose deposit and its effect on mitigating pore pressure buildup was examined. Results of conducted 
simulations show that the installation of gravel drains effectively reduced pore-pressure buildup and, for the 
most part, the soil maintained its strength. However, the drains did not reduce the overall surface settlement of 
the deposit to acceptable levels.   

1. Introduction 

Over the past five decades, the U.S. and other seismically active areas 
have sustained considerable damage resulting from earthquake-induced 
site liquefaction that was associated with very costly damage to port 
facilities, bridges, dams, buried pipes, and buildings of all types. The 
2011 Tohoku (Japan) earthquake caused an estimated $300 billion in 
damage. Evidence of wide spread of liquefaction and lateral spreading at 
unprecedented scale has been observed in many locations and port fa
cilities [1]. Similarly, the 2010–2011 earthquakes that hit the Christ
church city and its surrounding areas (Canterbury Earthquakes, New 
Zealand) resulted in a devastating damage due to liquefaction. The most 
common definition of sand liquefaction is that it is a result of water 
pressure buildup due to squeezing of pore space during rapid earthquake 
loading, without sufficient time for water to flow through the grains and 
drain the pressure [e.g., 2]. That is, when the sand is loosely packed, 
there would be a tendency for the grains to get into a denser configu
ration during earthquake motion, squeezing pore-water and rapidly 

increasing the pressure owing to the high bulk modulus of water. 
Liquefaction resistance can be improved by: increasing the soil 

density through compaction, stabilizing the soil skeleton, reducing the 
degree of saturation possibly by introducing air bubbles into the void 
space, dissipation of the generated excess pore pressure, and intercept
ing the propagation of excess pore pressures buildup, among other 
techniques. Herein, the focus is on gravel drains as one of the widely 
used liquefaction hazards mitigation method. Sadrekarimi and Gha
landarzadeh [3] argue that the potential benefits of gravel drains 
include densification of the surrounding granular soil, dissipation of 
excess pore water pressure, and redistribution of earthquake-induced or 
pre-existing stress. They also note that the relatively high internal fric
tion resistance of the gravel imparts a significant frictional component to 
the treated composite, improving both its strength and its deformational 
behavior. 

Computational modeling offers effective means to predict and assess 
soil behavior in response to earthquakes. In this regard, the coupled 
(solid-fluid) response of saturated granular soils is commonly modeled 
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using continuum formulations derived based on phenomenological 
considerations (e.g., the mixture or Biot theories) or homogenization of 
the micro-mechanical equations of motion [4–6]. Each of these different 
formulations requires a constitutive model to describe the relationship 
between effective stresses and strains of the solid phase. For liquefaction 
problems, constitutive models based on plasticity theory are most 
commonly used. Several constitutive models have been presented to 
describe the behavior of saturated granular soils during cyclic loading 
[e.g, 7–19]. These constitutive relations can be employed in a finite 
element method or a finite difference formulation to predict the seismic 
response of a saturated granular deposit. High performance parallel 
computing simulations have also been presented using continuum-based 
methods [e.g., 20, 21]. 

The discrete element method (DEM) provides an alternative effective 
tool to model granular soils and other geomaterials based on micro
mechanical idealizations. This method [22] simulates these media as 
assemblages of interacting discrete particles, and has shown great 
capability to reproduce the actual behavior of granular soils with simple 
parameters at the microscale. Numerous attempts have been made at 
incorporating fluid-particle interaction equations into the discrete 
element method formulation. One of the popular coupling techniques is 
to describe the fluid flow by averaged Navier-Stokes equation based on 
mean multiphase mixture properties and employ well-established 
semi-empirical equations to calculate the fluid particle interaction 
forces (e.g. Ref. [23,24]). The fluid equations are discretized over a fixed 
mesh and solved using a technique known as the finite volume method 
(FVM). This method has proven to yield satisfactory results in simulating 
different geotechnical phenomena such as soil liquefaction. It has since 
gained momentum and was adopted by researchers to model several 
problems in geomechanics [e.g., 25–29]. However, the usage of fixed 
coarse grid mesh limits its scope and application to the fixed boundary 
problems. 

A more elaborate approach is to model fluid at the pore-scale level to 
investigate the development of pore pressure due to actual changes in 
the shape and volume of the pore space caused by particle movements. 
Zhu et al. [30] developed a pore-scale numerical model using smoothed 
particle hydrodynamics (SPH) to investigate the flow through porous 
media. They conducted two-dimensional simulation of flow through 
periodic arrangements of cylinders and validated the proposed method 
by comparing the results with those obtained from finite element 
method. Potapov et al. [31] presented a coupled DEM-SPH method to 
analyze flows of liquid-solid mixtures. The fluid-particle interaction was 
obtained by applying no-slip boundary conditions at the solid particles 
surface. Han and Cundall [32] combined DEM and lattice Boltzmann 
method (LBM) to simulate flow through porous media at the pore scale. 
El Shamy and Abdelhamid [33] investigated liquefaction of saturated 
granular soil deposits by idealizing soil grains through DEM and 
modeling the pore fluid using LBM. Abdelhamid and El Shamy [34] 
presented a fully coupled DEM-LBM model to investigate the mechanism 
of fine particle migration in granular filters. The high accuracy of the 
pore scale models comes at the price of being computationally expen
sive, to a degree that makes it impractical to perform numerical simu
lations with realistic particle sizes using typical desktop computers. 

As an alternative to modeling the fluid at the pore scale, SPH could 
be used to approximate the set of partial differential equations repre
sented by an averaged form of Navier-Stokes equations [35,36] that 
accounts for the presence of the solid phase and the momentum transfer 
between the phases. Indeed, SPH is a method that could be generalized 
to approximate any set of partial differential equations and not neces
sarily for fluids. For instance, large deformation models of granular 
materials in a continuum framework have been presented by Chen and 
Qiu [37], where the saturated soil equations of motions were approxi
mated using SPH. Coupling SPH for the fluid and DEM for the solid phase 
offers the benefits of overcoming the need for a constitutive model for 
the solid phase while maintaining the robustness of DEM for large 
deformation problems and SPH for tracking the fluid motion. Sun et al. 

[38] presented a Lagrangian-Lagrangian DEM-SPH coupled model for 
the multiphase flows with free surfaces. They performed dam break and 
rotational cylindrical tank simulations to showcase the proposed 
method abilities. Robinson et al. [39] presented a meshless simulation 
technique based on coupled DEM-SPH algorithm and validated the 
model by conducting simulations of single particle and constant porosity 
block sedimentation in a fluid column. Many more examples of coupled 
DEM-SPH application to various science and engineering problems can 
be found in the recent literature [40–47]. 

In this paper, the results of a novel application of SPH-DEM to model 
soil liquefaction is presented. A key feature of the employed technique is 
that it does not presume undrained conditions for the granular deposit 
and allows for spatial fluid movements within the deposit. The responses 
of loose and dense granular deposits to seismic excitation are first 
analyzed. As expected, the loose deposit exhibited significant pore 
pressure development and liquefaction while the dense deposit barely 
showed any considerable buildup of pore pressure and did not liquefy. A 
liquefaction mitigation technique through the installation of gravel 
drains was then introduced to the loose deposit and its effect on miti
gating pore pressure buildup was examined. 

2. Coupled SPH-DEM Model 

A fully coupled Lagrangian particle-based method is presented 
herein to analyze the dynamic response of saturated granular deposits 
subjected to horizontal seismic base excitations. In the SPH scheme, the 
fluid domain is discretized into a set of individual particles carrying local 
properties of the fluid such as density and pressure [48–50]. DEM is 
employed to model the solid particles with proper momentum transfer 
between the two phases. The presented SPH-DEM technique has several 
advantages over the previously mentioned methods. For instance, the 
coarse-mesh based nature of FVM-DEM approach requires the use of 
relatively large cells to ensure presence of enough particles inside them. 
All particles within each cell are assigned the same porosity which 
clearly leads to loss of some local features of the porosity field and 
discrete distribution of porosity throughout the deposit. On the other 
hand, in SPH-DEM technique, every particle has its unique porosity 
calculated at its location and it was shown that the right kernel radius 
can provide a smooth porosity field without losing much of valuable 
local information [39]. In addition, due to the meshless nature of the 
SPH-DEM approach, unlike the FVM-DEM technique, it is very 
well-suited for the deformable boundary problems, irregularly shaped 
domains, and parallelizing the code is fairly straightforward. The 
SPH-DEM method also has the advantage of being computationally far 
less demanding compared to pore-scale models. The main drawback of 
the presented approach is that the fluid is considered to be weakly 
compressible. However, the fluctuations in fluid density can be limited 
to very small values by employing a sufficiently large numerical speed of 
sound and the fluid can be assumed practically incompressible [51]. 

A SPH kernel function is utilized to interpolate the averaged forms of 
continuity and momentum equations over all neighboring particles 
within the smoothing length of a given point. The fluid pressure is ob
tained from the weakly compressible equation of state. Therefore, a 
large value is assigned to the speed of sound to ensure negligible fluc
tuations in the fluid density. The phase coupling is achieved through 
semi-empirical relationships between the fluid-particle interaction 
forces and parameters such as the local porosity and relative velocity 
between the two phases. These interaction forces are directly applied to 
the solid particles as external forces and are accounted for in the fluid 
phase formulation by adding an associated term to the momentum 
equation. An explicit time integration scheme is used to solve the 
equation of motion for both solid and fluid particles. Model components 
are briefly described in the following sections. 
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2.1. Fluid phase 

The two-fluid model presented by Ref. [52] is used here to describe 
the governing equations for the multiphase mixture [39]: 

∂
(
nρf

)

∂t
+ ∇.

(
nρf u

)
= 0 (1)  

∂
(
nρf u

)
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)
= − ∇P + ∇.τ + nρf g − fint (2) 

in which ρf is the fluid density, n is the porosity, P is the fluid pres
sure, τ is the viscous stress tensor, fint is the fluid particle interaction 
force, g is the gravitational acceleration vector and u is the fluid velocity. 

In SPH, the continuum is lumped into discrete particles moving with 
the flow and each particle holds the information regarding the physical 
properties of the fluid. A kernel function (W) is then used to interpolate 
different quantities at a given location. In this study the Wendland 
kernel function is chosen as the smoothing function [53]. 

Applying SPH particle summation, Eqs. 1 and 2 can be rewritten as: 
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with uij being the relative velocity vector, Pi fluid pressure evaluated 
at the location of particle i, rij the tensile instability term to prevent 
particles from forming small clumps and Πij the non-artificial viscosity 
term [54,55]. 

The weakly compressible equation of state is used to calculate the 
fluid pressure. This equation provides a relationship between the fluid 
pressure and its density [51]. In that method, the numerical speed of 
sound is usually considered to be 10 times higher than the maximum 
fluid velocity to limit the fluctuations of the fluid density to less than 1% 
of its initial value. 

In this paper, the solid boundaries for SPH particles are treated in the 
same manner as described by Adami et al. [56]. The implementation of 
periodic boundaries is rather straight forward in SPH. In this case, the 
two sides of the model are considered adjacent to each other and, 
therefore, the truncated support domain of a particle close to one side is 
completed by contributing particles on the opposite side. In addition, if a 
particle crosses a periodic boundary it will re-enter the domain from the 
other side with the same velocity. 

2.2. Solid phase 

In numerical simulations using discrete element method, it is 
computationally expensive to use particles with realistic soil grain 
shapes. Technological advances provide us with more computational 
power, however, it is still difficult to simulate real granular systems 
consisting of large numbers of particles without using some forms of 
simplification. Therefore, particles are usually idealized as spherical 
bodies to avoid the complications caused by shape irregularity. The 
importance of rotational inertia on energy dissipation and shear strength 
of granular materials in quasi-static and dynamic regimes has been 
proven by both numerical simulations and experimental studies 
[57–62]. The energy dissipation mechanisms may arise from different 
micro-mechanical processes in real granular systems, such as adhesion 
of the contact areas, surface roughness and non-sphericity of particles 
[63]. To account for the effects of particle shape on the energy loss 
during rotational particle movements, the rolling resistance contact 
model was incorporated into DEM simulations by various researchers 
[59–62]. 

The rolling resistance contact model employed in this study is based 

on the linear contact model that incorporates a torque acting on the 
contacting particles and resisting their rolling motions. The rolling 
resistance contact model behavior is similar to the linear contact model, 
except that relative rotation of contacting particles at the contact point 
produces an internal moment at the contact [59]. 

2.3. Fluid-solid interaction 

The total force exerted by the fluid on the solid particle a can be 
written as the sum of the drag force (FD

a ) and pressure gradient force (FP
a ) 

[64]: 

Fint
a = FD

a + FP
a (5) 

The drag force can be estimated through a variety semi-empirical 
relationships. The well-known equation recommended by Ergun [65] 
was used in this study. This equation evaluates the drag force based on 
the local porosity and the relative velocity between fluid and solid 
particles: 

FD
a =

βVa

1 − na

(

ua − ua

)

(6)  

where β is the interphase momentum exchange coefficient, ua is the 
average flow velocity around the solid particle a, Va is the volume of the 
solid particle, ua is the velocity of the solid particle and na is the mean 
porosity. β follows two different regimes divided by the local porosity 
ranges [65]: 
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in which μ is the dynamic viscosity of the fluid, da is the solid particle 
diameter and Cd is the drag coefficient [65]. 

If the interaction between fluid and solid particles is the only source 
for the generation of pressure gradient, the total interaction force can be 
simplified as [64]: 

Fint
a = FD

a + FP
a =

FD
a

na
− Vaρf g (8) 

Due to the momentum exchange with solid particles, a coupling force 
will also be applied to the fluid particle i which can be estimated by the 
weighted average of contributions from all surrounding DEM particles 
inside its influence domain: 

fint
i = −

mi

ρi

∑

a

W(|rai|, h)
∑

j
mj
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W
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⃒raj
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)Fint
a (9)  

2.4. Computational scheme 

The PFC3D software [63] was used to perform the DEM aspects of the 
model. The software implements parallel computing for its DEM anal
ysis. The SPH part of the coupled algorithm was carried out by a Cython 
code written by the authors and linked to the PFC3D environment. Use 
was made of the Open Multi-Processing (OpenMP) scheme to parallelize 
the SPH code and reduce the computational time. In addition, to 
accelerate the neighbor searching process, the fluid domain was divided 
into cubic cells with sides at least two times larger than the kernel radius 
(h). All DEM and SPH particles were then mapped into these cells. This 
way, only a maximum of 27 cells were needed to be probed to find all 
particles within the support domain of any given SPH particle. Special 
attention must be paid to the cell size. Using larger cells leads to having 
more particles inside each cell and slower neighbor searching routines. 
However, on the other hand, it reduces the number of particle mapping 
updates required during the simulation. Therefore, an optimum cell size 
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creates a balance between the time spent in a single neighbor searching 
process and the frequency of particle mapping. 

The fluid and solid phase equations were solved using explicit time 
integration schemes. A constant value was selected for the DEM time
step. This value must be smaller than the critical DEM timestep to 
guarantee stable simulations. The SPH timestep must also satisfy several 
timestep criteria [54] and is usually larger than the DEM timestep. 
Therefore, the SPH timestep was assumed to be N times the DEM 
timestep, where N is an integer. This means that N DEM computation 
cycles should be performed per one SPH cycle. The first step in a single 
SPH-DEM computational loop is to calculate the fluid particle properties 
such as porosity and pressure. The interaction forces are then obtained 
based on the latest positions and velocities of DEM particles, and the 
interpolated porosities at their locations. Next, the SPH particle den
sities, velocities and positions are updated according to the variation 
rates of density and velocity computed from their pressure, superficial 
density and the coupling forces. Finally, the interaction forces are 
applied to the solid particles and N DEM cycles are performed to get the 
updated particle positions and velocities. The new positions and veloc
ities are then sent as input to the SPH algorithm and the next loop 
begins. 

3. Validation cases 

Two validation tests are presented in this section. Poiseuille flow 

simulation was performed to validate the SPH-based fluid model and 
examine the performance of the no-slip, no-penetration boundaries. 
Furthermore, the accuracy of the coupled SPH-DEM model is demon
strated using particle sedimentation test. 

Fig. 1. Initial Poiseuille flow test setup.  

Fig. 2. Side snapshots of the Poiseuille flow model at a) 0.002s, b) 0.01s, c) 0.03s and d) 0.2s.  

Fig. 3. Comparison between the transient velocity obtained from analytical 
and numerical solutions for the Poiseuille flow. 

Fig. 4. Initial setup for particle sedimentation test.  
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3.1. Poiseuille flow 

This test case model was composed of a fluid column restricted by 
two parallel plates at the top and bottom. To simulate infinitely 
extending fluid and plates, the periodic boundary condition was applied 
to all lateral sides of the model. SPH particles with initial spacing of 4 

mm, density of 103 kg/m3 and kinematic viscosity of 10−2 m2/s were 
used to create the fluid domain with dimensions of 52 × 48 × 48 mm. 
The solid plates were modeled as no-penetration, no-slip boundaries by 
two layers of dummy particles with the same spacing as the fluid par
ticles (Fig. 1). To mimic the presence of a pressure gradient of 10 kPa, 
the initially at rest fluid particles were driven by a body force of 10 m/s2, 
which is equal to ∇P

ρ , in the horizontal direction. The analytical solution 
for the transient fluid velocity can be obtained from the following series 
[54]: 

vy(z,t)=
Fy

2νz(z−H)+
∑∞

n=0

4FyH2

νπ3(2n+1)
3 sin

(πz
H

(2n+1)
)

exp
(

−
(2n+1)

2π2ν
H2 t

)

(10) 

in which Fy is the body force, ν is the kinematic viscosity and H is the 
distance between plates. The side views of the model at four different 
time instants are presented in Fig. 2. The velocity of the flow is 
approximately zero in the top and bottom layers which are close to the 

Fig. 5. Comparison between the analytical and numerical results for the ver
tical velocities of the particles. 

Fig. 6. 3D view of the saturated deposit in conducted simulations.  

Table 1 
Simulations details in model units.  

Soil deposit  

Diameter (sand particles) 1.5 mm–2.5 mm 
Diameter (gravel particles) 4.75 mm–6.25 mm 
Normal stiffness (sand particles) 5.0 × 105 N/m  
Normal stiffness (gravel particles) 1.375 × 106 N/m  
Shear stiffness (sand particles) 5.0 × 105 N/m  
Shear stiffness (gravel particles) 1.375 × 106 N/m  
Normal critical damping ratio 0.1 
Shear critical damping ratio 0.0 
Friction coefficient 0.5 
Rolling friction coefficient 0.2 
Density 2650 kg/m3 

Viscous Fluid  
Initial spacing 4 mm 
Kernel radius 8 mm 
Dynamic viscosity 0.6 Pa s 
Density 1000 kg/m3 

Computation parameters  
g-level 30 
Time step for DEM 6 × 10−7 s  
Time step for SPH 6 × 10−6 s   

Table 2 
Soil deposit properties in prototype units.  

Saturated unit weight (loose deposit) 19.2 kN/m3 

Saturated unit weight (dense deposit) 19.9 kN/m3 

Porosity (loose deposit) 0.44 
Porosity (dense deposit) 0.4 
Fundamental frequency (loose deposit) 5.4 Hz 
Fundamental frequency (dense deposit) 7.0 Hz 
Low strain shear wave velocity (loose deposit) 116 m/s 
Low strain shear wave velocity (dense deposit) 151 m/s 
Low strain shear modulus (loose deposit) 25.8 MPa 
Low strain shear modulus (dense deposit) 45 MPa  

Table 3 
Amplification factors obtained from DEM solution and analytical expression.   

Loose deposit  

Input Frequency Amplification Factor Amplification Factor 
(Hz) (DEM) (Analytical) 
4 2.2 2.5 
5 6.43 7.6 
6 5.4 4.92 
7 2.3 2.12     

Dense deposit  
Input Frequency Amplification Factor Amplification Factor 
(Hz) (DEM) (Analytical) 
4 1.57 1.6 
5 2.17 2.29 
6 3.8 4.3 
7 11.9 12.7  

Fig. 7. Time histories of excess pore water pressure at selected depth locations.  
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no-slip boundaries and as the time passes the velocity of the fluid in
creases with its maximum value corresponding to the middle layer. In 
addition, the particles exiting from the right end return to the domain 
from the left with the same velocity which verifies the performance of 
the periodic boundaries. Fig. 3 shows a comparison between the tran
sient velocity obtained from the analytical expression and the numerical 
simulation. It can be seen that there is a close agreement between the 
results. 

3.2. Particle sedimentation 

A particle sedimentation numerical experiment was performed to 
examine the accuracy of the coupled SPH-DEM algorithm. A fluid col
umn with dimensions of 4.8 × 4.8 × 6 cm was created using SPH par
ticles with initial spacing of 4 mm, density of 103 kg/ m3 and dynamic 
viscosity of 5.0 Pa s. Three solid particles with density of 2× 103 kg/ m3, 
and radii of 0.5 mm, 0.75 mm and 1 mm were placed within the fluid 
domain and allowed to settle under the gravitational acceleration of 
9.81 m/s2 (Fig. 4). Assuming na ≈ 1 and Re≪1, the drag force can be 

calculated as: 

FD
z = 3πμdavz (11) 

Using Eq. (11) and solving the differential equation obtained from 
Newton’s second law, the velocity of a falling particle inside a fluid can 
be computed by: 

vz(t) =
2

(
ρp − ρf

)
gr2

9μ

[

1 − exp
(

−
−9μt

2
(
ρp − ρf

)
r2

)]

(12)  

where ρp and ρf are solid and fluid particle densities, μ is the dynamic 
viscosity, r is the solid particle radius and g is the vertical gravitational 
acceleration. Fig. 5 shows a close agreement between the results of the 
numerical and analytical solutions. 

4. Liquefaction of saturated granular soils 

The proposed coupled SPH-DEM approach was used to analyze the 
response of loose and dense saturated granular deposits as well as 
modeling gravel drains as a measure to mitigate liquefaction of loose 
sand deposits. In order to realistically model such boundary value 
problems, some tools have been utilized to bring the simulations to a 
manageable size. In this regard, use was made of the high g-level concept 
commonly used in centrifuge testing to decrease the dimensions of the 

Fig. 8. Excess pore pressure profiles at selected time instants for the 
loose deposit. 

Fig. 9. Time histories of volumetric strains at selected depth locations: (a) dense deposit and (b) loose deposit.  

Fig. 10. Time histories of vertical fluid drag force normalized by the average 
particle weight at selected depths. 
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domain that needed to be filled with particles and benefit from a shorter 
simulation time [66]. This approach was found to be very effective in 
DEM simulations to model boundary value problems and has been 
adopted in several applications (e.g. Ref. [23,67]). Additionally, peri
odic boundaries were employed at the four lateral sides of the model for 
both DEM and SPH particles to simulate a repeated pattern in an infinite 
medium with a limited number of particles. The lower boundary, which 
represents the bedrock, was modeled by a rigid wall in DEM and by a 
no-slip, impermeable boundary in SPH. One of the advantages of the 
SPH method is its ability to simulate free surface boundaries without the 
need of special treatments. Therefore, the free surface condition is 
automatically applied to the top boundary by filling the domain with 
fluid particles. The seismic excitations were applied to the fluid and solid 
phases through the base boundaries. 

The simulations were conducted on a 180 mm high (in model units) 
level deposits. The lateral dimensions of the periodic deposits were 
chosen to be 84 × 84 mm. The sand particles size range from 1.5 mm to 

Fig. 11. Shear stress-strain loops at selected depths (the coloring scheme refers to time with dark red being the beginning of shaking and dark blue being the end of 
the shaking): (a) dense deposit and (b) loose deposit. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 12. Time histories of effective stress path at selected depths (the coloring scheme refers to time with dark red being the beginning of shaking and dark blue being 
the end of the shaking): (a) dense deposit and (b) loose deposit. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 13. Time histories of coordination number at the selected depths.  
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2.5 mm, which is close to coarse sand grain size, was used in the creation 
of the deposits. First, the approximate number of particles needed to fill 
the domain was calculated. Then these particles were generated in a 
relatively large space and allowed to settle under the high gravitational 
field of 30 g. The porosity of the final assembly can be controlled by 
applying different values to the local damping and/or adjusting the 
friction coefficient during the particle settlement process. The generated 
particles were spherical, therefore, rolling friction was employed be
tween them to compensate for their non-realistic shapes. High local 
damping and friction coefficients were employed during the settlement 
process to achieve a loose particle packing, then local damping was 
removed and the friction coefficient was brought down to the target 
value. The settled loose assembly of particles was found to have an 
average porosity and saturated unit weight of around 44% and 19.2 kg/

m3, respectively. The local damping and friction coefficients were 
removed during the settlement of particles and were added later to reach 
a dense final state. The dense sand deposit had, respectively, an average 
porosity and saturated unit weight of around 40% and 19.9 kg/ m3. 

To saturate the deposits, a fluid column with a height of 200 mm (in 
model units) and same lateral dimensions as the solid deposit was 
introduced within the periodic domain using SPH particles. The SPH 
particles with the initial spacing and kernel radius of, respectively, 4 mm 

and 8 mm, were introduced into the models to create a 6 m (in prototype 
units) high fluid column and saturate the deposits. The 3D view of the 
saturated loose deposit is shown in Fig. 6. A high prototype fluid vis
cosity of 0.02 Pa s was employed to account for the high gravitational 
field of 30 g and the relatively large particle sizes. For the prototype fluid 
viscosity of 0.02 Pa s and the employed particle size range, the initial 
permeability of the deposit was estimated to be 2.9 mm/s (same order of 
coarse sand permeability when saturated with water) using the Kozeny- 
Carmen equation [68] for the loose deposit and 1.93 mm/s for the dense 
deposit. 

The deposits were subjected to sinusoidal base excitations with 
amplitudes of 0.01 g and 0.25 g and a frequency of 3 Hz with a duration 
of 13 s. The sinusoidal input signal gradually increases until it reaches 
the maximum acceleration amplitude at 4.5 s, where it remains constant 
for an additional 7.5 s before it gradually decreases to zero at 13 s. The 
small amplitude of 0.01 g was selected as an event that was not expected 
to produce any significant deformations in the system. Simulations 
conducted with this amplitude are valuable in the determination of the 
fundamental frequency of the deposit as well as the dynamic soil 
properties (shear wave velocity and low strain shear modulus). The 
maximum amplitude of 0.25 g represents a strong seismic event that 
may induce large deformations and lead to a catastrophic failure. The 
dynamic properties of the saturated loose and dense deposits were 
extracted from the results of the simulations with the maximum 
amplitude of 0.01 g. The shear strains developed within the deposits 
under this weak excitation were negligible (in the order of 10−4%). A 
summary of parameters used in the conducted simulations and proper
ties of the soil deposits are provided in Tables 1 and 2. A comparison 
between the amplification factors at the surface of the loose and dense 
deposits obtained form DEM simulations (maximum acceleration of 
0.01 g) and those of the analytical expression for the transfer of a shear 
wave propagating in linear elastic soil underlain by rigid bedrock [2] is 
shown in Table 3. A fair to good agreement between DEM results and the 
analytical solutions could be concluded form the Table, which further 
validates the proposed SPH-DEM scheme. Note that the highest ampli
fication factors for the loose deposit were for the shaking frequencies of 
5 Hz and 6 Hz, which are close to the fundamental frequency of 5.4 Hz 
for that deposit. The highest amplification factor for the dense deposit 
was for the shaking frequency of 7 Hz, which matches its fundamental 

Fig. 14. Time histories of average horizontal acceleration at the selected depths: (a) dense deposit and (b) loose deposit.  

Fig. 15. Time histories of the surface settlement.  

U. El Shamy and S.F. Sizkow                                                                                                                                                                                                                



Soil Dynamics and Earthquake Engineering 140 (2021) 106460

9

frequency. 
Applying the scaling laws for centrifuge testing results in accelera

tion frequencies and amplitudes that are 30 times higher in the model 
while the duration of the loading is 30 times smaller compared to the 
prototype. Several parameters at various depth locations of the deposit 
were monitored throughout the simulations such as averaged solid and 
fluid particle accelerations, averaged excess pore pressure, packing 
porosity, averaged drag force, stress and strain tensors and coordination 

number. The data was recorded at constant time intervals of 0.0006 s in 
model units (0.018 s in prototype units). The simulation results provided 
in the following sections are in prototype units unless otherwise 
specified. 

4.1. Response of loose and dense deposits 

Soil liquefaction is typically marked by a significant buildup of pore 
pressure and is usually characterized through the pore pressure ratio 
(the ratio between excess pore water pressure and initial vertical 
effective stress). A pore-pressure ratio approaching a value of one in
dicates the excess pressure is counterbalancing the effective stress, 
leading to complete loss of shear strength. This was not the case for the 
dense deposit where the pore pressure ratio did not exceed the value of 
about 0.2 at the 1.8 m depth location and fluctuated between 0 and 0.5 
at the 0.6 m depth location because of dilation at that depth (Fig. 7). At 
deeper depth locations, the pore pressure ratio remained virtually zero. 
In the case of the loose sand deposit, the top half of the loose sand de
posit approached a pore pressure ratio of about 1 and slightly less than 1 
for the bottom half, indicating that the entire deposit practically liqui
fied (Fig. 7). This is also confirmed by the excess pore-pressure profiles 
shown in Fig. 8, which shows the gradual decrease in excess pore 
pressure as water pressure started to dissipated post shaking. 

It is important to highlight the main features of the coupling mech
anism between the fluid and solid particles in the presented SPH-DEM 
technique. Herein, pore pressure develops due to volumetric strains 
(changes in porosity with respect to initial value). The volumetric strains 

Fig. 16. (a) Schematic plan view of the liquefiable zone and configuration of the gravel drains, and (b) Top view of the deposit and the drain in performed 
DEM simulation. 

Fig. 17. Time histories of excess pore water pressure at selected depth locations 
(deposit with the drain). 
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were monitored in performed simulations and are plotted in Fig. 9. In 
the case of dense sand, the magnitude of volumetric strains in the deeper 
depth locations was very small (less than 0.2%) and reached about 
0.75% near the surface (Fig. 9a). This explains why there was no sig
nificant pore pressure buildup in the case of dense sand. The magnitude 
of volumetric strains in the case of loose sand reached values as high as 
3.5%. The reduction in the volume of pore space and subsequent pore 
pressure buildup is in agreement with a more fundamental pore-scale 
modeling using LBM-DEM simulations [33,69]. 

Another important feature of the SPH-DEM framework is that the 
developed pore pressures form pressure gradients as shown in Fig. 8 that 
results in upward drag forces that counterbalance the weight of the 
particles. Fig. 10 shows these drag forces normalized by the weight of 
the particles at different depth locations along the dense and looses 
deposits. A normalized drag force value of one indicates that the fluid is 
essentially carrying the particles and the effective stresses would 
approach zero. In the dense deposit, the normalized drag force was 
about the value corresponding to the submerged state of the particles 
and did not practically increase beyond that level except very near the 
surface. In the loose deposit, the magnitude of the normalized drag force 
approached the value of one at all depth locations except near the base, 
indicating liquefaction has occurred at those upper depth locations. 

Liquefaction is a state of instability that is marked by vanishing 
effective confining pressure and shear stresses as well as the develop
ment of large strains. Fig. 11 shows the shear stress-strains histories for 
the dense and loose sand deposits. Except for the 0.6 m depth location, 
there was no significant reduction in shear stresses and induced shear 
strains for the dense deposit (Fig. 11a). Therefore, shear stiffness 
degradation was minimal for the case of dense sand. A contrasting 
behavior can be seen for the loose deposit where significant reduction in 
shear stresses and stiffness was observed as well as shear strains 
approaching values as large as 0.7% (Fig. 11b). Plots of the effective 
confining stress paths at different depth locations for the two deposits 
are shown in Fig. 12, where there was marginal reduction in effective 
confining pressure in the case of dense sand (Fig. 12a). On the other 
hand, significant reduction in mean confining pressure (completely 
vanishing in top levels) was observed in the case of loose sand (Fig. 12b). 

A different way of looking at the instability encountered during 
liquefaction is to check the particles packing in terms of average number 
of contacts per particle at a specific location in the assembly, which is 
known as the coordination number. The higher the coordination num
ber, the more stable the assembly is and vice versa. A minimum value of 
4 is needed for a stable frictional assembly under static conditions [70]. 
This criterion could be used (as a first approximation) to assess the 

Fig. 18. Excess pore pressure contours at selected time instants (deposit with the drain).  
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stability of the packing as the deposit underwent base shaking. Fig. 13 
shows time histories of the evolution of the coordination number at 
selected depth locations along the dense and loose deposits. The initial 
value of the coordination number was higher for the dense deposit 
compared to the loose deposit. As shaking progressed, significant drop in 
coordination number was observed in the loose deposit compared to the 
dense deposit, which maintained a coordination number higher than 4 
except at the 0.6 m depth location. At that depth, the vertical over
burden pressure is very small and the sand could become instanta
neously unstable during shaking. In practice, the groundwater table will 
be below the ground level and the overburden pressure would be higher 
and it would be unlikely for the dense sand to become unstable. 

The computed horizontal acceleration time histories are shown in 
Fig. 14. The acceleration time histories for the case of the dense sand 
showed amplification as the motion traveled to the surface (Fig. 14a). 
The acceleration vanished for the top half of the loose deposit and 
maintained an amplitude close to the input base motion for the bottom 
half (Fig. 14b). This is because particles in the bottom half did not fully 
lose contact and were still able to transmit the base motion (see Fig. 13). 
Fig. 15 shows the settlement experienced by the dense and loose de
posits by the end of shaking. The total settlement of the dense deposit 

was less than 1 cm, which is considered acceptable from an engineering 
design point of view. The total settlement of the loose deposit was about 
12.5 cm, which is obviously not acceptable for design purposes. 

4.2. Effect of gravel drains 

In order to model the gravel drains, the arrangement shown in 
Fig. 16a, which shows a schematic plan view of the simulated area, was 
considered as a liquefaction mitigation plan. The gravel drains with radii 
of 1.25 m are placed throughout the sand deposit at 2.5 m intervals 
center-to-center. Due to the symmetrical configuration of the drains, a 
small periodic domain enclosing one of the gravel drains was modeled in 
this study (Fig. 16b). The selected periodic domain had a height of 5.4 m 
with lateral dimensions of 2.5 m by 2.5 m (all in prototype units). To 
install the gravel drain, first the sand particles inside a cylinder with a 
diameter of 1.25 m aligned with the vertical central axis of the deposit 
were removed and a hollow cylindrical rigid wall with the same diam
eter was placed inside the hole to support the surrounding soil. The 
gravel particles with the size range of 4.75 mm–6.25 mm were generated 
inside the cylindrical wall and settled under the strong gravitational 
field. Then, the cylindrical wall was removed and the assembly of 

Fig. 19. Relative fluid velocity field at selected time instants (deposit with the drain).  
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Fig. 20. Time histories of volumetric at selected depth locations: (a) inside the gravel drain, and (b) within the surrounding sand.  

Fig. 21. Time histories of normal strains at selected depth locations inside the 
gravel drain. 

Fig. 22. Top views of the gravel drain deposit: (a) before shaking, and (b) after shaking.  

Fig. 23. Time histories of vertical fluid drag force normalized by the average 
particle weight at selected depths (deposit with the drain). 
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particles was allowed to reach equilibrium. Even with the larger particle 
size of the gravel compared to the sand, the permeability of the drain 
was not enough to mitigate the excess pore pressure. Therefore, the 
gravel permeability was increased through a reduction in the fluid drag 
force (in other words, reducing the resistance to flow). According to 
Ergun [65], the pressure gradient can be shown as: 

∇P = 150
(1 − n)

2

n2

μ
d2

p
u + 1.75

1 − n
n

ρ
dp

u|u| (13) 

in which u is the relative fluid velocity. Using Eq. (7) for n ≤ 0.8 we 
obtain: 

u =
n
β

∇P (14) 

It is obvious from Eq. (14) that the permeability of soil is inversely 
related to β. Therefore, in order to further increase the permeability of 
the drain, the interphase momentum exchange coefficient (β) is reduced 
by a factor of 10 inside the drain to artificially increase the permeability. 
The resulting permeability of the gravel drain was about 105 mm/s in 
prototype units, which is almost 36 times higher than the permeability 

of the loose sand deposit. According to the design criteria provided by 
Onoue [71], the arrangement shown in Fig. 16a and the properties of the 
system should effectively reduce the excess pore pressure ratio of the 
sand to values below 0.5. 

Time histories of excess pore-pressure ratio along the depth of the 
drain as well as the neighboring sand are shown in Fig. 17. Compared to 
Fig. 7, there has been considerable reduction in developed pore pressure 
but it was not completely eliminated by the presence of the drain. The 
pressure outside the drain was relatively higher than inside, indicating 
the fluid is migrating into the drain. It was of interest to investigate the 
patterns of fluid pressure and associated migration in the deposit. The 
fluid pressure contours and velocity field are plotted, respectively, in 
Figs. 18 and 19 along a section passing through the center of the drain 
and perpendicular to the direction of shaking. The perpendicular di
rection was selected because the phase lag between the computed 
quantities on a plane in the direction parallel to shaking made it difficult 
to provide meaningful plots. The snapshots of the fluid pressure distri
bution clearly show that the pressure outside the drain is higher, sug
gesting that the fluid motion could be responding to that pressure 
difference (Fig. 18). The snapshots show how the pressure buildup 
continued as the base shaking progressed and reached its maximum at 
about 4.5 s, then started to dissipate from that instant. A sharp reduction 
to almost no excess pore pressure could be noticed at the 12.5 s mark as 
the shaking reduced in amplitude. Fig. 19 depicts the relative, with 
respect to solid particle, fluid velocity vectors (the horizontal velocities 
were scaled up to make them more visible) and clearly indicates that the 
fluid migrated from the parts of the sand close to the drain into the 
gravel drain. The Figure also shows how the amplitude of the relative 
fluid velocities increased as shaking progressed. Fluid velocities inside 
the drain could be seen clearly migrating vertically towards the surface. 
Note that the large amplitude of the vertical velocity inside the drain 
compared to the small amplitude of horizontal velocities is because fluid 
is coming into the drain across the surface area of the cylindrical drain 
(which is more than 17 times higher than the cross sectional area of the 
drain itself). 

The volumetric strains developed inside the gravel drain and the 
surrounding sand are shown in Fig. 20. The gravel experienced mostly 
volume increase, except for the 1.8 depth location that underwent 

Fig. 24. Time histories of coordination number at selected depths (deposit with 
the drain). 

Fig. 25. Time histories of average horizontal acceleration at selected depths: (a) inside the gravel drain, and (b) within the surrounding sand.  

U. El Shamy and S.F. Sizkow                                                                                                                                                                                                                



Soil Dynamics and Earthquake Engineering 140 (2021) 106460

14

contraction (Fig. 20a). The sand on the other hand, showed significant 
contraction at all depth locations (Fig. 20b). Further investigation of the 
volume expansion of the gravel revealed that the expansion is taking 
place in the lateral directions (Fig. 21). That is, the drain expanded 
radially as shaking progressed and the gravel pushed the loose sand 
aside. This is also confirmed from Fig. 22 where it shows a top view of 
the drain before shaking and its expansion post shaking. 

The vertical drag forces exerted by the fluid on the gravel and sand 
particles remained mostly within the submerged fraction of the weight 
of the solid particles (Fig. 23), indicating liquefaction did not occur in 
the sand nor the gravel. This is confirmed by the relatively high values of 
coordination number that remained above the value of 4 at most of the 
depth locations of the sand (expect very near the surface) and all the 
depth locations along the gravel drain (Fig. 24). 

The relatively stable packing of particles demonstrated by the high 
coordination numbers resulted in full transmission of the ground motion 
from the base rock to the surface (Fig. 25). The acceleration amplitude at 
the corresponding depth locations between the gravel and sand were 
comparable as the gravel drains results in a stiffening effect for the 

whole deposit. That is, the motion of the non-liquefied gravel dictated 
the lateral acceleration of the whole deposit. However, there was no sign 
of motion amplification as was the case of the dense sand deposit. 

The shear stress-strain loops indicated stiffness reduction and large 
shear strains at locations near the surface in both the gravel and sand 
portions of the deposit (Fig. 26) without loss of strength. At deeper depth 
locations, the level of strains experienced by the sand were smaller than 
the case with no gravel drain treatment. The effective stress paths at 
different locations along the deposit confirm that there was no loss of 
strength marked by values of effective confining pressure approaching 
zero (Fig. 27). The effective stress path at the depth locations from 1.8 m 
to 4.8 m exhibited an unfamiliar pattern. There was an increase in 
confining pressure as shaking progressed. In addition, the initial 
magnitude of the confining pressure in the sand deposit (Fig. 27b) at 
deep depth location was significantly smaller than the corresponding 
locations in the untreated loose sand (Fig. 12b). This trend continued as 
shaking progressed. The reduction in the stresses in the sand sur
rounding the gravel drain are attributed to the downdrag (also known as 
negative skin friction) imposed by the loose sand on the dense gravel 

Fig. 26. Shear stress-strain loops at selected depths: (a) inside the gravel drain, and (b) within the surrounding sand.  

Fig. 27. Time histories of effective stress path at selected depths: (a) inside the gravel drain, and (b) within the surrounding sand.  
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columns. As the gravel drain was made of dense packing and hence less 
susceptible to further settlement, the sand particles transmitted some of 
their weight to the gravel drain by friction as they underwent further 
settlement after the construction of the drain and during shaking of the 
deposit. 

The total surface settlement of the deposit at points near the surface 
of the drain and the neighboring sand are shown in Fig. 28. The surface 
settlement at the top of the gravel drain was about 9 cm compared to 
about 16 cm at the surface of the sand. One could conclude that the 
overall settlement of the site has slightly improved compared to the 
untreated loose sand deposit (settlement reduced from 12.5 cm to 9 cm), 
since practically the foundation soil would be considered that of the 
gravel drains. However, this improved settlement magnitude still ex
ceeds the acceptable limits by most code provisions. This observation 
agrees with the work of Brennan and Madabhushi [72] who noted that 
settlement can still occur to an unsatisfactory degree when the drains 
were used to remediate the soil under shallow foundations. It should also 
be noted that the settlement of the sand surrounding the drain was 
higher than the untreated site. This is because of the void space that was 
created between the sand and the perimeter of the gravel drain during 
the numerical installation of the drain. In practice, the gravel would 
likely be compacted to ensure high density gravel and further densify the 
surrounding sand. In the performed simulations, it was opted not to 
compact the gravel so that the surrounding sand remain loose as well as 
susceptible to liquefaction, and the effectiveness of the gravel drain 
could be assessed. 

5. Conclusions 

A three-dimensional fully coupled particle-based model is presented 
to evaluate the dynamic response and liquefaction of saturated granular 
deposits and the use of gravel drains as a liquefaction mitigation mea
sure. A microscale idealization of the solid phase is achieved using the 
discrete element method while the fluid phase is modeled using the 
smoothed particle hydrodynamics. In this method, the interstitial pore 
fluid is idealized using averaged Navier-Stokes equations and the fluid- 
particle interaction forces are quantified using well-known semi- 
empirical relationships. The presented model is computationally far less 
demanding compared to the pore-scale level models and its meshless 
nature makes it a powerful tool for analyzing moving boundary, irreg
ularly shaped domains, and free surface problems. A key feature of the 
employed technique is that it does not presume undrained conditions for 
the granular deposit and allows for spatial fluid movements within the 
deposit. The proposed approach was used to model the responses of 

loose and dense granular deposits to seismic excitation as well as 
modeling gravel drains as a measure to mitigate liquefaction hazards. 
The loose deposit experienced liquefaction marked by several response 
mechanisms including excess pore-pressure buildup approaching the 
value of one, increase in the vertical drag forces that counterbalance the 
weight of solid particles, reduction of averaged coordination number 
causing the instability of the packing, diminishing averaged particle 
acceleration time histories, continuous degradation of soil stiffness and 
strength, as well as large surface settlement. The dense deposit, on the 
other hand, barely showed any considerable buildup of pore pressure, 
did not liquefy and developed relatively small surface settlement. The 
installation of gravel drains effectively reduced pore-pressure buildup 
and for the most part the soil maintained its strength. The gravel drains 
experienced radial expansion during shaking as gravel grains pushed the 
loose sand particles aside. Pore pressure distribution showed less pore 
pressure developed in the drain compared to neighboring sand and fluid 
migrating from the sand to the gravel drain. Fluid velocities inside the 
drain were mostly migrating vertically towards the surface. However, 
the presence of the drain did not reduce surface settlement to acceptable 
service limits. It should be noted that these observations pertain only to 
the conditions considered herein and more research is needed to model 
the effect of particle size (for the gravel and sand deposit) as well as the 
effect of compacting the gravel columns on the response of the system. 
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