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Highlights
e Temperature controls dormancy cycling in dinoflagellate resting cysts
e Dormancy-climate interactions can explain HAB biogeography and phenology
e Temperature seasonality promotes resilience of resting cyst populations to warming
e Cell density dependent encystment triggers can limit bloom intensification

e Longer HABs in response to warming will reflect prolonged cyst bed quiescence

Abstract

Many phytoplankton species, including many harmful algal bloom (HAB) species,
survive long periods between blooms through formation of benthic resting stages. Because they
are crucial to the persistence of these species and the initiation of new blooms, the physiology of
benthic stages must be considered to accurately predict responses to climate warming and
associated environmental changes. The benthic stages of dinoflagellates, called resting cysts,
germinate in response to the combination of favorable temperature, oxygen-availability, and
release from dormancy. The latter is a mechanism that prevents germination even when oxygen
and temperature conditions are favorable. Here, evidence of temperature-mediated control of
dormancy duration from the dinoflagellates Alexandrium catenella and Pyrodinium
bahamense—two HAB species that cause paralytic shellfish poisoning (PSP)—is reviewed and
presented alongside new evidence of complementary, temperature-based control of cyst
quiescence (the state in which cysts germinate on exposure to favorable conditions). Interaction
of the two temperature-based mechanisms with climate is explored through a simple model
parameterized using results from recent experiments with A. catenella. Simulations demonstrate
the importance of seasonal temperature cycles for the synchronization of cysts’ release from
dormancy and are consistent with biogeography-based inferences that A. catenella is more
tolerant of warming in habitats that experience a larger range of seasonal temperature variation
(i.e., have higher temperature seasonality). Temperature seasonality is much greater in shallow,
long-residence time habitats than in deep, open-water ones. As warming shifts species’ ranges,
cyst beds may persist longer in more seasonally variable, shallow inshore habitats than in deep
offshore ones, promoting HABs that are more localized and commence earlier each year. Recent
field investigations of A. catenella also point to the importance of new cyst formation as a factor

triggering bloom termination through mass sexual induction. In areas where temperature
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seasonality restricts the flux of new swimming cells (germlings) to narrow temporal windows,
warming is unlikely to promote longer and more intense HAB impacts—even when water
column conditions would otherwise promote prolonged bloom development. Many species likely
have a strong drive to sexually differentiate and produce new cysts once concentrations reach
levels that are conducive to new cyst formation. This phenomenon can impose a limit to bloom
intensification and suggests an important role for cyst bed quiescence in determining the duration

of HAB risk periods.

Key words: microbial life cycles; climate change; resting cyst dormancy

1. Introduction

Many harmful algal bloom species have benthic resting stages in their life histories.
Prominent among this group are cyst-forming dinoflagellates like Alexandrium catenella and
Pyrodinium bahamense, two marine species that cause paralytic shellfish poisoning (PSP)
through their production of saxitoxins, a potent class of sodium channel-blocking compounds
that cause illness and sometimes death to human consumers of contaminated seafood. Therefore,
understanding the factors that control bloom timing, intensity, and biogeography of 4. catenella,
P. bahamense, and other PSP-causing species has been an important focus for managers and
researchers aiming to ensure seafood safety and protect human health (Hallegraeft, 2010).

Numerous works have emphasized the role of cysts in the ecology of A. catenella and P.
bahamense, and studies of these species have contributed greatly to what is known about the role
of benthic coupling in phytoplankton ecology (Azanza et al., 2018; Fig. 1). For instance, the
locations of benthic ‘cyst beds’—areas where resting cysts accumulate in sediments—often
determine where blooms occur (e.g., Anderson and Keafer, 1985; Corrales and Crisostomo,
1996; Azanza et al., 2004; Anderson et al., 2005a, 2014). Bloom timing—both initiation and
termination—is also strongly associated with exit from and return to the resting cyst stage of the
life cycle through the processes of germination and encystment, respectively (Fig. 1; Wall, 1971;
Anderson et al., 2014; Moore et al., 2015a; Brosnahan et al., 2017; Lopez et al., 2019). Cyst beds
also serve as reservoirs of genetic diversity, making cyst-formers more resilient to environmental
change and enabling them to persist longer in the face of interannual climate variability (e.g.,

Kremp et al., 2016). While particularly well described in dinoflagellates, benthic life history
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stages are important for the ecology of other classes of phytoplankton as well, including diatoms
(McQuoid and Hobson 1996; Lewis et al., 1999) and cyanobacteria (Livingstone and Reynolds,
1980; Huber, 1984; and Cirés et al., 2017). We focus on A. catenella and P. bahamense here to
highlight recent advances in the understanding of potential climate responses by their resting
cysts and to encourage greater consideration of the role of benthic and other non-dividing life
cycle stages in predictions about phytoplankton responses to climate change.

The extent to which climate change is affecting HABs has been a major question facing
scientists and resource managers for decades (Anderson, 1989; Hallegraeff, 1993, 2010; Wells et
al., 2015). Temperature drives the rate of a broad range of microbial processes, including many
physiological rates and behaviors that are fundamental to HAB dynamics. A major focus of HAB
climate studies has been the effect of warmer temperatures on planktonic, vegetative life stages
(e.g., Moore et al., 2008; Wells et al., 2015; Gobler et al., 2017; Seto et al., 2019). Cyst-forming
species spend most of their lives in the sediments as resting cysts and only a small fraction of
their lives as plankton. Therefore, the factors governing cyst dynamics and survival must be
understood and considered to accurately predict these species’ responses to warming. In this
work, we review the factors known to control cyst germination and explore the implications of
newly described temperature-based mechanisms controlling transitions between states of
dormancy and quiescence (hereafter referred to as dormancy cycling). We also present recent
evidence that intensification of blooms by some cyst-forming species may be limited by an
underlying drive to produce new cysts. Finally, we revisit the “window of opportunity”
hypothesis (Moore et al., 2008), which predicts earlier and longer lasting blooms as temperatures
become increasingly favorable for the growth and division of planktonic vegetative cells.

The window of opportunity hypothesis is built upon a four-decade long record of PSP
toxin concentrations in shellfish tissues from A. catenella in Puget Sound, WA USA.
Examination of PSP records in the mussel Mytilus edulis from 1993-2007 found that shellfish
harvesting closures occurred earlier in the year (Moore et al., 2009) and are projected to extend
an additional 13-30 days into the spring by the end of the 21 century (Moore et al., 2011;
Moore et al., 2015b). The hypothesis is based on lengthening periods of conditions that support
vegetative cell growth, but other life cycle stages are affected by changing temperature as well
(Fig. 1). The consequences of these temperature effects, if not considered, may reduce the

accuracy of bloom season projections and limit the generalizability of the window of opportunity



119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

hypothesis to other habitats impacted by A. catenella, P. bahamense, and other cyst-forming
species. Consideration of the effect of warming on resting cysts is especially important because
they are long-lived and endure nearly the full range of temperatures occurring in many bloom
habitats (Fig. 2). Resting cysts also respond to climate in ways that are distinct from planktonic
life cycle stages.

Dinoflagellate resting cysts do not grow or divide and may undergo passive mixing
within sediments for several decades before they germinate and develop blooms of planktonic
vegetative cells (Keafer et al., 1992; Kremp et al., 2000; Feifel et al., 2015). Exit from the resting
cyst stage is tightly controlled by both internal and external factors. While buried in sediment,
they are prevented from germinating by lack of oxygen (Anderson et al., 1987), a response that
ensures germlings only emerge when they have a reasonable chance of returning to the water
column. Cyst germination is also inhibited by cold temperatures, preventing germination during
wintertime when both light period and water temperature do not support bloom development
(Anderson et al., 2005a). Finally, resting cysts cycle between states of quiescence, when they
will germinate if exposed to favorable external conditions (e.g., temperature, oxygen; Rengefors
and Anderson, 1998; Kremp et al., 2000), and dormancy, when they will not. In temperate
systems, this internal mechanism provides an additional barrier to wintertime germination,
preventing cysts from responding to occasional spells of unseasonably warm weather. Dormancy
also prevents germination late in bloom seasons when germling cells are less likely to
successfully form blooms and re-encyst.

There are two distinct types of dormancy in A. catenella and P. bahamense resting cysts.
The first, called mandatory dormancy, occurs immediately after cyst formation and is understood
as a maturation period that is required for cysts to germinate (e.g., Anderson and Morel 1979).
The second, called secondary dormancy, is the reversible state that underlies dormancy cycling
and can recur many times within a single cyst’s lifetime (Fig. 1; Fischer et al., 2018). Prior
examinations of A. catenella and other dinoflagellates have pointed to an endogenous biological
rhythm or “clock™ as the mechanism controlling the recurrence of secondary dormancy
(Anderson and Keafer, 1987; Rengefors and Anderson, 1998; Matrai et al., 2005). However,
more recent work has shown that the duration of secondary dormancy is set by temperature
(Fischer et al., 2018; Lopez et al., 2019). A second temperature-based mechanism, shown in P.

bahamense by Lopez et al. (2019) and parameterized for the first time in this work through
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experiments with 4. catenella, controls the duration of quiescence. Together, the two
relationships can drive dormancy cycles that are qualitatively similar to past observations of
endogenous rhythmicity in the dormancy cycles of A. catenella resting cysts. The combination of
temperature-based dormancy cycling control and exogenous (temperature- and oxygen-based)
triggers for germination of quiescent resting cysts ensures that germination is restricted to times
of year and positions within sediments that are favorable for the development of new planktonic
blooms.

This work does not aim to make specific predictions regarding changes in the occurrence
of blooms of 4. catenella, P. bahamense, or other cyst-forming species in response to global
warming. In most cases, the factors driving species’ responses to climate change will be far more
complex than cells’ and cysts’ responses to warmer temperatures alone. Climate change is also
altering coastal ocean circulation, rainfall, winds, water stratification, incidence of
hypoxia/anoxia, and other region- and ecosystem-specific factors, all of which impact HAB
ecology in distinct ways. Accurate predictions require investments in persistent, long-term data
collection that build upon and complement field-based studies of bloom ecology at a broad range
of geographic scales (Ralston and Moore, this issue). However, we do highlight one interesting
corollary of warming in many temperate regions, namely increased temperature seasonality, i.e.,
the difference between summer- and wintertime temperature extremes (Fig. 2). Warming and
seasonality have both increased steadily across North America and Eurasia in recent decades
(e.g., Santer et al., 2018), and these changes especially impact shallower, inshore habitats where
water temperature more closely tracks air temperature. Many species, including both 4. catenella
and P. bahamense, also occur across a range of habitats that can differ substantially in the
amount of temperature seasonality they experience.

Cyst beds within shallow, long residence time inshore embayments tend to have higher
temperature seasonality than those in deep open water areas (Fig. 2). We explore the impact of
changes in habitat temperature and temperature seasonality through a simple model that is drawn
from experiments with A. catenella. Simulations illustrate how cysts’ temperature-based
dormancy controls may interact with a range of climates. Among the many consequences of
dormancy-climate interaction is heightened synchronization of cyst beds with increased
temperature seasonality. Under higher temperature seasonality, cyst beds produce greater fluxes

of germlings but during narrower temporal windows. A well-studied example that compares
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favorably with model simulations is the Nauset Marsh (Cape Cod, MA USA), an area that
experiences annually recurrent 4. catenella blooms each spring. In contrast, the model shows
lower seasonality produces lesser germling fluxes over longer time spans, desynchronizing
populations and promoting the development of successive blooms within a single bloom season.
Such may be the case in Puget Sound, an A. catenella habitat that experiences far lower
temperature seasonality than Nauset and is subject to a much longer annual window of PSP risk.
While the model draws from experiments with 4. catenella, similar experiments with P.
bahamense (Lopez et al., 2019) suggests that it may interact with climate in comparable ways.
Because this climate-dormancy interaction is only recently discovered in dinoflagellates,
knowledge of its effects on the timing and duration of blooms remain to be extended to the broad
diversity of dinoflagellates and other meroplanktonic phytoplankton that cause HABs. However,
given the global distribution of 4. catenella and P. bahamense (Fig. 3), we suggest that many
other cyst-forming species have similar mechanisms for adaptation to climate variability. With
the larger goal of encouraging broad consideration of species’ life cycles in climate-based
predictions, we also present observations related to the production of new cysts. Much like the
case of temperature-mediated dormancy cycling, field observations of new cyst formation are
limited, but research with 4. catenella points to a deep-rooted drive to produce new resting cysts
during blooms. This encystment drive can impose an upper limit to bloom intensification that is
independent of more commonly invoked factors like nutrients and light. The combination of
dormancy control and encystment mechanisms may constrain the duration of blooms by cyst-
forming species even as climate change promotes conditions that are increasingly favorable for

growth and division by the vegetative stage cells of these species.

3. Model species

Alexandrium catenella. Alexandrium is one of the most intensively studied HAB genera
globally because its species cause most incidents of PSP (Cembella 1998; Anderson et al., 2014).
Alexandrium catenella is the most widespread of those that produce saxitoxins and was recently
the subject of a reclassification involving all species in the “Alexandrium tamarense species
complex” (John et al., 2014). The final recommendation of the ICN Nomenclature Committee
for Algae was that the name A. catenella supplant two synonymous names—A. fundyense and A.

tamarense Group I—that had come into common use as a way to differentiate this species from a



212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

closely allied sister that was also commonly identified as A. catenella but is now known as 4.
pacificum (Prud’homme van Reine, 2017; Litaker et al., 2018).

The overall range of A. catenella spans temperate, subarctic, and Arctic waters (Fig. 3).
In North America, blooms of 4. catenella occur along the Pacific Coast from Alaska to
California and along the Atlantic Coast from the Gulf of St. Lawrence to Long Island, NY. In
South America, blooms occur from central Chile to Tierra del Fuego, and from the northern
Argentine Sea to the Magellan Strait. The species also occurs in the Benguela Current region off
Namibia and South Africa, in northern regions of east Asia, including Japan, Korea, and the
Kamchatka Peninsula of Russia, and in Europe along the northern coasts of the United Kingdom
and the west coasts of Norway and Sweden (Lilly et al., 2008). Recent studies have documented
A. catenella vegetative cells and cysts in the Arctic north of Alaska and Canada (Gu et al., 2013;
Natsuike et al., 2013; 2017; Okolodkov, 2005; D. Anderson, unpub. data), Iceland (Burrell et al.,
2013), and northwestern Greenland (Baggesen et al., 2012). Along the west Greenland coast, A.
catenella cysts are present at low concentrations up to 76°N (Richlen et al., 2016; D.M.
Anderson, unpub. data).

The timing of blooms varies across this expansive domain and across habitats within
single regions. For example, in the western Gulf of Maine, blooms begin in May and last
approximately 3 months (Anderson et al., 2014), yet in some shallow inshore embayments within
the same region, blooms begin as early as March and typically end 6-8 weeks later (Ralston et
al., 2014). Cyst concentrations in these habitats often exceed 10° cysts g! of wet sediment
(Anderson et al., 2005a, 2014; Crespo et al., 2011). Cell concentrations regularly exceed 10° L*!
within inshore blooms (Crespo et al., 2011; Anglés et al., 2014; Ralston et al., 2014), but are
typically much lower within offshore populations where peak concentrations are on the order of
103 cells L (Stock et al., 2005). In contrast, the location, toxicity, and timing of A. catenella
blooms in Puget Sound exhibits considerable interannual variation within an approximately 5-
month long bloom season (Moore et al., 2009) though peak cell concentrations are comparable to
those of inshore blooms in the northeast U.S. (Dyhrman et al., 2010). Across its range, 4.
catenella vegetative cells are absent from the water column more often than not, and therefore
cyst beds are the most likely source of new blooms rather than revival of remnant vegetative cell

populations from the water column.
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Pyrodinium bahamense. Pyrodinium bahamense is the most common cause of PSP toxicity in
tropical and sub-tropical marine waters (Fig. 3). It is a monotypic genus, and Steidinger (2018)
recommends distinguishing between its Atlantic and Pacific forms. Blooms occur in many areas
of the western Pacific (Furio et al., 2012, Usup et al., 2012), the Persian Gulf, and the Red Sea
(Alkawri et al., 2016, Banguera-Hinestroza et al., 2016), as well as in the southeastern U.S.
(Phlips et al., 2006, 2011), the Caribbean Sea (Soler-Figueroa and Otero, 2014), Central America
(Chow et al., 2010), the Gulf of California (Morquecho et al., 2014), and the Pacific coast of
Mexico and southwestern Gulf of Mexico (Morquecho, 2019). Descriptions of P. bahamense
blooms have been largely restricted to inshore and nearshore coastal areas. Its resting cysts,
though, are widespread and abundant relative to other species in both coastal (near where blooms
are observed) and deep ocean sediments (Wall, 1967; Limoges et al., 2013; Zonneveld et al.,
2013). This distribution may reflect high rates of production and transport of cysts by coastal
blooms alone or the occurrence of as yet undetected bloom populations further from shore.

To date, P. bahamense ecology has been explored most extensively in the Philippines,
where blooms are strongly linked to resting cyst dynamics (i.e. resting cyst abundance, cyst bed
locations; Villanoy et al., 1996; Azanza et al., 2004; Siringan et al., 2008; Azanza, 2013).
Blooms within Manila Bay and Sorsogon Bay can be especially intense and persist from weeks
to months. Water temperatures in the region are favorable for growth throughout much of the
year, but the species can be absent from the plankton for long periods. Generally, blooms in the
Philippines develop in late summer, a period that marks the start of the southwest monsoon and
coincides with more stratified conditions. In other parts of east Asia, blooms occur more
sporadically, sometimes with cells present year-round or in multiple peaks within a year (Azanza
and Taylor, 2001).

Both vegetative cells and resting cysts have been recorded along the coasts of the U.S.
state of Florida, in the Caribbean, and along the coast of Mexico with differences in bloom
phenology linked to latitude across the region (Morquecho, 2019). In Florida, high biomass
blooms of toxic P. bahamense (Atlantic) occur almost every summer in the shallow, estuarine
systems of northern Tampa Bay and Indian River Lagoon and more sporadically and at lower
abundances in Pine Island Sound, Florida Bay, and other areas of Florida (Phlips et al., 2006,
FWC FWRI HAB Monitoring Database). In Tampa Bay, cell concentrations are highest where

resting cysts are concentrated (>10° cysts g'! of wet sediment, Lopez et al., 2017) and water
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residence times are long (Meyers et al., 2017). Extensive surveys of resting cyst abundance have
not been conducted in other areas of Florida, but concentrations of 300-900 cysts g™ of wet
sediment are common in Indian River Lagoon sediments and lesser concentrations (~10 cysts g!
of wet sediment) have been recorded in Pine Island Sound (C. Lopez, unpub. data). Tampa Bay
and Indian River Lagoon blooms are strongly seasonal—typically beginning in spring, peaking
in late summer, and ending during the fall. Peak concentrations (above 10° cells L") generally
persist between two and four months, resulting in ecosystem degradation through shading of
seagrass beds and degraded water quality (Lopez et al., 2019, FWC FWRI HAB Monitoring
Database). Additionally, in the Indian River Lagoon, extensive shellfish harvesting closures
occur each year and harvesting of pufferfish is permanently closed to prevent saxitoxin puffer
fish poisoning (SPFP) in humans (Landsberg et al., 2006). In the tropical waters of Puerto Rico,
P. bahamense is generally present in the water column year-round, and in contrast to Florida,
peak concentrations are lower with no clear seasonal signal, although lowest cell concentrations
tend to occur more commonly in the dry months (Sastre, 2013, Soler-Figueroa and Otero, 2016).
Likewise, P. bahamense blooms in bays in Mexico along the southern Gulf of Mexico tend to be
present year-round whereas populations in the Gulf of California are more seasonal (Morquecho

etal., 2019).

4. Dinoflagellate life cycles

Like most other dinoflagellates, 4. catenella and P. bahamense are haplontic (Fig. 1).
Motile, haploid, vegetative cells divide and accumulate in euphotic waters until they are induced
to produce gametes that fuse to form swimming diploid cells (planozygotes). Planozygotes then
transform into benthic resting cysts, also called hypnozygotes (Anderson and Wall 1978; Pfiester
and Anderson, 1987). All resting cysts are highly resistant to temperature and other
environmental stressors, but morphology varies among species—Alexandrium catenella resting
cysts are smooth, elongate, double-walled cells, whereas P. bahamense resting cysts are spheroid
and covered with distinctive, trumpet-shaped spines (Fig. 4). The mandatory dormancy period of
newly formed resting cysts is similar in these species—1-3 months for A. catenella (Anderson
and Morel, 1979) and 2.5-3.5 months for Pacific populations of P. bhahamense (Corrales et al.,
1995)—despite very different temperature regimes in their respective habitats. Also noteworthy

is that mandatory dormancy in A. catenella is shorter at warmer temperatures (Anderson, 1980),
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the opposite relationship from what has been shown for secondary dormancy (Fischer et al.,
2018). Germination of a resting cyst produces a planomeiocyte, a short-lived germling stage that
reverts back to the mitotically dividing haploid, vegetative stage through a series of meiotic
divisions (von Stosch, 1967, 1973).

Resting cysts tend to accumulate in areas that collect fine sediment to form cyst beds (e.g.
Anderson et al., 2014; Karlen and Campbell, 2012). There, resting cysts can remain viable for
decades, particularly when sediments are anoxic (Keafer et al., 1992; Siringan et al., 2008; Feifel
et al., 2015). Within these areas, resting cysts can cycle between states of secondary dormancy
and quiescence many times during their lifetimes—a process that may be under control of an
endogenous rhythm (Anderson and Keafer, 1987; Matrai et al., 2005) and/or responsive to
seasonally varying temperature (Anderson and Keafer, 1987; Rathaille and Raine, 2011; Fischer
et al., 2018; Lopez et al., 2019; Moore et al., 2015a). The physiological and molecular
underpinnings of dormancy cycles are yet to be described in phytoplankton, but endogenous
rhythmicity might preserve germination control in habitats where seasonal signals are absent or
muted (e.g., in deep water habitats). Alternatively, temperature-mediated controls may determine
rhythm periods (i.e., the time between successive quiescence intervals) by setting the duration of
its dormancy and quiescence phases. It is noteworthy that the endogenous rhythm described in
Gulf of Maine 4. catenella is less than one year (~11 months; Anderson and Keafer, 1987;
Matrai et al., 2005). Were dormancy cycles solely under the control of this rhythm, resting cysts
would enter quiescence increasingly out of phase with optimal growth periods over the course of
several years—which would be clearly disadvantageous. Even in the deep cyst beds of the Gulf
of Maine (~100 m depths), resting cysts experience seasonal changes in temperature that may
override endogenous rhythmicity (Fischer et al., 2018), and in the case of Puget Sound
populations, temperature appears to play a more significant role than endogenous rhythmicity
(Moore et al., 2015a). In sub-tropical P. bahamense, evidence from germination experiments
with multiple cohorts of resting cysts have pointed only to temperature-mediated control of
secondary dormancy rather than an endogenous mechanism (Lopez et al., 2019).

Both A. catenella and P. bahamense also produce haploid, pellicle cysts (sometimes
called temporary cysts) directly from vegetative cells when exposed to acute stress (e.g.,
Anderson and Wall 1978; Onda et al., 2014). Pellicle cysts cannot survive long burial periods but

can promote recovery and resumption of blooms challenged by ephemeral stressors (e.g., major



336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

12

storms; Azanza, 2013). Increasing frequency of bloom-disruptive events like storms, heatwaves,
and cold snaps may favor species that can form pellicle cysts. Indeed, this life history stage may
become more prevalent as temperatures warm due to global change. Better understanding of the
factors that govern the formation, viability, and germination success of pellicle cysts is therefore
needed. However, since dormancy cycling has not been described for pellicle cysts, the
discussion presented here is focused on the longer-lived, diploid resting cysts of these two
species. All references to ‘quiescent cysts’ and ‘dormant cysts’ in this work refer exclusively to
resting cysts since it is only the resting cyst life cycle stage that has been shown to experience

quiescence and dormancy.

5. Roles of temperature in cyst dormancy and germination

Temperature has been long recognized as an important determinant of cyst dormancy and
germination in both freshwater and marine dinoflagellates (Huber and Nipkow, 1922; Binder and
Anderson, 1987; Bravo and Anderson, 1994). Rengefors and Anderson (1998) showed how the
interaction of endogenous dormancy cycling and the temperature-mediated rate of germination
could explain the appearance of the freshwater dinoflagellates Ceratium hirundinella and
Peridinium aciculiferum in the plankton. Germination in these species only proceeds when
temperatures fall within a species-specific range; higher and lower temperatures inhibit the
germination of quiescent cysts, blocking the introduction of new cells to the water column.
Subsequent work by Anderson and Rengefors (2006) extended this concept to six marine
species, including 4. catenella, and found they would not germinate at either low (<5 °C) or high
(>21 °C) temperatures. Later experiments found that A. catenella germination rates within the
temperature “window” generally increased with temperature and converged asymptotically
toward minimum and maximum rates at temperature window boundaries (e.g., Anderson et al.,
2005a; Fig. 5). Onset of inhibition at warm temperatures may instead be related to rapid
induction of dormancy (discussed below). Similarly, quiescent P. bahamense cysts will
germinate across the full range of seasonal temperatures experienced in their habitats, but much
more slowly in colder conditions (e.g., wintertime, ~17 °C in Tampa Bay; Lopez et al., 2016).

Temperature control of germination interacts with anaerobic inhibition to further
constrain the flux of plankton into the water column. Oxygen is required for cysts to germinate

(Anderson et al., 1987), and the germination rate drastically declines at oxygen concentrations <2
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mg L' (Montani, 1995). As sediments warm, microbial respiration rates increase, reducing
oxygen availability in subsurface sediments and constraining fluxes of germling cells. Sediments
in productive shallow coastal waters, which represent most cyst beds, are generally characterized
by oxygen penetration depths of millimeters (Glud et al., 1994), thus restricting the number of
resting cysts that can successfully germinate. Seasonal variations in oxygen penetration are
driven by temperature, resulting in the shallowest penetration in summer due to rapid aerobic
respiration and fresh detrital inputs. The deepest oxygen penetration occurs in winter due to
reduced oxygen demand (Kristensen, 2000), but low wintertime temperatures also inhibit
germination (Anderson et al., 1987; Anderson et al., 2005a). Recent investigations using
plankton emergence traps in Nauset Marsh suggest that only a small fraction of oxygenated A.
catenella resting cysts (i.e., those from the uppermost ~1 mm of sediment) germinate in spring,
in spite of much deeper wintertime sediment oxygenation (D. M. Anderson, unpub. data).
Similar seasonal anoxia also limits germination of 4. catenella and other dinoflagellates
elsewhere on Cape Cod (Keafer et al., 1992; Anderson and Rengefors, 2006). In the case of
quiescent cysts that are buried more deeply, germination is frequently inhibited by both
temperature (high or low) and anoxia.

The first evidence for an additional role of cold in releasing resting cysts from dormancy
was noted by von Stosch, who found that storage at 3°C both increased the fraction of
germinable cysts and reduced the incubation times required for Ceratium (1967), Gymnodinium,
and Woloszynskia (1973) species to germinate. Another study by Montresor and Marino (1996)
noted more synchronous germination of A. pseudogonyaulax cysts after storage at 7°C for 40—
100 days. More recent studies have confirmed that cold exposure reduces the duration of
dormancy in both A. catenella (Fischer et al., 2018) and P. bahamense (Lopez et al., 2019; Fig.
6). This inverse relationship between temperature and the duration of secondary dormancy is
opposite to most other physiological rates (i.e., germination, cell division, and new cyst
maturation), which tend to proceed faster at elevated temperatures (at least up to an upper
physiological limit).

To date, 4. catenella is the only species for which the relationship between cold exposure
and secondary dormancy passage has been examined quantitatively (Fischer et al., 2018; D.M.
Anderson, A.D. Fischer, and M.L. Brosnahan, unpub. data). In a series of experiments with cysts

from Nauset Marsh, the duration of dormancy was shown to vary inversely with storage
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temperature (i.e., colder cysts passed through dormancy more quickly than warmer ones). This
relationship between the severity and duration of cold exposure follows a simple chilling-unit
model that is commonly used in horticulture, e.g., to describe vernalization in some bulbs
(Fischer et al., 2018). A. catenella resting cysts exit dormancy by accumulating a set number of
chilling units (CU), calculated as the integral over time (7) of the difference in ambient

temperature (7) from a chilling threshold temperature (7¢):

T,—T)At if T.=>T; =0
ClU = Z ( c i c i
{ 0 if otherwise

(Eq. 1)

Built into this model are two physiological parameters: the chilling threshold temperature, 7,
which determines the upper limit at which a resting cyst population registers cold exposure, and
a chilling requirement, which is the total CU needed for transition to quiescence. Nauset A.
catenella have T.=15°C and a chilling requirement of ~800 CU (Fig. 7). A subsequent cold
storage experiment has confirmed similar dormancy shortening in 4. catenella from a deep cyst
bed in the Gulf of Maine, but further development of the chilling model is needed to determine
whether 7. and chilling requirements differ significantly between the Nauset and Gulf of Maine
populations (D.M. Anderson, unpub. data). Similar characterizations of other A. catenella
populations are ongoing and aim to assess if and how their chilling responses can be generalized
globally, or instead are region- or population-specific. Comparable experiments with P.
bahamense suggest that the relationship between its dormancy duration and cold severity is
weaker, such that dormancy passage may proceed at a similar rate across a range of chilling
temperatures (Lopez et al., 2019, C. Lopez unpub. data). Further exploration of these responses
in P. bahamense and other species is needed to characterize the nature of chilling requirements
across a wider diversity of cyst-forming species.

Like secondary dormancy, the duration of quiescence is also temperature sensitive. The
first evidence of this was noted by Anderson and Rengefors (2006) who found that temperatures
in excess of 18.5°C inhibited A. catenella germination. Lopez et al. (2019) further showed that
quiescent P. bhahamense cysts returned to dormancy after one month of storage at 30°C but

remained quiescent when stored at 15°C (Fig. 6). A follow-up study of the relationship between
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quiescence duration and temperature in A. catenella has revealed that quiescent cysts are induced
into secondary dormancy more quickly when stored at warmer temperatures and that this
relationship follows a heating degree-day (DD) formula (Brosnahan et al., in prep). DD are

calculated as the time integral of temperature above a heating threshold value, 7h:

t
DD(t) = Z(Ti —TAt if T, >0

i=t0

(Eq. 2)

The same formulation is commonly applied in agricultural applications to predict the seasonal
maturation of plants and insects, and in a prior study, was shown to accurately predict the timing
of both PSP toxicity and 4. catenella bloom peaks in the Nauset Marsh (Ralston et al., 2014).

In the A4. catenella quiescence experiment (Brosnahan et al., in prep), dormant cysts from
a deep cyst bed in the Gulf of Maine were induced into quiescence through cold, anoxic storage
at 2 °C. Once quiescent (i.e., >90% cysts germinating within 1 week of transfer to favorable
conditions), the population was split into three subsamples and warmed at 1 °C day! up to final
storage temperatures of 10, 15, and 20 °C. The dormancy state of resting cysts in each of the
storage temperature treatments was assessed at regular intervals by removing subsamples of
approximately 30 from each of the storage treatments and exposing these to oxygenina 15 °C
incubator. If the resting cysts germinated within 1 week of exposure to these favorable
conditions they remained quiescent. If they did not germinate, they had returned to dormancy.
Most resting cysts in the warmest 20 °C treatment returned to dormancy within 30 days, while
those in the cooler 15 and 10 °C treatments returned to dormancy after 40 and 60 days,
respectively (Fig. 7). Applying a 7 threshold of 0 °C, cysts have an estimated heating
requirement of 600 DD for induction of secondary dormancy (Fig. 7). The result indicates two
additional physiological parameters, 7h and heating DD requirement, to describe the rate of
quiescence passage.

The effect of temperature on quiescence is opposite to that on secondary dormancy, i.e.,
quiescence is longer at colder temperatures and shorter at warmer ones. In combination, these
heating and chilling relationships point to several simple predictions regarding cyst bed behavior

in different climates. First, and perhaps counter-intuitively, dinoflagellate cyst beds are more
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responsive (i.e., germinate at higher rates) during spells of favorable bloom conditions in colder
habitats than in warmer ones. This is because colder temperatures promote cyst quiescence
through the cysts’ chilling response. Second, the relationships point to an important role for
temperature seasonality in determining the synchrony of cyst beds. Cyst populations that
experience larger excursions from 71 and 7t thresholds throughout the year— that is, more
extreme cold and warmth— will accumulate CU and DD more quickly during these periods,
reducing the differences in the timing of cysts” dormancy and quiescence transitions that arise
from small physiological or microhabitat-related differences. Lastly, chilling and degree-day
relationships likely underlie (or interact with) endogenous dormancy rhythms observed in cysts
from the Gulf of Maine (Anderson and Keafer, 1987; Matrai et al., 2005). The extent to which
these mechanisms overlap or reinforce one another remains to be explored and may resolve long-
standing conflicts between observations of dormancy cycles in deep water and inshore cyst

populations (e.g., Anderson and Keafer, 1987; Moore et al., 2015a; Fischer et al., 2018).

6. Interaction of temperature-mediated controls of secondary dormancy and climate
Chilling- and heating-based controls of secondary dormancy can drive complex responses
by cyst beds. This is most easily illustrated through a model, presented here, that combines these
relationships using physiological parameters drawn from investigations of 4. catenella. In the
model, passage through secondary dormancy is controlled by chilling accumulation (Eq. 1) with
T.=15 °C and a mean chilling requirement of 900 CU. Quiescence passage is controlled by the
degree-day relationship (Eq. 2) with 7,=0 °C and a mean heating requirement of 600 DD (Fig.
8). The model is evaluated by considering a large population of cysts with independent, normal
variance in their chilling and heating requirements (standard deviation set to 10% of requirement
means) reflecting intrinsic and extrinsic differences among resting cysts within a population.
Initially, resting cysts are completely synchronized (e.g., 100% quiescent with 0 degree-day
accumulation) and are tracked through 100 years of annual temperature fluctuations to assess
whether and how dormancy cycles stabilize under regular seasonal forcing. One hundred-year
simulations neglect contributions from new resting cysts but were chosen because they produce
realistic and stable distributions of secondary dormancy states within model populations. The
omission of new resting cysts is an important caveat. Beds that are disproportionately comprised

of recently formed resting cysts may behave quite differently, especially if the recently formed
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cysts exit mandatory dormancy out of resonance with their environment. Little is known about
the age structure within cyst beds (e.g., Keafer et al., 1992; Shull et al., 2014), and therefore the
model is primarily aimed at exploring the interplay of chilling and heating mechanisms with
climate rather than predicting the behavior of resting cyst populations in situ.

Under constant temperature forcing, model cysts’ quiescence intervals are shorter in
warmer treatments than in colder ones (Fig. 9). Resting cysts at the coldest temperature (2 °C)
are quiescent 82.1% of the time, whereas those at the warmest temperature (13 °C) are quiescent
only 9.9% of the time. This type of forcing is similar to storage treatments used in investigations
of endogenous rhythmicity in 4. catenella. Similar to Gulf of Maine resting cysts, initially
synchronized model populations exhibit rhythmic phasing of dormancy and quiescence (Fig. 10;
Anderson and Keafer, 1987, Matrai et al., 2005). Warmer populations never reach 100%
quiescence and return to full dormancy more frequently than colder ones. Notably, the length of
the dormancy cycling period varies nonlinearly with temperature. The time between quiescence
peaks is shortest for simulated resting cysts at constant 7.5 “C and longer for colder and warmer
populations (e.g., 2 and 13 °C, Fig. 10). Additionally, in all temperature treatments, the cycle
period grows longer with model time. Resting cysts at constant 2 °C undergo an initial cycle that
is 11.5 months long, similar to natural populations from deep water beds in the Gulf of Maine
(~11 months; Anderson and Keafer, 1987), but second and third periods are 12.4 and 12.7
months. Oscillations between dormancy and quiescence are also increasingly damped, such that
periodicity is hardly evident after year 6. The same damping occurs in other temperature
simulations as well, pointing to the importance of temperature seasonality to establish and
reinforce dormancy phasing under the heating/chilling model.

In contrast to the constant temperature simulations, model simulations with seasonally
varying temperatures drive phasing of dormancy cycles that stabilize over time. Seasonally
varying temperatures also prolong quiescence within individual resting cysts. This is illustrated
through results from populations forced by four distinct climate regimes (Fig. 11). Regimes 1-3
have the same temperature seasonality (£ 3 °C) but mean temperatures of 7, 10, and 13 °C,
respectively. Regimes 1 and 2 are comparable to temperature conditions experienced by cyst
beds in the Gulf of Maine (7.4 + 3.9 °C) and Puget Sound (10.3 £ 2.3 °C), respectively. Regime 3
is presented as a potential warming scenario for either Regime 1 or 2. Regime 4 has the same

mean temperature as the warming scenario Regime 3 but larger seasonality (13 £ 10 °C), similar
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to Nauset Marsh (12.5 + 11.5 °C; Fig. 2). Among these temperature regimes, all but Regime 3
settle into patterns of regular, phased dormancy cycles within five years of initiation (i.e., years
5-100 are highly similar within each regime; Fig. 11). In Regimes 1, 2, and 4, single annual
peaks in quiescence are centered during winter but vary in magnitude from 58 to 100% of the
total population. While the warming scenario Regime 3 also produces peaks in quiescence, they
are irregular and multimodal with maximum quiescence percentages that are lower (38-53%)
and less consistent from year to year (Fig. 11).

For simulations with seasonally varying temperatures, temperature-dependent
germination of quiescent cysts was also incorporated into the model. Quiescent cysts germinate
following a sigmoid function, proceeding at a minimum rate of 1.7% day! below 5°C and a
maximum rate of ~8.6% day! above 10 °C (Figs. 5 and 8; Anderson et al., 2005a). In Regimes 1,
2, and 4, simulated germling fluxes track the dormancy cycling patterns of populations during
the fall and spring but are suppressed during the winter due to cold inhibition of germination. In
the coldest simulations (Regimes 1 and 2), distinct peaks in the flux of germlings occur during
the fall and spring. In contrast, the warming-scenario Regime 3 effectively releases cysts from
cold inhibition such that germination and germling fluxes directly track changes in cyst bed
quiescence.

The strongest phasing of quiescence is produced by the highest temperature seasonality
(Regime 4; 13 + 10 °C), which is typical of shallow, inshore systems where water temperature
more closely tracks air temperature. The cyst population is converted between dormant and
quiescent states nearly synchronously, with quiescent intervals spanning from early winter to late
spring. This is significantly shorter than regimes with milder seasonality and effectively restricts
bloom initiation to spring (as is observed in Nauset Marsh). At the onset of quiescence, model
germling flux is initially suppressed by cold winter temperatures and then increases to its peak
potential rate as temperatures warm to 10 °C (Figs. 5 and 11). Synchronous phasing of
quiescence arises from the effects of especially warm and cold periods of the year that rapidly
drive resting cysts through quiescence and secondary dormancy, respectively.

Another important effect of temperature seasonality derived from model results is
increased duration of quiescence intervals within individual resting cysts. Mild seasonality
simulations (Regimes 1-3) produce an inverse relationship between mean temperature and

quiescence duration (Fig. 12), just as in the constant temperature model simulation (Fig. 9).
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However, for any given mean temperature, as seasonality increases, the duration of quiescence
also increases. For example, model resting cysts under constant 13 °C forcing are quiescent 9.9%
of their lifetimes, whereas resting cysts under Regime 3 (13 = 3 °C) and Regime 4 (13 £ 10 °C)
are quiescent 11.6% and 24.7% (Figs. 9 and 12). This effect stems from dormancy cycle phasing.
Resting cysts in higher temperature seasonality habitats experience greater excursions from
threshold 7t and 71 temperatures. This drives more rapid passage from one state (dormancy or
quiescence) to the other, and then holds resting cysts in their new state with little progress toward
their next transition (i.e., via chilling or heating) until a change in season. Consider a dormant
cyst in winter. Severe cold drives its rapid transition to quiescence and then effectively holds it in
this state until spring warming because environmental temperatures are near 71, limiting
accumulation of heating DD. At the onset of warming in late spring and summer, it will rapidly
return to dormancy and remain in this state until the onset of cold in fall and winter.

The combined response by cyst beds to different climates and climate warming scenarios
drawn from this model is complex, but several concepts emerge. Generally, warmer
environments promote longer phases of dormancy and shorter phases of quiescence, reducing the
potential flux of germling cells from cyst beds for the inoculation of new blooms. However, this
effect of warming can be mitigated through increasing temperature seasonality. High temperature
seasonality also increases the synchronization of dormancy cycles, promoting larger germling
fluxes that are focused over a shorter period of the year. Larger, more synchronous germling
fluxes may be advantageous in more seasonal habitats for a number of reasons. Inocula may need
to surpass a threshold size for blooms to develop in habitats with high loss rates due to grazing
and/or interspecific interactions (e.g., allelopathy; Fistarol et al., 2004). Concentration of
germling fluxes over narrower temporal windows may also reduce the depletion of cyst beds and

reduce the demand for their renewal through new resting cyst production.

7. Biogeographic implications of interactions between cyst dormancy, warming, and
temperature seasonality

Cyst beds of A. catenella and other temperate and sub-arctic species are experiencing
climate change-associated increases in temperature seasonality but at a scale that is modest
relative to differences between shallow inshore and deep coastal habitats. For example, since

1979, there has been <1 °C change in tropospheric seasonality (Santer et al., 2018), whereas
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there is >7.5 °C seasonality difference between inshore and coastal A. catenella habitats within
the Gulf of Maine region (Figs. 2 and 13). The scale of the seasonality shifts is also modest
relative to the rate of climate warming (i.e., changes in annual mean water temperature).
Similarly, warming is far more significant than changes in seasonality within equatorial and
subtropical habitats where P. bahamense occurs. Model results suggest that cyst populations in
higher seasonality habitats (i.e., Regime 4) will be more resilient to climate warming than those
in habitats with lower seasonality (i.e., Regime 3). In this context, greater resiliency means cyst
populations are more likely to persist and inoculate new blooms despite changes in annual mean
water temperature. One outcome of warming may be a shift from the relative importance of
deep-water (lower seasonality) cyst beds to inshore (higher seasonality) cyst beds for initiation of
blooms in many regions, particularly those at the latitudinal limits of their ranges.

The biogeography of A. catenella in the northeast U.S., the southern boundary of this
species distribution in the northwest Atlantic, is concordant with the prediction that less seasonal,
offshore cyst beds will be more sensitive to warming. Expansive cyst beds occur within the Bay
of Fundy and along the mid-Maine coast, but to the south, cysts are more abundant within
isolated embayments than in deeper waters (Anderson, 1997; Anderson et al., 1994). Georges
Bank, an offshore but shallow area, supports substantial blooms of vegetative A. catenella cells
(McGillicuddy et al., 2014) but does not host a cyst bed of its own (Anderson et al., 2014),
instead relying on leakage of vegetative populations from coastal Maine for new bloom
initiation. The lack of a cyst bed on the bank itself is likely caused by strong currents that scour
fine sediment from its shallowest areas (Harris and Stokesbury, 2010), but even deeper flank
areas are characterized by low cyst concentrations (Anderson et al., 2014), suggesting that
temperature or other environmental factors are preventing cyst bed formation in these less
energetic areas. Despite even higher annual mean temperatures, more southern inshore
populations produce localized blooms that are largely self-seeding and persistent, e.g. Nauset
Marsh on Cape Cod and areas along the coasts of Connecticut and Long Island, NY (Anderson et
al., 1982; Anderson et al., 1994; Crespo et al., 2011; Fig. 13). This distribution is concordant
with increasing restriction of 4. catenella resting cysts to more highly seasonal habitats in
warmer areas of its range. Coastal blooms still occasionally extend at least as far south and west
as Rhode Island (Anderson et al., 2005b), but offshore cyst beds are restricted to cooler and

deeper waters off the coast of Maine and areas to the north.
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Mean bottom temperatures within Gulf of Maine have increased >2 °C since 2015
(Pershing et al., 2015). With further warming, the mid-Maine coastal cyst bed might wane in its
importance. Warming will drive deep cyst bed seasonal temperature cycles from Regime 1-type
behavior to Regime 3, releasing cysts from wintertime inhibition of germination and relaxing
temperature-based phasing of dormancy cycling. This would further restrict the development of
extensive offshore A. catenella cyst beds in southern, warmer, low seasonality areas. Range
shifts to more northern areas—comparable to what has been observed in many fish species (e.g.,
Perry et al., 2005; Nye et al., 2009)—are therefore likely to occur first among deep cyst beds in
open waters. Over time this may lead to reduced threats from expansive coastal blooms that
impact long stretches of the coast (Franks et al., 1992) or cause coastal blooms to rely more
heavily on leakage from “upstream”, higher latitude cyst beds or localized, inshore populations
for their initiation (Anderson et al., 2005a, 2014; McGillicuddy et al., 2005, 2014). Remnant
populations at lower latitudes will experience more strongly phased dormancy cycles, tending to
concentrate the initiation of new blooms within a shorter period of the year, leading to far more
localized PSP risk. At the poleward extreme of its range, warming may instead promote the
development of deep cyst beds that have the potential to cause expansive coastal blooms of A.
catenella, especially as warming enhances cyst germination and vegetative cell growth. The
extraordinarily large deposit of A. catenella cysts in the Chukchi Sea is noteworthy in this regard
as it points to the potential for massive blooms in an area that has no recorded history of PSP (Gu
et al., 2013; Natsuike et al., 2013; 2017; Okolodkov, 2005; D. Anderson, unpub. data).

In the case of P. bahamense, biogeographic patterns suggest a somewhat different
response to climate warming. Near the equator, lower temperature seasonality (Fig. 2) likely
drives desynchronization of cyst populations, which may underlie reports that blooms in these
lower latitude regions occur more sporadically or are recurrent throughout the year (Usup et al.,
2012; Sastre et al., 2013; Morquecho, 2019). In contrast, more seasonal, sub-tropical populations
(e.g., Tampa Bay and Indian River Lagoon, FL) peak in summer periods (Phlips et al., 2006), a
phenology that likely reflects both heightened germling fluxes in spring and more favorable
growth conditions for vegetative cells during late spring and summer (Fig. 2; Lopez et al., 2019).
The widespread distribution of P. bahamense resting cysts in coastal areas and ocean sediments,
which extends beyond the range of known bloom occurrence (Zonneveld et al., 2013), also

suggests the potential for the expansion of P. bahamense blooms to higher latitudes as warming
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occurs. But such an expansion may depend on the specifics and plasticity of its temperature-
based controls of dormancy and quiescence. Further investigation of these dormancy control
mechanisms and how they related to phenology of blooms across warming scenarios is needed to
assess how warming may alter sources of P. bahamense cells and PSP toxins.

It remains to be shown whether dormancy cycling and cold inhibition do in fact break
down with warming in 4. catenella as illustrated through the Regime 3 simulation. Variability in
chilling and heating responses within populations may also enable species to adapt over time.
Dinoflagellate cyst beds are phenotypically and genetically diverse, and that diversity can be
maintained over decades (Lundholm et al., 2017; Ribeiro et al., 2013). A multigenerational cyst
bed provides populations with a reservoir of diverse genotypes that could be resurrected when
favorable environmental conditions occur. Kremp et al. (2016) provides experimental evidence
that cyst beds do support short-term adaptation of 4. ostenfeldii to environmental change. The
development of relatively small, localized, and self-seeding populations may also promote
adaptation to warmer conditions (Anderson et al., 1994). In other cases, warming may cause
established cyst beds to erode as germination delivers more germlings to the water column
during periods that are unfavorable for bloom development, and, thus cyst bed replenishment.

It is also true that additional temperature effects not considered in the model may be more
decisive in driving changes in the range of 4. catenella, P. bahamense, and other species.
Dormancy is just one of many factors that determine germling fluxes in natural systems. Other
factors that control the supply of resting cysts to surficial sediments and the water column are not
considered here but are critical for release of resting cysts from anaerobic inhibition, which,
likewise, is not considered in the model. Similarly, the model ignores enhanced heat stress that
may contribute to higher mortality (Haellegraeff et al., 1997). It also neglects the potential for
resting cysts to exploit temperature gradients in the water column, e.g., deep populations may
reach surface waters as quiescent cysts through winter resuspension and mixing, then germinate
at elevated rates within warmer euphotic waters (Kirn et al., 2005; Pilskaln et al., 2014). Many, if
not all, of the factors controlling germling fluxes will be impacted by climate warming and their
responses will have interacting effects that sometimes enhance and other times negate one
another. Those temperature-related impacts that directly affect the physiology of resting cysts are
of paramount interest here because critical thresholds may delimit the conditions under which

germination (and initiation of new blooms) is possible or effectively regulated.
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8. Importance of new resting cyst formation and limits to bloom intensification

Production of new resting cysts by blooms is important for renewal of cyst beds and
initiation of future blooms. Given this importance to bloom ecology, descriptions of new resting
cyst formation in situ have been widely sought after for decades, yet few exist because they
present a formidable observational challenge. Like all other plankton, HAB cell distributions are
spatially patchy and dynamic. Gametes and planozygotes—the planktonic sexual stage
precursors to new cysts—are short-lived and therefore relatively rare compared to vegetative
cells in most bloom populations (Fig. 1; Badylak and Phillips, 2009; Brosnahan et al., 2017).
Most descriptions of new cyst formation therefore come from laboratory observations.

In culture, vegetative cells of A. catenella (and many other photosynthetic
dinoflagellates) can be induced to form cysts through nutrient limitation (e.g., Anderson and
Lindquist, 1985). Pyrodinium bahamense is perhaps an exception since conditions promoting
encystment of cultures of this species are yet to be described (Blackburn and Oshima 1989; Usup
et al., 2012). That nutrient limitation can drive encystment is consistent with the paradigm that
evolutionary pressure pushes species to favor self-replication and forego sexual recombination
for as long as a population’s environment will allow. Through combination of sexual
recombination and encystment, dinoflagellates and many other protists are able to defer gene
repair and recombination from periods that support vegetative cell division (e.g., Margulis et al.,
1985). In the field, however, many reports fail to link new resting cyst production to nutrient
limitation (e.g., Anderson et al., 1983; Angles et al., 2012; McGillicuddy et al., 2014; Brosnahan
et al., 2015, 2017), suggesting that other stimuli may commonly drive sexual induction and new
resting cyst production by blooms (e.g., Bravo and Figueroa, 2014).

Blooms of 4. catenella have been shown to produce large pulses of new cysts shortly
after their peaks. Different sampling methods used across studies make comparisons of peak cell
concentrations preceding encystment challenging, but work from the Nauset Marsh has shown
remarkable consistency across years and at three distinct kettle holes, each of which hosts its
own localized bloom (Anderson et al., 1983; Ralston et al., 2014). More recent observations
from Nauset Marsh using an in situ phytoplankton imaging sensor called Imaging FlowCytobot
(IFCB) has revealed that blooms undergo mass gametogenesis once thin layer concentrations

exceed 10° cells L' (Brosnahan et al., 2015, 2017; Fig. 14). Gamete fusion and planozygote



706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

24

formation proceed within hours of mass gametogenic events and are associated with localization
of A. catenella near the surface producing highly ephemeral red water discoloration (Ralston et
al., 2015; Brosnahan et al., 2017). Wholesale conversion of a coastal A. catenella bloom to
sexual stages, coinciding with red water and cell concentrations in excess of 10° cells L™, was
also observed in a population that spanned much of the coast of western Maine and New
Hampshire (McGillicuddy et al., 2014). In both of these works, concerted sexual transformation
led to rapid and complete bloom termination, suggesting that intensification of 4. catenella
blooms is limited by an overwhelming drive to form new resting cysts once cell concentrations
surpass the 10% cell L! threshold. Similarly, Uchida (2001) has reported cell concentration and
cell contact thresholds for sexual induction of the dinoflagellates Scrippsiella trochoidea and
Gyrodinium instriatum. In the case of P. bahamense, resting cyst production by field populations
remains to be characterized, but Florida monitoring data reveals a comparable limit to P.
bahamense bloom intensification (~10° cells L', Fig. 15). Unlike with A. catenella, however,
high P. bahamense concentrations often persist for weeks or months. Thus, while P. bahamense
planktonic populations can be composed of mixtures of vegetative and sexual stage cells (e.g.,
Azanza et al., 2004; Azanza, 2013; C. Lopez and S. Shankar unpub. data), plateaus in bloom
intensification, do not immediately precede rapid decline of blooms.

In Nauset Marsh, mass gametogenesis of A. catenella blooms typically occurs when
growth rates (determined through IFCB analysis) are fastest, temperatures are favorable for
growth, and when ambient concentrations of phosphate and nitrogen salts are relatively high
(Ralston et al., 2014; Brosnahan et al., 2015, 2017 and unpublished). Blooms also do not
typically resurge within a bloom season once sexual transformation has occurred, likely due to
the lack of inocula from cyst beds (Fig. 11; Regime 4). This limit to bloom intensification and
duration through sexual transformation in a population with highly synchronized dormancy
cycling of cysts adds nuance to the window of opportunity hypothesis that predicts prolonged
blooms with expanded windows of conditions supporting bloom development. At the very least,
these works show that the seasonal window within which blooms might occur is much narrower
than would otherwise be predicted by only considering conditions that support vegetative
growth.

Two warmer than normal years in Nauset Marsh from which suitable monitoring data are

available (i.e., 2012 and 2016) offer a chance to evaluate the window of opportunity hypothesis
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in this system. During these warm years, rapid in situ vegetative growth led to bloom
development approximately one month earlier than in other, more typical (and cooler) years.
Detection of the early 2012 bloom led to an emergency shellfish harvesting closure of the Nauset
system prior to the start of sampling by the Massachusetts state shellfish monitoring program in
that year (Ralston et al., 2014). Spring warming proceeded nearly monotonically through the
bloom period from early March through mid-April when the bloom in Salt Pond surpassed 10°
cells L' and then underwent a rapid and total decline driven by encystment as the water
temperature reached 15 °C. From start to finish the bloom persisted for only about five weeks,
slightly shorter than typical, even though favorable conditions for vegetative cell growth
persisted well into May (Brosnahan et al., 2015). The bloom in 2016 proceeded similarly through
mid-April when it too surpassed 10° cells L!, triggering a mass conversion to sexual stage cells
and rapid bloom decline (Fig. 14). Unlike 2012, however, a series of cold spells during the
bloom’s development kept water temperatures below 10 “C for most of April, extending
germling production by prolonging cyst quiescence. Continued germination likely led to the
renewal or second phase of the 2016 bloom in early May, and a second sexual induction-linked
bloom peak and decline in mid-May (Brosnahan et al., 2017; Fischer, 2017). These results are
instructive in that they emphasize the importance of cyst bed quiescence for the window of
opportunity hypothesis. Warmer than normal temperatures in 2012 and 2016 were projected to
expand the window of opportunity for 4. catenella in Nauset Marsh leading to earlier and longer
lasting blooms. Blooms occurred one month earlier than normal during both years, but the bloom
duration was extended only in 2016 because cool spring conditions prolonged cyst quiescence. In
2012, the bloom duration was the same as other years but was simply shifted earlier in the year.
In regions like Puget Sound where conditions promote longer and less synchronized fluxes of
germlings from cyst beds, blooms may go through several cycles of development, new cyst
production, and revival, prolonging the risk of PSP until conditions no longer support vegetative
cell growth. In areas like Nauset that experience greater temperature seasonality and more
synchronized fluxes of germlings from cyst beds, fewer cycles are possible because warmer
temperatures in late spring and summer tend to drive cyst beds back into dormancy. It is worth
noting that more intense spring and summer warming may also drive greater anoxia in
sediments, causing anaerobic inhibition of germination and further reducing the flux of

germlings that might otherwise sustain and renew blooms. The kettle holes within the Nauset
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Marsh commonly experience anoxia during summer periods and blooms often end just as anoxia
sets in within the deepest areas of the system. Most resting cysts, however, are present in
shallower areas that remain oxygenated for several weeks after blooms terminate (Crespo et al.,
2011; Brosnahan et al., 2017).

Collectively, these observations support the notion that the life cycle of a cyst-forming
species is more oriented toward the production of resting cysts rather than favoring continued
production of vegetative daughter cells. Blooms of some of these species will undergo mass
gametogenesis once they reach concentrations that are conducive to gamete pairing and fusion,
limiting bloom intensification. In many cases, this will reflect an imperative that cells return to
their resting cyst stage to survive periods between favorable bloom conditions. The implications
of this encystment trigger are significant in the context of global warming impacts on blooms.
Instead of vegetative populations continuing to grow as long as favorable temperatures persist,
cell density thresholds may be reached that terminate blooms “prematurely” unless they are
renewed through fluxes of new germlings. It remains to be shown whether characteristic peak
concentration and encystment-driven termination observed in Nauset and the Gulf of Maine can
be generalized to Puget Sound and other areas within 4. catenella’s extensive geographic range,
or if similar mechanisms for sexual induction hold for P. bahamense and other species, but the
observations from northeastern U.S. 4. catenella blooms expand the window of opportunity
hypothesis to also consider the effects of temperature and temperature history on the flux of
germlings from cyst beds. Especially for populations whose termination can be driven by mass
encystment, the potential for blooms to exploit more favorable conditions for vegetative growth

may depend on conditions also promoting continued germination of cysts.

9. Future directions

Recent intensive study of 4. catenella blooms in Nauset Marsh demonstrates the value of
rigorous, quantitative field investigations that can test and validate inferences and predictions
born from analysis of long-term data sets and laboratory-based studies of HAB organisms. While
temperature is undoubtedly a major determinant of HAB physiology, other factors that drive
dynamics in natural blooms remain to be elucidated. As one example, the factors driving
enhanced growth by Nauset A. catenella in situ in comparison to laboratory cultures remain to be

described (Brosnahan et al., 2015). While division rates in situ retain a strong temperature
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dependence, growth is also restricted to a far narrower range of temperatures than has been
shown for growth by cultures (5-15 °C vs. 5-26 °C; Fig. 16). Similarly, coastal blooms in the
Gulf of Maine are restricted to waters between 5 and 15 °C (Townsend et al., 2005), but blooms
in Northport Harbor, NY, a more southern inshore system, occur between 10 and 20 °C (Angles
et al., 2012). It remains to be shown whether A. catenella can bloom in even warmer waters in
nature and if so, how cells behave in terms of peak bloom intensity, production of new resting
cysts, and resilience to stress and changing interspecific interactions.

Like A. catenella, the relationship between the growth of P. bahamense and temperature
is well described by an asymmetric bell-shaped curve with low growth at low temperatures
increasing to a maximum and then falling rapidly at high temperatures (Usup et al., 1994). Some
differences are apparent however between Pacific and Atlantic isolates, the latter being more
tolerant of higher temperatures (Omura et al., 1994). Unlike 4. catenella, P. bahamense blooms
occur more commonly at temperatures near or exceeding those that support optimal growth of
laboratory cultures (i.e., >28-30 “C; Usup et al., 2012; Fig. 16) and can persist in these
environments for weeks to months (FWC FWRI HAB Monitoring Database). It may be that P.
bahamense is adapted to bloom nearer to, and even above, its upper temperature limit to growth
in culture. Evidence from experiments with Florida isolates suggests cells can maintain slow
cellular division for extended periods under conditions that induce cell stress (S. Shankar, unpub.
data). Pyrodinium bloom dynamics may also be driven to a larger extent by cycles of temporary
cyst formation and excystment (Azanza et al., 2013), which is a topic that requires further
exploration.

Deployment of in situ biosensors like the IFCB at bloom hot spots will better characterize
in situ division rates and the role of different life cycle transformations in determining bloom
dynamics of 4. catenella, P. bahamense, and many other species across a wide diversity of
habitats. With expanded use of these tools, more comprehensive understanding of the factors that
limit bloom intensity and duration will be developed. Continuous recording and real-time sharing
of phytoplankton diversity and abundance at bloom hot spots also has obvious value for
managers and stakeholders who must protect public health and natural resources from both
established and emerging HAB species affecting their regions (e.g., Campbell et al., 2010).
Records produced through these activities characterize HAB responses to interannual climate

variability and anomalous weather events. Because these events often mimic climate change
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scenarios (see Trainer et al, this issue), their analysis can provide further insights into the
response of blooms to warming and other climate-related environmental changes (e.g., Moore et
al., 2010; Anderson 2014; Angles et al., 2015; Wells et al., 2017).

Because the distribution and abundance of resting cysts is a strong predictor of bloom
locations in subsequent bloom seasons, understanding the evolution of cyst beds in response to
warming and climate variability will be invaluable for managing HAB impacts like PSP
(Anderson et al., 2014). Cyst beds reflect both the location of new cyst production and
hydrodynamic factors—tides, seasonal weather patterns, etc.—that scour and redistribute cysts
and other fine sediment particles in coastal systems (Butman et al., 2014; Aretxabaleta et al.,
2014). These factors can produce consistent patterns of cyst distribution within both inshore and
coastal cyst bed habitats (Anderson et al., 2014; Crespo et al., 2009), which, once known, can be
leveraged for design of efficient monitoring schemes (Solow et al., 2014). Expanded use of
molecular methods like quantitative PCR in benthic monitoring programs will also improve
detection of emergent species and toxins of concern (e.g., Erdner et al., 2010; Murray et al.,
2019). The combination of benthic monitoring with increased use of in situ monitoring tools like
the IFCB will improve understanding of HAB responses to warming and preparation of
appropriate management responses.

New efforts to understand relationships between changing temperatures and HAB species
must also develop new observational, experimental, and analytical approaches. The
characterization of temperature-based controls of cysts’ dormancy cycles remains in its early
stages. New approaches are needed to assess the prevalence of these mechanisms across the
diversity of cysts and other benthic stages formed by dinoflagellates and other classes of
phytoplankton. Similarly, evaluation of the plasticity of chilling- and heating-type responses
within and between populations will require adoption of new experimental and analytical
approaches. It is noteworthy that the initial descriptions of chilling-mediated dormancy passage
in A. catenella and P. bahamense were based on studies of cyst beds that were naturally
synchronized by relatively high temperature seasonality (Fischer et al., 2018; Lopez et al., 2019).
Strong phasing of dormancy cycles in these populations helped to reveal chilling- and heating-
mediated physiologies through simple experiments that applied constant temperature storage
conditions. More recent experiments have demonstrated alternating temperature schemes that

synchronize populations by mimicking habitats with high temperature seasonality (results
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presented here and D.M. Anderson, A.D. Fischer, and M.L. Brosnahan, unpub. data). Further
exploration of these more dynamic storage schemes may be required to determine differences
between populations. Additionally, progress may be made through experimentation with cyst
dormancy in species that readily produce viable cysts in culture. Lab-based investigations of
cultured cysts are likely better suited to investigations of the molecular underpinnings of these

responses and can better leverage new genetic tools (e.g., Chan et al., 2019).

10. Summary

Life cycle dynamics introduce complexity in efforts to predict the response of cyst-
forming dinoflagellates to climate change. These complications arise from heating and chilling
requirements for secondary dormancy and quiescence of resting cysts that are only now
becoming recognized in two dinoflagellate species (4. catenella and P. bahamense) that span
nearly all latitudes. The model presented here for one of these species (4. catenella) is a first step
towards incorporating this type of physiological process into projections of bloom response to
climate change. Preliminary indications from model simulations are that warming will promote
longer phases of dormancy and shorter phases of quiescence, leading to shorter windows for
bloom initiation and renewal through cyst germination. This, in turn, may mean that species with
a density-dependent trigger for encystment that would otherwise take advantage of an expanded
window of bloom development, will instead bloom and decline earlier. Another inference is that
resting cyst populations will be more resilient to warming in areas that experience greater
temperature seasonality. This may alter the geographic distribution of HAB impacts, with more
localized populations persisting in estuaries and embayments at the latitudinal extremes of a
species’ geographic range and deeper cyst beds in these areas gradually diminishing. Enhanced
warming may also lead to greater dependence upon pellicle cyst formation as a life-cycle based
adaptation to environmental change. All of these issues highlight the need for expanded

consideration of life cycles in climate change assessments.
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1225  Figure 1. Dinoflagellate life cycle and cyst dormancy cycling. Most dinoflagellates divide and
1226  form blooms as haploid vegetative cells. Under certain conditions, these vegetative cells will
1227  form short-lived gametes that fuse in pairs to form a swimming diploid stage called a

1228  planozygote. Planozygotes may then transform into benthic resting cysts. Resting cysts must pass
1229  through mandatory dormancy before they can become quiescent and germinate in response to
1230  favorable oxygen and temperature conditions. They may also be induced into secondary

1231  dormancy and undergo many cycles of dormancy and quiescence before germinating to produce
1232 adiploid germling stage called a planomeiocyte. Planomeiocyte germling cells return to the

1233 vegetative stage through a series of meiotic divisions.
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Figure 2. Seasonal water temperatures of Puerto Rico, Tampa Bay, Nauset, Puget Sound, and
the Gulf of Maine. Surface water temperatures are shown in light colors and bottom water
temperatures are shown in darker colors, except for the shallow Tampa Bay and Puerto Rico sites
which show temperature only from a single depth. Solid lines are mean temperatures and dashed
lines are standard deviations. Puerto Rico data are from Caleta Parguera at Magueyes Island
(sensor depth ~0.1 m, 2010-2015; NOAA buoy 97591101; www.tidesandcurrents.noaa.gov),
Tampa Bay data are from Port of St. Petersburg, FL (sensor depth ~4 m, average Tampa Bay
depth 3.6 m; 2009-2018; NOAA buoy 8726520; www.tidesandcurrents.noaa.gov), Nauset data
are from Salt Pond (surface and ~5 m depth; 2013-2017), Puget Sound data are from the Seattle
Aquarium (surface and ~10 m depth; 2009-2018; http://green2.kingcounty.gov/marine-buoy/),
and Gulf of Maine data are from NERACOOS EO1 buoy (1 and 50 m depths; 2009—

2018; http://www.neracoos.org).
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Figure 3. Global distribution of A. catenella and P. bahamense blooms. Bloom locations are
taken from reports in the Ocean Biogeographic Information System (obis.org) and observations
compiled by the authors and colleagues.
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Figure 4. Examples of A. catenella (left) and P. bahamense resting cysts (right).
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Figure 5. Relationship between temperature and the germination rate of quiescent cysts under
aerobic conditions and light exposure. Parameters describing this relationship are taken from
description of cysts from a deep-water seedbed within the eastern Gulf of Maine (Anderson et
al., 2005a).
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Figure 6. Left: Proportion of P. hahamense cysts quiescent in situ August 2015-April 2016 (field
cysts, black line) compared to those collected in late August 2015, then stored at 15 °C (stored
cysts, blue line). Right: Induction of dormancy through warm (30 °C) storage of quiescent P.
bahamense cysts (from Lopez et al., 2019).
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Figure 7. Temperature regulation of dormancy and quiescence passage in A. catenella from the
northeast U.S. Temperatures in bottom axes are colored as indicated in top row legends. Top left:
Passage through dormancy is fastest at 2 °C and slowest at 8 °C for cysts from Nauset Marsh
(Fischer et al., 2018). Open diamonds indicate median transitions to quiescence predicted by the
chilling model (Eq. 1) given 7.=15 °C and a chilling requirement of 800 CU. Bottom left:
Accumulation of chilling during exposure to constant temperatures under a simple chilling model
(Eq. 1). Dashed line indicates the 800 CU chilling requirement of Nauset cysts. Top right:
Passage through quiescence by A. catenella cysts from the Gulf of Maine after dormancy
passage through storage at 2 °C (Brosnahan et al., in prep). Open diamonds indicate median
transitions to dormancy predicted by the degree-day model (Eq. 2) given 75=0 °C and a heating
requirement of 600 DD. Bottom right. Accumulation of heating under the degree-day model.
Dashed line indicates the 600 DD heating requirement of Gulf of Maine cysts.
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Figure 8. Schematic diagram of temperature controls considered in the heating and chilling
based model of dormancy cycling and germling flux. Populations of Alexandrium-like cysts with
mean chilling requirement 900 CU and heating requirement 600 DD are forced by seasonally
oscillating temperatures. Dormancy cycles of model populations reflect phasing of individual
cysts’ dormancy and quiescence periods. Germling fluxes from model populations are calculated
as the product of the quiescent fraction of the population and a temperature dependent rate of
germination (Anderson et al., 2005a; Fig. 5).
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Figure 9. Mean proportion of time that A. catenella cysts are quiescent during constant
temperature storage under a simple chilling-heating model of dormancy cycling.
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Figure 10. Dormancy cycling during constant temperature storage in a simulated cyst population
controlled by the chilling and heating mechanisms described in 4. catenella. At the coldest
storage temperature (2 °C), initial cycles of quiescence and dormancy occur with an approximate
period of 11.5 months. At the warmest (13 °C), cycle periods are ~14.5 months long.
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Figure 11. Numerical simulation of dormancy cycling and germling fluxes through the
Alexandrium-derived chilling- and heating-based model. Upper left: Regime 1 (7 £3 °C), an
analog of temperature seasonality experienced within Gulf of Maine cyst beds, produces stable
dormancy cycling and spring and fall peaks in germling fluxes. Upper right: Regime 2 (10 £ 3
°C), an approximate analog of temperature seasonality experienced within Puget Sound cyst
beds. Like Regime 1, Regime 2 produces stable dormancy cycling and spring and fall peaks in
germling fluxes but lower overall cyst bed quiescence and germling fluxes. Lower left: Regime 3
(13 £ 3 °C), a warming scenario with mean temperature 6 and 3 °C warmer than Regimes 1 and
2, respectively. Dormancy cycles are not consistent year to year and quiescent cysts do not
experience wintertime inhibition of germination. Lower right: Regime 4 (13 £ 10 °C) is an
approximate analog of temperature seasonality experienced within Nauset Marsh cyst beds.
Dormancy cycles are essentially synchronized and germling fluxes are restricted to spring
warming periods.
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Figure 12. Lefi: Mean proportion of time that cysts are quiescent when forced by temperature
regimes described in Figure 11. Right: Relative fluxes of germlings under the temperature
regimes described in Figure 11 under an assumption that only dormancy cycling and temperature
control germination (no anaerobic inhibition). Germling fluxes were calculated as the product of
the quiescent fraction of the cyst population and the temperature dependent germination rate
(Figs. 5 and 8), assuming constant replenishment of cysts in surficial sediments. Relative
germling flux is calculated via comparison to Regime 1 (7 £ 3 °C), which produced germlings at
the highest mean rate over the last 10 years of the 100 year simulations explored in the model.
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Figure 13. Top (A): Location of Gulf of Maine (northeast U.S.) and Puget Sound regions
impacted by 4. catenella blooms. Bottom (B): Northeast U.S. map with mean and range of
temperatures of cyst bed habitats. Offshore habitats (e.g., Gulf of Maine and Georges Bank;
black highlight) experience low temperature seasonality and inshore habitats (e.g., Nauset Marsh
and Northport Harbor; white highlight) experience high temperature seasonality. Extensive cyst
beds along mid-coast Maine and within the Bay of Fundy inoculate large coastal blooms within
the region annually. Georges Bank also experiences large blooms but does not support a cyst
bed. Nauset Marsh (Cape Cod, MA) and Northport Harbor (Long Island, NY) experience annual
localized blooms and both support cyst beds despite higher annual mean temperatures than
Georges Bank.
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Figure 14. IFCB time series of A. catenella bloom development, sexual induction in Nauset
Marsh during the 2012 and 2016 spring bloom seasons. In both years, blooms subsided when
temperatures and nitrogen and phosphorus concentrations remained at levels normally expected
to support further growth of vegetative cells. Top: Distribution of cell biovolume through time
estimates from IFCB images. Cells having biovolume less than 23 um? (blue line) are gametes.
Bottom: The daily upper decile cell concentration observed (red, left y-axis; a measure of
concentration within vertically migrating thin layers) and the proportion of cells in the gamete
size class (blue, right y-axis). Gametogenesis is induced once maximum cell concentrations
exceed 10° cell L', limiting the intensification of blooms. New cyst formation can drive rapid
declines in bloom intensity (e.g., late April 2012 and 2016, late May 2016; Brosnahan et al.,
2017). Revival of blooms as observed in 2016 may be stimulated by continued cyst germination
and the production of new germling cells.
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Figure 15. Abundance of P. bhahamense in Florida waters from 1965-2019 versus water
temperature (FWC FWRI HAB Monitoring Database). Detection limit is 333 cells L*!; samples
where cells were not detected are represented by nd on the y-axis. The gray shaded area
represents optimal growth temperatures from culture experiments (Usup et al 1994, Omura et al.,
1994).
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Figure 16. Growth rates from two 4. catenella cultures — ATSPF5-7 and GTMRO1 — isolated
from Nauset Marsh and from in situ observation of Nauset blooms in 2012 and 2016. Growth
rates estimated from in situ observation are estimated conservatively but are still ~2-fold higher
than rates from cultures (e.g., Brosnahan et al., 2015).



