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Abstract

Comparative transcriptomics, applied in an evolutionary context, has transformed the
possibilities for studying phenotypic evolution in non-model taxa. We review recent discoveries
about the development of novel, ecologically-relevant phenotypes in hemipteran insects. These
discoveries highlight the diverse genomic substrates of novelty: ‘something old’, when novelty
results from changes in the regulation of existing genes or gene duplication; ‘something new’,
wherein lineage-restricted genes contribute to the evolution of new phenotypes; and ‘something
borrowed’, showcasing contributions of horizontal gene transfer to the evolution of novelty,
including carotenoid synthesis (resulting in ‘something red’). These findings show the power and
flexibility of comparative transcriptomic approaches for expanding beyond the ‘toolkit’ model
for the evolution of development. We conclude by raising questions about the relationship
between new genes and new traits and outlining a research framework for answering them in

Hemiptera.

Introduction: Setting the evolutionary and developmental stage

Hemiptera is a fantastically diverse insect clade, with more than 100,000 described
species (Fig. 1). The original motivation for adding a hemipteran to the evo-devo pantheon was
their close relationship to holometabolous insects, allowing inferences about major evolutionary
transitions, such as the origin of complete metamorphosis. More recently, researchers have
begun to analyze the origin of hemipteran-specific traits, including many traits that contributed to
their ecological success. One key innovation underlying their radiation is piercing-sucking
mouthparts. These enabled diversification across feeding niches, which are closely integrated

with the emergence of additional novel phenotypes (e.g., defense mechanisms, polyphenisms,
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and mutualisms) [1,2].

In this review, we highlight recent progress in identifying the developmental basis for
novel traits of ecological and evolutionary significance across Hemiptera. We begin with a brief
overview of the shift from candidate genes to comparative transcriptomics as a starting point for
research, which has enabled rapid progress on understanding the origin of a wide range of traits.
These discoveries not only confirm the varied ways in which ‘old’ genes are reused, but also
show the importance of new genes and genes acquired through horizontal gene transfer in the
evolution of novelty. In Hemiptera, the supply of these latter two genomic substrates for novelty
is likely enhanced by extensive biotic interactions linked to their feeding habits and dynamic
genomes. In the concluding section, we expand our focus from questions about the origin of
particular traits to testing broader hypotheses about the relationship between new genes and the

evolution and development of phenotypic novelty.

From Candidate Gene Approaches to Comparative Transcriptomics:

A foundational discovery in evo-devo was the existence of an evolutionarily ancient,
highly conserved developmental toolkit. This led to an early, productive research paradigm based
on candidate genes, which identified myriad instances in which ‘old” genes deployed in new
contexts can lead to novelty [3]. For example, Hox genes are natural candidates for regulation of
segment-specific phenotypes. In hemipterans, loss of a highly conserved Hox gene expression
domain underlies evolution of their unique fluid-feeding mouthparts (Fig. 1j) [4] while the
appearance of novel Hox gene expression domains is an early step in bacteriocyte development
(Fig. 1h,i) [5,6]. These specialized abdominal cells are another hemipteran key innovation,

housing endosymbionts essential for sap-feeding bugs. Interestingly, regulation of bacteriocyte
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development by Hox genes is inferred to have followed the same complex history as
bacteriocytes (Fig. 1a), with origin, loss and reevolution tracing shifts from plant-feeding to
predation and back to plant-feeding [6].

More recently, transcriptomic comparisons have provided a way to survey the full
repertoire of gene expression to discover the sources of novelty without a priori assumptions
about the developmental genetic basis for change [7-9]. The general approach is adaptable to a
wide range of novel traits, including the developmental basis of phenotypic plasticity [9-11].
Because the approach requires little taxon-specific customization, it is also widely applicable
across taxa. In Box 1, we distill this research approach into four key steps (comparative
transcriptomics, filtering of differentially expressed genes, evolutionary validation, and
developmental validation). A recurrent theme, illustrated by recent studies, is the increased
power provided by using multiple transcriptomic comparisons. This research approach provides
a flexible, powerful way to rapidly identify loci contributing to the extensive morphological,

ecological and physiological novelty within Hemiptera.

Novelty from Old Genes:

Co-option, the deployment of an ancestral gene or gene regulatory network in a new
developmental context, is one way in which ‘old’ genes can produce novel phenotypes. Two
recent studies showcase the use of transcriptomic comparisons to test hypotheses about the role
of large-scale cooption in generating phenotypic novelty. Large globular cells (LGC) of gall-
forming social aphids are a novel defensive cell type with an unusual combination of properties
[12] (**). When a breach in the gall occurs, aphid soldiers ‘explosively’ discharge bodily fluid

containing LGCs that burst, then spread the fluid over the breach. Melanization of the resulting
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lipid ‘clot’ reseals the gall. Comparisons across multiple cell types support the hypothesis that
LGCs have evolved from hemocytes (an ancestral immune cell type) via upregulation of the
wound-healing (melanization) pathway and cooption of lipid synthesis pathways that were
expressed ancestrally in fat body cells. This colony-level defensive trait thus results from
externalization of an individual-level immune system process [12] (**).

The charismatic hemipteran lineage Membracidae (treehoppers) is best known for its
striking array of ‘helmets’, a novel three-dimensional projection of the pronotal body wall that
functions in defense (Fig. Im,n). Transcriptomic comparisons across body regions in two taxa
supported the hypothesis that the helmet evolved via cooption of wing-patterning genes [8] (**).
In the treehoppers, gene expression in the pronotal helmet was divergent from that in its serial
homologue, the mesonotum, but similar to gene expression in wings. In a leathopper, a helmet-
less relative of treehoppers, pronotal gene expression most closely resembled mesonotal
expression. [8] (**).

A novel trait that has arisen repeatedly across insects is wing polyphenism, reflecting a
trade-off between investment in dispersal (long-winged form) and reproduction (short-
winged/wingless form). In aphids, transcriptomic comparisons led to identification of a single
microRNA that acted as a developmental switch regulating offspring wing phenotype in response
to maternal crowding [10] (*). Crowding lowered expression of this evolutionarily highly
conserved miRNA, miR-9b, which targets a transporter gene mRNA. The resulting increase in
transporter gene expression in fat bodies shifted development to the long-winged form via
increased insulin signaling (Fig. 2), an ancestral, environmentally-responsive metazoan signaling
pathway [10] (*). Two other links between environmental determinants of wing phenotype and

insulin signaling have been discovered in the planthopper Nilaparvata lugens [13,14] (Fig. 2), a
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hemipteran with an independently evolved wing polyphenism. These studies give mechanistic
insight into the evolutionarily recurrent role of the insulin signaling pathway as an integrator of
environmental signals regulating polyphenisms in hemipterans [15—18] and insects more broadly
[19].

Gene duplication provides another common route to the origin of novel traits from ‘old’
genes. In Hemiptera, which show a high rate of gene duplication [20—22], a recurring theme is
the role of duplication followed by neofunctionalization in the origin of new salivary enzymes.
These enzymes have enabled ecological host switching, host range expansion and acquisition of
new feeding strategies such as blood-feeding [23,24]. For example, neofunctionalization of
proteases has led to venoms and digestive secretions in predatory bugs [25]. Other examples of
strikingly enlarged gene families include genes encoding defensive cysteine-rich peptides that
have undergone independent expansion in aphids [26] and assassin bugs [27], and genes
encoding stylet cuticular proteins [28,29]. In the peach aphid Myzus persicae, the gene family
encoding RR-2 hard cuticular proteins is greatly expanded and environmentally regulated. On
switching to a new host, changes in expression of RR-2 genes occur rapidly at the plant fluid-
insect interface, in an aphid-specific organ at the tip of the maxillary stylets. This plasticity

contributes to the host-switching success of this rare true generalist sap feeder [30] (**).

Novelty from New Genes:

Gene duplication helps bridge the divide between ‘old” and ‘new’ genes. New genes may
originate by relaxed selection and accelerated evolution or the gain or loss of protein domains
that is enabled by gene duplication [31]. New genes may also be derived de novo from non-

coding sequence [32]. The increasingly dense sampling of hemipteran genomes reveals that they
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are dynamic, and incorporate a substantial proportion of genes that lack detectable orthology
outside the species or lineage [21,33-35]. A broad comparative analysis found that ‘new’, taxon-
restricted, genes are more prevalent in hemipterans than in most other insects [36].

Comparative transcriptomic approaches have led to an increasing appreciation for the
role of new genes in the origin of hemipteran novelties. In an elegant study, Santos et al. [7] (**)
identified a paralogous pair of taxon-restricted genes required for the development of a novel leg
fan in water striders in the genus Rhagovelia (Fig. 1k,1). This fan enabled locomotion on the
surface of fast-flowing streams. Loss-of-function analyses showed that two genes (mother of
geisha, a likely hemipteran-specific gene, and geisha, its divergent Rhagovelia-restricted
descendant) are essential for fan initiation and that they have a spatially-restricted expression
domain where the fan develops. Evolutionary comparisons confirmed that relatives of these
genes were not similarly expressed in closely related species lacking a fan [7] (**). Chen et al.
[11] (*) offer an interesting physiological counterpart, also suggesting the importance of new
genes for evolution into new adaptive zones. They discovered a family of long non-coding RNAs
that lacked detectable orthologues outside of aphids (named Ya genes). This gene family formed
a co-expression module that was differentially expressed across host plant species in the
generalist peach aphid. Functional analyses showed that aphids inject a subset of the Ya
transcripts into plants, where they are transported systemically, ultimately having an effect on the

plant that increases aphid fitness [11] (*).

Novelty from Borrowed Genes (including something red):
Genes that are ‘new’ for a focal lineage may also be borrowed via horizontal gene transfer

(HGT), the asexual acquisition of genetic material from a distantly related lineage. A



164  biologically intimate relationship between the donor and recipient appears to be a key facilitator
165 of HGT [37]. HGT may be more prevalent and thus more likely to contribute to novelty in

166  hemipterans than in many other arthropod taxa because of their large number of biologically
167 intimate relationships (Fig 1b-e), including with endosymbionts, host plants, and fungi and

168  viruses associated with those hosts.

169 Bacteria and viruses provide a significant source of novel genes that have conferred novel
170  traits on bugs. Often, these “borrowed” genes continue to perform their ancestral function.

171  Examples include the acquisition of biotin synthesis genes in whiteflies [38], peptidases in the
172 blood feeder Rhodnius prolixus [23], and some genes for amino acid and peptidoglycan

173 biosynthesis in mealybugs which continue to function in concert with other bacterial genes

174  present in their endosymbionts [39,40]. More remarkable is the acquisition by aphids of a

175  prokaryotic gene encoding a eukaryotic cell toxin, which aphids deploy as an effective defense
176  against parasitoids [41] (*).

177 A recently discovered example of HGT from a virus to an aphid provides a fascinating
178  instance of an evolutionary transfer of a developmental regulatory function accompanying HGT.
179  Using transcriptomic comparisons between aphid genotypes that differed in their propensity to
180  develop wings in response to maternal crowding, five genes were identified that were

181  upregulated in the most inducible genotypes but not in those that were the least inducible [9]

182  (**). Two of these genes (named Apns-1 and Apns-2) proved to be of viral origin, but were

183  incorporated into the aphid genome [9] (**). Remarkably, the closest known viral relatives of
184  these genes also regulate aphid wing development, but under viral control rather than in response
185  to environmental conditions sensed by the aphids [42]. How these genes interact with other

186  components of the developmental switch regulating the wing polyphenism and how their



187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

expression is regulated within the aphid genome are not yet known.

Although much rarer, HGT from eukaryotes has also led to hemipteran novelties. Aphids
and their close relatives are one of only a handful of metazoan taxa that synthesize carotenoids.
This ability resulted from HGT of multiple carotenoid biosynthesis genes from a fungus to an
ancestor of aphids and phylloxerids [21,43,44]. One phenotypic manifestation is a conserved
red/green color polymorphism (Fig. 1f,g) [43] and carotenoid expression affects aphid fitness
[45]. Another example involves a gene encoding a plant cell wall-degrading enzyme
(polygalacturonase) that was transferred from fungi to the bug family Miridae [46]. The
duplicated descendants of this gene are highly expressed in the salivary glands, increasing
nutrient acquisition in this lineage that reverted to plant-feeding from a predaceous ancestor [47].
Recent evidence also demonstrates HGT from plants to an ancestor whiteflies of a highly

expressed gene that inactivates 28S rRNA [48].

Conclusion and future prospects:

True bugs (Hemiptera) are characterized by extensive morphological and ecological
diversity, repeated independent origins of many traits, including adaptive phenotypic plasticity,
and molecular communication with a diverse array of intimate associates. As many of the
examples highlighted above demonstrate, transcriptomic approaches combined with evolutionary
and developmental validation provide a way to identify candidate genes and pathways
underlying ecologically important novelties, even without prior knowledge about development in
the system (Box 1). This approach has led to the discovery that both new genes and ‘borrowed’
genes are frequently involved in the evolution of new ecologically important traits, while also

confirming the role of ‘old’ genes initially demonstrated through a candidate-gene approach.
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These discoveries set the stage for additional work to fully link developmental changes to
phenotypic novelty in systems in which ecological consequences of the phenotype are often
accessible for study [7,11,30].

To date, the contributions of new and borrowed genes to novelty have been discovered
serendipitously through research seeking to understand the origin of specific hemipteran traits.
The repeated association of novel genes and novel phenotypes observed in hemipterans [7,11]
and other taxa [49,50] stimulates questions about whether facets of this relationship are
predictable. Evidence that new genes originated at higher rates in lineages undergoing more
radical morphological transformations [51] also motivate the hypothesis of a non-random
association between new genes and new traits. Are new genes more likely than evolutionarily
older (or younger) genes to regulate development of traits that arose along the same branch of the
evolutionary tree? Do the developmental functions of new genes differ in new versus old traits?
Do the developmental functions of new versus old genes differ in consistent ways? Are new
genes more likely to become integrated at particular points in developmental networks, as
suggested by different degrees of transcriptomic conservatism through time [52,53]? Systematic
testing of these hypotheses about the developmental and evolutionary consequences of novel
genes can be done by comparing the expression or function of new and ‘control’ genes in a
comparative context (Fig. 3). Because of their high frequency of taxonomically-restricted genes

[21,33,35,36], hemipterans provide a model clade for such systematic tests.
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Box 1: Experimental Approaches

Transcriptomic comparisons, combined with phylogenetic information and functional
analyses, provide a way to rapidly identify interesting candidate loci underlying the extensive
morphological, ecological and physiological novelty within Hemiptera. Generalizing from recent
studies, we distill this approach into four key steps. For each step, we provide an overview of
methodological considerations and examples of successful applications.

Step 1—Comparative RNAseq (panel a). Characterize gene expression in forms with and
without the focal trait at relevant developmental stages; if possible, incorporate multiple
comparisons. Informative comparisons may come from serial homologues [7,8], direct
homologues [8], relatives raised in different environments [9,11,30], individuals representing
extremes of variation within a population [9], and non-homologous body regions that share some
features with the focal trait [8,12].

Step 2—Candidate gene identification (panel b). Identify genes that are differentially
expressed (DE) and filter to identify likely candidates. A common challenge is that the number
of DE genes can be quite large. Multiple comparisons (e.g., between both serial and direct
homologues) can greatly narrow the candidate set [7,8,16]; other approaches to filtering include
expression screening [7], identification of coregulated gene modules associated with the novel
trait [11], and testing bioinformatically for overrepresented pathways and functions [8,16].

Step 3—Evolutionary validation (panel c). Map the developmental change on a phylogenetic
tree by characterizing candidate gene expression (or presence) in select taxa. The developmental
change and the novel trait should occur on the same branch of the phylogenetic tree. The
strongest support requires analysis of multiple ingroup taxa, representatives of the closest

outgroup taxon, and a more distant outgroup [7].
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Step 4—Developmental validation (panel d). Use functional manipulations to test role of the
candidate gene or pathway in development of the novel trait. Here, RNAi (reviewed in [54,55]
and CRISPR/Cas-9 genome editing have been transformative, because they work with minimal
modifications across diverse hemipteran taxa. Strategies to reduce non-specific dSRNA
degradation may be necessary to enhance RNA1 success in aphids and planthoppers [56—59].
CRISPR/Cas-9 success rates shown for injected individuals (G0) and next generation (G1) [60—
62]. Photo of O. fasciatus by David Hill (used under CC BY 2.0 license). Step 4 RNAi panel

created with Biorender.com.

Figure 1: Hemipteran diversity and novelty

(a) Phylogenetic tree (following [1]) highlighting major groups of hemipterans and several
morphological novelties discussed in the text. (b-g) Examples of ecological interactions shaping
evolution in Hemiptera, including (b) sap-feeding aphids; (c¢) mutualism between woolly alder
aphid (Prociphilus tessellatus) and ants; (d) plant galls induced by elm sack gall aphids
(Tetraneura ulmi) and (e) grape phylloxerids (Daktulosphaira vitifoliae); (f, g) pea aphid
(Acyrthosiphon pisum) color polymorphism resulting from horizontal gene transfer of carotenoid
genes from a fungus. (h-n) Novel traits discussed in the review; (h) early stage pea aphid embryo
in mother’s ovariole shows developing bacteriocytes (white arrow) expressing Ubx/abd-A (blue)
prior to germ band extension; red arrow indicates endosymbionts; green is phalloidin; (i)
bacteriocytes (bc, bug nuclei stained blue) harboring endosymbionts (stained green) in the seed
bug Nysius; (j) scanning electron micrograph of piercing-sucking mouthparts of a lace bug
(Stephanitis nashi), with grooved labium (Lb) supporting the mandibular and maxillary stylets
(Sf); Lm-labrum; (k) increased leg lengths enable water striders to locomote on the water

surface; (1) one lineage, Rhagovelia, has evolved novel fans on the middle legs that allow surface
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510  locomotion in fast-flowing currents; (m, n) treehopper helmets are a novel three-dimensional
511  outgrowth that may function in defense and that take on a wide array of shapes as shown by (m)
512 Cladonota machinula and (n) Entylia carinata. Image credits and bug IDs: (a) insect silhouettes
513  from PhyloPic.org; heteropteran copyright Dave Angelini (CC-BY-3); (b) Paul Eisenberg (CC
514  BY 2.0); (c-e,m) Judy Gallagher (CC BY 2.0); (f) Shipher Wu; (g) N. Gerardo; (h) PLoS Open-
515  Access license; from [5]; (i) from [63], permission pending; (j) [64] by permission; (k) David
516  Hill (CC BY 2.0); (1) A. Khila, permission request pending; (f,g,n): public domain.

517
518  Figure 2: Environmental effects on insulin signaling regulate wing polyphenisms.

519  The insulin signaling pathway plays a role in environmentally-cued switching between wing
520  forms, regulating the propensity to develop as a long-winged or short-winged/wingless

521  individual depending on environmental conditions. Recent studies have identified how different
522  environmental triggers interface with insulin signaling at different points in the signaling

523  pathway, with crowding [10] (*) and low diet quality [13] switching development to the

524  dispersive form and wounding switching development to the short-winged form [14]. Colors
525  indicate which wing form (blue-long; red-short) is promoted by the environmental condition or
526  gene activity in the brown planthopper, Nilaparvata lugens [18]. N. lugens images from

527  Bugwood.org, used with permission.

528

529  Figure 3: Comparative approach for testing hypotheses about the developmental role of
530  new genes
531  The association of new genes with new traits is an intriguing pattern, but it is unclear whether the

532 pattern is evolutionarily significant. Several predictions related to this pattern are shown; opacity
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of circles reflects relative proportion of genes predicted to function in a given context; color
represents evolutionary age (purple—‘control’ genes with orthology across insects; red—‘new’
hemipteran genes; orange—genes restricted to particular lineages within Hemiptera). For
example, are new genes more likely to function in the development of novel morphologies than
ancestral morphologies? A rigorous test would examine expression and function of a set of new
in both a novel trait and an evolutionarily older control trait, such as derived versus ancestral
features of hemipteran mouthparts (MP) (compare i versus ii). In that case, one might also
predict that their function in novel morphologies is more conserved (as shown by greater
variation across taxa in i versus ii). Second, taxon-restricted (‘new’) genes may be more likely
than control genes to function in the development of taxon-restricted (‘new’) traits (compare i

versus iii); the same contrast would not be expected in control traits (ii versus iv).
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