

1 **Something old, something new, something borrowed, something red: the origin of**  
2 **ecologically-relevant novelties in Hemiptera**

3  
4 **Elizabeth L. Jockusch<sup>1,\*</sup> and Cera R. Fisher<sup>2</sup>**

5  
6 <sup>1</sup>Department of Ecology and Evolutionary Biology  
7 University of Connecticut  
8 75 N. Eagleville Rd., U-3043  
9 Storrs CT, 06269  
10 USA  
11 [elizabeth.jockusch@uconn.edu](mailto:elizabeth.jockusch@uconn.edu)  
12 ORCID iD: 0000-0003-4718-0531

13  
14 <sup>2</sup>Cornell University  
15 Department of Entomology  
16 2126 Comstock Hall  
17 Ithaca NY, 14853  
18 USA  
19 [crf92@cornell.edu](mailto:crf92@cornell.edu)  
20 ORCID iD: 0000-0001-7449-9076

21  
22 \*Author for correspondence  
23  
24  
25

26 **Abstract**

27 Comparative transcriptomics, applied in an evolutionary context, has transformed the  
28 possibilities for studying phenotypic evolution in non-model taxa. We review recent discoveries  
29 about the development of novel, ecologically-relevant phenotypes in hemipteran insects. These  
30 discoveries highlight the diverse genomic substrates of novelty: ‘something old’, when novelty  
31 results from changes in the regulation of existing genes or gene duplication; ‘something new’,  
32 wherein lineage-restricted genes contribute to the evolution of new phenotypes; and ‘something  
33 borrowed’, showcasing contributions of horizontal gene transfer to the evolution of novelty,  
34 including carotenoid synthesis (resulting in ‘something red’). These findings show the power and  
35 flexibility of comparative transcriptomic approaches for expanding beyond the ‘toolkit’ model  
36 for the evolution of development. We conclude by raising questions about the relationship  
37 between new genes and new traits and outlining a research framework for answering them in  
38 Hemiptera.

39

40 **Introduction: Setting the evolutionary and developmental stage**

41 Hemiptera is a fantastically diverse insect clade, with more than 100,000 described  
42 species (Fig. 1). The original motivation for adding a hemipteran to the evo-devo pantheon was  
43 their close relationship to holometabolous insects, allowing inferences about major evolutionary  
44 transitions, such as the origin of complete metamorphosis. More recently, researchers have  
45 begun to analyze the origin of hemipteran-specific traits, including many traits that contributed to  
46 their ecological success. One key innovation underlying their radiation is piercing-sucking  
47 mouthparts. These enabled diversification across feeding niches, which are closely integrated  
48 with the emergence of additional novel phenotypes (*e.g.*, defense mechanisms, polyphenisms,

49 and mutualisms) [1,2].

50 In this review, we highlight recent progress in identifying the developmental basis for  
51 novel traits of ecological and evolutionary significance across Hemiptera. We begin with a brief  
52 overview of the shift from candidate genes to comparative transcriptomics as a starting point for  
53 research, which has enabled rapid progress on understanding the origin of a wide range of traits.  
54 These discoveries not only confirm the varied ways in which ‘old’ genes are reused, but also  
55 show the importance of new genes and genes acquired through horizontal gene transfer in the  
56 evolution of novelty. In Hemiptera, the supply of these latter two genomic substrates for novelty  
57 is likely enhanced by extensive biotic interactions linked to their feeding habits and dynamic  
58 genomes. In the concluding section, we expand our focus from questions about the origin of  
59 particular traits to testing broader hypotheses about the relationship between new genes and the  
60 evolution and development of phenotypic novelty.

61

## 62 **From Candidate Gene Approaches to Comparative Transcriptomics:**

63 A foundational discovery in evo-devo was the existence of an evolutionarily ancient,  
64 highly conserved developmental toolkit. This led to an early, productive research paradigm based  
65 on candidate genes, which identified myriad instances in which ‘old’ genes deployed in new  
66 contexts can lead to novelty [3]. For example, Hox genes are natural candidates for regulation of  
67 segment-specific phenotypes. In hemipterans, loss of a highly conserved Hox gene expression  
68 domain underlies evolution of their unique fluid-feeding mouthparts (Fig. 1j) [4] while the  
69 appearance of novel Hox gene expression domains is an early step in bacteriocyte development  
70 (Fig. 1h,i) [5,6]. These specialized abdominal cells are another hemipteran key innovation,  
71 housing endosymbionts essential for sap-feeding bugs. Interestingly, regulation of bacteriocyte

72 development by Hox genes is inferred to have followed the same complex history as  
73 bacteriocytes (Fig. 1a), with origin, loss and reevolution tracing shifts from plant-feeding to  
74 predation and back to plant-feeding [6].

75 More recently, transcriptomic comparisons have provided a way to survey the full  
76 repertoire of gene expression to discover the sources of novelty without *a priori* assumptions  
77 about the developmental genetic basis for change [7–9]. The general approach is adaptable to a  
78 wide range of novel traits, including the developmental basis of phenotypic plasticity [9–11].  
79 Because the approach requires little taxon-specific customization, it is also widely applicable  
80 across taxa. In Box 1, we distill this research approach into four key steps (comparative  
81 transcriptomics, filtering of differentially expressed genes, evolutionary validation, and  
82 developmental validation). A recurrent theme, illustrated by recent studies, is the increased  
83 power provided by using multiple transcriptomic comparisons. This research approach provides  
84 a flexible, powerful way to rapidly identify loci contributing to the extensive morphological,  
85 ecological and physiological novelty within Hemiptera.

86

#### 87 **Novelty from Old Genes:**

88 Co-option, the deployment of an ancestral gene or gene regulatory network in a new  
89 developmental context, is one way in which ‘old’ genes can produce novel phenotypes. Two  
90 recent studies showcase the use of transcriptomic comparisons to test hypotheses about the role  
91 of large-scale cooption in generating phenotypic novelty. Large globular cells (LGC) of gall-  
92 forming social aphids are a novel defensive cell type with an unusual combination of properties  
93 [12] (\*\*). When a breach in the gall occurs, aphid soldiers ‘explosively’ discharge bodily fluid  
94 containing LGCs that burst, then spread the fluid over the breach. Melanization of the resulting

95 lipid ‘clot’ reseals the gall. Comparisons across multiple cell types support the hypothesis that  
96 LGCs have evolved from hemocytes (an ancestral immune cell type) via upregulation of the  
97 wound-healing (melanization) pathway and cooption of lipid synthesis pathways that were  
98 expressed ancestrally in fat body cells. This colony-level defensive trait thus results from  
99 externalization of an individual-level immune system process [12] (\*\*).

100 The charismatic hemipteran lineage Membracidae (treehoppers) is best known for its  
101 striking array of ‘helmets’, a novel three-dimensional projection of the pronotal body wall that  
102 functions in defense (Fig. 1m,n). Transcriptomic comparisons across body regions in two taxa  
103 supported the hypothesis that the helmet evolved via cooption of wing-patterning genes [8] (\*\*).  
104 In the treehoppers, gene expression in the pronotal helmet was divergent from that in its serial  
105 homologue, the mesonotum, but similar to gene expression in wings. In a leafhopper, a helmet-  
106 less relative of treehoppers, pronotal gene expression most closely resembled mesonotal  
107 expression. [8] (\*\*).

108 A novel trait that has arisen repeatedly across insects is wing polyphenism, reflecting a  
109 trade-off between investment in dispersal (long-winged form) and reproduction (short-  
110 winged/wingless form). In aphids, transcriptomic comparisons led to identification of a single  
111 microRNA that acted as a developmental switch regulating offspring wing phenotype in response  
112 to maternal crowding [10] (\*). Crowding lowered expression of this evolutionarily highly  
113 conserved miRNA, miR-9b, which targets a transporter gene mRNA. The resulting increase in  
114 transporter gene expression in fat bodies shifted development to the long-winged form via  
115 increased insulin signaling (Fig. 2), an ancestral, environmentally-responsive metazoan signaling  
116 pathway [10] (\*). Two other links between environmental determinants of wing phenotype and  
117 insulin signaling have been discovered in the planthopper *Nilaparvata lugens* [13,14] (Fig. 2), a

118 hemipteran with an independently evolved wing polyphenism. These studies give mechanistic  
119 insight into the evolutionarily recurrent role of the insulin signaling pathway as an integrator of  
120 environmental signals regulating polyphenisms in hemipterans [15–18] and insects more broadly  
121 [19].

122 Gene duplication provides another common route to the origin of novel traits from ‘old’  
123 genes. In Hemiptera, which show a high rate of gene duplication [20–22], a recurring theme is  
124 the role of duplication followed by neofunctionalization in the origin of new salivary enzymes.  
125 These enzymes have enabled ecological host switching, host range expansion and acquisition of  
126 new feeding strategies such as blood-feeding [23,24]. For example, neofunctionalization of  
127 proteases has led to venoms and digestive secretions in predatory bugs [25]. Other examples of  
128 strikingly enlarged gene families include genes encoding defensive cysteine-rich peptides that  
129 have undergone independent expansion in aphids [26] and assassin bugs [27], and genes  
130 encoding stylet cuticular proteins [28,29]. In the peach aphid *Myzus persicae*, the gene family  
131 encoding RR-2 hard cuticular proteins is greatly expanded and environmentally regulated. On  
132 switching to a new host, changes in expression of RR-2 genes occur rapidly at the plant fluid-  
133 insect interface, in an aphid-specific organ at the tip of the maxillary stylets. This plasticity  
134 contributes to the host-switching success of this rare true generalist sap feeder [30] (\*\*).

135

136 **Novelty from New Genes:**

137 Gene duplication helps bridge the divide between ‘old’ and ‘new’ genes. New genes may  
138 originate by relaxed selection and accelerated evolution or the gain or loss of protein domains  
139 that is enabled by gene duplication [31]. New genes may also be derived *de novo* from non-  
140 coding sequence [32]. The increasingly dense sampling of hemipteran genomes reveals that they

141 are dynamic, and incorporate a substantial proportion of genes that lack detectable orthology  
142 outside the species or lineage [21,33–35]. A broad comparative analysis found that ‘new’, taxon-  
143 restricted, genes are more prevalent in hemipterans than in most other insects [36].

144 Comparative transcriptomic approaches have led to an increasing appreciation for the  
145 role of new genes in the origin of hemipteran novelties. In an elegant study, Santos et al. [7] (\*\*) identified a paralogous pair of taxon-restricted genes required for the development of a novel leg  
146 fan in water striders in the genus *Rhagovelia* (Fig. 1k,l). This fan enabled locomotion on the  
147 surface of fast-flowing streams. Loss-of-function analyses showed that two genes (*mother of*  
148 *geisha*, a likely hemipteran-specific gene, and *geisha*, its divergent *Rhagovelia*-restricted  
149 descendant) are essential for fan initiation and that they have a spatially-restricted expression  
150 domain where the fan develops. Evolutionary comparisons confirmed that relatives of these  
151 genes were not similarly expressed in closely related species lacking a fan [7] (\*\*). Chen et al.  
152 [11] (\*) offer an interesting physiological counterpart, also suggesting the importance of new  
153 genes for evolution into new adaptive zones. They discovered a family of long non-coding RNAs  
154 that lacked detectable orthologues outside of aphids (named Ya genes). This gene family formed  
155 a co-expression module that was differentially expressed across host plant species in the  
156 generalist peach aphid. Functional analyses showed that aphids inject a subset of the Ya  
157 transcripts into plants, where they are transported systemically, ultimately having an effect on the  
158 plant that increases aphid fitness [11] (\*).

160

161 **Novelty from Borrowed Genes (including something red):**

162 Genes that are ‘new’ for a focal lineage may also be borrowed via horizontal gene transfer  
163 (HGT), the asexual acquisition of genetic material from a distantly related lineage. A

164 biologically intimate relationship between the donor and recipient appears to be a key facilitator  
165 of HGT [37]. HGT may be more prevalent and thus more likely to contribute to novelty in  
166 hemipterans than in many other arthropod taxa because of their large number of biologically  
167 intimate relationships (Fig 1b-e), including with endosymbionts, host plants, and fungi and  
168 viruses associated with those hosts.

169 Bacteria and viruses provide a significant source of novel genes that have conferred novel  
170 traits on bugs. Often, these “borrowed” genes continue to perform their ancestral function.  
171 Examples include the acquisition of biotin synthesis genes in whiteflies [38], peptidases in the  
172 blood feeder *Rhodnius prolixus* [23], and some genes for amino acid and peptidoglycan  
173 biosynthesis in mealybugs which continue to function in concert with other bacterial genes  
174 present in their endosymbionts [39,40]. More remarkable is the acquisition by aphids of a  
175 prokaryotic gene encoding a eukaryotic cell toxin, which aphids deploy as an effective defense  
176 against parasitoids [41] (\*).

177 A recently discovered example of HGT from a virus to an aphid provides a fascinating  
178 instance of an evolutionary transfer of a developmental regulatory function accompanying HGT.  
179 Using transcriptomic comparisons between aphid genotypes that differed in their propensity to  
180 develop wings in response to maternal crowding, five genes were identified that were  
181 upregulated in the most inducible genotypes but not in those that were the least inducible [9]  
182 (\*\*). Two of these genes (named *Apns-1* and *Apns-2*) proved to be of viral origin, but were  
183 incorporated into the aphid genome [9] (\*\*). Remarkably, the closest known viral relatives of  
184 these genes also regulate aphid wing development, but under viral control rather than in response  
185 to environmental conditions sensed by the aphids [42]. How these genes interact with other  
186 components of the developmental switch regulating the wing polyphenism and how their

187 expression is regulated within the aphid genome are not yet known.

188         Although much rarer, HGT from eukaryotes has also led to hemipteran novelties. Aphids  
189 and their close relatives are one of only a handful of metazoan taxa that synthesize carotenoids.  
190 This ability resulted from HGT of multiple carotenoid biosynthesis genes from a fungus to an  
191 ancestor of aphids and phylloxerids [21,43,44]. One phenotypic manifestation is a conserved  
192 red/green color polymorphism (Fig. 1f,g) [43] and carotenoid expression affects aphid fitness  
193 [45]. Another example involves a gene encoding a plant cell wall-degrading enzyme  
194 (polygalacturonase) that was transferred from fungi to the bug family Miridae [46]. The  
195 duplicated descendants of this gene are highly expressed in the salivary glands, increasing  
196 nutrient acquisition in this lineage that reverted to plant-feeding from a predaceous ancestor [47].  
197 Recent evidence also demonstrates HGT from plants to an ancestor whiteflies of a highly  
198 expressed gene that inactivates 28S rRNA [48].

199

200 **Conclusion and future prospects:**

201         True bugs (Hemiptera) are characterized by extensive morphological and ecological  
202 diversity, repeated independent origins of many traits, including adaptive phenotypic plasticity,  
203 and molecular communication with a diverse array of intimate associates. As many of the  
204 examples highlighted above demonstrate, transcriptomic approaches combined with evolutionary  
205 and developmental validation provide a way to identify candidate genes and pathways  
206 underlying ecologically important novelties, even without prior knowledge about development in  
207 the system (Box 1). This approach has led to the discovery that both new genes and ‘borrowed’  
208 genes are frequently involved in the evolution of new ecologically important traits, while also  
209 confirming the role of ‘old’ genes initially demonstrated through a candidate-gene approach.

210 These discoveries set the stage for additional work to fully link developmental changes to  
211 phenotypic novelty in systems in which ecological consequences of the phenotype are often  
212 accessible for study [7,11,30].

213 To date, the contributions of new and borrowed genes to novelty have been discovered  
214 serendipitously through research seeking to understand the origin of specific hemipteran traits.  
215 The repeated association of novel genes and novel phenotypes observed in hemipterans [7,11]  
216 and other taxa [49,50] stimulates questions about whether facets of this relationship are  
217 predictable. Evidence that new genes originated at higher rates in lineages undergoing more  
218 radical morphological transformations [51] also motivate the hypothesis of a non-random  
219 association between new genes and new traits. Are new genes more likely than evolutionarily  
220 older (or younger) genes to regulate development of traits that arose along the same branch of the  
221 evolutionary tree? Do the developmental functions of new genes differ in new versus old traits?  
222 Do the developmental functions of new versus old genes differ in consistent ways? Are new  
223 genes more likely to become integrated at particular points in developmental networks, as  
224 suggested by different degrees of transcriptomic conservatism through time [52,53]? Systematic  
225 testing of these hypotheses about the developmental and evolutionary consequences of novel  
226 genes can be done by comparing the expression or function of new and ‘control’ genes in a  
227 comparative context (Fig. 3). Because of their high frequency of taxonomically-restricted genes  
228 [21,33,35,36], hemipterans provide a model clade for such systematic tests.

229

### 230 **Acknowledgments**

231 The Jockusch lab’s work on development in hemipterans is supported by a grant from the US  
232 National Science Foundation (IOS 1656572) to ELJ. We thank an anonymous reviewer for

233 feedback on an earlier version of this manuscript.

234

235 **Literature cited**

236 1. Johnson KP, Dietrich CH, Friedrich F, Beutel RG, Wipfler B, Peters RS, Allen JM,  
237 Petersen M, Donath A, Walden KKO, et al.: **Phylogenomics and the evolution of**  
238 **hemipteroid insects.** *Proc Natl Acad Sci USA* 2018, **115**:12775–12780.

239 2. Panfilio KA, Angelini DR: **By land, air, and sea: hemipteran diversity through the**  
240 **genomic lens.** *Curr Opin Insect Sci* 2018, **25**:106–115.

241 3. Knoll AH, Carroll SB: **Early animal evolution: emerging views from comparative**  
242 **biology and geology.** *Science* 1999, **284**:2129–2137.

243 4. Hughes CL, Kaufman TC: **RNAi analysis of *Deformed*, *proboscipedia* and *Sex combs***  
244 **reduced in the milkweed bug *Oncopeltus fasciatus*: novel roles for Hox genes in the**  
245 **Hemipteran head.** *Development* 2000, **127**:3683–3694.

246 5. Braendle C, Miura T, Bickel R, Shingleton AW, Kambhampati S, Stern DL:  
247 **Developmental origin and evolution of bacteriocytes in the aphid–*Buchnera* symbiosis.**  
248 *PLoS Biology* 2003, **1**:e21.

249 6. Matsuura Y, Kikuchi Y, Miura T, Fukatsu T: ***Ultrabithorax* is essential for bacteriocyte**  
250 **development.** *Proc Natl Acad Sci USA* 2015, **112**:9376–9381.

251 7. Santos ME, Le Bouquin A, Crumière AJJ, Khila A: **Taxon-restricted genes at the origin**  
252 **of a novel trait allowing access to a new environment.** *Science* 2017, **358**:386–390.

253 8. Fisher CR, Wegrzyn JL, Jockusch EL: **Co-option of wing-patterning genes underlies the**  
254 **evolution of the treehopper helmet.** *Nat Ecol Evol* 2020, **4**:250–260.

255 \*\* In this study, comparisons between serial and direct homologues led to the discovery of large-  
256 scale developmental repatterning, sufficient to overwrite the signal of serial homology, that  
257 accompanied the origin of a novel trait. Transcriptomic comparisons to other body regions,  
258 and analyses of gene subsets, provided strong support for the conclusion that the wing-  
259 patterning network is deployed during development of the novel prothoracic treehopper  
260 helmet.

261 9. Parker BJ, Brisson JA: **A laterally transferred viral gene modifies aphid wing plasticity.**  
262 *Curr Biol* 2019, **29**:2098–2103.

263 \*\* This study identified and functionally validated a novel aphid gene of viral origin that affects  
264 how likely aphid clones are to respond to crowding by developing wings. These genes were  
265 discovered in an unbiased fashion, via pool-Seq of natural lines of the pea aphid that  
266 showed the greatest divergence in wing development in response to crowding. Two axes of  
267 comparison (between pools of clones at the two extremes of inducibility collected from a  
268 single natural population; and within pools raised under different conditions) enabled rapid  
269 identification of a small set of candidate genes.

270 10. Shang F, Niu J, Ding B-Y, Zhang W, Wei D-D, Wei D, Jiang H-B, Wang J-J: **The miR-9b**  
271 **microRNA mediates dimorphism and development of wing in aphids.** *Proc Natl Acad*  
272 *Sci U S A* 2020, **117**:8404–8409.

273 \*\* This study compared small RNA expression under different environmental conditions and at  
274 multiple developmental stages in an aphid; it identified a single microRNA that was  
275 specifically downregulated during crowding. A combination of overexpression and  
276 knockdown experiments was used to connect this miRNA to insulin signaling, and thus to  
277 the wing polyphenism.

278 11. Chen Y, Singh A, Kaithakottil GG, Mathers TC, Gravino M, Mugford ST, van Oosterhout  
279 C, Swarbreck D, Hogenhout SA: **An aphid RNA transcript migrates systemically within**  
280 **plants and is a virulence factor.** *Proc Natl Acad Sci USA* 2020, **117**:12763–12771.

281 \*\* This study identified thousands of genes that were differentially expressed in genetically  
282 identical aphids feeding on different host plant species (evidence of the ecological  
283 complexity of host-switching). The study illustrates one approach that allows refinement  
284 when a large pool of candidate genes is discovered by transcriptomics: identifying  
285 coregulated modules of genes enriched for differentially expressed genes. The study  
286 ultimately connected variation in gene expression to variation in fitness via the action of the  
287 newly discovered aphid gene family on the host plant.

288 12. Kutsukake M, Moriyama M, Shigenobu S, Meng X-Y, Nikoh N, Noda C, Kobayashi S,  
289 Fukatsu T: **Exaggeration and cooption of innate immunity for social defense.** *Proc Natl*  
290 *Acad Sci U S A* 2019, **116**:8950–8959.

291 \*\* In a demonstration of eusocial altruism, first instar “soldier” nymphs of *Nipponaphis monzeni*  
292 explosively discharge their hemolymph and use it to fix holes in the colony gall. The  
293 authors show that the behavior is made possible by a novel cell type, the LGC, and the  
294 subfunctionalization of duplicative phenyl oxidase genes.

295 13. Lin X, Xu Y, Jiang J, Lavine M, Lavine LC: **Host quality induces phenotypic plasticity**  
296 **in a wing polyphenic insect.** *Proc Natl Acad Sci U S A* 2018, **115**:7563–7568.

297 14. Lin X, Yao Y, Wang B, Lavine MD, Lavine LC: **FO XO links wing form polyphenism**  
298 **and wound healing in the brown planthopper, Nilaparvata lugens.** *Insect Biochem Mol*  
299 *Biol* 2016, **70**:24–31.

300 15. Fawcett MM, Parks MC, Tibbetts AE, Swart JS, Richards EM, Vanegas JC, Cenzer M,  
301 Crowley L, Simmons WR, Hou WS, et al.: **Manipulation of insulin signaling**  
302 **phenocopies evolution of a host-associated polyphenism.** *Nat Commun* 2018, **9**:1699.

303 16. Grantham ME, Shingleton AW, Dudley E, Brisson JA: **Expression profiling of winged-**  
304 **and wingless-destined pea aphid embryos implicates insulin/insulin growth factor**  
305 **signaling in morph differences.** *Evol Dev* 2020, **22**:257–268.

306 17. Smýkal V, Pivarčí M, Provazník J, Bazalová O, Jedlička P, Lukšan O, Horák A, Vaněcková  
307 H, Beneš V, Fiala I, et al.: **Complex evolution of insect insulin receptors and**

308       **homologous decoy receptors, and functional significance of their multiplicity.** *Mol Biol*  
309       *Evol* 2020, **37**:1775–1789.

310       18. Xu H-J, Xue J, Lu B, Zhang X-C, Zhuo J-C, He S-F, Ma X-F, Jiang Y-Q, Fan H-W, Xu J-  
311       Y, et al.: **Two insulin receptors determine alternative wing morphs in planthoppers.**  
312       *Nature* 2015, **519**:464–467.

313       19. Nijhout HF, McKenna KZ: **The distinct roles of insulin signaling in polyphenic**  
314       **development.** *Curr Opin Insect Sci* 2018, **25**:58–64.

315       20. Fernández R, Marcet-Houben M, Legeai F, Richard G, Robin S, Wucher V, Pegueroles C,  
316       Gabaldón T, Tagu D: **Selection following gene duplication shapes recent genome**  
317       **evolution in the pea aphid *Acyrtosiphon pisum*.** *Mol Biol Evol* 2020, **37**:2601–2615.

318       21. Rispe C, Legeai F, Nabity PD, Fernández R, Arora AK, Baa-Puyoulet P, Banfill CR, Bao L,  
319       Barberà M, Bouallègue M, et al.: **The genome sequence of the grape phylloxera provides**  
320       **insights into the evolution, adaptation, and invasion routes of an iconic pest.** *BMC Biol*  
321       2020, **18**:90.

322       22. Armisén D, Rajakumar R, Friedrich M, Benoit JB, Robertson HM, Panfilio KA, Ahn S-J,  
323       Poelchau MF, Chao H, Dinh H, et al.: **The genome of the water strider *Gerris buenoi***  
324       **reveals expansions of gene repertoires associated with adaptations to life on the water.**  
325       *BMC Genomics* 2018, **19**:832.

326       23. Henriques BS, Gomes B, da Costa SG, Moraes C da S, Mesquita RD, Dillon VM, Garcia E  
327       de S, Azambuja P, Dillon RJ, Genta FA: **Genome wide mapping of peptidases in**  
328       ***Rhodnius prolixus*: Identification of protease gene duplications, horizontally**  
329       **transferred proteases and analysis of Peptidase A1 structures, with considerations on**  
330       **their role in the evolution of hematophagy in Triatominae.** *Front Physiol* 2017, **8**:1051.

331       24. Boulain H, Legeai F, Guy E, Morlière S, Douglas NE, Oh J, Murugan M, Smith M,  
332       Jaquiéry J, Peccoud J, et al.: **Fast evolution and lineage-specific gene family expansions**  
333       **of aphid salivary effectors driven by interactions with host-plants.** *Genome Biol Evol*  
334       2018, **10**:1554–1572.

335       25. Walker AA, Hernández-Vargas MJ, Corzo G, Fry BG, King GF: **Giant fish-killing water**  
336       **bug reveals ancient and dynamic venom evolution in Heteroptera.** *Cell Mol Life Sci*  
337       2018, **75**:3215–3229.

338       26. Uchi N, Fukudome M, Nozaki N, Suzuki M, Osuki K-I, Shigenobu S, Uchiumi T:  
339       **Antimicrobial activities of cysteine-rich peptides specific to bacteriocytes of the pea**  
340       **aphid *Acyrtosiphon pisum*.** *Microbes Environ* 2019, **34**:155–160.

341       27. Walker AA, Madio B, Jin J, Undheim EAB, Fry BG, King GF: **Melt with this kiss:**  
342       **Paralyzing and liquefying venom of the assassin bug *Pristhesancus plagipennis***  
343       **(Hemiptera: Reduviidae).** *Mol Cell Proteomics* 2017, **16**:552–566.

344       28. Deshoux M, Masson V, Arafah K, Voisin S, Guschinskaya N, van Munster M, Cayrol B,

345 Webster CG, Rahb   Y, Blanc S, et al.: **Cuticular structure proteomics in the pea aphid**  
346 *Acyrthosiphon pisum* **reveals new plant virus receptor candidates at the tip of**  
347 **maxillary stylets.** *J Proteome Res* 2020, **19**:1319–1337.

348 29. Guschinskaya N, Ressnikoff D, Arafah K, Voisin S, Bulet P, Uzest M, Rahb   Y: **Insect**  
349 **mouthpart transcriptome unveils extension of cuticular protein repertoire and**  
350 **complex organization.** *iScience* 2020, **23**:100828.

351 30. Mathers TC, Chen Y, Kaithakottil G, Legeai F, Mugford ST, Baa-Puyoulet P, Bretaudeau  
352 A, Clavijo B, Colella S, Collin O, et al.: **Rapid transcriptional plasticity of duplicated**  
353 **gene clusters enables a clonally reproducing aphid to colonise diverse plant species.**  
354 *Genome Biol* 2017, **18**:27.

355 \*\* The aphid-specific acrostyle organ is the point of first contact with novel hosts; here, the  
356 authors show that an extensive repertoire of duplicated RR-2 cuticular proteins are  
357 differentially deployed in plastic adaptation to host switching.

358 31. Lynch M, Conery JS: **The evolutionary fate and consequences of duplicate genes.**  
359 *Science* 2000, **290**:1151–1155.

360 32. Vakirlis N, Carvunis A-R, McLysaght A: **Synteny-based analyses indicate that sequence**  
361 **divergence is not the main source of orphan genes.** *eLife* 2020, **9**:e53500.

362 33. Guo S-K, Cao L-J, Song W, Shi P, Gao Y-F, Gong Y-J, Chen J-C, Hoffmann AA, Wei S-J:  
363 **Chromosome-level assembly of the melon thrips genome yields insights into evolution**  
364 **of a sap-sucking lifestyle and pesticide resistance.** *Mol Ecol Resour* 2020, **20**:1110–1125.

365 34. Mathers TC, Wouters RHM, Mugford ST, Swarbreck D, Van Oosterhout C, Hogenhout  
366 SA: **Chromosome-scale genome assemblies of aphids reveal extensively rearranged**  
367 **autosomes and long-term conservation of the X chromosome.** *Mol Biol Evol* 2020,  
368 doi:10.1093/molbev/msaa246.

369 35. Ma W, Xu L, Hua H, Chen M, Guo M, He K, Zhao J, Li F: **Chromosomal-level genomes**  
370 **of three rice planthoppers provide new insights into sex chromosome evolution.** *Mol*  
371 *Ecol Resour* 2021, **21**:226–237.

372 36. Thomas GWC, Dohmen E, Hughes DST, Murali SC, Poelchau M, Glastad K, Anstead CA,  
373 Ayoub NA, Batterham P, Bellair M, et al.: **Gene content evolution in the arthropods.**  
374 *Genome Biol* 2020, **21**:15.

375 37. Soucy SM, Huang J, Gogarten JP: **Horizontal gene transfer: building the web of life.** *Nat*  
376 *Rev Genet* 2015, **16**:472–482.

377 38. Ren F-R, Sun X, Wang T-Y, Yao Y-L, Huang Y-Z, Zhang X, Luan J-B: **Biotin**  
378 **provisioning by horizontally transferred genes from bacteria confers animal fitness**  
379 **benefits.** *ISME J* 2020, **14**:2542–2553.

380 39. Husnik F, McCutcheon JP: **Repeated replacement of an intrabacterial symbiont in the**

381        **tripartite nested mealybug symbiosis.** *Proc Natl Acad Sci USA* 2016, **113**:E5416-5424.

382        40. Blublitz DC, Chadwick GL, Magyar JS, Sandoz KM, Brooks DM, Mesnage S, Ladinsky  
383            MS, Garber AI, Bjorkman PJ, Orphan VJ, et al.: **Peptidoglycan production by an insect-**  
384            **bacterial mosaic.** *Cell* 2019, **179**:703-712.e7.

385        41. Verster KI, Wisecaver JH, Karageorgi M, Duncan RP, Gloss AD, Armstrong EE, Price DK,  
386            Menon AR, Ali ZM, Whiteman NK: **Horizontal transfer of bacterial cytolethal**  
387            **distending toxin B genes to insects.** *Mol Biol Evol* 2019, **36**:2105–2110.

388        \*\* This paper deciphers a complex evolutionary history for a gene of bacterial origin that  
389            encodes a eukaryotic cell toxin. Gene structure and phylogeny support at least three rounds  
390            of horizontal transfer: first from an aphid endosymbiont to an ancestor of aphids, from there  
391            to a subclade of *Drosophila* and then into another *Drosophila* subclade.

392        42. Ryabov EV, Keane G, Naish N, Evered C, Winstanley D: **Densovirus induces winged**  
393            **morphs in asexual clones of the rosy apple aphid, *Dysaphis plantaginea*.** *Proc Natl Acad*  
394            *Sci U S A* 2009, **106**:8465–8470.

395        43. Moran NA, Jarvik T: **Lateral transfer of genes from fungi underlies carotenoid**  
396            **production in aphids.** *Science* 2010, **328**:624–627.

397        44. Zhao C, Nabity PD: **Phylloxerids share ancestral carotenoid biosynthesis genes of**  
398            **fungal origin with aphids and adelgids.** *PLoS One* 2017, **12**:e0185484.

399        45. Ding B-Y, Niu J, Shang F, Yang L, Zhang W, Smagghe G, Wang J-J: **Parental silencing of**  
400            **a horizontally transferred carotenoid desaturase gene causes a reduction of red**  
401            **pigment and fitness in the pea aphid.** *Pest Manag Sci* 2020, **76**:2423–2433.

402        46. Kirsch R, Gramzow L, Theissen G, Siegfried BD, Ffrench-Constant RH, Heckel DG,  
403            Pauchet Y: **Horizontal gene transfer and functional diversification of plant cell wall**  
404            **degrading polygalacturonases: Key events in the evolution of herbivory in beetles.**  
405            *Insect Biochem Mol Biol* 2014, **52**:33–50.

406        47. Xu P, Lu B, Liu J, Chao J, Donkersley P, Holdbrook R, Lu Y: **Duplication and expression**  
407            **of horizontally transferred polygalacturonase genes is associated with host range**  
408            **expansion of mirid bugs.** *BMC Evol Biol* 2019, **19**:12.

409        48. Lapadula WJ, Mascotti ML, Juri Ayub M: **Whitefly genomes contain ribotoxin coding**  
410            **genes acquired from plants.** *Sci Rep* 2020, **10**:15503.

411        49. Khalturin K, Anton-Erxleben F, Sassmann S, Wittlieb J, Hemmrich G, Bosch TCG: **A**  
412            **novel gene family controls species-specific morphological traits in *Hydra*.** *PLoS Biol*  
413            2008, **6**:e278.

414        50. Wu L, Hiebert LS, Klann M, Passamaneck Y, Bastin BR, Schneider SQ, Martindale MQ,  
415            Seaver EC, Maslakova SA, Lambert JD: **Genes with spiralian-specific protein motifs are**  
416            **expressed in spiralian ciliary bands.** *Nat Commun* 2020, **11**:4171.

417 51. Paps J, Holland PWH: **Reconstruction of the ancestral metazoan genome reveals an**  
418 **increase in genomic novelty.** *Nature Communications* 2018, **9**.

419 52. Malik A, Gildor T, Sher N, Layous M, Ben-Tabou de-Leon S: **Parallel embryonic**  
420 **transcriptional programs evolve under distinct constraints and may enable**  
421 **morphological conservation amidst adaptation.** *Dev Biol* 2017, **430**:202–213.

422 53. Levin M, Anavy L, Cole AG, Winter E, Mostov N, Khair S, Senderovich N, Kovalev E,  
423 Silver DH, Feder M, et al.: **The mid-developmental transition and the evolution of**  
424 **animal body plans.** *Nature* 2016, **531**:637–641.

425 54. Christiaens O, Smagghe G: **The challenge of RNAi-mediated control of hemipterans.**  
426 *Current Opinion in Insect Science* 2014, **6**:15–21.

427 55. Jain RG, Robinson KE, Asgari S, Mitter N: **Current scenario of RNAi-based hemipteran**  
428 **control.** *Pest Management Science* 2020, **n/a**.

429 56. Zhuo J-C, Hu Q-L, Zhang H-H, Zhang M-Q, Jo SB, Zhang C-X: **Identification and**  
430 **functional analysis of the doublesex gene in the sexual development of a**  
431 **hemimetabolous insect, the brown planthopper.** *Insect Biochemistry and Molecular*  
432 *Biology* 2018, **102**:31–42.

433 57. Castellanos NL, Smagghe G, Sharma R, Oliveira EE, Christiaens O: **Liposome**  
434 **encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral**  
435 **RNAi-caused mortality in the Neotropical stink bug *Euschistus heros*: Oral RNAi-**  
436 **caused mortality in *Euschistus heros*.** *Pest Manag Sci* 2019, **75**:537–548.

437 58. Ghodke AB, Good RT, Golz JF, Russell DA, Edwards O, Robin C: **Extracellular**  
438 **endonucleases in the midgut of *Myzus persicae* may limit the efficacy of orally**  
439 **delivered RNAi.** *Sci Rep* 2019, **9**:11898.

440 59. Zheng Y, Hu Y, Yan S, Zhou H, Song D, Yin M, Shen J: **A polymer/detergent**  
441 **formulation improves dsRNA penetration through the body wall and RNAi-induced**  
442 **mortality in the soybean aphid *Aphis glycines*.** *Pest Management Science* 2019,  
443 **75**:1993–1999.

444 60. Xue W-H, Xu N, Yuan X-B, Chen H-H, Zhang J-L, Fu S-J, Zhang C-X, Xu H-J:  
445 **CRISPR/Cas9-mediated knockout of two eye pigmentation genes in the brown**  
446 **planthopper, *Nilaparvata lugens* (Hemiptera: Delphacidae).** *Insect Biochemistry and*  
447 *Molecular Biology* 2018, **93**:19–26.

448 \* First report of successful CRISPR in *N. lugens*; results highlight the technical difficulty of  
449 developing functional genomics tools in non-model organisms.

450 61. Le Trionnaire G, Tanguy S, Hudaverdian S, Gleonnec F, Richard G, Cayrol B, Monsion B,  
451 Pichon E, Deshoux M, Webster C, et al.: **An integrated protocol for targeted**  
452 **mutagenesis with CRISPR-Cas9 system in the pea aphid.** *Insect Biochem Mol Biol*  
453 **2019, 110**:34–44.

454 62. Reding K, Pick L: **High-efficiency CRISPR/Cas9 mutagenesis of the *white* gene in the**  
455 **milkweed bug *Oncopeltus fasciatus*.** *Genetics* 2020, **215**:1027–1037.

456 63. Matsuura Y, Kikuchi Y, Meng XY, Koga R, Fukatsu T: **Novel clade of**  
457 **alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods.**  
458 *Applied and Environmental Microbiology* 2012, **78**:4149–4156.

459 64. Wang Y, Brožek J, Dai W: **Sensory armature and stylets of the mouthparts of**  
460 ***Stephanitis nashi* (Hemiptera: Cimicomorpha: Tingidae), their morphology and**  
461 **function.** *Micron* 2020, **132**:102840.

462

463 **Box 1: Experimental Approaches**

464 Transcriptomic comparisons, combined with phylogenetic information and functional  
465 analyses, provide a way to rapidly identify interesting candidate loci underlying the extensive  
466 morphological, ecological and physiological novelty within Hemiptera. Generalizing from recent  
467 studies, we distill this approach into four key steps. For each step, we provide an overview of  
468 methodological considerations and examples of successful applications.

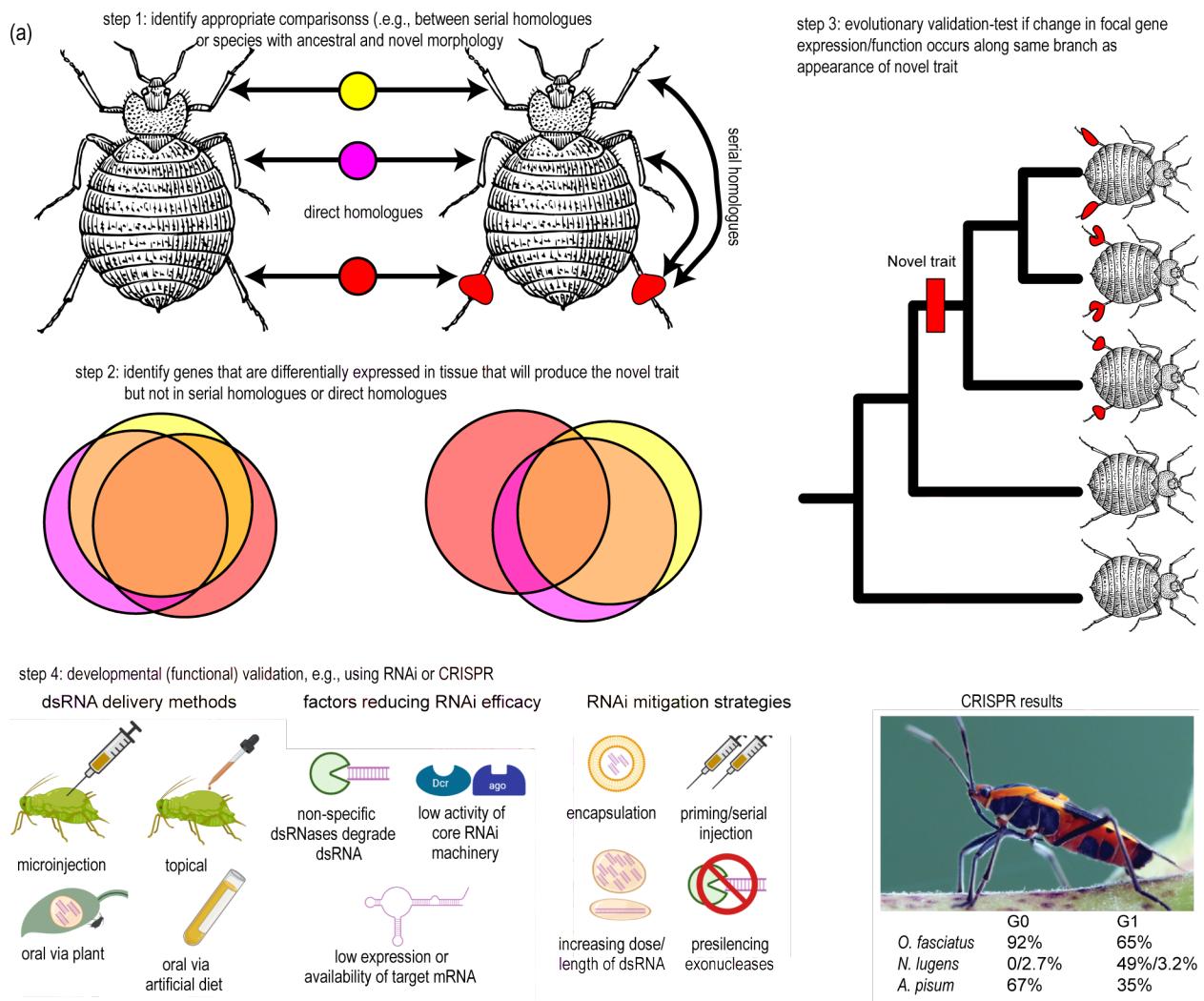
469 **Step 1—Comparative RNAseq** (panel a). Characterize gene expression in forms with and  
470 without the focal trait at relevant developmental stages; if possible, incorporate multiple  
471 comparisons. Informative comparisons may come from serial homologues [7,8], direct  
472 homologues [8], relatives raised in different environments [9,11,30], individuals representing  
473 extremes of variation within a population [9], and non-homologous body regions that share some  
474 features with the focal trait [8,12].

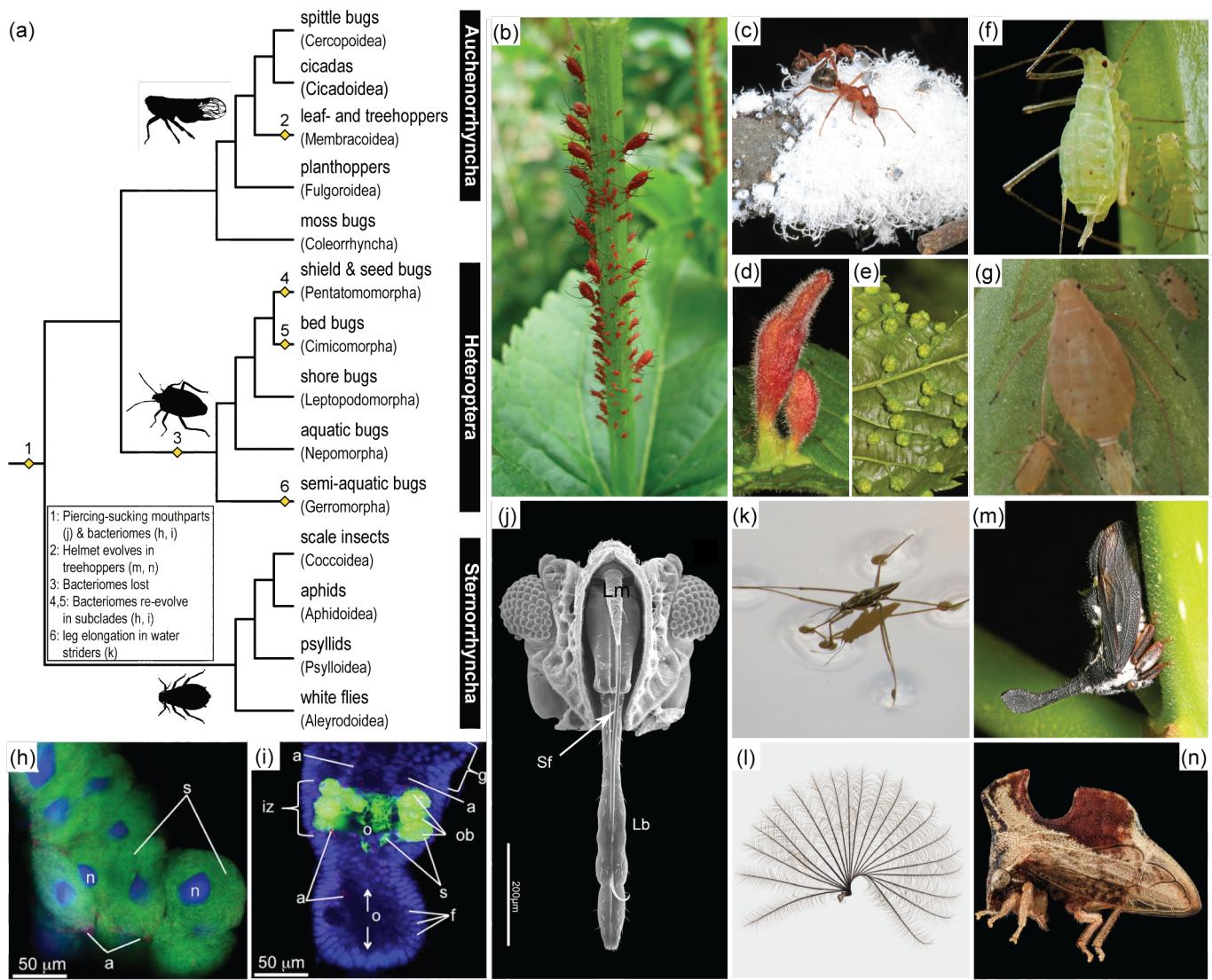
475 **Step 2—Candidate gene identification** (panel b). Identify genes that are differentially  
476 expressed (DE) and filter to identify likely candidates. A common challenge is that the number  
477 of DE genes can be quite large. Multiple comparisons (e.g., between both serial and direct  
478 homologues) can greatly narrow the candidate set [7,8,16]; other approaches to filtering include  
479 expression screening [7], identification of coregulated gene modules associated with the novel  
480 trait [11], and testing bioinformatically for overrepresented pathways and functions [8,16].

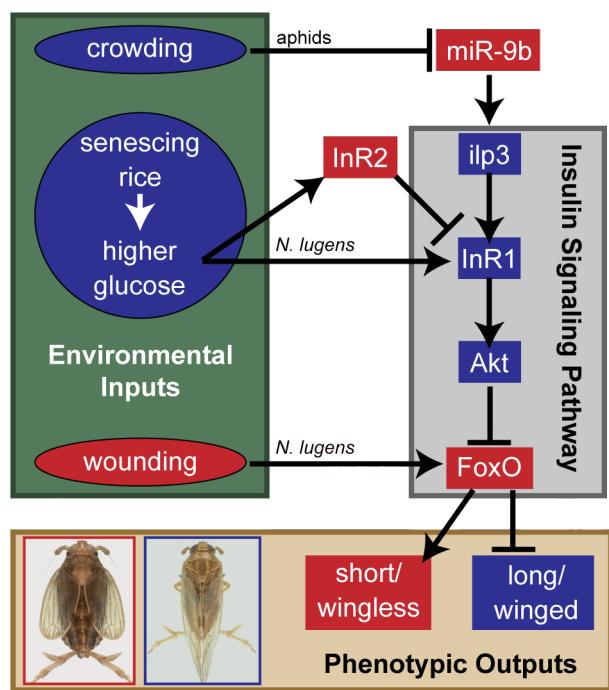
481 **Step 3—Evolutionary validation** (panel c). Map the developmental change on a phylogenetic  
482 tree by characterizing candidate gene expression (or presence) in select taxa. The developmental  
483 change and the novel trait should occur on the same branch of the phylogenetic tree. The  
484 strongest support requires analysis of multiple ingroup taxa, representatives of the closest  
485 outgroup taxon, and a more distant outgroup [7].

486 **Step 4—Developmental validation** (panel d). Use functional manipulations to test role of the  
487 candidate gene or pathway in development of the novel trait. Here, RNAi (reviewed in [54,55])  
488 and CRISPR/Cas-9 genome editing have been transformative, because they work with minimal  
489 modifications across diverse hemipteran taxa. Strategies to reduce non-specific dsRNA  
490 degradation may be necessary to enhance RNAi success in aphids and planthoppers [56–59].  
491 CRISPR/Cas-9 success rates shown for injected individuals (G0) and next generation (G1) [60–  
492 62]. Photo of *O. fasciatus* by David Hill (used under CC BY 2.0 license). Step 4 RNAi panel  
493 created with Biorender.com.

494  
495 **Figure 1: Hemipteran diversity and novelty**  
496 (a) Phylogenetic tree (following [1]) highlighting major groups of hemipterans and several  
497 morphological novelties discussed in the text. (b-g) Examples of ecological interactions shaping  
498 evolution in Hemiptera, including (b) sap-feeding aphids; (c) mutualism between woolly alder  
499 aphid (*Prociphilus tessellatus*) and ants; (d) plant galls induced by elm sack gall aphids  
500 (*Tetraneura ulmi*) and (e) grape phylloxerids (*Daktulosphaira vitifoliae*); (f, g) pea aphid  
501 (*Acyrtosiphon pisum*) color polymorphism resulting from horizontal gene transfer of carotenoid  
502 genes from a fungus. (h-n) Novel traits discussed in the review; (h) early stage pea aphid embryo  
503 in mother's ovariole shows developing bacteriocytes (white arrow) expressing Ubx/abd-A (blue)  
504 prior to germ band extension; red arrow indicates endosymbionts; green is phalloidin; (i)  
505 bacteriocytes (bc, bug nuclei stained blue) harboring endosymbionts (stained green) in the seed  
506 bug *Nysius*; (j) scanning electron micrograph of piercing-sucking mouthparts of a lace bug  
507 (*Stephanitis nashi*), with grooved labium (Lb) supporting the mandibular and maxillary stylets  
508 (Sf); Lm-labrum; (k) increased leg lengths enable water striders to locomote on the water  
509 surface; (l) one lineage, *Rhagovelia*, has evolved novel fans on the middle legs that allow surface


510 locomotion in fast-flowing currents; (m, n) treehopper helmets are a novel three-dimensional  
511 outgrowth that may function in defense and that take on a wide array of shapes as shown by (m)  
512 *Cladonota machinula* and (n) *Entylia carinata*. Image credits and bug IDs: (a) insect silhouettes  
513 from PhyloPic.org; heteropteran copyright Dave Angelini (CC-BY-3); (b) Paul Eisenberg (CC  
514 BY 2.0); (c-e,m) Judy Gallagher (CC BY 2.0); (f) Shipher Wu; (g) N. Gerardo; (h) PLoS Open-  
515 Access license; from [5]; (i) from [63], permission pending; (j) [64] by permission; (k) David  
516 Hill (CC BY 2.0); (l) A. Khila, permission request pending; (f,g,n): public domain.


517  
518 **Figure 2: Environmental effects on insulin signaling regulate wing polyphenisms.**  
519 The insulin signaling pathway plays a role in environmentally-cued switching between wing  
520 forms, regulating the propensity to develop as a long-winged or short-winged/wingless  
521 individual depending on environmental conditions. Recent studies have identified how different  
522 environmental triggers interface with insulin signaling at different points in the signaling  
523 pathway, with crowding [10] (\*) and low diet quality [13] switching development to the  
524 dispersive form and wounding switching development to the short-winged form [14]. Colors  
525 indicate which wing form (blue-long; red-short) is promoted by the environmental condition or  
526 gene activity in the brown planthopper, *Nilaparvata lugens* [18]. *N. lugens* images from  
527 Bugwood.org, used with permission.

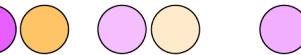
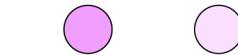

528  
529  
530 **Figure 3: Comparative approach for testing hypotheses about the developmental role of**  
531 **new genes**  
532 The association of new genes with new traits is an intriguing pattern, but it is unclear whether the  
pattern is evolutionarily significant. Several predictions related to this pattern are shown; opacity

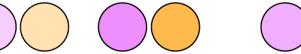
533 of circles reflects relative proportion of genes predicted to function in a given context; color  
534 represents evolutionary age (purple–‘control’ genes with orthology across insects; red–‘new’  
535 hemipteran genes; orange–genes restricted to particular lineages within Hemiptera). For  
536 example, are new genes more likely to function in the development of novel morphologies than  
537 ancestral morphologies? A rigorous test would examine expression and function of a set of new  
538 in both a novel trait and an evolutionarily older control trait, such as derived versus ancestral  
539 features of hemipteran mouthparts (MP) (compare i versus ii). In that case, one might also  
540 predict that their function in novel morphologies is more conserved (as shown by greater  
541 variation across taxa in i versus ii). Second, taxon-restricted (‘new’) genes may be more likely  
542 than control genes to function in the development of taxon-restricted (‘new’) traits (compare i  
543 versus iii); the same contrast would not be expected in control traits (ii versus iv).

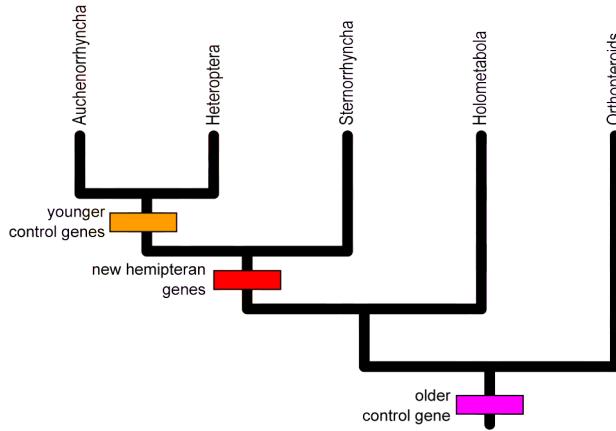
We are unaware of any conflicts of interest.







Hemipteran genes: More likely to be required in novel hemipteran trait than in control trait  
(new genes)  
More likely than control genes to be required for development of a novel trait


(i) Novel Trait  
(e.g., unique MPs) 

(ii) Control Trait  
(e.g., legs) 

Control genes: No consistent difference in proportion required between novel and control traits  
(older or younger) Less likely than new genes to be required for development of a novel trait

(iii) Novel Trait  
(or predecessor)  

(iv) Control Trait  
(e.g., legs)  

