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Abstract 26 

Comparative transcriptomics, applied in an evolutionary context, has transformed the 27 

possibilities for studying phenotypic evolution in non-model taxa. We review recent discoveries 28 

about the development of novel, ecologically-relevant phenotypes in hemipteran insects. These 29 

discoveries highlight the diverse genomic substrates of novelty: ‘something old’, when novelty 30 

results from changes in the regulation of existing genes or gene duplication; ‘something new’, 31 

wherein lineage-restricted genes contribute to the evolution of new phenotypes; and ‘something 32 

borrowed’, showcasing contributions of horizontal gene transfer to the evolution of novelty, 33 

including carotenoid synthesis (resulting in ‘something red’). These findings show the power and 34 

flexibility of comparative transcriptomic approaches for expanding beyond the ‘toolkit’ model 35 

for the evolution of development. We conclude by raising questions about the relationship 36 

between new genes and new traits and outlining a research framework for answering them in 37 

Hemiptera.  38 

 39 

Introduction: Setting the evolutionary and developmental stage 40 

 Hemiptera is a fantastically diverse insect clade, with more than 100,000 described 41 

species (Fig. 1). The original motivation for adding a hemipteran to the evo-devo pantheon was 42 

their close relationship to holometabolous insects, allowing inferences about major evolutionary 43 

transitions, such as the origin of complete metamorphosis. More recently, researchers have 44 

begun to analyze the origin of hemipteran-specific traits, including many traits that contributed to 45 

their ecological success. One key innovation underlying their radiation is piercing-sucking 46 

mouthparts. These enabled diversification across feeding niches, which are closely integrated 47 

with the emergence of additional novel phenotypes (e.g., defense mechanisms, polyphenisms, 48 
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and mutualisms) [1,2].  49 

 In this review, we highlight recent progress in identifying the developmental basis for 50 

novel traits of ecological and evolutionary significance across Hemiptera. We begin with a brief 51 

overview of the shift from candidate genes to comparative transcriptomics as a starting point for 52 

research, which has enabled rapid progress on understanding the origin of a wide range of traits. 53 

These discoveries not only confirm the varied ways in which ‘old’ genes are reused, but also 54 

show the importance of new genes and genes acquired through horizontal gene transfer in the 55 

evolution of novelty. In Hemiptera, the supply of these latter two genomic substrates for novelty 56 

is likely enhanced by extensive biotic interactions linked to their feeding habits and dynamic 57 

genomes. In the concluding section, we expand our focus from questions about the origin of 58 

particular traits to testing broader hypotheses about the relationship between new genes and the 59 

evolution and development of phenotypic novelty. 60 

 61 

From Candidate Gene Approaches to Comparative Transcriptomics: 62 

 A foundational discovery in evo-devo was the existence of an evolutionarily ancient, 63 

highly conserved developmental toolkit. This led to an early, productive research paradigm based 64 

on candidate genes, which identified myriad instances in which ‘old’ genes deployed in new 65 

contexts can lead to novelty [3]. For example, Hox genes are natural candidates for regulation of 66 

segment-specific phenotypes. In hemipterans, loss of a highly conserved Hox gene expression 67 

domain underlies evolution of their unique fluid-feeding mouthparts (Fig. 1j) [4] while the 68 

appearance of novel Hox gene expression domains is an early step in bacteriocyte development 69 

(Fig. 1h,i) [5,6]. These specialized abdominal cells are another hemipteran key innovation, 70 

housing endosymbionts essential for sap-feeding bugs. Interestingly, regulation of bacteriocyte 71 
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development by Hox genes is inferred to have followed the same complex history as 72 

bacteriocytes (Fig. 1a), with origin, loss and reevolution tracing shifts from plant-feeding to 73 

predation and back to plant-feeding [6]. 74 

 More recently, transcriptomic comparisons have provided a way to survey the full 75 

repertoire of gene expression to discover the sources of novelty without a priori assumptions 76 

about the developmental genetic basis for change [7–9]. The general approach is adaptable to a 77 

wide range of novel traits, including the developmental basis of phenotypic plasticity [9–11]. 78 

Because the approach requires little taxon-specific customization, it is also widely applicable 79 

across taxa. In Box 1, we distill this research approach into four key steps (comparative 80 

transcriptomics, filtering of differentially expressed genes, evolutionary validation, and 81 

developmental validation). A recurrent theme, illustrated by recent studies, is the increased 82 

power provided by using multiple transcriptomic comparisons. This research approach provides 83 

a flexible, powerful way to rapidly identify loci contributing to the extensive morphological, 84 

ecological and physiological novelty within Hemiptera.   85 

 86 

Novelty from Old Genes: 87 

 Co-option, the deployment of an ancestral gene or gene regulatory network in a new 88 

developmental context, is one way in which ‘old’ genes can produce novel phenotypes. Two 89 

recent studies showcase the use of transcriptomic comparisons to test hypotheses about the role 90 

of large-scale cooption in generating phenotypic novelty. Large globular cells (LGC) of gall-91 

forming social aphids are a novel defensive cell type with an unusual combination of properties 92 

[12] (**). When a breach in the gall occurs, aphid soldiers ‘explosively’ discharge bodily fluid 93 

containing LGCs that burst, then spread the fluid over the breach. Melanization of the resulting 94 
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lipid ‘clot’ reseals the gall. Comparisons across multiple cell types support the hypothesis that 95 

LGCs have evolved from hemocytes (an ancestral immune cell type) via upregulation of the 96 

wound-healing (melanization) pathway and cooption of lipid synthesis pathways that were 97 

expressed ancestrally in fat body cells. This colony-level defensive trait thus results from 98 

externalization of an individual-level immune system process [12] (**).  99 

 The charismatic hemipteran lineage Membracidae (treehoppers) is best known for its 100 

striking array of ‘helmets’, a novel three-dimensional projection of the pronotal body wall that 101 

functions in defense (Fig. 1m,n). Transcriptomic comparisons across body regions in two taxa 102 

supported the hypothesis that the helmet evolved via cooption of wing-patterning genes [8] (**). 103 

In the treehoppers, gene expression in the pronotal helmet was divergent from that in its serial 104 

homologue, the mesonotum, but similar to gene expression in wings. In a leafhopper, a helmet-105 

less relative of treehoppers, pronotal gene expression most closely resembled mesonotal 106 

expression. [8] (**). 107 

 A novel trait that has arisen repeatedly across insects is wing polyphenism, reflecting a 108 

trade-off between investment in dispersal (long-winged form) and reproduction (short-109 

winged/wingless form). In aphids, transcriptomic comparisons led to identification of a single 110 

microRNA that acted as a developmental switch regulating offspring wing phenotype in response 111 

to maternal crowding [10] (*). Crowding lowered expression of this evolutionarily highly 112 

conserved miRNA, miR-9b, which targets a transporter gene mRNA. The resulting increase in 113 

transporter gene expression in fat bodies shifted development to the long-winged form via 114 

increased insulin signaling (Fig. 2), an ancestral, environmentally-responsive metazoan signaling 115 

pathway [10] (*). Two other links between environmental determinants of wing phenotype and 116 

insulin signaling have been discovered in the planthopper Nilaparvata lugens [13,14] (Fig. 2), a 117 
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hemipteran with an independently evolved wing polyphenism. These studies give mechanistic 118 

insight into the evolutionarily recurrent role of the insulin signaling pathway as an integrator of 119 

environmental signals regulating polyphenisms in hemipterans [15–18] and insects more broadly 120 

[19]. 121 

 Gene duplication provides another common route to the origin of novel traits from ‘old’ 122 

genes. In Hemiptera, which show a high rate of gene duplication [20–22], a recurring theme is 123 

the role of duplication followed by neofunctionalization in the origin of new salivary enzymes. 124 

These enzymes have enabled ecological host switching, host range expansion and acquisition of 125 

new feeding strategies such as blood-feeding [23,24]. For example, neofunctionalization of 126 

proteases has led to venoms and digestive secretions in predatory bugs [25]. Other examples of 127 

strikingly enlarged gene families include genes encoding defensive cysteine-rich peptides that 128 

have undergone independent expansion in aphids [26] and assassin bugs [27], and genes 129 

encoding stylet cuticular proteins [28,29]. In the peach aphid Myzus persicae, the gene family 130 

encoding RR-2 hard cuticular proteins is greatly expanded and environmentally regulated. On 131 

switching to a new host, changes in expression of RR-2 genes occur rapidly at the plant fluid-132 

insect interface, in an aphid-specific organ at the tip of the maxillary stylets. This plasticity 133 

contributes to the host-switching success of this rare true generalist sap feeder [30] (**).  134 

 135 

Novelty from New Genes: 136 

 Gene duplication helps bridge the divide between ‘old’ and ‘new’ genes. New genes may 137 

originate by relaxed selection and accelerated evolution or the gain or loss of protein domains 138 

that is enabled by gene duplication [31]. New genes may also be derived de novo from non-139 

coding sequence [32]. The increasingly dense sampling of hemipteran genomes reveals that they 140 
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are dynamic, and incorporate a substantial proportion of genes that lack detectable orthology 141 

outside the species or lineage [21,33–35]. A broad comparative analysis found that ‘new’, taxon-142 

restricted, genes are more prevalent in hemipterans than in most other insects [36].  143 

 Comparative transcriptomic approaches have led to an increasing appreciation for the 144 

role of new genes in the origin of hemipteran novelties. In an elegant study, Santos et al. [7] (**) 145 

identified a paralogous pair of taxon-restricted genes required for the development of a novel leg 146 

fan in water striders in the genus Rhagovelia (Fig. 1k,l). This fan enabled locomotion on the 147 

surface of fast-flowing streams. Loss-of-function analyses showed that two genes (mother of 148 

geisha, a likely hemipteran-specific gene, and geisha, its divergent Rhagovelia-restricted 149 

descendant) are essential for fan initiation and that they have a spatially-restricted expression 150 

domain where the fan develops. Evolutionary comparisons confirmed that relatives of these 151 

genes were not similarly expressed in closely related species lacking a fan [7] (**). Chen et al. 152 

[11] (*) offer an interesting physiological counterpart, also suggesting the importance of new 153 

genes for evolution into new adaptive zones. They discovered a family of long non-coding RNAs 154 

that lacked detectable orthologues outside of aphids (named Ya genes). This gene family formed 155 

a co-expression module that was differentially expressed across host plant species in the 156 

generalist peach aphid. Functional analyses showed that aphids inject a subset of the Ya 157 

transcripts into plants, where they are transported systemically, ultimately having an effect on the 158 

plant that increases aphid fitness [11] (*).  159 

 160 

Novelty from Borrowed Genes (including something red): 161 

Genes that are ‘new’ for a focal lineage may also be borrowed via horizontal gene transfer 162 

(HGT), the asexual acquisition of genetic material from a distantly related lineage. A 163 
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biologically intimate relationship between the donor and recipient appears to be a key facilitator 164 

of HGT [37]. HGT may be more prevalent and thus more likely to contribute to novelty in 165 

hemipterans than in many other arthropod taxa because of their large number of biologically 166 

intimate relationships (Fig 1b-e), including with endosymbionts, host plants, and fungi and 167 

viruses associated with those hosts.  168 

 Bacteria and viruses provide a significant source of novel genes that have conferred novel 169 

traits on bugs. Often, these “borrowed” genes continue to perform their ancestral function. 170 

Examples include the acquisition of biotin synthesis genes in whiteflies [38], peptidases in the 171 

blood feeder Rhodnius prolixus [23], and some genes for amino acid and peptidoglycan 172 

biosynthesis in mealybugs which continue to function in concert with other bacterial genes 173 

present in their endosymbionts [39,40]. More remarkable is the acquisition by aphids of a 174 

prokaryotic gene encoding a eukaryotic cell toxin, which aphids deploy as an effective defense 175 

against parasitoids [41] (*).  176 

 A recently discovered example of HGT from a virus to an aphid provides a fascinating 177 

instance of an evolutionary transfer of a developmental regulatory function accompanying HGT. 178 

Using transcriptomic comparisons between aphid genotypes that differed in their propensity to 179 

develop wings in response to maternal crowding, five genes were identified that were 180 

upregulated in the most inducible genotypes but not in those that were the least inducible [9] 181 

(**). Two of these genes (named Apns-1 and Apns-2) proved to be of viral origin, but were 182 

incorporated into the aphid genome [9] (**). Remarkably, the closest known viral relatives of 183 

these genes also regulate aphid wing development, but under viral control rather than in response 184 

to environmental conditions sensed by the aphids [42]. How these genes interact with other 185 

components of the developmental switch regulating the wing polyphenism and how their 186 
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expression is regulated within the aphid genome are not yet known. 187 

 Although much rarer, HGT from eukaryotes has also led to hemipteran novelties. Aphids 188 

and their close relatives are one of only a handful of metazoan taxa that synthesize carotenoids. 189 

This ability resulted from HGT of multiple carotenoid biosynthesis genes from a fungus to an 190 

ancestor of aphids and phylloxerids [21,43,44]. One phenotypic manifestation is a conserved 191 

red/green color polymorphism (Fig. 1f,g) [43] and carotenoid expression affects aphid fitness 192 

[45]. Another example involves a gene encoding a plant cell wall-degrading enzyme 193 

(polygalacturonase) that was transferred from fungi to the bug family Miridae [46]. The 194 

duplicated descendants of this gene are highly expressed in the salivary glands, increasing 195 

nutrient acquisition in this lineage that reverted to plant-feeding from a predaceous ancestor [47]. 196 

Recent evidence also demonstrates HGT from plants to an ancestor whiteflies of a highly 197 

expressed gene that inactivates 28S rRNA [48]. 198 

 199 

Conclusion and future prospects: 200 

True bugs (Hemiptera) are characterized by extensive morphological and ecological 201 

diversity, repeated independent origins of many traits, including adaptive phenotypic plasticity, 202 

and molecular communication with a diverse array of intimate associates. As many of the 203 

examples highlighted above demonstrate, transcriptomic approaches combined with evolutionary 204 

and developmental validation provide a way to identify candidate genes and pathways 205 

underlying ecologically important novelties, even without prior knowledge about development in 206 

the system (Box 1). This approach has led to the discovery that both new genes and ‘borrowed’ 207 

genes are frequently involved in the evolution of new ecologically important traits, while also 208 

confirming the role of ‘old’ genes initially demonstrated through a candidate-gene approach. 209 
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These discoveries set the stage for additional work to fully link developmental changes to 210 

phenotypic novelty in systems in which ecological consequences of the phenotype are often 211 

accessible for study [7,11,30]. 212 

To date, the contributions of new and borrowed genes to novelty have been discovered 213 

serendipitously through research seeking to understand the origin of specific hemipteran traits. 214 

The repeated association of novel genes and novel phenotypes observed in hemipterans [7,11] 215 

and other taxa [49,50] stimulates questions about whether facets of this relationship are 216 

predictable. Evidence that new genes originated at higher rates in lineages undergoing more 217 

radical morphological transformations [51] also motivate the hypothesis of a non-random 218 

association between new genes and new traits. Are new genes more likely than evolutionarily 219 

older (or younger) genes to regulate development of traits that arose along the same branch of the 220 

evolutionary tree? Do the developmental functions of new genes differ in new versus old traits? 221 

Do the developmental functions of new versus old genes differ in consistent ways? Are new 222 

genes more likely to become integrated at particular points in developmental networks, as 223 

suggested by different degrees of transcriptomic conservatism through time [52,53]? Systematic 224 

testing of these hypotheses about the developmental and evolutionary consequences of novel 225 

genes can be done by comparing the expression or function of new and ‘control’ genes in a 226 

comparative context (Fig. 3). Because of their high frequency of taxonomically-restricted genes 227 

[21,33,35,36], hemipterans provide a model clade for such systematic tests.  228 

 229 
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Box 1: Experimental Approaches 463 

 Transcriptomic comparisons, combined with phylogenetic information and functional 464 

analyses, provide a way to rapidly identify interesting candidate loci underlying the extensive 465 

morphological, ecological and physiological novelty within Hemiptera. Generalizing from recent 466 

studies, we distill this approach into four key steps. For each step, we provide an overview of 467 

methodological considerations and examples of successful applications. 468 

Step 1—Comparative RNAseq (panel a). Characterize gene expression in forms with and 469 

without the focal trait at relevant developmental stages; if possible, incorporate multiple 470 

comparisons. Informative comparisons may come from serial homologues [7,8], direct 471 

homologues [8], relatives raised in different environments [9,11,30], individuals representing 472 

extremes of variation within a population [9], and non-homologous body regions that share some 473 

features with the focal trait [8,12].  474 

Step 2—Candidate gene identification (panel b). Identify genes that are differentially 475 

expressed (DE) and filter to identify likely candidates. A common challenge is that the number 476 

of DE genes can be quite large. Multiple comparisons (e.g., between both serial and direct 477 

homologues) can greatly narrow the candidate set [7,8,16]; other approaches to filtering include 478 

expression screening [7], identification of coregulated gene modules associated with the novel 479 

trait [11], and testing bioinformatically for overrepresented pathways and functions [8,16].  480 

Step 3—Evolutionary validation (panel c). Map the developmental change on a phylogenetic 481 

tree by characterizing candidate gene expression (or presence) in select taxa. The developmental 482 

change and the novel trait should occur on the same branch of the phylogenetic tree. The 483 

strongest support requires analysis of multiple ingroup taxa, representatives of the closest 484 

outgroup taxon, and a more distant outgroup [7].  485 
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Step 4—Developmental validation (panel d). Use functional manipulations to test role of the 486 

candidate gene or pathway in development of the novel trait. Here, RNAi (reviewed in [54,55] 487 

and CRISPR/Cas-9 genome editing have been transformative, because they work with minimal 488 

modifications across diverse hemipteran taxa. Strategies to reduce non-specific dsRNA 489 

degradation may be necessary to enhance RNAi success in aphids and planthoppers [56–59]. 490 

CRISPR/Cas-9 success rates shown for injected individuals (G0) and next generation (G1) [60–491 

62]. Photo of O. fasciatus by David Hill (used under CC BY 2.0 license). Step 4 RNAi panel 492 

created with Biorender.com. 493 

 494 
Figure 1: Hemipteran diversity and novelty 495 

(a) Phylogenetic tree (following [1]) highlighting major groups of hemipterans and several 496 

morphological novelties discussed in the text. (b-g) Examples of ecological interactions shaping 497 

evolution in Hemiptera, including (b) sap-feeding aphids; (c) mutualism between woolly alder 498 

aphid (Prociphilus tessellatus) and ants; (d) plant galls induced by elm sack gall aphids 499 

(Tetraneura ulmi) and (e) grape phylloxerids (Daktulosphaira vitifoliae); (f, g) pea aphid 500 

(Acyrthosiphon pisum) color polymorphism resulting from horizontal gene transfer of carotenoid 501 

genes from a fungus. (h-n) Novel traits discussed in the review; (h) early stage pea aphid embryo 502 

in mother’s ovariole shows developing bacteriocytes (white arrow) expressing Ubx/abd-A (blue) 503 

prior to germ band extension; red arrow indicates endosymbionts; green is phalloidin; (i) 504 

bacteriocytes (bc, bug nuclei stained blue) harboring endosymbionts (stained green) in the seed 505 

bug Nysius; (j) scanning electron micrograph of piercing-sucking mouthparts of a lace bug 506 

(Stephanitis nashi), with grooved labium (Lb) supporting the mandibular and maxillary stylets 507 

(Sf); Lm-labrum; (k) increased leg lengths enable water striders to locomote on the water 508 

surface; (l) one lineage, Rhagovelia, has evolved novel fans on the middle legs that allow surface 509 
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locomotion in fast-flowing currents; (m, n) treehopper helmets are a novel three-dimensional 510 

outgrowth that may function in defense and that take on a wide array of shapes as shown by (m) 511 

Cladonota machinula and (n) Entylia carinata. Image credits and bug IDs: (a) insect silhouettes 512 

from PhyloPic.org; heteropteran copyright Dave Angelini (CC-BY-3); (b) Paul Eisenberg (CC 513 

BY 2.0); (c-e,m) Judy Gallagher (CC BY 2.0); (f) Shipher Wu; (g) N. Gerardo; (h) PLoS Open-514 

Access license; from [5]; (i) from [63], permission pending; (j) [64] by permission; (k) David 515 

Hill (CC BY 2.0); (l) A. Khila, permission request pending; (f,g,n): public domain. 516 

 517 
Figure 2: Environmental effects on insulin signaling regulate wing polyphenisms. 518 

The insulin signaling pathway plays a role in environmentally-cued switching between wing 519 

forms, regulating the propensity to develop as a long-winged or short-winged/wingless 520 

individual depending on environmental conditions. Recent studies have identified how different 521 

environmental triggers interface with insulin signaling at different points in the signaling 522 

pathway, with crowding [10] (*) and low diet quality [13] switching development to the 523 

dispersive form and wounding switching development to the short-winged form [14]. Colors 524 

indicate which wing form (blue-long; red-short) is promoted by the environmental condition or 525 

gene activity in the brown planthopper, Nilaparvata lugens [18]. N. lugens images from 526 

Bugwood.org, used with permission. 527 

 528 

Figure 3: Comparative approach for testing hypotheses about the developmental role of 529 

new genes 530 

The association of new genes with new traits is an intriguing pattern, but it is unclear whether the 531 

pattern is evolutionarily significant. Several predictions related to this pattern are shown; opacity 532 
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of circles reflects relative proportion of genes predicted to function in a given context; color 533 

represents evolutionary age (purple–‘control’ genes with orthology across insects; red–‘new’ 534 

hemipteran genes; orange–genes restricted to particular lineages within Hemiptera). For 535 

example, are new genes more likely to function in the development of novel morphologies than 536 

ancestral morphologies? A rigorous test would examine expression and function of a set of new 537 

in both a novel trait and an evolutionarily older control trait, such as derived versus ancestral 538 

features of hemipteran mouthparts (MP) (compare i versus ii). In that case, one might also 539 

predict that their function in novel morphologies is more conserved (as shown by greater 540 

variation across taxa in i versus ii). Second, taxon-restricted (‘new’) genes may be more likely 541 

than control genes to function in the development of taxon-restricted (‘new’) traits (compare i 542 

versus iii); the same contrast would not be expected in control traits (ii versus iv).  543 
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