

1 **Cyst-forming dinoflagellates in a warming climate**

2
3 Michael L. Brosnahan, Biology Department, Woods Hole Oceanographic Institution, Woods
4 Hole, MA USA

5 Alexis D. Fischer, Ocean Sciences Department, University of California, Santa Cruz, CA USA
6 Cary B. Lopez, Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation
7 Commission, Saint Petersburg, FL USA

8 Stephanie K. Moore, Environmental and Fisheries Sciences Division, Northwest Fisheries
9 Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric
10 Administration, Seattle, WA USA

11 Donald M. Anderson, Biology Department, Woods Hole Oceanographic Institution, Woods
12 Hole, MA USA

13

14 **Acknowledgements**

15 We thank David Kulis and Jane Lewis for technical assistance and helpful discussions during the
16 development of this work and Brian Bill and Linda Rhodes for critical feedback on an earlier
17 version of the manuscript. We also gratefully acknowledge support to MLB, ADF, and DMA
18 through the Woods Hole Center for Oceans and Human Health (National Science Foundation
19 grants OCE-0430724, OCE-0911031, OCE-1314642, and OCE-1840381 and National Institutes
20 of Health grants NIEHS-1P50-ES021923-01 and P01ES028938), to MLB and DMA through
21 Woods Hole Sea Grant (NA14OAR4170074, R/P-84), MIT Sea Grant (NA14OAR4170077) and
22 National Park Service (NPS) Cooperative Agreement H238015504. We also acknowledge
23 support to CBL through the Florida Fish and Wildlife Conservation Commission and the Tampa
24 Bay Environmental Restoration Fund. SKM was supported by the Northwest Fisheries Science
25 Center, National Marine Fisheries Service.

26 **Highlights**

27 • Temperature controls dormancy cycling in dinoflagellate resting cysts
28 • Dormancy-climate interactions can explain HAB biogeography and phenology
29 • Temperature seasonality promotes resilience of resting cyst populations to warming
30 • Cell density dependent encystment triggers can limit bloom intensification
31 • Longer HABs in response to warming will reflect prolonged cyst bed quiescence

32

33 **Abstract**

34 Many phytoplankton species, including many harmful algal bloom (HAB) species,
35 survive long periods between blooms through formation of benthic resting stages. Because they
36 are crucial to the persistence of these species and the initiation of new blooms, the physiology of
37 benthic stages must be considered to accurately predict responses to climate warming and
38 associated environmental changes. The benthic stages of dinoflagellates, called resting cysts,
39 germinate in response to the combination of favorable temperature, oxygen-availability, and
40 release from dormancy. The latter is a mechanism that prevents germination even when oxygen
41 and temperature conditions are favorable. Here, evidence of temperature-mediated control of
42 dormancy duration from the dinoflagellates *Alexandrium catenella* and *Pyrodinium*
43 *bahamense*—two HAB species that cause paralytic shellfish poisoning (PSP)—is reviewed and
44 presented alongside new evidence of complementary, temperature-based control of cyst
45 quiescence (the state in which cysts germinate on exposure to favorable conditions). Interaction
46 of the two temperature-based mechanisms with climate is explored through a simple model
47 parameterized using results from recent experiments with *A. catenella*. Simulations demonstrate
48 the importance of seasonal temperature cycles for the synchronization of cysts' release from
49 dormancy and are consistent with biogeography-based inferences that *A. catenella* is more
50 tolerant of warming in habitats that experience a larger range of seasonal temperature variation
51 (i.e., have higher temperature seasonality). Temperature seasonality is much greater in shallow,
52 long-residence time habitats than in deep, open-water ones. As warming shifts species' ranges,
53 cyst beds may persist longer in more seasonally variable, shallow inshore habitats than in deep
54 offshore ones, promoting HABs that are more localized and commence earlier each year. Recent
55 field investigations of *A. catenella* also point to the importance of new cyst formation as a factor
56 triggering bloom termination through mass sexual induction. In areas where temperature

57 seasonality restricts the flux of new swimming cells (germlings) to narrow temporal windows,
58 warming is unlikely to promote longer and more intense HAB impacts—even when water
59 column conditions would otherwise promote prolonged bloom development. Many species likely
60 have a strong drive to sexually differentiate and produce new cysts once concentrations reach
61 levels that are conducive to new cyst formation. This phenomenon can impose a limit to bloom
62 intensification and suggests an important role for cyst bed quiescence in determining the duration
63 of HAB risk periods.

64

65 **Key words:** microbial life cycles; climate change; resting cyst dormancy

66

67 1. Introduction

68 Many harmful algal bloom species have benthic resting stages in their life histories.
69 Prominent among this group are cyst-forming dinoflagellates like *Alexandrium catenella* and
70 *Pyrodinium bahamense*, two marine species that cause paralytic shellfish poisoning (PSP)
71 through their production of saxitoxins, a potent class of sodium channel-blocking compounds
72 that cause illness and sometimes death to human consumers of contaminated seafood. Therefore,
73 understanding the factors that control bloom timing, intensity, and biogeography of *A. catenella*,
74 *P. bahamense*, and other PSP-causing species has been an important focus for managers and
75 researchers aiming to ensure seafood safety and protect human health (Hallegraeff, 2010).

76 Numerous works have emphasized the role of cysts in the ecology of *A. catenella* and *P. bahamense*, and studies of these species have contributed greatly to what is known about the role
77 of benthic coupling in phytoplankton ecology (Azanza et al., 2018; Fig. 1). For instance, the
78 locations of benthic ‘cyst beds’—areas where resting cysts accumulate in sediments—often
79 determine where blooms occur (e.g., Anderson and Keafer, 1985; Corrales and Crisostomo,
80 1996; Azanza et al., 2004; Anderson et al., 2005a, 2014). Bloom timing—both initiation and
81 termination—is also strongly associated with exit from and return to the resting cyst stage of the
82 life cycle through the processes of germination and encystment, respectively (Fig. 1; Wall, 1971;
83 Anderson et al., 2014; Moore et al., 2015a; Brosnahan et al., 2017; Lopez et al., 2019). Cyst beds
84 also serve as reservoirs of genetic diversity, making cyst-formers more resilient to environmental
85 change and enabling them to persist longer in the face of interannual climate variability (e.g.,
86 Kremp et al., 2016). While particularly well described in dinoflagellates, benthic life history

88 stages are important for the ecology of other classes of phytoplankton as well, including diatoms
89 (McQuoid and Hobson 1996; Lewis et al., 1999) and cyanobacteria (Livingstone and Reynolds,
90 1980; Huber, 1984; and Cirés et al., 2017). We focus on *A. catenella* and *P. bahamense* here to
91 highlight recent advances in the understanding of potential climate responses by their resting
92 cysts and to encourage greater consideration of the role of benthic and other non-dividing life
93 cycle stages in predictions about phytoplankton responses to climate change.

94 The extent to which climate change is affecting HABs has been a major question facing
95 scientists and resource managers for decades (Anderson, 1989; Hallegraeff, 1993, 2010; Wells et
96 al., 2015). Temperature drives the rate of a broad range of microbial processes, including many
97 physiological rates and behaviors that are fundamental to HAB dynamics. A major focus of HAB
98 climate studies has been the effect of warmer temperatures on planktonic, vegetative life stages
99 (e.g., Moore et al., 2008; Wells et al., 2015; Gobler et al., 2017; Seto et al., 2019). Cyst-forming
100 species spend most of their lives in the sediments as resting cysts and only a small fraction of
101 their lives as plankton. Therefore, the factors governing cyst dynamics and survival must be
102 understood and considered to accurately predict these species' responses to warming. In this
103 work, we review the factors known to control cyst germination and explore the implications of
104 newly described temperature-based mechanisms controlling transitions between states of
105 dormancy and quiescence (hereafter referred to as dormancy cycling). We also present recent
106 evidence that intensification of blooms by some cyst-forming species may be limited by an
107 underlying drive to produce new cysts. Finally, we revisit the "window of opportunity"
108 hypothesis (Moore et al., 2008), which predicts earlier and longer lasting blooms as temperatures
109 become increasingly favorable for the growth and division of planktonic vegetative cells.

110 The window of opportunity hypothesis is built upon a four-decade long record of PSP
111 toxin concentrations in shellfish tissues from *A. catenella* in Puget Sound, WA USA.
112 Examination of PSP records in the mussel *Mytilus edulis* from 1993–2007 found that shellfish
113 harvesting closures occurred earlier in the year (Moore et al., 2009) and are projected to extend
114 an additional 13–30 days into the spring by the end of the 21st century (Moore et al., 2011;
115 Moore et al., 2015b). The hypothesis is based on lengthening periods of conditions that support
116 vegetative cell growth, but other life cycle stages are affected by changing temperature as well
117 (Fig. 1). The consequences of these temperature effects, if not considered, may reduce the
118 accuracy of bloom season projections and limit the generalizability of the window of opportunity

119 hypothesis to other habitats impacted by *A. catenella*, *P. bahamense*, and other cyst-forming
120 species. Consideration of the effect of warming on resting cysts is especially important because
121 they are long-lived and endure nearly the full range of temperatures occurring in many bloom
122 habitats (Fig. 2). Resting cysts also respond to climate in ways that are distinct from planktonic
123 life cycle stages.

124 Dinoflagellate resting cysts do not grow or divide and may undergo passive mixing
125 within sediments for several decades before they germinate and develop blooms of planktonic
126 vegetative cells (Keafer et al., 1992; Kremp et al., 2000; Feifel et al., 2015). Exit from the resting
127 cyst stage is tightly controlled by both internal and external factors. While buried in sediment,
128 they are prevented from germinating by lack of oxygen (Anderson et al., 1987), a response that
129 ensures germlings only emerge when they have a reasonable chance of returning to the water
130 column. Cyst germination is also inhibited by cold temperatures, preventing germination during
131 wintertime when both light period and water temperature do not support bloom development
132 (Anderson et al., 2005a). Finally, resting cysts cycle between states of quiescence, when they
133 will germinate if exposed to favorable external conditions (e.g., temperature, oxygen; Rengefors
134 and Anderson, 1998; Kremp et al., 2000), and dormancy, when they will not. In temperate
135 systems, this internal mechanism provides an additional barrier to wintertime germination,
136 preventing cysts from responding to occasional spells of unseasonably warm weather. Dormancy
137 also prevents germination late in bloom seasons when germling cells are less likely to
138 successfully form blooms and re-encyst.

139 There are two distinct types of dormancy in *A. catenella* and *P. bahamense* resting cysts.
140 The first, called mandatory dormancy, occurs immediately after cyst formation and is understood
141 as a maturation period that is required for cysts to germinate (e.g., Anderson and Morel 1979).
142 The second, called secondary dormancy, is the reversible state that underlies dormancy cycling
143 and can recur many times within a single cyst's lifetime (Fig. 1; Fischer et al., 2018). Prior
144 examinations of *A. catenella* and other dinoflagellates have pointed to an endogenous biological
145 rhythm or "clock" as the mechanism controlling the recurrence of secondary dormancy
146 (Anderson and Keafer, 1987; Rengefors and Anderson, 1998; Matrai et al., 2005). However,
147 more recent work has shown that the duration of secondary dormancy is set by temperature
148 (Fischer et al., 2018; Lopez et al., 2019). A second temperature-based mechanism, shown in *P.*
149 *bahamense* by Lopez et al. (2019) and parameterized for the first time in this work through

150 experiments with *A. catenella*, controls the duration of quiescence. Together, the two
151 relationships can drive dormancy cycles that are qualitatively similar to past observations of
152 endogenous rhythmicity in the dormancy cycles of *A. catenella* resting cysts. The combination of
153 temperature-based dormancy cycling control and exogenous (temperature- and oxygen-based)
154 triggers for germination of quiescent resting cysts ensures that germination is restricted to times
155 of year and positions within sediments that are favorable for the development of new planktonic
156 blooms.

157 This work does not aim to make specific predictions regarding changes in the occurrence
158 of blooms of *A. catenella*, *P. bahamense*, or other cyst-forming species in response to global
159 warming. In most cases, the factors driving species' responses to climate change will be far more
160 complex than cells' and cysts' responses to warmer temperatures alone. Climate change is also
161 altering coastal ocean circulation, rainfall, winds, water stratification, incidence of
162 hypoxia/anoxia, and other region- and ecosystem-specific factors, all of which impact HAB
163 ecology in distinct ways. Accurate predictions require investments in persistent, long-term data
164 collection that build upon and complement field-based studies of bloom ecology at a broad range
165 of geographic scales (Ralston and Moore, this issue). However, we do highlight one interesting
166 corollary of warming in many temperate regions, namely increased temperature seasonality, i.e.,
167 the difference between summer- and wintertime temperature extremes (Fig. 2). Warming and
168 seasonality have both increased steadily across North America and Eurasia in recent decades
169 (e.g., Santer et al., 2018), and these changes especially impact shallower, inshore habitats where
170 water temperature more closely tracks air temperature. Many species, including both *A. catenella*
171 and *P. bahamense*, also occur across a range of habitats that can differ substantially in the
172 amount of temperature seasonality they experience.

173 Cyst beds within shallow, long residence time inshore embayments tend to have higher
174 temperature seasonality than those in deep open water areas (Fig. 2). We explore the impact of
175 changes in habitat temperature and temperature seasonality through a simple model that is drawn
176 from experiments with *A. catenella*. Simulations illustrate how cysts' temperature-based
177 dormancy controls may interact with a range of climates. Among the many consequences of
178 dormancy-climate interaction is heightened synchronization of cyst beds with increased
179 temperature seasonality. Under higher temperature seasonality, cyst beds produce greater fluxes
180 of germlings but during narrower temporal windows. A well-studied example that compares

181 favorably with model simulations is the Nauset Marsh (Cape Cod, MA USA), an area that
182 experiences annually recurrent *A. catenella* blooms each spring. In contrast, the model shows
183 lower seasonality produces lesser germling fluxes over longer time spans, desynchronizing
184 populations and promoting the development of successive blooms within a single bloom season.
185 Such may be the case in Puget Sound, an *A. catenella* habitat that experiences far lower
186 temperature seasonality than Nauset and is subject to a much longer annual window of PSP risk.

187 While the model draws from experiments with *A. catenella*, similar experiments with *P.*
188 *bahamense* (Lopez et al., 2019) suggests that it may interact with climate in comparable ways.
189 Because this climate-dormancy interaction is only recently discovered in dinoflagellates,
190 knowledge of its effects on the timing and duration of blooms remain to be extended to the broad
191 diversity of dinoflagellates and other meroplanktonic phytoplankton that cause HABs. However,
192 given the global distribution of *A. catenella* and *P. bahamense* (Fig. 3), we suggest that many
193 other cyst-forming species have similar mechanisms for adaptation to climate variability. With
194 the larger goal of encouraging broad consideration of species' life cycles in climate-based
195 predictions, we also present observations related to the production of new cysts. Much like the
196 case of temperature-mediated dormancy cycling, field observations of new cyst formation are
197 limited, but research with *A. catenella* points to a deep-rooted drive to produce new resting cysts
198 during blooms. This encystment drive can impose an upper limit to bloom intensification that is
199 independent of more commonly invoked factors like nutrients and light. The combination of
200 dormancy control and encystment mechanisms may constrain the duration of blooms by cyst-
201 forming species even as climate change promotes conditions that are increasingly favorable for
202 growth and division by the vegetative stage cells of these species.

203

204 **3. Model species**

205 ***Alexandrium catenella*.** *Alexandrium* is one of the most intensively studied HAB genera
206 globally because its species cause most incidents of PSP (Cembella 1998; Anderson et al., 2014).
207 *Alexandrium catenella* is the most widespread of those that produce saxitoxins and was recently
208 the subject of a reclassification involving all species in the “*Alexandrium tamarense* species
209 complex” (John et al., 2014). The final recommendation of the ICN Nomenclature Committee
210 for Algae was that the name *A. catenella* supplant two synonymous names—*A. fundyense* and *A.*
211 *tamarense* Group I—that had come into common use as a way to differentiate this species from a

212 closely allied sister that was also commonly identified as *A. catenella* but is now known as *A.*
213 *pacificum* (Prud'homme van Reine, 2017; Litaker et al., 2018).

214 The overall range of *A. catenella* spans temperate, subarctic, and Arctic waters (Fig. 3).
215 In North America, blooms of *A. catenella* occur along the Pacific Coast from Alaska to
216 California and along the Atlantic Coast from the Gulf of St. Lawrence to Long Island, NY. In
217 South America, blooms occur from central Chile to Tierra del Fuego, and from the northern
218 Argentine Sea to the Magellan Strait. The species also occurs in the Benguela Current region off
219 Namibia and South Africa, in northern regions of east Asia, including Japan, Korea, and the
220 Kamchatka Peninsula of Russia, and in Europe along the northern coasts of the United Kingdom
221 and the west coasts of Norway and Sweden (Lilly et al., 2008). Recent studies have documented
222 *A. catenella* vegetative cells and cysts in the Arctic north of Alaska and Canada (Gu et al., 2013;
223 Natsuike et al., 2013; 2017; Okolodkov, 2005; D. Anderson, unpub. data), Iceland (Burrell et al.,
224 2013), and northwestern Greenland (Baggesen et al., 2012). Along the west Greenland coast, *A.*
225 *catenella* cysts are present at low concentrations up to 76°N (Richlen et al., 2016; D.M.
226 Anderson, unpub. data).

227 The timing of blooms varies across this expansive domain and across habitats within
228 single regions. For example, in the western Gulf of Maine, blooms begin in May and last
229 approximately 3 months (Anderson et al., 2014), yet in some shallow inshore embayments within
230 the same region, blooms begin as early as March and typically end 6–8 weeks later (Ralston et
231 al., 2014). Cyst concentrations in these habitats often exceed 10^3 cysts g⁻¹ of wet sediment
232 (Anderson et al., 2005a, 2014; Crespo et al., 2011). Cell concentrations regularly exceed 10^5 L⁻¹
233 within inshore blooms (Crespo et al., 2011; Anglès et al., 2014; Ralston et al., 2014), but are
234 typically much lower within offshore populations where peak concentrations are on the order of
235 10^3 cells L⁻¹ (Stock et al., 2005). In contrast, the location, toxicity, and timing of *A. catenella*
236 blooms in Puget Sound exhibits considerable interannual variation within an approximately 5-
237 month long bloom season (Moore et al., 2009) though peak cell concentrations are comparable to
238 those of inshore blooms in the northeast U.S. (Dyhrman et al., 2010). Across its range, *A.*
239 *catenella* vegetative cells are absent from the water column more often than not, and therefore
240 cyst beds are the most likely source of new blooms rather than revival of remnant vegetative cell
241 populations from the water column.

242

243 ***Pyrodinium bahamense***. *Pyrodinium bahamense* is the most common cause of PSP toxicity in
244 tropical and sub-tropical marine waters (Fig. 3). It is a monotypic genus, and Steidinger (2018)
245 recommends distinguishing between its Atlantic and Pacific forms. Blooms occur in many areas
246 of the western Pacific (Furio et al., 2012, Usup et al., 2012), the Persian Gulf, and the Red Sea
247 (Alkawri et al., 2016, Banguera-Hinestrosa et al., 2016), as well as in the southeastern U.S.
248 (Phlips et al., 2006, 2011), the Caribbean Sea (Soler-Figueroa and Otero, 2014), Central America
249 (Chow et al., 2010), the Gulf of California (Morquecho et al., 2014), and the Pacific coast of
250 Mexico and southwestern Gulf of Mexico (Morquecho, 2019). Descriptions of *P. bahamense*
251 blooms have been largely restricted to inshore and nearshore coastal areas. Its resting cysts,
252 though, are widespread and abundant relative to other species in both coastal (near where blooms
253 are observed) and deep ocean sediments (Wall, 1967; Limoges et al., 2013; Zonneveld et al.,
254 2013). This distribution may reflect high rates of production and transport of cysts by coastal
255 blooms alone or the occurrence of as yet undetected bloom populations further from shore.

256 To date, *P. bahamense* ecology has been explored most extensively in the Philippines,
257 where blooms are strongly linked to resting cyst dynamics (i.e. resting cyst abundance, cyst bed
258 locations; Villanoy et al., 1996; Azanza et al., 2004; Siringan et al., 2008; Azanza, 2013).
259 Blooms within Manila Bay and Sorsogon Bay can be especially intense and persist from weeks
260 to months. Water temperatures in the region are favorable for growth throughout much of the
261 year, but the species can be absent from the plankton for long periods. Generally, blooms in the
262 Philippines develop in late summer, a period that marks the start of the southwest monsoon and
263 coincides with more stratified conditions. In other parts of east Asia, blooms occur more
264 sporadically, sometimes with cells present year-round or in multiple peaks within a year (Azanza
265 and Taylor, 2001).

266 Both vegetative cells and resting cysts have been recorded along the coasts of the U.S.
267 state of Florida, in the Caribbean, and along the coast of Mexico with differences in bloom
268 phenology linked to latitude across the region (Morquecho, 2019). In Florida, high biomass
269 blooms of toxic *P. bahamense* (Atlantic) occur almost every summer in the shallow, estuarine
270 systems of northern Tampa Bay and Indian River Lagoon and more sporadically and at lower
271 abundances in Pine Island Sound, Florida Bay, and other areas of Florida (Phlips et al., 2006,
272 FWC FWRI HAB Monitoring Database). In Tampa Bay, cell concentrations are highest where
273 resting cysts are concentrated ($>10^3$ cysts g^{-1} of wet sediment, Lopez et al., 2017) and water

274 residence times are long (Meyers et al., 2017). Extensive surveys of resting cyst abundance have
275 not been conducted in other areas of Florida, but concentrations of 300–900 cysts g⁻¹ of wet
276 sediment are common in Indian River Lagoon sediments and lesser concentrations (~10 cysts g⁻¹
277 of wet sediment) have been recorded in Pine Island Sound (C. Lopez, unpub. data). Tampa Bay
278 and Indian River Lagoon blooms are strongly seasonal—typically beginning in spring, peaking
279 in late summer, and ending during the fall. Peak concentrations (above 10⁵ cells L⁻¹) generally
280 persist between two and four months, resulting in ecosystem degradation through shading of
281 seagrass beds and degraded water quality (Lopez et al., 2019, FWC FWRI HAB Monitoring
282 Database). Additionally, in the Indian River Lagoon, extensive shellfish harvesting closures
283 occur each year and harvesting of pufferfish is permanently closed to prevent saxitoxin puffer
284 fish poisoning (SPFP) in humans (Landsberg et al., 2006). In the tropical waters of Puerto Rico,
285 *P. bahamense* is generally present in the water column year-round, and in contrast to Florida,
286 peak concentrations are lower with no clear seasonal signal, although lowest cell concentrations
287 tend to occur more commonly in the dry months (Sastre, 2013, Soler-Figueroa and Otero, 2016).
288 Likewise, *P. bahamense* blooms in bays in Mexico along the southern Gulf of Mexico tend to be
289 present year-round whereas populations in the Gulf of California are more seasonal (Morquecho
290 et al., 2019).

291

292 **4. Dinoflagellate life cycles**

293 Like most other dinoflagellates, *A. catenella* and *P. bahamense* are haplontic (Fig. 1).
294 Motile, haploid, vegetative cells divide and accumulate in euphotic waters until they are induced
295 to produce gametes that fuse to form swimming diploid cells (planozygotes). Planozygotes then
296 transform into benthic resting cysts, also called hypnozygotes (Anderson and Wall 1978; Pfiester
297 and Anderson, 1987). All resting cysts are highly resistant to temperature and other
298 environmental stressors, but morphology varies among species—*Alexandrium catenella* resting
299 cysts are smooth, elongate, double-walled cells, whereas *P. bahamense* resting cysts are spheroid
300 and covered with distinctive, trumpet-shaped spines (Fig. 4). The mandatory dormancy period of
301 newly formed resting cysts is similar in these species—1–3 months for *A. catenella* (Anderson
302 and Morel, 1979) and 2.5–3.5 months for Pacific populations of *P. bahamense* (Corrales et al.,
303 1995)—despite very different temperature regimes in their respective habitats. Also noteworthy
304 is that mandatory dormancy in *A. catenella* is shorter at warmer temperatures (Anderson, 1980),

305 the opposite relationship from what has been shown for secondary dormancy (Fischer et al.,
306 2018). Germination of a resting cyst produces a planomeiocyte, a short-lived germling stage that
307 reverts back to the mitotically dividing haploid, vegetative stage through a series of meiotic
308 divisions (von Stosch, 1967, 1973).

309 Resting cysts tend to accumulate in areas that collect fine sediment to form cyst beds (e.g.
310 Anderson et al., 2014; Karlen and Campbell, 2012). There, resting cysts can remain viable for
311 decades, particularly when sediments are anoxic (Keafer et al., 1992; Siringan et al., 2008; Feifel
312 et al., 2015). Within these areas, resting cysts can cycle between states of secondary dormancy
313 and quiescence many times during their lifetimes—a process that may be under control of an
314 endogenous rhythm (Anderson and Keafer, 1987; Matrai et al., 2005) and/or responsive to
315 seasonally varying temperature (Anderson and Keafer, 1987; Rathaille and Raine, 2011; Fischer
316 et al., 2018; Lopez et al., 2019; Moore et al., 2015a). The physiological and molecular
317 underpinnings of dormancy cycles are yet to be described in phytoplankton, but endogenous
318 rhythmicity might preserve germination control in habitats where seasonal signals are absent or
319 muted (e.g., in deep water habitats). Alternatively, temperature-mediated controls may determine
320 rhythm periods (i.e., the time between successive quiescence intervals) by setting the duration of
321 its dormancy and quiescence phases. It is noteworthy that the endogenous rhythm described in
322 Gulf of Maine *A. catenella* is less than one year (~11 months; Anderson and Keafer, 1987;
323 Matrai et al., 2005). Were dormancy cycles solely under the control of this rhythm, resting cysts
324 would enter quiescence increasingly out of phase with optimal growth periods over the course of
325 several years—which would be clearly disadvantageous. Even in the deep cyst beds of the Gulf
326 of Maine (~100 m depths), resting cysts experience seasonal changes in temperature that may
327 override endogenous rhythmicity (Fischer et al., 2018), and in the case of Puget Sound
328 populations, temperature appears to play a more significant role than endogenous rhythmicity
329 (Moore et al., 2015a). In sub-tropical *P. bahamense*, evidence from germination experiments
330 with multiple cohorts of resting cysts have pointed only to temperature-mediated control of
331 secondary dormancy rather than an endogenous mechanism (Lopez et al., 2019).

332 Both *A. catenella* and *P. bahamense* also produce haploid, pellicle cysts (sometimes
333 called temporary cysts) directly from vegetative cells when exposed to acute stress (e.g.,
334 Anderson and Wall 1978; Onda et al., 2014). Pellicle cysts cannot survive long burial periods but
335 can promote recovery and resumption of blooms challenged by ephemeral stressors (e.g., major

336 storms; Azanza, 2013). Increasing frequency of bloom-disruptive events like storms, heatwaves,
337 and cold snaps may favor species that can form pellicle cysts. Indeed, this life history stage may
338 become more prevalent as temperatures warm due to global change. Better understanding of the
339 factors that govern the formation, viability, and germination success of pellicle cysts is therefore
340 needed. However, since dormancy cycling has not been described for pellicle cysts, the
341 discussion presented here is focused on the longer-lived, diploid resting cysts of these two
342 species. All references to ‘quiescent cysts’ and ‘dormant cysts’ in this work refer exclusively to
343 resting cysts since it is only the resting cyst life cycle stage that has been shown to experience
344 quiescence and dormancy.

345

346 **5. Roles of temperature in cyst dormancy and germination**

347 Temperature has been long recognized as an important determinant of cyst dormancy and
348 germination in both freshwater and marine dinoflagellates (Huber and Nipkow, 1922; Binder and
349 Anderson, 1987; Bravo and Anderson, 1994). Rengefors and Anderson (1998) showed how the
350 interaction of endogenous dormancy cycling and the temperature-mediated rate of germination
351 could explain the appearance of the freshwater dinoflagellates *Ceratium hirundinella* and
352 *Peridinium aciculiferum* in the plankton. Germination in these species only proceeds when
353 temperatures fall within a species-specific range; higher and lower temperatures inhibit the
354 germination of quiescent cysts, blocking the introduction of new cells to the water column.
355 Subsequent work by Anderson and Rengefors (2006) extended this concept to six marine
356 species, including *A. catenella*, and found they would not germinate at either low (<5 °C) or high
357 (>21 °C) temperatures. Later experiments found that *A. catenella* germination rates within the
358 temperature “window” generally increased with temperature and converged asymptotically
359 toward minimum and maximum rates at temperature window boundaries (e.g., Anderson et al.,
360 2005a; Fig. 5). Onset of inhibition at warm temperatures may instead be related to rapid
361 induction of dormancy (discussed below). Similarly, quiescent *P. bahamense* cysts will
362 germinate across the full range of seasonal temperatures experienced in their habitats, but much
363 more slowly in colder conditions (e.g., wintertime, ~17 °C in Tampa Bay; Lopez et al., 2016).

364 Temperature control of germination interacts with anaerobic inhibition to further
365 constrain the flux of plankton into the water column. Oxygen is required for cysts to germinate
366 (Anderson et al., 1987), and the germination rate drastically declines at oxygen concentrations <2

367 mg L⁻¹ (Montani, 1995). As sediments warm, microbial respiration rates increase, reducing
368 oxygen availability in subsurface sediments and constraining fluxes of germling cells. Sediments
369 in productive shallow coastal waters, which represent most cyst beds, are generally characterized
370 by oxygen penetration depths of millimeters (Glud et al., 1994), thus restricting the number of
371 resting cysts that can successfully germinate. Seasonal variations in oxygen penetration are
372 driven by temperature, resulting in the shallowest penetration in summer due to rapid aerobic
373 respiration and fresh detrital inputs. The deepest oxygen penetration occurs in winter due to
374 reduced oxygen demand (Kristensen, 2000), but low wintertime temperatures also inhibit
375 germination (Anderson et al., 1987; Anderson et al., 2005a). Recent investigations using
376 plankton emergence traps in Nauset Marsh suggest that only a small fraction of oxygenated *A.*
377 *catenella* resting cysts (i.e., those from the uppermost ~1 mm of sediment) germinate in spring,
378 in spite of much deeper wintertime sediment oxygenation (D. M. Anderson, unpub. data).
379 Similar seasonal anoxia also limits germination of *A. catenella* and other dinoflagellates
380 elsewhere on Cape Cod (Keafer et al., 1992; Anderson and Rengefors, 2006). In the case of
381 quiescent cysts that are buried more deeply, germination is frequently inhibited by both
382 temperature (high or low) and anoxia.

383 The first evidence for an additional role of cold in releasing resting cysts from dormancy
384 was noted by von Stosch, who found that storage at 3°C both increased the fraction of
385 germinable cysts and reduced the incubation times required for *Ceratium* (1967), *Gymnodinium*,
386 and *Woloszynskia* (1973) species to germinate. Another study by Montresor and Marino (1996)
387 noted more synchronous germination of *A. pseudogonyaulax* cysts after storage at 7°C for 40–
388 100 days. More recent studies have confirmed that cold exposure reduces the duration of
389 dormancy in both *A. catenella* (Fischer et al., 2018) and *P. bahamense* (Lopez et al., 2019; Fig.
390 6). This inverse relationship between temperature and the duration of secondary dormancy is
391 opposite to most other physiological rates (i.e., germination, cell division, and new cyst
392 maturation), which tend to proceed faster at elevated temperatures (at least up to an upper
393 physiological limit).

394 To date, *A. catenella* is the only species for which the relationship between cold exposure
395 and secondary dormancy passage has been examined quantitatively (Fischer et al., 2018; D.M.
396 Anderson, A.D. Fischer, and M.L. Brosnahan, unpub. data). In a series of experiments with cysts
397 from Nauset Marsh, the duration of dormancy was shown to vary inversely with storage

398 temperature (i.e., colder cysts passed through dormancy more quickly than warmer ones). This
 399 relationship between the severity and duration of cold exposure follows a simple chilling-unit
 400 model that is commonly used in horticulture, e.g., to describe vernalization in some bulbs
 401 (Fischer et al., 2018). *A. catenella* resting cysts exit dormancy by accumulating a set number of
 402 chilling units (*CU*), calculated as the integral over time (*t*) of the difference in ambient
 403 temperature (*T*) from a chilling threshold temperature (*T_c*):

404

$$405 \quad CU = \sum_{i=t_0}^t \begin{cases} (T_c - T_i) \Delta t & \text{if } T_c \geq T_i \geq 0 \\ 0 & \text{if otherwise} \end{cases}$$

406

(Eq. 1)

407

408 Built into this model are two physiological parameters: the chilling threshold temperature, *T_c*,
 409 which determines the upper limit at which a resting cyst population registers cold exposure, and
 410 a chilling requirement, which is the total *CU* needed for transition to quiescence. Nauset *A.*
 411 *catenella* have *T_c*=15°C and a chilling requirement of ~800 *CU* (Fig. 7). A subsequent cold
 412 storage experiment has confirmed similar dormancy shortening in *A. catenella* from a deep cyst
 413 bed in the Gulf of Maine, but further development of the chilling model is needed to determine
 414 whether *T_c* and chilling requirements differ significantly between the Nauset and Gulf of Maine
 415 populations (D.M. Anderson, unpub. data). Similar characterizations of other *A. catenella*
 416 populations are ongoing and aim to assess if and how their chilling responses can be generalized
 417 globally, or instead are region- or population-specific. Comparable experiments with *P.*
 418 *bahamense* suggest that the relationship between its dormancy duration and cold severity is
 419 weaker, such that dormancy passage may proceed at a similar rate across a range of chilling
 420 temperatures (Lopez et al., 2019, C. Lopez unpub. data). Further exploration of these responses
 421 in *P. bahamense* and other species is needed to characterize the nature of chilling requirements
 422 across a wider diversity of cyst-forming species.

423 Like secondary dormancy, the duration of quiescence is also temperature sensitive. The
 424 first evidence of this was noted by Anderson and Rengefors (2006) who found that temperatures
 425 in excess of 18.5°C inhibited *A. catenella* germination. Lopez et al. (2019) further showed that
 426 quiescent *P. bahamense* cysts returned to dormancy after one month of storage at 30°C but
 427 remained quiescent when stored at 15°C (Fig. 6). A follow-up study of the relationship between

428 quiescence duration and temperature in *A. catenella* has revealed that quiescent cysts are induced
 429 into secondary dormancy more quickly when stored at warmer temperatures and that this
 430 relationship follows a heating degree-day (*DD*) formula (Brosnahan et al., in prep). *DD* are
 431 calculated as the time integral of temperature above a heating threshold value, T_h :

432

$$433 \quad DD(t) = \sum_{i=t_0}^t (T_i - T_h)\Delta t \text{ if } T_h > 0 \quad (Eq. 2)$$

434

435 The same formulation is commonly applied in agricultural applications to predict the seasonal
 436 maturation of plants and insects, and in a prior study, was shown to accurately predict the timing
 437 of both PSP toxicity and *A. catenella* bloom peaks in the Nauset Marsh (Ralston et al., 2014).

438 In the *A. catenella* quiescence experiment (Brosnahan et al., in prep), dormant cysts from
 439 a deep cyst bed in the Gulf of Maine were induced into quiescence through cold, anoxic storage
 440 at 2 °C. Once quiescent (i.e., >90% cysts germinating within 1 week of transfer to favorable
 441 conditions), the population was split into three subsamples and warmed at 1 °C day⁻¹ up to final
 442 storage temperatures of 10, 15, and 20 °C. The dormancy state of resting cysts in each of the
 443 storage temperature treatments was assessed at regular intervals by removing subsamples of
 444 approximately 30 from each of the storage treatments and exposing these to oxygen in a 15 °C
 445 incubator. If the resting cysts germinated within 1 week of exposure to these favorable
 446 conditions they remained quiescent. If they did not germinate, they had returned to dormancy.
 447 Most resting cysts in the warmest 20 °C treatment returned to dormancy within 30 days, while
 448 those in the cooler 15 and 10 °C treatments returned to dormancy after 40 and 60 days,
 449 respectively (Fig. 7). Applying a T_h threshold of 0 °C, cysts have an estimated heating
 450 requirement of 600 *DD* for induction of secondary dormancy (Fig. 7). The result indicates two
 451 additional physiological parameters, T_h and heating *DD* requirement, to describe the rate of
 452 quiescence passage.

453 The effect of temperature on quiescence is opposite to that on secondary dormancy, i.e.,
 454 quiescence is longer at colder temperatures and shorter at warmer ones. In combination, these
 455 heating and chilling relationships point to several simple predictions regarding cyst bed behavior
 456 in different climates. First, and perhaps counter-intuitively, dinoflagellate cyst beds are more

458 responsive (i.e., germinate at higher rates) during spells of favorable bloom conditions in colder
459 habitats than in warmer ones. This is because colder temperatures promote cyst quiescence
460 through the cysts' chilling response. Second, the relationships point to an important role for
461 temperature seasonality in determining the synchrony of cyst beds. Cyst populations that
462 experience larger excursions from T_h and T_c thresholds throughout the year—that is, more
463 extreme cold and warmth—will accumulate *CU* and *DD* more quickly during these periods,
464 reducing the differences in the timing of cysts' dormancy and quiescence transitions that arise
465 from small physiological or microhabitat-related differences. Lastly, chilling and degree-day
466 relationships likely underlie (or interact with) endogenous dormancy rhythms observed in cysts
467 from the Gulf of Maine (Anderson and Keafer, 1987; Matrai et al., 2005). The extent to which
468 these mechanisms overlap or reinforce one another remains to be explored and may resolve long-
469 standing conflicts between observations of dormancy cycles in deep water and inshore cyst
470 populations (e.g., Anderson and Keafer, 1987; Moore et al., 2015a; Fischer et al., 2018).

471

472 **6. Interaction of temperature-mediated controls of secondary dormancy and climate**

473 Chilling- and heating-based controls of secondary dormancy can drive complex responses
474 by cyst beds. This is most easily illustrated through a model, presented here, that combines these
475 relationships using physiological parameters drawn from investigations of *A. catenella*. In the
476 model, passage through secondary dormancy is controlled by chilling accumulation (Eq. 1) with
477 $T_c=15$ °C and a mean chilling requirement of 900 *CU*. Quiescence passage is controlled by the
478 degree-day relationship (Eq. 2) with $T_h=0$ °C and a mean heating requirement of 600 *DD* (Fig.
479 8). The model is evaluated by considering a large population of cysts with independent, normal
480 variance in their chilling and heating requirements (standard deviation set to 10% of requirement
481 means) reflecting intrinsic and extrinsic differences among resting cysts within a population.
482 Initially, resting cysts are completely synchronized (e.g., 100% quiescent with 0 degree-day
483 accumulation) and are tracked through 100 years of annual temperature fluctuations to assess
484 whether and how dormancy cycles stabilize under regular seasonal forcing. One hundred-year
485 simulations neglect contributions from new resting cysts but were chosen because they produce
486 realistic and stable distributions of secondary dormancy states within model populations. The
487 omission of new resting cysts is an important caveat. Beds that are disproportionately comprised
488 of recently formed resting cysts may behave quite differently, especially if the recently formed

489 cysts exit mandatory dormancy out of resonance with their environment. Little is known about
490 the age structure within cyst beds (e.g., Keafer et al., 1992; Shull et al., 2014), and therefore the
491 model is primarily aimed at exploring the interplay of chilling and heating mechanisms with
492 climate rather than predicting the behavior of resting cyst populations *in situ*.

493 Under constant temperature forcing, model cysts' quiescence intervals are shorter in
494 warmer treatments than in colder ones (Fig. 9). Resting cysts at the coldest temperature (2 °C)
495 are quiescent 82.1% of the time, whereas those at the warmest temperature (13 °C) are quiescent
496 only 9.9% of the time. This type of forcing is similar to storage treatments used in investigations
497 of endogenous rhythmicity in *A. catenella*. Similar to Gulf of Maine resting cysts, initially
498 synchronized model populations exhibit rhythmic phasing of dormancy and quiescence (Fig. 10;
499 Anderson and Keafer, 1987, Matrai et al., 2005). Warmer populations never reach 100%
500 quiescence and return to full dormancy more frequently than colder ones. Notably, the length of
501 the dormancy cycling period varies nonlinearly with temperature. The time between quiescence
502 peaks is shortest for simulated resting cysts at constant 7.5 °C and longer for colder and warmer
503 populations (e.g., 2 and 13 °C, Fig. 10). Additionally, in all temperature treatments, the cycle
504 period grows longer with model time. Resting cysts at constant 2 °C undergo an initial cycle that
505 is 11.5 months long, similar to natural populations from deep water beds in the Gulf of Maine
506 (~11 months; Anderson and Keafer, 1987), but second and third periods are 12.4 and 12.7
507 months. Oscillations between dormancy and quiescence are also increasingly damped, such that
508 periodicity is hardly evident after year 6. The same damping occurs in other temperature
509 simulations as well, pointing to the importance of temperature seasonality to establish and
510 reinforce dormancy phasing under the heating/chilling model.

511 In contrast to the constant temperature simulations, model simulations with seasonally
512 varying temperatures drive phasing of dormancy cycles that stabilize over time. Seasonally
513 varying temperatures also prolong quiescence within individual resting cysts. This is illustrated
514 through results from populations forced by four distinct climate regimes (Fig. 11). Regimes 1–3
515 have the same temperature seasonality (± 3 °C) but mean temperatures of 7, 10, and 13 °C,
516 respectively. Regimes 1 and 2 are comparable to temperature conditions experienced by cyst
517 beds in the Gulf of Maine (7.4 ± 3.9 °C) and Puget Sound (10.3 ± 2.3 °C), respectively. Regime 3
518 is presented as a potential warming scenario for either Regime 1 or 2. Regime 4 has the same
519 mean temperature as the warming scenario Regime 3 but larger seasonality (13 ± 10 °C), similar

520 to Nauset Marsh (12.5 ± 11.5 °C; Fig. 2). Among these temperature regimes, all but Regime 3
521 settle into patterns of regular, phased dormancy cycles within five years of initiation (i.e., years
522 5–100 are highly similar within each regime; Fig. 11). In Regimes 1, 2, and 4, single annual
523 peaks in quiescence are centered during winter but vary in magnitude from 58 to 100% of the
524 total population. While the warming scenario Regime 3 also produces peaks in quiescence, they
525 are irregular and multimodal with maximum quiescence percentages that are lower (38–53%)
526 and less consistent from year to year (Fig. 11).

527 For simulations with seasonally varying temperatures, temperature-dependent
528 germination of quiescent cysts was also incorporated into the model. Quiescent cysts germinate
529 following a sigmoid function, proceeding at a minimum rate of 1.7% day⁻¹ below 5°C and a
530 maximum rate of ~8.6% day⁻¹ above 10 °C (Figs. 5 and 8; Anderson et al., 2005a). In Regimes 1,
531 2, and 4, simulated germling fluxes track the dormancy cycling patterns of populations during
532 the fall and spring but are suppressed during the winter due to cold inhibition of germination. In
533 the coldest simulations (Regimes 1 and 2), distinct peaks in the flux of germlings occur during
534 the fall and spring. In contrast, the warming-scenario Regime 3 effectively releases cysts from
535 cold inhibition such that germination and germling fluxes directly track changes in cyst bed
536 quiescence.

537 The strongest phasing of quiescence is produced by the highest temperature seasonality
538 (Regime 4; 13 ± 10 °C), which is typical of shallow, inshore systems where water temperature
539 more closely tracks air temperature. The cyst population is converted between dormant and
540 quiescent states nearly synchronously, with quiescent intervals spanning from early winter to late
541 spring. This is significantly shorter than regimes with milder seasonality and effectively restricts
542 bloom initiation to spring (as is observed in Nauset Marsh). At the onset of quiescence, model
543 germling flux is initially suppressed by cold winter temperatures and then increases to its peak
544 potential rate as temperatures warm to 10 °C (Figs. 5 and 11). Synchronous phasing of
545 quiescence arises from the effects of especially warm and cold periods of the year that rapidly
546 drive resting cysts through quiescence and secondary dormancy, respectively.

547 Another important effect of temperature seasonality derived from model results is
548 increased duration of quiescence intervals within individual resting cysts. Mild seasonality
549 simulations (Regimes 1–3) produce an inverse relationship between mean temperature and
550 quiescence duration (Fig. 12), just as in the constant temperature model simulation (Fig. 9).

551 However, for any given mean temperature, as seasonality increases, the duration of quiescence
552 also increases. For example, model resting cysts under constant 13 °C forcing are quiescent 9.9%
553 of their lifetimes, whereas resting cysts under Regime 3 (13 ± 3 °C) and Regime 4 (13 ± 10 °C)
554 are quiescent 11.6% and 24.7% (Figs. 9 and 12). This effect stems from dormancy cycle phasing.
555 Resting cysts in higher temperature seasonality habitats experience greater excursions from
556 threshold T_c and T_h temperatures. This drives more rapid passage from one state (dormancy or
557 quiescence) to the other, and then holds resting cysts in their new state with little progress toward
558 their next transition (i.e., via chilling or heating) until a change in season. Consider a dormant
559 cyst in winter. Severe cold drives its rapid transition to quiescence and then effectively holds it in
560 this state until spring warming because environmental temperatures are near T_h , limiting
561 accumulation of heating DD . At the onset of warming in late spring and summer, it will rapidly
562 return to dormancy and remain in this state until the onset of cold in fall and winter.

563 The combined response by cyst beds to different climates and climate warming scenarios
564 drawn from this model is complex, but several concepts emerge. Generally, warmer
565 environments promote longer phases of dormancy and shorter phases of quiescence, reducing the
566 potential flux of germling cells from cyst beds for the inoculation of new blooms. However, this
567 effect of warming can be mitigated through increasing temperature seasonality. High temperature
568 seasonality also increases the synchronization of dormancy cycles, promoting larger germling
569 fluxes that are focused over a shorter period of the year. Larger, more synchronous germling
570 fluxes may be advantageous in more seasonal habitats for a number of reasons. Inocula may need
571 to surpass a threshold size for blooms to develop in habitats with high loss rates due to grazing
572 and/or interspecific interactions (e.g., allelopathy; Fistarol et al., 2004). Concentration of
573 germling fluxes over narrower temporal windows may also reduce the depletion of cyst beds and
574 reduce the demand for their renewal through new resting cyst production.

575

576 **7. Biogeographic implications of interactions between cyst dormancy, warming, and**
577 **temperature seasonality**

578 Cyst beds of *A. catenella* and other temperate and sub-arctic species are experiencing
579 climate change-associated increases in temperature seasonality but at a scale that is modest
580 relative to differences between shallow inshore and deep coastal habitats. For example, since
581 1979, there has been <1 °C change in tropospheric seasonality (Santer et al., 2018), whereas

582 there is >7.5 °C seasonality difference between inshore and coastal *A. catenella* habitats within
583 the Gulf of Maine region (Figs. 2 and 13). The scale of the seasonality shifts is also modest
584 relative to the rate of climate warming (i.e., changes in annual mean water temperature).
585 Similarly, warming is far more significant than changes in seasonality within equatorial and
586 subtropical habitats where *P. bahamense* occurs. Model results suggest that cyst populations in
587 higher seasonality habitats (i.e., Regime 4) will be more resilient to climate warming than those
588 in habitats with lower seasonality (i.e., Regime 3). In this context, greater resiliency means cyst
589 populations are more likely to persist and inoculate new blooms despite changes in annual mean
590 water temperature. One outcome of warming may be a shift from the relative importance of
591 deep-water (lower seasonality) cyst beds to inshore (higher seasonality) cyst beds for initiation of
592 blooms in many regions, particularly those at the latitudinal limits of their ranges.

593 The biogeography of *A. catenella* in the northeast U.S., the southern boundary of this
594 species distribution in the northwest Atlantic, is concordant with the prediction that less seasonal,
595 offshore cyst beds will be more sensitive to warming. Expansive cyst beds occur within the Bay
596 of Fundy and along the mid-Maine coast, but to the south, cysts are more abundant within
597 isolated embayments than in deeper waters (Anderson, 1997; Anderson et al., 1994). Georges
598 Bank, an offshore but shallow area, supports substantial blooms of vegetative *A. catenella* cells
599 (McGillicuddy et al., 2014) but does not host a cyst bed of its own (Anderson et al., 2014),
600 instead relying on leakage of vegetative populations from coastal Maine for new bloom
601 initiation. The lack of a cyst bed on the bank itself is likely caused by strong currents that scour
602 fine sediment from its shallowest areas (Harris and Stokesbury, 2010), but even deeper flank
603 areas are characterized by low cyst concentrations (Anderson et al., 2014), suggesting that
604 temperature or other environmental factors are preventing cyst bed formation in these less
605 energetic areas. Despite even higher annual mean temperatures, more southern inshore
606 populations produce localized blooms that are largely self-seeding and persistent, e.g. Nauset
607 Marsh on Cape Cod and areas along the coasts of Connecticut and Long Island, NY (Anderson et
608 al., 1982; Anderson et al., 1994; Crespo et al., 2011; Fig. 13). This distribution is concordant
609 with increasing restriction of *A. catenella* resting cysts to more highly seasonal habitats in
610 warmer areas of its range. Coastal blooms still occasionally extend at least as far south and west
611 as Rhode Island (Anderson et al., 2005b), but offshore cyst beds are restricted to cooler and
612 deeper waters off the coast of Maine and areas to the north.

613 Mean bottom temperatures within Gulf of Maine have increased >2 °C since 2015
614 (Pershing et al., 2015). With further warming, the mid-Maine coastal cyst bed might wane in its
615 importance. Warming will drive deep cyst bed seasonal temperature cycles from Regime 1-type
616 behavior to Regime 3, releasing cysts from wintertime inhibition of germination and relaxing
617 temperature-based phasing of dormancy cycling. This would further restrict the development of
618 extensive offshore *A. catenella* cyst beds in southern, warmer, low seasonality areas. Range
619 shifts to more northern areas—comparable to what has been observed in many fish species (e.g.,
620 Perry et al., 2005; Nye et al., 2009)—are therefore likely to occur first among deep cyst beds in
621 open waters. Over time this may lead to reduced threats from expansive coastal blooms that
622 impact long stretches of the coast (Franks et al., 1992) or cause coastal blooms to rely more
623 heavily on leakage from “upstream”, higher latitude cyst beds or localized, inshore populations
624 for their initiation (Anderson et al., 2005a, 2014; McGillicuddy et al., 2005, 2014). Remnant
625 populations at lower latitudes will experience more strongly phased dormancy cycles, tending to
626 concentrate the initiation of new blooms within a shorter period of the year, leading to far more
627 localized PSP risk. At the poleward extreme of its range, warming may instead promote the
628 development of deep cyst beds that have the potential to cause expansive coastal blooms of *A.*
629 *catenella*, especially as warming enhances cyst germination and vegetative cell growth. The
630 extraordinarily large deposit of *A. catenella* cysts in the Chukchi Sea is noteworthy in this regard
631 as it points to the potential for massive blooms in an area that has no recorded history of PSP (Gu
632 et al., 2013; Natsuike et al., 2013; 2017; Okolodkov, 2005; D. Anderson, unpub. data).

633 In the case of *P. bahamense*, biogeographic patterns suggest a somewhat different
634 response to climate warming. Near the equator, lower temperature seasonality (Fig. 2) likely
635 drives desynchronization of cyst populations, which may underlie reports that blooms in these
636 lower latitude regions occur more sporadically or are recurrent throughout the year (Usup et al.,
637 2012; Sastre et al., 2013; Morquecho, 2019). In contrast, more seasonal, sub-tropical populations
638 (e.g., Tampa Bay and Indian River Lagoon, FL) peak in summer periods (Phlips et al., 2006), a
639 phenology that likely reflects both heightened germling fluxes in spring and more favorable
640 growth conditions for vegetative cells during late spring and summer (Fig. 2; Lopez et al., 2019).
641 The widespread distribution of *P. bahamense* resting cysts in coastal areas and ocean sediments,
642 which extends beyond the range of known bloom occurrence (Zonneveld et al., 2013), also
643 suggests the potential for the expansion of *P. bahamense* blooms to higher latitudes as warming

644 occurs. But such an expansion may depend on the specifics and plasticity of its temperature-
645 based controls of dormancy and quiescence. Further investigation of these dormancy control
646 mechanisms and how they related to phenology of blooms across warming scenarios is needed to
647 assess how warming may alter sources of *P. bahamense* cells and PSP toxins.

648 It remains to be shown whether dormancy cycling and cold inhibition do in fact break
649 down with warming in *A. catenella* as illustrated through the Regime 3 simulation. Variability in
650 chilling and heating responses within populations may also enable species to adapt over time.
651 Dinoflagellate cyst beds are phenotypically and genetically diverse, and that diversity can be
652 maintained over decades (Lundholm et al., 2017; Ribeiro et al., 2013). A multigenerational cyst
653 bed provides populations with a reservoir of diverse genotypes that could be resurrected when
654 favorable environmental conditions occur. Kremp et al. (2016) provides experimental evidence
655 that cyst beds do support short-term adaptation of *A. ostenfeldii* to environmental change. The
656 development of relatively small, localized, and self-seeding populations may also promote
657 adaptation to warmer conditions (Anderson et al., 1994). In other cases, warming may cause
658 established cyst beds to erode as germination delivers more germlings to the water column
659 during periods that are unfavorable for bloom development, and, thus cyst bed replenishment.

660 It is also true that additional temperature effects not considered in the model may be more
661 decisive in driving changes in the range of *A. catenella*, *P. bahamense*, and other species.
662 Dormancy is just one of many factors that determine germling fluxes in natural systems. Other
663 factors that control the supply of resting cysts to surficial sediments and the water column are not
664 considered here but are critical for release of resting cysts from anaerobic inhibition, which,
665 likewise, is not considered in the model. Similarly, the model ignores enhanced heat stress that
666 may contribute to higher mortality (Hallegraeff et al., 1997). It also neglects the potential for
667 resting cysts to exploit temperature gradients in the water column, e.g., deep populations may
668 reach surface waters as quiescent cysts through winter resuspension and mixing, then germinate
669 at elevated rates within warmer euphotic waters (Kirn et al., 2005; Pilskaln et al., 2014). Many, if
670 not all, of the factors controlling germling fluxes will be impacted by climate warming and their
671 responses will have interacting effects that sometimes enhance and other times negate one
672 another. Those temperature-related impacts that directly affect the physiology of resting cysts are
673 of paramount interest here because critical thresholds may delimit the conditions under which
674 germination (and initiation of new blooms) is possible or effectively regulated.

675

676 **8. Importance of new resting cyst formation and limits to bloom intensification**

677 Production of new resting cysts by blooms is important for renewal of cyst beds and
678 initiation of future blooms. Given this importance to bloom ecology, descriptions of new resting
679 cyst formation in situ have been widely sought after for decades, yet few exist because they
680 present a formidable observational challenge. Like all other plankton, HAB cell distributions are
681 spatially patchy and dynamic. Gametes and planozygotes—the planktonic sexual stage
682 precursors to new cysts—are short-lived and therefore relatively rare compared to vegetative
683 cells in most bloom populations (Fig. 1; Badylak and Phillips, 2009; Brosnahan et al., 2017).
684 Most descriptions of new cyst formation therefore come from laboratory observations.

685 In culture, vegetative cells of *A. catenella* (and many other photosynthetic
686 dinoflagellates) can be induced to form cysts through nutrient limitation (e.g., Anderson and
687 Lindquist, 1985). *Pyrodinium bahamense* is perhaps an exception since conditions promoting
688 encystment of cultures of this species are yet to be described (Blackburn and Oshima 1989; Usup
689 et al., 2012). That nutrient limitation can drive encystment is consistent with the paradigm that
690 evolutionary pressure pushes species to favor self-replication and forego sexual recombination
691 for as long as a population’s environment will allow. Through combination of sexual
692 recombination and encystment, dinoflagellates and many other protists are able to defer gene
693 repair and recombination from periods that support vegetative cell division (e.g., Margulis et al.,
694 1985). In the field, however, many reports fail to link new resting cyst production to nutrient
695 limitation (e.g., Anderson et al., 1983; Anglès et al., 2012; McGillicuddy et al., 2014; Brosnahan
696 et al., 2015, 2017), suggesting that other stimuli may commonly drive sexual induction and new
697 resting cyst production by blooms (e.g., Bravo and Figueroa, 2014).

698 Blooms of *A. catenella* have been shown to produce large pulses of new cysts shortly
699 after their peaks. Different sampling methods used across studies make comparisons of peak cell
700 concentrations preceding encystment challenging, but work from the Nauset Marsh has shown
701 remarkable consistency across years and at three distinct kettle holes, each of which hosts its
702 own localized bloom (Anderson et al., 1983; Ralston et al., 2014). More recent observations
703 from Nauset Marsh using an in situ phytoplankton imaging sensor called Imaging FlowCytobot
704 (IFCB) has revealed that blooms undergo mass gametogenesis once thin layer concentrations
705 exceed 10^6 cells L^{-1} (Brosnahan et al., 2015, 2017; Fig. 14). Gamete fusion and planozygote

706 formation proceed within hours of mass gametogenic events and are associated with localization
707 of *A. catenella* near the surface producing highly ephemeral red water discoloration (Ralston et
708 al., 2015; Brosnahan et al., 2017). Wholesale conversion of a coastal *A. catenella* bloom to
709 sexual stages, coinciding with red water and cell concentrations in excess of 10^6 cells L⁻¹, was
710 also observed in a population that spanned much of the coast of western Maine and New
711 Hampshire (McGillicuddy et al., 2014). In both of these works, concerted sexual transformation
712 led to rapid and complete bloom termination, suggesting that intensification of *A. catenella*
713 blooms is limited by an overwhelming drive to form new resting cysts once cell concentrations
714 surpass the 10^6 cell L⁻¹ threshold. Similarly, Uchida (2001) has reported cell concentration and
715 cell contact thresholds for sexual induction of the dinoflagellates *Scrippsiella trochoidea* and
716 *Gyrodinium instriatum*. In the case of *P. bahamense*, resting cyst production by field populations
717 remains to be characterized, but Florida monitoring data reveals a comparable limit to *P.*
718 *bahamense* bloom intensification ($\sim 10^6$ cells L⁻¹, Fig. 15). Unlike with *A. catenella*, however,
719 high *P. bahamense* concentrations often persist for weeks or months. Thus, while *P. bahamense*
720 planktonic populations can be composed of mixtures of vegetative and sexual stage cells (e.g.,
721 Azanza et al., 2004; Azanza, 2013; C. Lopez and S. Shankar unpub. data), plateaus in bloom
722 intensification, do not immediately precede rapid decline of blooms.

723 In Nauset Marsh, mass gametogenesis of *A. catenella* blooms typically occurs when
724 growth rates (determined through IFCB analysis) are fastest, temperatures are favorable for
725 growth, and when ambient concentrations of phosphate and nitrogen salts are relatively high
726 (Ralston et al., 2014; Brosnahan et al., 2015, 2017 and unpublished). Blooms also do not
727 typically resurge within a bloom season once sexual transformation has occurred, likely due to
728 the lack of inocula from cyst beds (Fig. 11; Regime 4). This limit to bloom intensification and
729 duration through sexual transformation in a population with highly synchronized dormancy
730 cycling of cysts adds nuance to the window of opportunity hypothesis that predicts prolonged
731 blooms with expanded windows of conditions supporting bloom development. At the very least,
732 these works show that the seasonal window within which blooms might occur is much narrower
733 than would otherwise be predicted by only considering conditions that support vegetative
734 growth.

735 Two warmer than normal years in Nauset Marsh from which suitable monitoring data are
736 available (i.e., 2012 and 2016) offer a chance to evaluate the window of opportunity hypothesis

737 in this system. During these warm years, rapid in situ vegetative growth led to bloom
738 development approximately one month earlier than in other, more typical (and cooler) years.
739 Detection of the early 2012 bloom led to an emergency shellfish harvesting closure of the Nauset
740 system prior to the start of sampling by the Massachusetts state shellfish monitoring program in
741 that year (Ralston et al., 2014). Spring warming proceeded nearly monotonically through the
742 bloom period from early March through mid-April when the bloom in Salt Pond surpassed 10^6
743 cells L⁻¹ and then underwent a rapid and total decline driven by encystment as the water
744 temperature reached 15 °C. From start to finish the bloom persisted for only about five weeks,
745 slightly shorter than typical, even though favorable conditions for vegetative cell growth
746 persisted well into May (Brosnahan et al., 2015). The bloom in 2016 proceeded similarly through
747 mid-April when it too surpassed 10^6 cells L⁻¹, triggering a mass conversion to sexual stage cells
748 and rapid bloom decline (Fig. 14). Unlike 2012, however, a series of cold spells during the
749 bloom's development kept water temperatures below 10 °C for most of April, extending
750 germling production by prolonging cyst quiescence. Continued germination likely led to the
751 renewal or second phase of the 2016 bloom in early May, and a second sexual induction-linked
752 bloom peak and decline in mid-May (Brosnahan et al., 2017; Fischer, 2017). These results are
753 instructive in that they emphasize the importance of cyst bed quiescence for the window of
754 opportunity hypothesis. Warmer than normal temperatures in 2012 and 2016 were projected to
755 expand the window of opportunity for *A. catenella* in Nauset Marsh leading to earlier and longer
756 lasting blooms. Blooms occurred one month earlier than normal during both years, but the bloom
757 duration was extended only in 2016 because cool spring conditions prolonged cyst quiescence. In
758 2012, the bloom duration was the same as other years but was simply shifted earlier in the year.
759 In regions like Puget Sound where conditions promote longer and less synchronized fluxes of
760 germlings from cyst beds, blooms may go through several cycles of development, new cyst
761 production, and revival, prolonging the risk of PSP until conditions no longer support vegetative
762 cell growth. In areas like Nauset that experience greater temperature seasonality and more
763 synchronized fluxes of germlings from cyst beds, fewer cycles are possible because warmer
764 temperatures in late spring and summer tend to drive cyst beds back into dormancy. It is worth
765 noting that more intense spring and summer warming may also drive greater anoxia in
766 sediments, causing anaerobic inhibition of germination and further reducing the flux of
767 germlings that might otherwise sustain and renew blooms. The kettle holes within the Nauset

768 Marsh commonly experience anoxia during summer periods and blooms often end just as anoxia
769 sets in within the deepest areas of the system. Most resting cysts, however, are present in
770 shallower areas that remain oxygenated for several weeks after blooms terminate (Crespo et al.,
771 2011; Brosnahan et al., 2017).

772 Collectively, these observations support the notion that the life cycle of a cyst-forming
773 species is more oriented toward the production of resting cysts rather than favoring continued
774 production of vegetative daughter cells. Blooms of some of these species will undergo mass
775 gametogenesis once they reach concentrations that are conducive to gamete pairing and fusion,
776 limiting bloom intensification. In many cases, this will reflect an imperative that cells return to
777 their resting cyst stage to survive periods between favorable bloom conditions. The implications
778 of this encystment trigger are significant in the context of global warming impacts on blooms.
779 Instead of vegetative populations continuing to grow as long as favorable temperatures persist,
780 cell density thresholds may be reached that terminate blooms “prematurely” unless they are
781 renewed through fluxes of new germlings. It remains to be shown whether characteristic peak
782 concentration and encystment-driven termination observed in Nauset and the Gulf of Maine can
783 be generalized to Puget Sound and other areas within *A. catenella*’s extensive geographic range,
784 or if similar mechanisms for sexual induction hold for *P. bahamense* and other species, but the
785 observations from northeastern U.S. *A. catenella* blooms expand the window of opportunity
786 hypothesis to also consider the effects of temperature and temperature history on the flux of
787 germlings from cyst beds. Especially for populations whose termination can be driven by mass
788 encystment, the potential for blooms to exploit more favorable conditions for vegetative growth
789 may depend on conditions also promoting continued germination of cysts.

790

791 **9. Future directions**

792 Recent intensive study of *A. catenella* blooms in Nauset Marsh demonstrates the value of
793 rigorous, quantitative field investigations that can test and validate inferences and predictions
794 born from analysis of long-term data sets and laboratory-based studies of HAB organisms. While
795 temperature is undoubtedly a major determinant of HAB physiology, other factors that drive
796 dynamics in natural blooms remain to be elucidated. As one example, the factors driving
797 enhanced growth by Nauset *A. catenella* *in situ* in comparison to laboratory cultures remain to be
798 described (Brosnahan et al., 2015). While division rates *in situ* retain a strong temperature

799 dependence, growth is also restricted to a far narrower range of temperatures than has been
800 shown for growth by cultures (5–15 °C vs. 5–26 °C; Fig. 16). Similarly, coastal blooms in the
801 Gulf of Maine are restricted to waters between 5 and 15 °C (Townsend et al., 2005), but blooms
802 in Northport Harbor, NY, a more southern inshore system, occur between 10 and 20 °C (Anglès
803 et al., 2012). It remains to be shown whether *A. catenella* can bloom in even warmer waters in
804 nature and if so, how cells behave in terms of peak bloom intensity, production of new resting
805 cysts, and resilience to stress and changing interspecific interactions.

806 Like *A. catenella*, the relationship between the growth of *P. bahamense* and temperature
807 is well described by an asymmetric bell-shaped curve with low growth at low temperatures
808 increasing to a maximum and then falling rapidly at high temperatures (Usup et al., 1994). Some
809 differences are apparent however between Pacific and Atlantic isolates, the latter being more
810 tolerant of higher temperatures (Omura et al., 1994). Unlike *A. catenella*, *P. bahamense* blooms
811 occur more commonly at temperatures near or exceeding those that support optimal growth of
812 laboratory cultures (i.e., >28–30 °C; Usup et al., 2012; Fig. 16) and can persist in these
813 environments for weeks to months (FWC FWRI HAB Monitoring Database). It may be that *P.*
814 *bahamense* is adapted to bloom nearer to, and even above, its upper temperature limit to growth
815 in culture. Evidence from experiments with Florida isolates suggests cells can maintain slow
816 cellular division for extended periods under conditions that induce cell stress (S. Shankar, unpub.
817 data). *Pyrodinium* bloom dynamics may also be driven to a larger extent by cycles of temporary
818 cyst formation and excystment (Azanza et al., 2013), which is a topic that requires further
819 exploration.

820 Deployment of in situ biosensors like the IFCB at bloom hot spots will better characterize
821 in situ division rates and the role of different life cycle transformations in determining bloom
822 dynamics of *A. catenella*, *P. bahamense*, and many other species across a wide diversity of
823 habitats. With expanded use of these tools, more comprehensive understanding of the factors that
824 limit bloom intensity and duration will be developed. Continuous recording and real-time sharing
825 of phytoplankton diversity and abundance at bloom hot spots also has obvious value for
826 managers and stakeholders who must protect public health and natural resources from both
827 established and emerging HAB species affecting their regions (e.g., Campbell et al., 2010).
828 Records produced through these activities characterize HAB responses to interannual climate
829 variability and anomalous weather events. Because these events often mimic climate change

830 scenarios (see Trainer et al, this issue), their analysis can provide further insights into the
831 response of blooms to warming and other climate-related environmental changes (e.g., Moore et
832 al., 2010; Anderson 2014; Anglès et al., 2015; Wells et al., 2017).

833 Because the distribution and abundance of resting cysts is a strong predictor of bloom
834 locations in subsequent bloom seasons, understanding the evolution of cyst beds in response to
835 warming and climate variability will be invaluable for managing HAB impacts like PSP
836 (Anderson et al., 2014). Cyst beds reflect both the location of new cyst production and
837 hydrodynamic factors—tides, seasonal weather patterns, etc.—that scour and redistribute cysts
838 and other fine sediment particles in coastal systems (Butman et al., 2014; Aretxabaleta et al.,
839 2014). These factors can produce consistent patterns of cyst distribution within both inshore and
840 coastal cyst bed habitats (Anderson et al., 2014; Crespo et al., 2009), which, once known, can be
841 leveraged for design of efficient monitoring schemes (Solow et al., 2014). Expanded use of
842 molecular methods like quantitative PCR in benthic monitoring programs will also improve
843 detection of emergent species and toxins of concern (e.g., Erdner et al., 2010; Murray et al.,
844 2019). The combination of benthic monitoring with increased use of in situ monitoring tools like
845 the IFCB will improve understanding of HAB responses to warming and preparation of
846 appropriate management responses.

847 New efforts to understand relationships between changing temperatures and HAB species
848 must also develop new observational, experimental, and analytical approaches. The
849 characterization of temperature-based controls of cysts' dormancy cycles remains in its early
850 stages. New approaches are needed to assess the prevalence of these mechanisms across the
851 diversity of cysts and other benthic stages formed by dinoflagellates and other classes of
852 phytoplankton. Similarly, evaluation of the plasticity of chilling- and heating-type responses
853 within and between populations will require adoption of new experimental and analytical
854 approaches. It is noteworthy that the initial descriptions of chilling-mediated dormancy passage
855 in *A. catenella* and *P. bahamense* were based on studies of cyst beds that were naturally
856 synchronized by relatively high temperature seasonality (Fischer et al., 2018; Lopez et al., 2019).
857 Strong phasing of dormancy cycles in these populations helped to reveal chilling- and heating-
858 mediated physiologies through simple experiments that applied constant temperature storage
859 conditions. More recent experiments have demonstrated alternating temperature schemes that
860 synchronize populations by mimicking habitats with high temperature seasonality (results

861 presented here and D.M. Anderson, A.D. Fischer, and M.L. Brosnahan, unpub. data). Further
862 exploration of these more dynamic storage schemes may be required to determine differences
863 between populations. Additionally, progress may be made through experimentation with cyst
864 dormancy in species that readily produce viable cysts in culture. Lab-based investigations of
865 cultured cysts are likely better suited to investigations of the molecular underpinnings of these
866 responses and can better leverage new genetic tools (e.g., Chan et al., 2019).

867

868 **10. Summary**

869 Life cycle dynamics introduce complexity in efforts to predict the response of cyst-
870 forming dinoflagellates to climate change. These complications arise from heating and chilling
871 requirements for secondary dormancy and quiescence of resting cysts that are only now
872 becoming recognized in two dinoflagellate species (*A. catenella* and *P. bahamense*) that span
873 nearly all latitudes. The model presented here for one of these species (*A. catenella*) is a first step
874 towards incorporating this type of physiological process into projections of bloom response to
875 climate change. Preliminary indications from model simulations are that warming will promote
876 longer phases of dormancy and shorter phases of quiescence, leading to shorter windows for
877 bloom initiation and renewal through cyst germination. This, in turn, may mean that species with
878 a density-dependent trigger for encystment that would otherwise take advantage of an expanded
879 window of bloom development, will instead bloom and decline earlier. Another inference is that
880 resting cyst populations will be more resilient to warming in areas that experience greater
881 temperature seasonality. This may alter the geographic distribution of HAB impacts, with more
882 localized populations persisting in estuaries and embayments at the latitudinal extremes of a
883 species' geographic range and deeper cyst beds in these areas gradually diminishing. Enhanced
884 warming may also lead to greater dependence upon pellicle cyst formation as a life-cycle based
885 adaptation to environmental change. All of these issues highlight the need for expanded
886 consideration of life cycles in climate change assessments.

887

888 **References**

889 Alkawri, A., Abker, M., Qutaei, E., Alhag, M., Qutaei, N., Mahdy, S., 2016. The First Recorded
890 Bloom of *Pyrodinium bahamense* var. *bahamense* Plate in Yemeni Coastal Waters off Red

891 Sea, Near Al Hodeida City. Turk. J. Fish. Aquat. Sc. 16, 275–282. doi: 10.4194/1303-2712-
892 v16_2_07.

893 Anderson, D.M., Wall, D., 1978. Potential Importance of Benthic Cysts of *Gonyaulax*
894 *tamarensis* and *G. excavata* in Initiating Toxic Dinoflagellate Blooms. J. Phycol. 14, 224–
895 234.

896 Anderson, D.M., Morel, F.M.M., 1979. The Seeding of two Red Tide Blooms by the
897 Germination of Benthic *Gonyaulax tamarensis* Hypnocysts. Estuar. Coast. Mar. Sci. 8, 279–
898 293.

899 Anderson, D.M., Kulis, D.M., Orphanos, J.A., Ceurvels, A.R., 1982. Distribution of the toxic
900 dinoflagellate *Gonyaulax tamarensis* in the southern New England region. Estuar. Coast.
901 Shelf Sci. 14 (4), 447–458.

902 Anderson, D.M., Kulis, D.M., Binder, B.J., 1984. Sexuality and cyst formation in the
903 dinoflagellate *Gonyaulax tamarensis*: cyst yield in batch cultures. J. Phycol. 20 (3), 418–
904 425.

905 Anderson, D.M., Keafer, B.A., 1985. Dinoflagellate cyst dynamics in coastal and estuarine
906 waters. In: Anderson, D.M., White, A.W., Baden, D.G. (Eds.), Toxic Dinoflagellates:
907 Proceedings of the 3rd International Conference, pp. 219–224.

908 Anderson, D.M., Lindquist, N.L., 1985. Time-course measurements of phosphorus depletion and
909 cyst formation in the dinoflagellate *Gonyaulax tamarensis* Lebour. J. Exp. Mar. Biol. Ecol.
910 86 (1), 1–13.

911 Anderson, D.M., Taylor C.D., Armbrust E.V., 1987. The effects of darkness and anaerobiosis on
912 dinoflagellate cyst germination. Limnol. Oceanogr. 32 (2), 340–351.

913 Anderson, D.M., Keafer, B., 1987. An endogenous annual clock in the toxic marine
914 dinoflagellate *Gonyaulax tamarensis*. Nature 325, 616–617.

915 Anderson, D.M., 1989. Toxic Algal Blooms and Red Tides: A Global Perspective. In: Okaichi,
916 T., Anderson, D.M., Nemoto, T. (Eds.), Red Tides: Biology Environmental Science and
917 Toxicology. Elsevier, New York, pp. 11–16.

918 Anderson, D.M., Kulis, D.M., Doucette, G.J., Gallagher, J.C., Balech, E., 1994. Biogeography of
919 toxic dinoflagellates in the genus *Alexandrium* from the northeastern United States and
920 Canada. Mar. Biol. 120 (3), 467–478.

921 Anderson, D.M., 1997. Bloom dynamics of toxic *Alexandrium* species in the northeastern US.
922 Limnol. Oceanogr. 42 (5, II), 1009–1022.

923 Anderson, D.M., Fukuyo, Y., Matsuoka, K., 2003. Cyst Methodologies. In: Hallegraeff, G.M.,
924 Anderson, D.M., Cembella, A.D. (Eds.), Manual on Harmful Marine Microalgae. IOC of
925 UNESCO, Paris, pp. 165–190.

926 Anderson, D.M., Stock, C.A., Keafer, B.A., Nelson, A.B., Thompson, B., McGillicuddy Jr, D.J.,
927 Keller, M., Matrai, P.A., Martin, J., 2005a. *Alexandrium fundyense* cyst dynamics in the Gulf
928 of Maine. Deep-Sea Res. Pt. II 52 (19-21), 2522–2542.

929 Anderson, D.M., Keafer, B.A., McGillicuddy Jr, D.J., Mickelson, M.J., Keay, K.E., Libby, P.S.,
930 Manning, J.P., Mayo, C.A., Whittaker, D.K., Hickey, J.M., He, R., 2005b. Initial
931 observations of the 2005 *Alexandrium fundyense* bloom in southern New England: General
932 patterns and mechanisms. Deep Sea Res. Pt. II 52 (19-21), 2856–2876.

933 Anderson, D.M., Rengefors, K., 2006. Community assembly and seasonal succession of marine
934 dinoflagellates in a temperate estuary: The importance of life cycle events. Limnol.
935 Oceanogr. 51 (2), 860–873.

936 Anderson, D.M., 2014. HABs in a changing world: a perspective on harmful algal blooms, their
937 impacts, and research and management in a dynamic era of climactic and environmental
938 change. In Kim, H.G., Reguera, B., Hallegraeff, G.M. Lee, C.K. (Eds.), Harmful Algae:
939 Proceedings of the 15th International Conference on Harmful Algae, pp. 3–17.

940 Anderson, D.M., Keafer, B.A., Kleindinst, J.L., McGillicuddy, D.J., Martin, J.L., Norton, K.,
941 Pilskaln, C.H., Smith, J.L., Sherwood, C.R., Butman, B., 2014. *Alexandrium catenella* cysts
942 in the Gulf of Maine: Long-term time series of abundance and distribution, and linkages to
943 past and future blooms. Deep-Sea Res. Pt. II 103, 6–26. doi:10.1016/j.dsr2.2013.10.002

944 Anglès, S., Garcés, E., Hattenrath-Lehmann, T.K., Gobler, C.J., 2012. In situ life-cycle stages of
945 *Alexandrium fundyense* during bloom development in Northport Harbor (New York,
946 USA). Harmful Algae 16, 20–26.

947 Anglès, S., Jordi, A., Campbell, L., 2015. Responses of the coastal phytoplankton community to
948 tropical cyclones revealed by high-frequency imaging flow cytometry. Limnol. Oceanogr. 60
949 (5), 1562–1576.

950 Azanza, R., Brosnahan, M., Anderson, D.M., Hense, I., Montresor, M. 2018. The Role of Life
951 Cycle Characteristics in Harmful Algal Bloom Dynamics. 133-61. In: Glibert, P., Berdalet,

952 E., Burford, M., Pitcher G., Zhou M. (Eds.), Global Ecology and Oceanography of Harmful
953 Algal Blooms. Cham, Springer. pp. 133–161.

954 Azanza, R.V., Siringan, F.P., San Diego-McGlone, M.L., Yñiguez, A.T., Macalalad, N.H.,
955 Zamora, P.B., Agustin, M.B., Matsuoka, K., 2004. Horizontal dinoflagellate cyst
956 distribution, sediment characteristics and benthic flux in Manila Bay, Philippines. *Phycol.*
957 *Res.* 52, 376–386

958 Azanza, R.V., Taylor, F.M., 2001. Are *Pyrodinium* blooms in the Southeast Asian region
959 recurring and spreading? A view at the end of the millennium. *Ambio* 30 (6), 356–365.

960 Baggesen, C., Moestrup, Ø., Daugbjerg, N., Krock, B., Cembella, A.D., Madsen, S., 2012.
961 Molecular phylogeny and toxin profiles of *Alexandrium tamarense* (Lebour) Balech
962 (Dinophyceae) from the west coast of Greenland. *Harmful Algae* 19, 108–116.

963 Banguera-Hinestrosa, E., Eikrem, W., Mansour, H., Solberg, I., Cúrdia, J., Holtermann, K.,
964 Edvardsen, B., Kaartvedt, S. 2016. Seasonality and toxin production of *Pyrodinium*
965 *bahamense* in a Red Sea lagoon. *Harmful Algae* 55, 163–171.
966 doi:10.1016/j.hal.2016.03.002.

967 Binder, B.J., Anderson, D.M., 1987. Physiological and environmental control of germination in
968 *Scrippsiella trochoidea* (Dinophyceae) resting cysts. *J. Phycol.* 23 (1), 99–107.

969 Blackburn, S.I., Oshima, Y., 1989. Review of culture methods for *Pyrodinium bahamense*. In:
970 Hallegraeff, G.M., Maclean, J.L. (Eds.), *Biology, Epidemiology and Management of*
971 *Pyrodinium Red Tides*. ICLARM Conference Proceedings 21, Manila, pp. 257–266.

972 Bravo, I., Figueroa, R.I., Garces, E., Fraga, S., Massanet, A., 2010. The intricacies of
973 dinoflagellate pellicle cysts: The example of *Alexandrium minutum* cysts from a bloom-
974 recurrent area (Bay of Baiona, NW Spain). *Deep-Sea Res. Pt. II* 57, 166–174.
975 doi:10.1016/j.dsr2.2009.09.003

976 Brosnahan, M.L., Velo-Suárez, L., Ralston, D.K., Fox, S.E., Sehein, T.R., Shalapyonok, A.,
977 Sosik, H.M., Olson, R.J., Anderson, D.M., 2015. Rapid growth and concerted sexual
978 transitions by a bloom of the harmful dinoflagellate *Alexandrium fundyense*
979 (Dinophyceae). *Limnol. Oceanogr.* 60 (6), 2059–2078.

980 Brosnahan, M.L., Ralston, D.K., Fischer, A.D., Solow, A.R., Anderson, D.M., 2017. Bloom
981 termination of the toxic dinoflagellate *Alexandrium catenella*: Vertical migration behavior,

982 sediment infiltration, and benthic cyst yield. Limnol. Oceanogr. 62, 2829–2849.
983 doi:10.1002/lno.10664

984 Burrell, S., Gunnarsson, T., Gunnarsson, K., Clarke, D., Turner, A.D., 2013. First detection of
985 paralytic shellfish poisoning (PSP) toxins in Icelandic mussels (*Mytilus edulis*): Links to
986 causative phytoplankton species. Food Control 31, 295–301.
987 doi:10.1016/j.foodcont.2012.10.002

988 Chan, W.S., Kwok, A.C.M., Wong, J.T.Y., 2019. Knockdown of dinoflagellate cellulose
989 synthase CesA1 resulted in malformed intracellular cellulosic thecal plates and severely
990 impeded cyst-to-swarmer transition. Front. Microbiol. 10, 546.

991 Chow, N., Vammen, K., Reguera, B. 2010. First report of PSP on Pacific coast of Nicaragua
992 associated with *Pyrodinium bahamense*. Harmful Algae News 41, 6–7.

993 Cirés S., Wörmer L., Agha R., Quesada A., 2013. Overwintering populations of *Anabaena*,
994 *Aphanizomenon* and *Microcystis* as potential inocula for summer blooms. J. Plankton Res.
995 35 (6), 1254–1266.

996 Corrales, R.A., Martin, M., Reyes, M., 1995. Notes on the encystment and excystment of
997 *Pyrodinium bahamense* var. *compressum* in vitro. In: Lassus, P., Arzul, G., Erard, E.,
998 Gentien, P., Marcaillou, C. (Eds.), Harmful Marine Algal Blooms. Lavoisier, Ltd., Paris, pp.
999 573–578.

1000 Corrales RA, Crisostomo R. 1996. Variation of *Pyrodinium* cyst density in Manila Bay,
1001 Philippines. In: Yasumoto, T., Oshima, Y., Fukuyo, Y. (Eds.), Harmful and toxic algal
1002 blooms. IOC of UNESCO, Paris, pp. 181–184.

1003 Crespo, B.G., Keafer, B.A., Ralston, D.K., Lind, H., Farber, D., Anderson, D.M., 2011.
1004 Dynamics of *Alexandrium fundyense* blooms and shellfish toxicity in the Nauset Marsh
1005 System of Cape Cod (Massachusetts, USA). Harmful Algae 12, 26–38.

1006 Doucette, G.J., Cembella, A.D., Boyer, G.L., 1989. Cyst formation in the red tide dinoflagellate
1007 *Alexandrium tamarense* (Dinophyceae): effects of iron stress. J. Phycol. 25 (4), 721–731.

1008 Dyhrman, S.T., Haley, S.T., Borchert, J.A., Lona, B., Kollars, N., Erdner, D.L., 2010. Parallel
1009 analyses of *Alexandrium catenella* cell concentrations and shellfish toxicity in the Puget
1010 Sound. Appl. Environ. Microbiol. 76 (14), 4647–4654.

1011 Erdner, D.L., Percy, L., Keafer, B., Lewis, J., Anderson, D.M., 2010. A quantitative real-time
1012 PCR assay for the identification and enumeration of *Alexandrium* cysts in marine
1013 sediments. Deep-Sea Res. Pt. II 57 (3-4), 279–287.

1014 Feifel, K.M., Fletcher, S.J., Watson, L.R., Moore, S.K., Lessard, E.J., 2015. *Alexandrium* and
1015 *Scrippsiella* cyst viability and cytoplasmic fullness in a 60-cm sediment core from Sequim
1016 Bay, WA. Harmful Algae 47, 56–65. doi:10.1016/j.hal.2015.05.009

1017 Fischer, A.D., 2017. *Alexandrium catenella* cyst dynamics in a coastal embayment: temperature
1018 dependence of dormancy, germination, and bloom initiation. Doctoral dissertation, Ph.D.
1019 thesis. Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint
1020 Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods
1021 Hole, MA, USA.

1022 Fischer, A.D., Brosnahan, M.L., Anderson, D.M., 2018. Quantitative Response of *Alexandrium*
1023 *catenella* Cyst Dormancy to Cold Exposure. Protist 169, 645–661.
1024 doi:10.1016/j.protis.2018.06.001

1025 Fistarol, G.O., Legrand, C., Selander, E., Hummert, C., Stolte, W. and Granéli, E., 2004.
1026 Allelopathy in *Alexandrium* spp.: effect on a natural plankton community and on algal
1027 monocultures. Aquat. Microb. Ecol. 35 (1), 45–56.

1028 Franks, P.J.S., Anderson, D.M., 1992. Alongshore transport of a toxic phytoplankton bloom in a
1029 buoyancy current: *Alexandrium tamarensense* in the Gulf of Maine. Mar. Biol. 112 (1), 153–
1030 164.

1031 Gobler, C.J., Doherty, O.M., Hattenrath-Lehmann, T.K., Griffith, A.W., Kang, Y., Litaker, R.W.,
1032 2017. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North
1033 Atlantic and North Pacific oceans. P. Natl. Acad. Sci. USA 114 (19), 4975–4980.

1034 Gu, H., Zeng, N., Xie, Z., Wang, D., Wang, W., Yang, W., 2013. Morphology, phylogeny, and
1035 toxicity of Atama complex (Dinophyceae) from the Chukchi Sea. Polar Biol. 36, 427–436.

1036 Hallegraeff, G.M., 1993. A review of harmful algal blooms and their apparent global
1037 increase. Phycologia 32 (2), 79–99.

1038 Hallegraeff, G.M., 2010. Ocean Climate Change, Phytoplankton Community Responses, and
1039 Harmful Algal Blooms: a Formidable Predictive Challenge. J Phycol. 46, 220–235.

1040 Harris, B.P., Stokesbury, K.D., 2010. The spatial structure of local surficial sediment
1041 characteristics on Georges Bank, USA. Cont. Shelf Res. 30 (17), 1840–1853.

1042 Huber, A.L., 1984. *Nodularia* (Cyanobacteriaceae) akinetes in the sediments of the Peel-Harvey
1043 Estuary, Western Australia: potential inoculum source for *Nodularia* blooms. *Appl. Environ.*
1044 *Microbiol.* 47 (2), 234–238.

1045 John, U., Litaker, R.W., Montresor, M., Murray, S., Brosnahan, M.L., Anderson, D.M., 2014.
1046 Formal Revision of the *Alexandrium tamarensense* Species Complex (Dinophyceae)
1047 Taxonomy: The Introduction of Five Species with Emphasis on Molecular-based (rDNA)
1048 Classification. *Protist* 165, 779–804.

1049 Karlen, D., Campbell, K. 2012. The distribution of *Pyrodinium bahamense* cysts in Old Tampa
1050 Bay sediments. *Tampa Bay Estuary Program Technical Report #07-12*. Environmental
1051 Protection Commission of Hillsborough County, Tampa, FL USA, pp. 1–33.

1052 Keafer, B.A., Buesseler, K.O., Anderson, D.M., 1992. Burial of living dinoflagellate cysts in
1053 estuarine and nearshore sediments. *Mar. Micropaleontol.* 20, 147–161.

1054 Kremp A., Anderson D.M., 2000. Factors regulating germination of resting cysts of the spring
1055 bloom dinoflagellate *Scrippsiella hangoei* from the northern Baltic Sea. *J. Plank. Res.* 22 (7),
1056 1311–1327.

1057 Kremp, A., Oja, J., LeTortorec, A.H., Hakanen, P., Tahvanainen, P., Tuimala, J., Suikkanen, S.,
1058 2016. Diverse seed banks favour adaptation of microalgal populations to future climate
1059 conditions. *Env. Microbiol.* 18, 679–691. doi:10.1111/1462-2920.13070

1060 Landsberg, J.H., Hall, S., Johannessen, J.N., White, K.D., Conrad, S.M., Abbott, J.P., Flewelling,
1061 L.J., Richardson, R.W., Dickey, R.W., Jester, E.L.E., Etheridge, S.M., Deeds, J.R., Van
1062 Dolah, F.M., Leighfield, T.A., Zou, Y., Beaudry, C.G., Benner, R.A., Rogers, P.L., Scott,
1063 P.S., Kawabata, K., Wolny, J.L., Steidinger, K.A. 2006. Saxitoxin puffer fish poisoning in
1064 the United States, with the first report of *Pyrodinium bahamense* as the putative toxin
1065 source. *Environ. Health Perspect.* 114, 1502–1507.

1066 Limoges, A., Londeix, L., de Vernal, A., 2013. Organic-walled dinoflagellate cyst distribution in
1067 the Gulf of Mexico. *Mar. Micropaleontol.* 102, 51–68.

1068 Litaker, R.W., Fraga, S., Montresor, M., Brosnahan, M.L., Hoppenrath, M., Murray, S., Calado,
1069 A.J., 2018. A practical guide to new nomenclature for species within the *Alexandrium*
1070 *tamarensense* species complex. *Harmful Algae News* 61, 13–15.

1071 Livingstone D, Jaworski GH. 1980. The viability of akinetes of blue-green algae recovered from
1072 the sediments of Rostherne Mere. *Br. Phycol.* 15 (4), 357–364.

1073 Lopez, C.B., Smith, C.G., Marot, M.E., Corcoran, A.A., 2016. The role of seedbeds in
1074 *Pyrodinium bahamense* bloom dynamics in Tampa Bay. In Burke, M. (Ed.) 6th Bay Area
1075 Scientific Information Symposium. St. Petersburg, FL USA, pp. 78–83.

1076 Lopez, C.B., Karim, A., Murasko, S., Marot, M., Smith, C.G., Corcoran, A.A., 2019.
1077 Temperature mediates secondary dormancy in resting cysts of *Pyrodinium bahamense*
1078 (Dinophyceae). *J. Phycol.* 55, 924–935.

1079 Lundholm, N., Ribeiro, S., Godhe, A., Rostgaard Nielsen, L., Ellegaard, M., 2017. Exploring the
1080 impact of multidecadal environmental changes on the population genetic structure of a
1081 marine primary producer. *Ecol. Evol.* 7, 3132–3142. doi:10.1002/ece3.2906

1082 Matrai, P., Thompson, B., Keller, M., 2005. Circannual excystment of resting cysts of
1083 *Alexandrium* spp. from eastern Gulf of Maine populations. *Deep-Sea Res. Pt. II* 52 (19-21),
1084 2560–2568.

1085 McGillicuddy Jr, D.J., Anderson, D.M., Lynch, D.R., Townsend, D.W., 2005. Mechanisms
1086 regulating large-scale seasonal fluctuations in *Alexandrium fundyense* populations in the
1087 Gulf of Maine: results from a physical–biological model. *Deep-Sea Res. Pt. II* 52(19-21),
1088 2698–2714.

1089 McGillicuddy Jr, D.J., Townsend, D.W., Keafer, B.A., Thomas, M.A., Anderson, D.M., 2014.
1090 Georges Bank: a leaky incubator of *Alexandrium fundyense* blooms. *Deep-Sea Res. Pt.*
1091 II 103, 163–173.

1092 Miyazono, A., Nagai, S., Kudo, I., Tanizawa, K., 2012. Viability of *Alexandrium tamarensense*
1093 cysts in the sediment of Funka Bay, Hokkaido, Japan: Over a hundred year survival times for
1094 cysts. *Harmful Algae* 16, 81–88.

1095 Montani, S., Ichimi, K., Meksumpun, S., Okaichi, T., 1995. The effects of dissolved oxygen and
1096 sulfide on germination of the cysts of some different phytoflagellates. In: *Harmful Marine*
1097 *Algal Blooms*. Lavoisier, Paris, pp. 627-632.

1098 Montresor, M., Marino, D., 1996. Modulating effect of cold-dark storage on excystment in
1099 *Alexandrium pseudogonyaulax* (Dinophyceae). *Mar. Biol.* 127, 55–60.

1100 Moore, S.K., Trainer, V.L., Mantua, N.J., Parker, M.S., Laws, E.A., Backer, L.C., Fleming, L.E.,
1101 2008. Impacts of climate variability and future climate change on harmful algal blooms and
1102 human health. *Environ. Health* 7, 24–27. doi:10.1186/1476-069X-7-S2-S4

1103 Moore, S.K., Mantua, N.J., Trainer, V.L., Hickey, B.M., 2009. Recent trends in paralytic
1104 shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic
1105 events. *Harmful Algae* 8 (3), 463–477. doi:410.1016/j.hal.2008.1010.1003.

1106 Moore, S.K., Mantua, N.J., Hickey, B.M., Trainer, V.L., 2010. The relative influences of El Niño
1107 Southern Oscillation and Pacific Decadal Oscillation on paralytic shellfish toxin
1108 accumulation in Pacific Northwest shellfish. *Limnol. Oceanogr.* 6 (55), 2262–2274. doi:
1109 2210.4319/lo.2010.2255.2266.2262.

1110 Moore, S.K., Bill, B.D., Hay, L.R., Emenegger, J., Eldred, K.C., Greengrove, C.L., Masura, J.E.,
1111 Anderson, D.M. 2015a. Factors regulating excystment of *Alexandrium* in Puget Sound, WA,
1112 USA. *Harmful Algae* 43, 103–110.

1113 Moore, S.K., Johnstone, J.A., Banas, N.S., Jr., E.P.S., 2015b. Present-day and future climate
1114 pathways affecting *Alexandrium* blooms in Puget Sound. *Harmful Algae* 48, 1–11.

1115 Morquecho, L., Alonso-Rodríguez, R., Arreola-Lizárraga, J.A., Reyes-Salinas, A. 2012. Factors
1116 associated with moderate blooms of *Pyrodinium bahamense* in shallow and restricted
1117 subtropical lagoons in the Gulf of California. *Bot. Mar.* 55 (6), 611–623.

1118 Morquecho, L. 2019. *Pyrodinium bahamense* One the Most Significant Harmful Dinoflagellate
1119 in Mexico. *Front. Mar. Sci.* 6, 1–8. doi:10.3389/fmars.2019.00001.

1120 Natsuike, M., Nagai, S., Matsuno, K., Saito, R., Tsukazaki, C., Yamaguchi, A., Imai, I., 2013.
1121 Abundance and distribution of toxic *Alexandrium tamarensense* resting cysts in the sediments of
1122 the Chukchi Sea and the eastern Bering Sea. *Harmful Algae* 27, 52–59.

1123 Natsuike, M., Oikawa, H., Matsuno, K., Yamaguchi, A., Imai, I., 2017. The physiological
1124 adaptations and toxin profiles of the toxic *Alexandrium catenella* on the eastern Bering Sea
1125 and Chukchi Sea shelves. *Harmful Algae* 63, 13–22.

1126 Nye, J.A., Link, J.S., Hare, J.A., Overholtz, W.J., 2009. Changing spatial distribution of fish
1127 stocks in relation to climate and population size on the Northeast United States continental
1128 shelf. *Mar. Ecol. Prog. Ser.* 393, 111–129.

1129 Okolodkov, Y.B., 2005. The global distributional patterns of toxic, bloom dinoflagellates
1130 recorded from the Eurasian Arctic. *Harmful Algae* 4, 351–369.
1131 doi:10.1016/j.hal.2004.06.016

1132 Onda, D.F.L., Lluisma, A.O., Azanza, R.V., 2014. Development, morphological characteristics
1133 and viability of temporary cysts of *Pyrodinium bahamense* var. *compressum* (Dinophyceae)
1134 *in vitro*. Eur. J. Phycol. 49, 265–275. doi:10.1080/09670262.2014.915062

1135 Perry, A.L., Low, P.J., Ellis, J.R., Reynolds, J.D., 2005. Climate change and distribution shifts in
1136 marine fishes. Science 308 (5730), 1912–1915.

1137 Pershing, A.J., Alexander, M.A., Hernandez, C.M., Kerr, L.A., Le Bris, A., Mills, K.E., Nye,
1138 J.A., Record, N.R., Scannell, H.A., Scott, J.D., Sherwood, G.D., Thomas, A.C., 2015. Slow
1139 adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery.
1140 Science 350, 809–812. doi:10.1126/science.aac5660

1141 Pfiester, L.A., Anderson, D.M., 1987. Dinoflagellate Reproduction, In: Taylor, F.J.R. (Ed.), The
1142 Biology of Dinoflagellates. Blackwell, Oxford, pp. 611–648.

1143 Phlips, E. J., Badylak, S., Bledsoe, E., Cichra, M. 2006. Factors affecting the distribution of
1144 *Pyrodinium bahamense* var. *bahamense* in coastal waters of Florida. *Mar. Ecol. Prog. Ser.*
1145 322, 99–115.

1146 Phlips, E. J., Badylak, S., Christman, M., Wolny, J., Brame, J., Garland, J., Hall, L., Hart, J.,
1147 Landsberg, J., Lasi, M., Lockwood, J., Paperno, R., Scheidt, D., Staples, A., Steidinger, K.
1148 2011. Scales of temporal and spatial variability in the distribution of harmful algae species in
1149 the Indian River Lagoon, Florida, USA. *Harmful Algae* 10, 277–290.

1150 Pilskaln, C.H., Hayashi, K., Keafer, B.A., Anderson, D.M. and McGillicuddy Jr, D.J., 2014.
1151 Benthic nepheloid layers in the Gulf of Maine and *Alexandrium* cyst inventories. *Deep-Sea*
1152 *Res. Pt. II* 103, 55–65.

1153 Prud'homme van Reine, W., 2017. Report of the Nomenclature Committee for Algae: 15. *Taxon*
1154 66, 191–192.

1155 Ralston, D.K., Brosnahan, M.L., Fox, S.E., Lee, K.D., Anderson, D.M., 2015. Temperature and
1156 residence time controls on an estuarine harmful algal bloom: Modeling hydrodynamics and
1157 *Alexandrium fundyense* in Nauset estuary. *Estuar. Coast.* 38 (6), 2240–2258.

1158 Ralston, D.K., Keafer, B.A., Brosnahan, M.L., Anderson, D.M., 2014. Temperature dependence
1159 of an estuarine harmful algal bloom: Resolving interannual variability in bloom dynamics
1160 using a degree-day approach. *Limnol. Oceanogr.* 59, 1112–1126.

1161 Ralston, D.K., Moore, S.K., this issue. Modeling harmful algal blooms in a changing climate.

1162 Rathaille, A.N., Raine, R., 2011. Seasonality in the excystment of *Alexandrium minutum* and
1163 *Alexandrium tamarense* in Irish coastal waters. *Harmful Algae* 10, 629–635.

1164 Raven, J.A., Geider, R.J., 2003. Adaptation, acclimation and regulation in algal photosynthesis.
1165 In *Photosynthesis in algae*. Springer, Dordrecht. pp. 385–412.

1166 Rengefors K., Anderson D.M., 1998. Environmental and endogenous regulation of cyst
1167 germination in two freshwater dinoflagellates. *J. Phycol.* 34 (4), 568–577.

1168 Ribeiro, S., Berge, T., Lundholm, N., Ellegaard, M., 2013. Hundred Years of Environmental
1169 Change and Phytoplankton Ecophysiological Variability Archived in Coastal Sediments.
1170 PLOS ONE 8, e61184–8. doi:10.1371/journal.pone.0061184

1171 Richlen, M.L., Zielinski, O., Holinde, L., Tillmann, U., Cembella, A., Lyu, Y., Anderson, D.M.,
1172 2016. Distribution of *Alexandrium catenella* (Dinophyceae) cysts in Greenland and Iceland,
1173 with an emphasis on viability and growth in the Arctic. *Mar. Ecol. Prog. Ser.* 547, 33–46.

1174 Murray, S.A., Ruvindy, R., Kohli, G.S., Anderson, D.M., Brosnahan, M.L., 2019. Evaluation of
1175 sxtA and rDNA qPCR assays through monitoring of an inshore bloom of *Alexandrium*
1176 *catenella* Group 1. *Sci. Rep.* 9 (1), 1–12.

1177 Santer BD, Po-Chedley S, Zelinka MD, Cvijanovic I, Bonfils C, Durack PJ, Fu Q, Kiehl J, Mears
1178 C, Painter J, Pallotta G., 2018. Human influence on the seasonal cycle of tropospheric
1179 temperature. *Science* 361, 6399.

1180 Sastre, M., Sánchez, E., Flores, M., Astacio, S., Rodríguez, J., Santiago, M., Olivieri, K., Francis,
1181 V., Núñez, J. 2013. Population fluctuations of *Pyrodinium bahamense* and *Ceratium furca*
1182 (Dinophyceae) in Laguna Grande, Puerto Rico, and environmental variables associated
1183 during a three-year period. *Rev. Biol. Trop.* 61, 1799–1813.

Seto, D.S., Karp-Boss, L. and Wells, M.L., 2019. Effects of increasing temperature and
acidification on the growth and competitive success of *Alexandrium catenella* from the Gulf
of Maine. *Harmful Algae* 89, 101670.

1184 Siringan, F.P., Azanza, R.V., Macalalad, N.J., Zamora, P.B., Maria, M.Y., 2008. Temporal
1185 changes in the cyst densities of *Pyrodinium bahamense* var. *compressum* and other
1186 dinoflagellates in Manila Bay, Philippines. *Harmful Algae* 7 (4), 523–531.

1187 Soler-Figueroa, B. M., Otero, E. 2014. The influence of rain regimes and nutrient loading on the
1188 abundance of two dinoflagellate species in a tropical bioluminescent bay, Bahía
1189 Fosforescente, La Parguera, Puerto Rico. *Estuar. Coast.* 38, 84–92.

1190 Soler-Figueroa, B. M., Otero, E. 2016. Seasonal changes in bioluminescence and dinoflagellates
1191 composition in a tropical bioluminescent bay. *J. Exp. Mar. Biol. Ecol.* 43, 120–129.

1192 Steidinger, K.A. 2018. Toxic and potentially harmful dinoflagellates in the Gulf of Mexico. In:
1193 Steidinger, K.A., Meave del Castillo, M.E. (Eds.), *Guide to the Identification of Harmful*
1194 *Microalgae in the Gulf of Mexico, Volume I: Taxonomy*. Florida Fish and Wildlife Research
1195 Institute, St. Petersburg, USA, pp. 211–342.

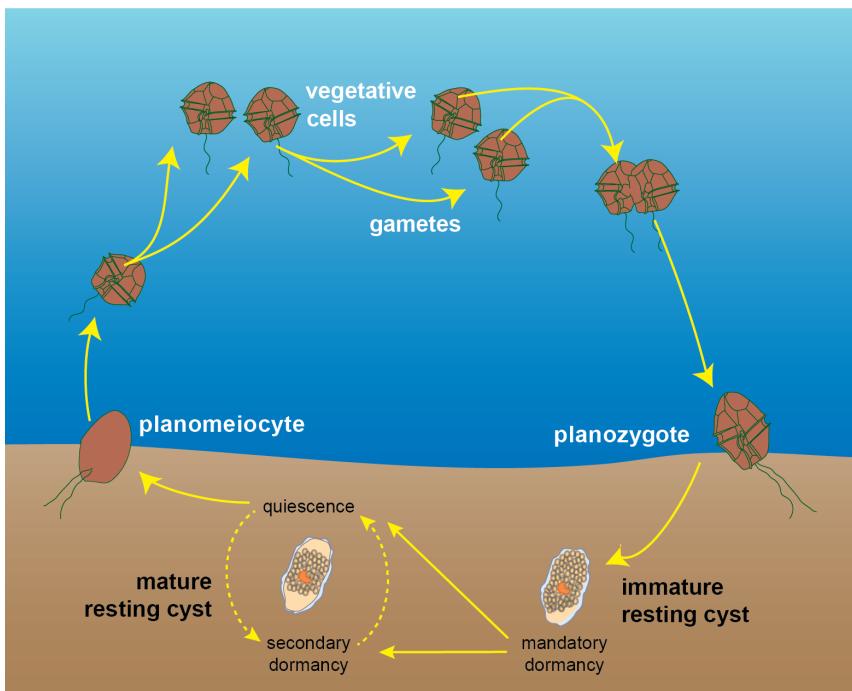
1196 Stock, C.A., McGillicuddy Jr, D.J., Solow, A.R., Anderson, D.M., 2005. Evaluating hypotheses
1197 for the initiation and development of *Alexandrium fundyense* blooms in the western Gulf of
1198 Maine using a coupled physical–biological model. *Deep-Sea Res. Pt. II* 52 (19-21), 2715–
1199 2744.

1200 von Stosch, H.A., 1973. Observations on vegetative reproduction and sexual life cycles of two
1201 freshwater dinoflagellates, *Gymondinium pseudopalustre* Schiller and *Woloszynskia*
1202 *apiculata* sp. nov. *Br. Phycol.* 8, 105–134.

1203 von Stosch, H.A., 1967. Haptophyceae. In: Ruhland, W. (Ed.), *Encyclopedia of Plant*
1204 *Physiology*. Springer, Göttingen and Heidelberg, Berlin, pp. 646–656

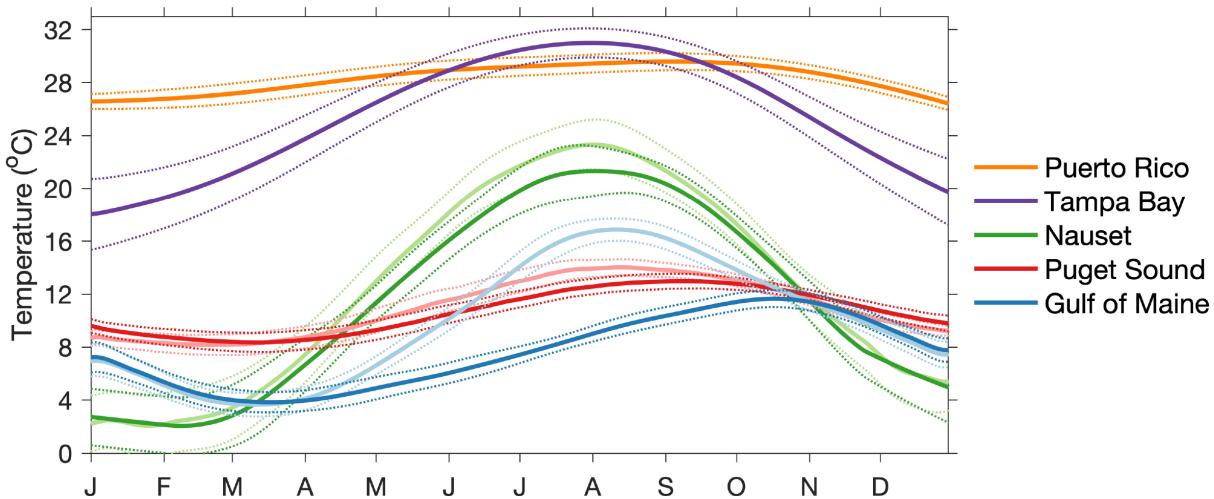
1205 Uchida, T., 2001. The role of cell contact in the life cycle of some dinoflagellate species. *J.*
1206 *Plank. Res.* 23 (8), 889–891.

1207 Usup, G., Ahmad, A., Matsuoka, K., Lim, P.T., Leaw, C.P., 2012. Biology, ecology and bloom
1208 dynamics of the toxic marine dinoflagellate *Pyrodinium bahamense*. *Harmful Algae* 14,
1209 301–312.

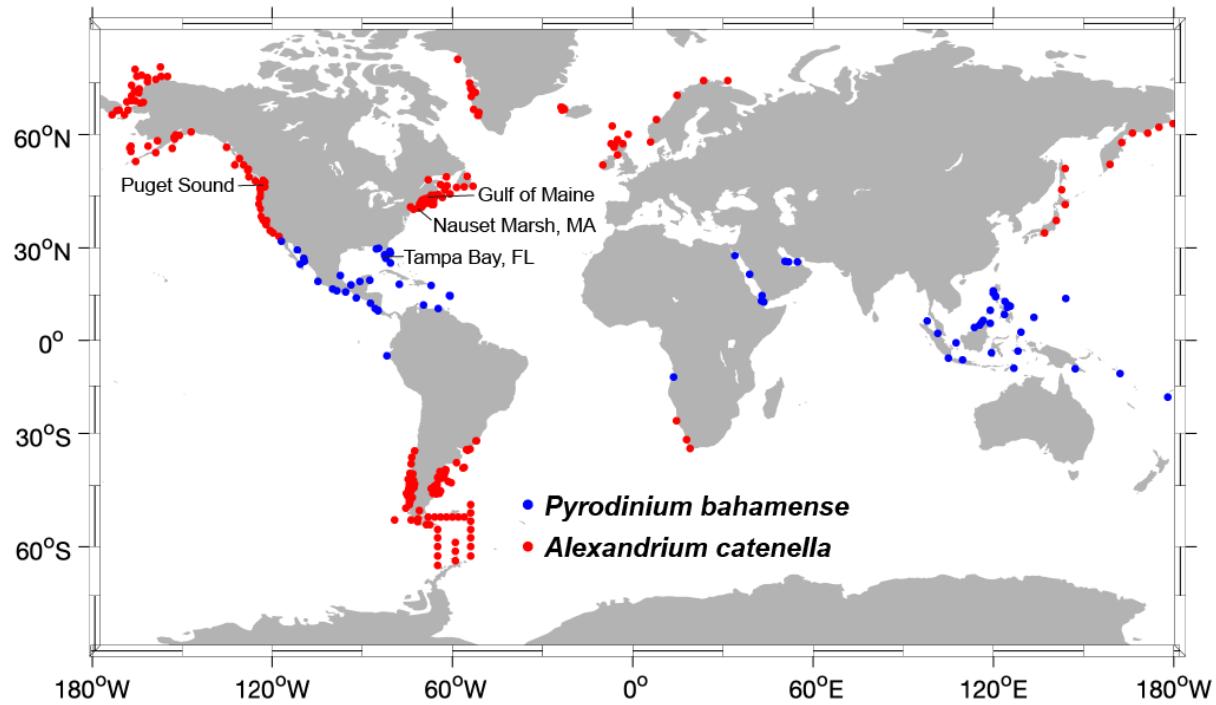

1210 Wall, D., 1967. Fossil microplankton in deep-sea cores from the Caribbean Sea. *Palaeontol.* 10
1211 (1), 95–123.

1212 Wall, D. 1971. Biological problems concerning fossilizable dinoflagellates. *Geoscience and Man*
1213 3, 1–15.

1214 Wells, M.L., Trainer, V.L., Smayda, T.J., Karlson, B.S.O., Trick, C.G., Kudela, R.M., Ishikawa,
1215 A., Bernard, S., Wulff, A., Anderson, D.M., Cochlan, W.P. 2015. Harmful algal blooms and
1216 climate change: Learning from the past and present to forecast the future. *Harmful Algae* 49,
1217 68–93. doi:10.1016/j.hal.2015.07.009

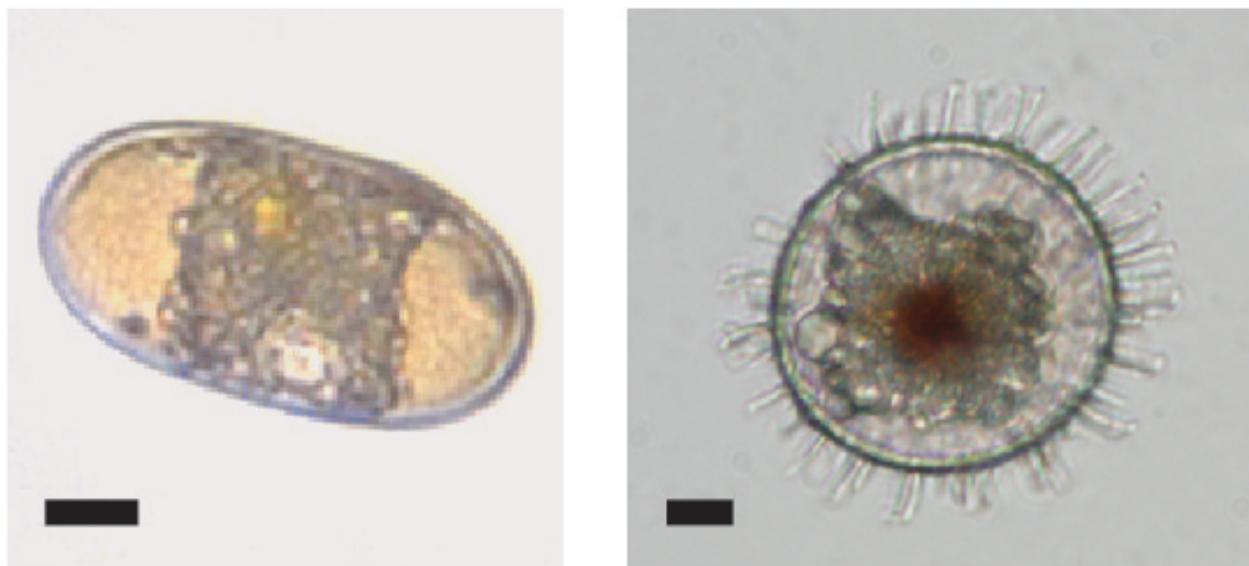

1218 Zonneveld, K.A., Marret, F., Versteegh, G.J., Bogus, K., Bonnet, S., Bouimetarhan, I., Crouch,
1219 E., de Vernal, A., Elshanawany, R., Edwards, L., Esper, O. 2013. *Atlas of modern*

1220 dinoflagellate cyst distribution based on 2405 data points. Rev. Palaeobot. Palyno. 191, 1–
1221 197.
1222

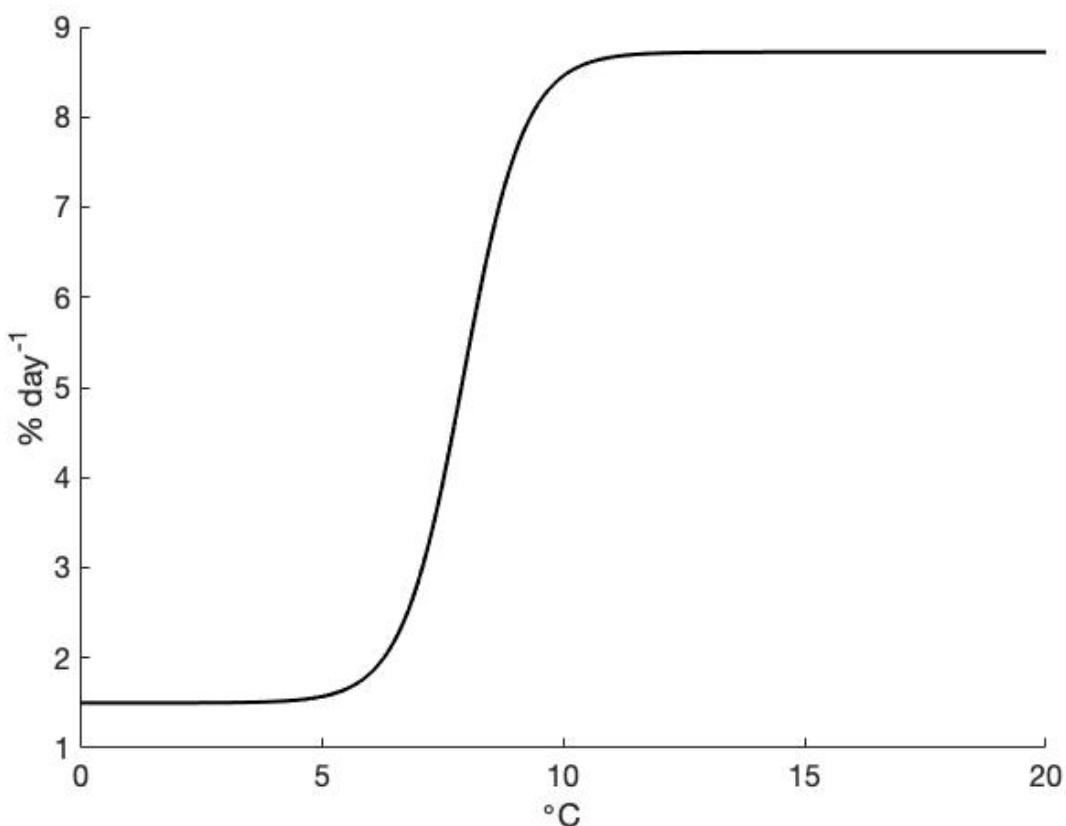

1223 **Figures**

1224

1225 **Figure 1.** Dinoflagellate life cycle and cyst dormancy cycling. Most dinoflagellates divide and
 1226 form blooms as haploid vegetative cells. Under certain conditions, these vegetative cells will
 1227 form short-lived gametes that fuse in pairs to form a swimming diploid stage called a
 1228 planozygote. Planozygotes may then transform into benthic resting cysts. Resting cysts must pass
 1229 through mandatory dormancy before they can become quiescent and germinate in response to
 1230 favorable oxygen and temperature conditions. They may also be induced into secondary
 1231 dormancy and undergo many cycles of dormancy and quiescence before germinating to produce
 1232 a diploid germling stage called a planomeiocyte. Planomeiocyte germling cells return to the
 1233 vegetative stage through a series of meiotic divisions.

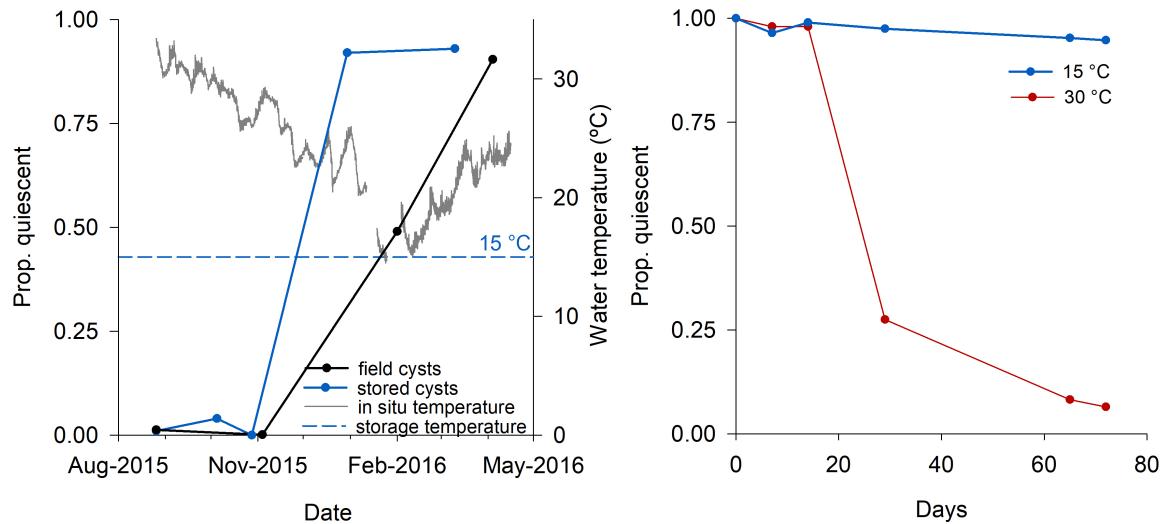


1234
1235 **Figure 2.** Seasonal water temperatures of Puerto Rico, Tampa Bay, Nauset, Puget Sound, and
1236 the Gulf of Maine. Surface water temperatures are shown in light colors and bottom water
1237 temperatures are shown in darker colors, except for the shallow Tampa Bay and Puerto Rico sites
1238 which show temperature only from a single depth. Solid lines are mean temperatures and dashed
1239 lines are standard deviations. Puerto Rico data are from Caleta Parguera at Magueyes Island
1240 (sensor depth ~0.1 m, 2010–2015; NOAA buoy 9759110l; www.tidesandcurrents.noaa.gov),
1241 Tampa Bay data are from Port of St. Petersburg, FL (sensor depth ~4 m, average Tampa Bay
1242 depth 3.6 m; 2009–2018; NOAA buoy 8726520; www.tidesandcurrents.noaa.gov), Nauset data
1243 are from Salt Pond (surface and ~5 m depth; 2013–2017), Puget Sound data are from the Seattle
1244 Aquarium (surface and ~10 m depth; 2009–2018; <http://green2.kingcounty.gov/marine-buoy/>),
1245 and Gulf of Maine data are from NERACOOS E01 buoy (1 and 50 m depths; 2009–
1246 2018; <http://www.neracoos.org>).

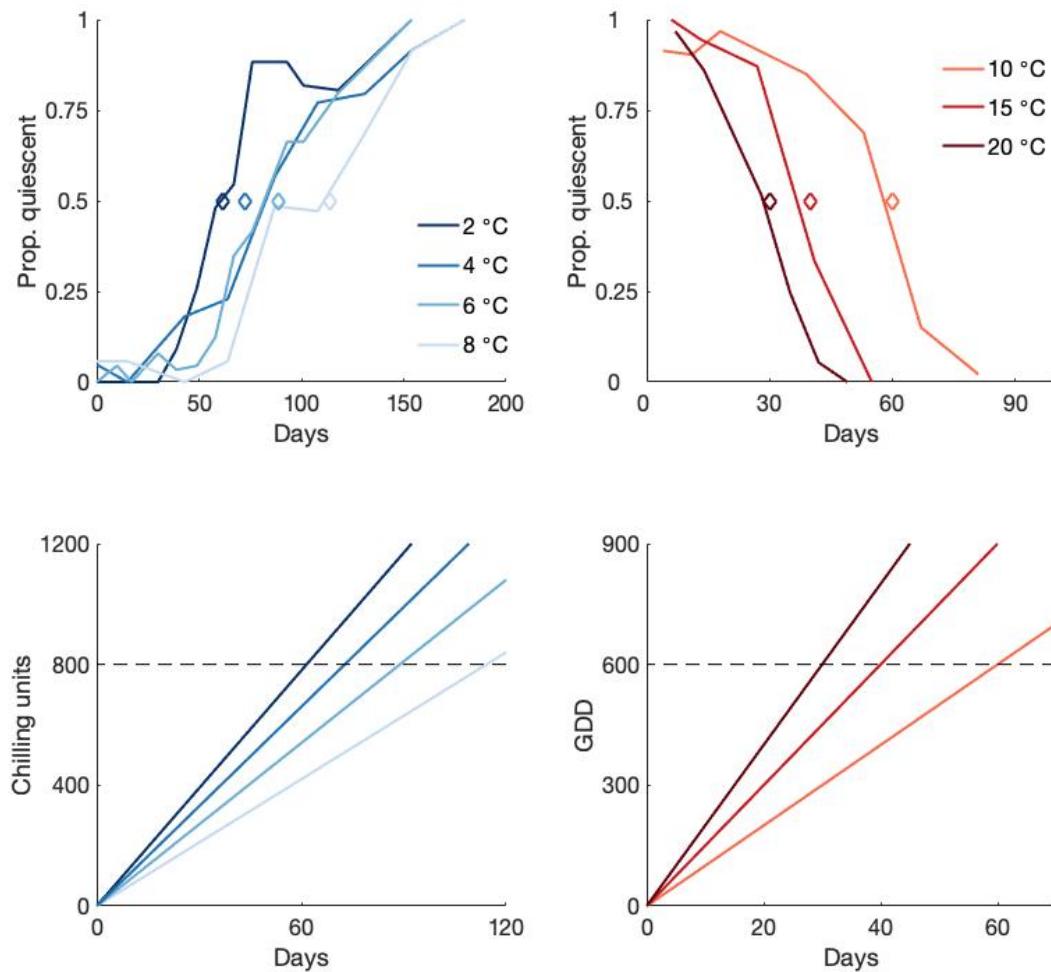


1247

1248 **Figure 3.** Global distribution of *A. catenella* and *P. bahamense* blooms. Bloom locations are
1249 taken from reports in the Ocean Biogeographic Information System (obis.org) and observations
1250 compiled by the authors and colleagues.



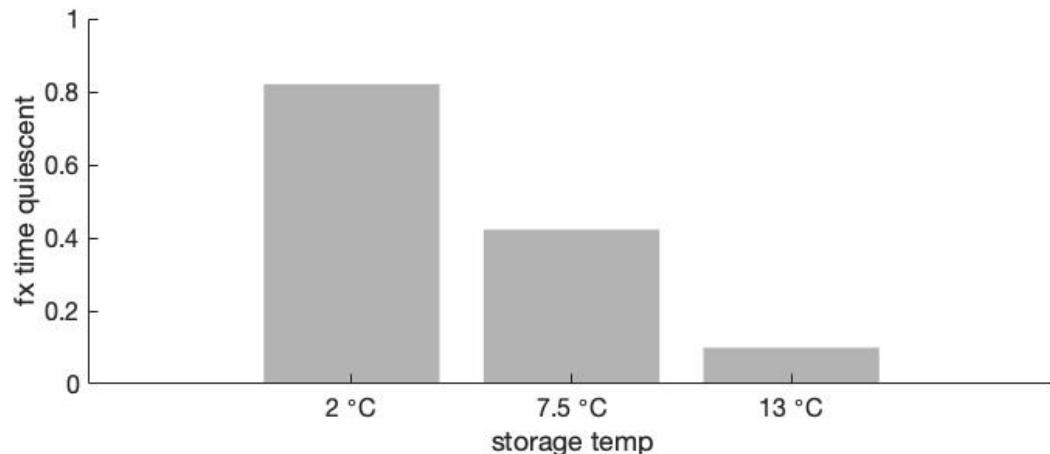
1251


1252 **Figure 4.** Examples of *A. catenella* (left) and *P. bahamense* resting cysts (right).

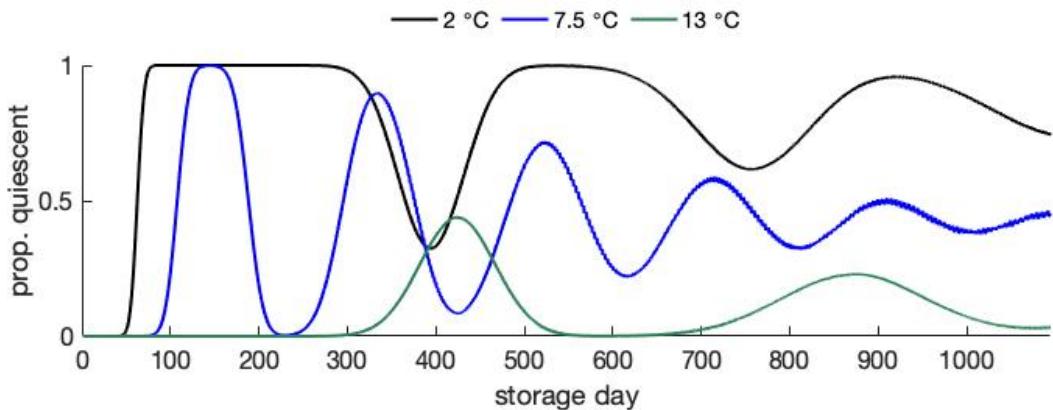
1253

1254 **Figure 5.** Relationship between temperature and the germination rate of quiescent cysts under
1255 aerobic conditions and light exposure. Parameters describing this relationship are taken from
1256 description of cysts from a deep-water seedbed within the eastern Gulf of Maine (Anderson et
1257 al., 2005a).

1258
1259 **Figure 6.** *Left:* Proportion of *P. bahamense* cysts quiescent in situ August 2015-April 2016 (field
1260 cysts, black line) compared to those collected in late August 2015, then stored at 15 °C (stored
1261 cysts, blue line). *Right:* Induction of dormancy through warm (30 °C) storage of quiescent *P.*
1262 *bahamense* cysts (from Lopez et al., 2019).

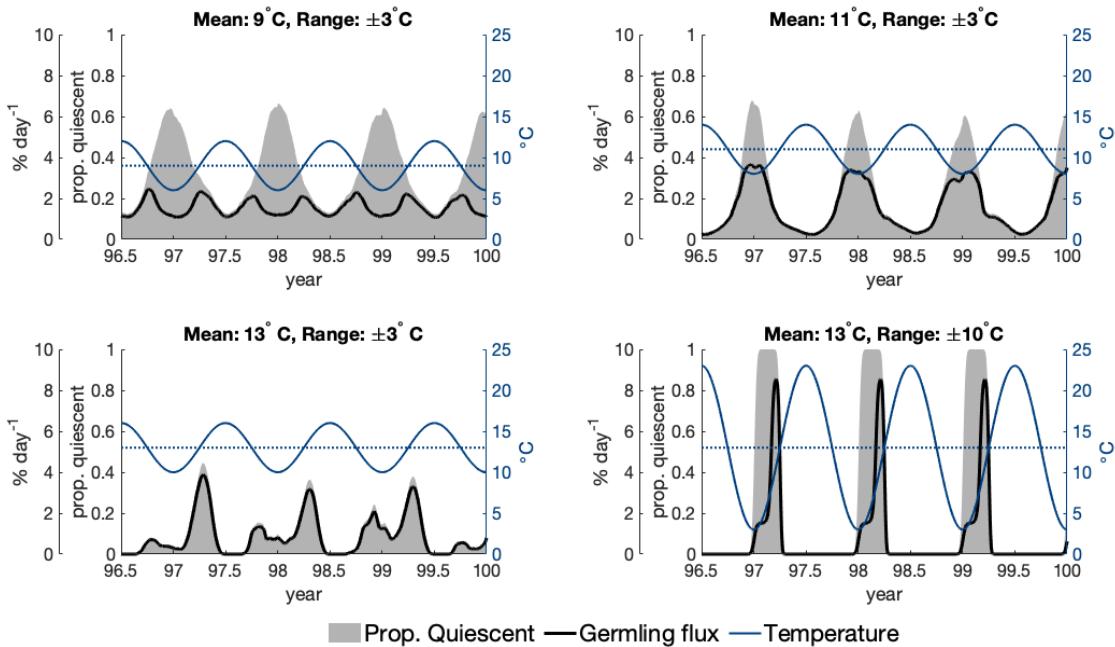


1263
1264 **Figure 7.** Temperature regulation of dormancy and quiescence passage in *A. catenella* from the
1265 northeast U.S. Temperatures in bottom axes are colored as indicated in top row legends. *Top left*:
1266 Passage through dormancy is fastest at 2 °C and slowest at 8 °C for cysts from Nauset Marsh
1267 (Fischer et al., 2018). Open diamonds indicate median transitions to quiescence predicted by the
1268 chilling model (Eq. 1) given $T_c=15$ °C and a chilling requirement of 800 CU. *Bottom left*:
1269 Accumulation of chilling during exposure to constant temperatures under a simple chilling model
1270 (Eq. 1). Dashed line indicates the 800 CU chilling requirement of Nauset cysts. *Top right*:
1271 Passage through quiescence by *A. catenella* cysts from the Gulf of Maine after dormancy
1272 passage through storage at 2 °C (Brosnahan et al., in prep). Open diamonds indicate median
1273 transitions to dormancy predicted by the degree-day model (Eq. 2) given $T_h=0$ °C and a heating
1274 requirement of 600 DD. *Bottom right*. Accumulation of heating under the degree-day model.
1275 Dashed line indicates the 600 DD heating requirement of Gulf of Maine cysts.
1276

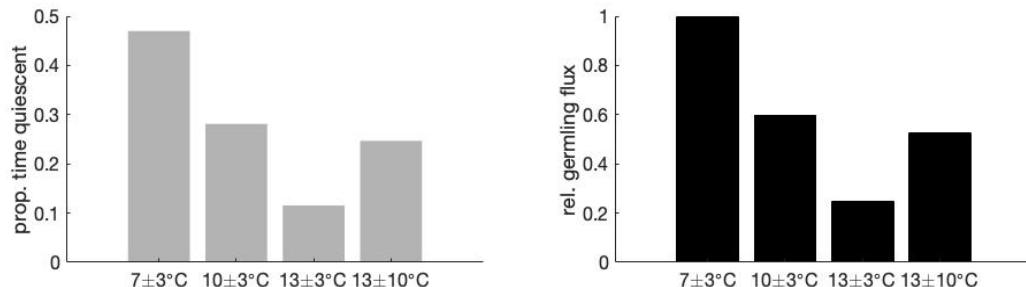


1277
1278
1279
1280
1281
1282
1283
1284

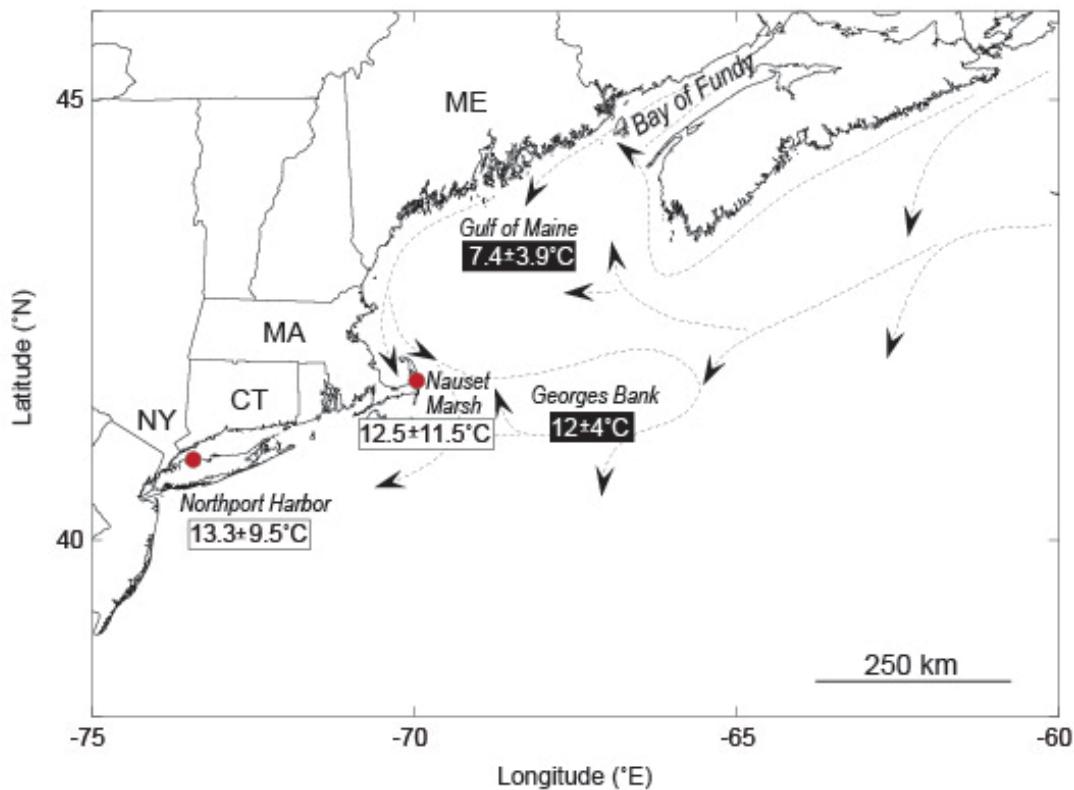
Figure 8. Schematic diagram of temperature controls considered in the heating and chilling based model of dormancy cycling and germling flux. Populations of *Alexandrium*-like cysts with mean chilling requirement 900 CU and heating requirement 600 DD are forced by seasonally oscillating temperatures. Dormancy cycles of model populations reflect phasing of individual cysts' dormancy and quiescence periods. Germling fluxes from model populations are calculated as the product of the quiescent fraction of the population and a temperature dependent rate of germination (Anderson et al., 2005a; Fig. 5).



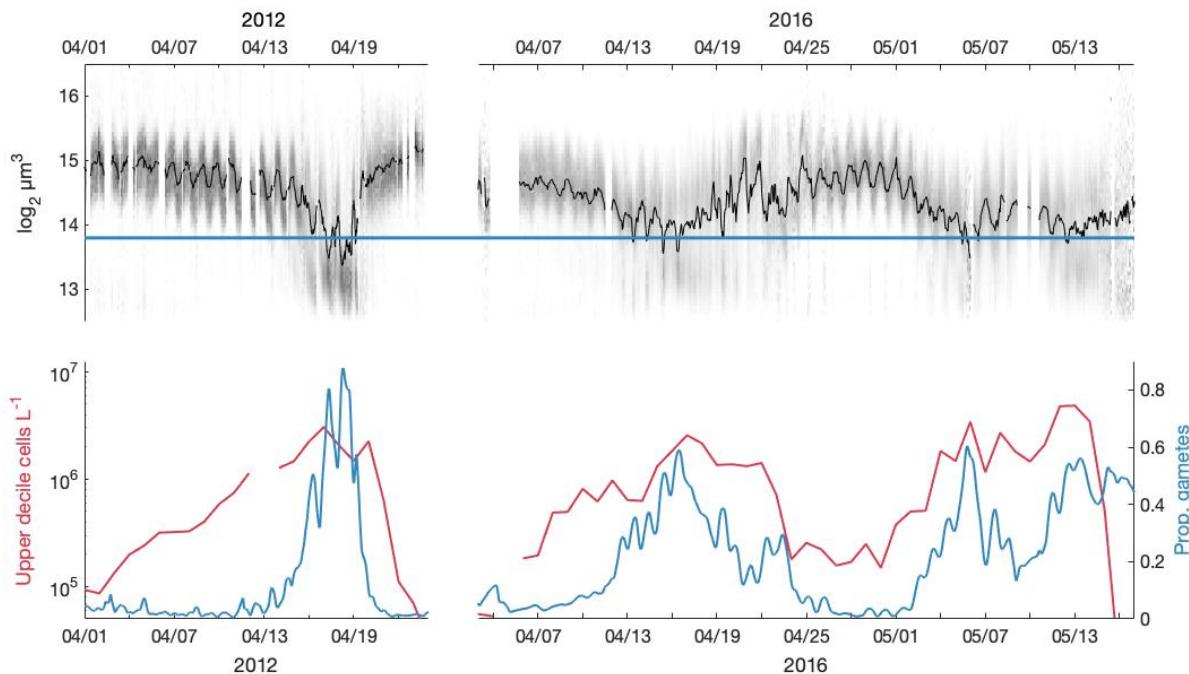
1285
1286 **Figure 9.** Mean proportion of time that *A. catenella* cysts are quiescent during constant
1287 temperature storage under a simple chilling-heating model of dormancy cycling.
1288



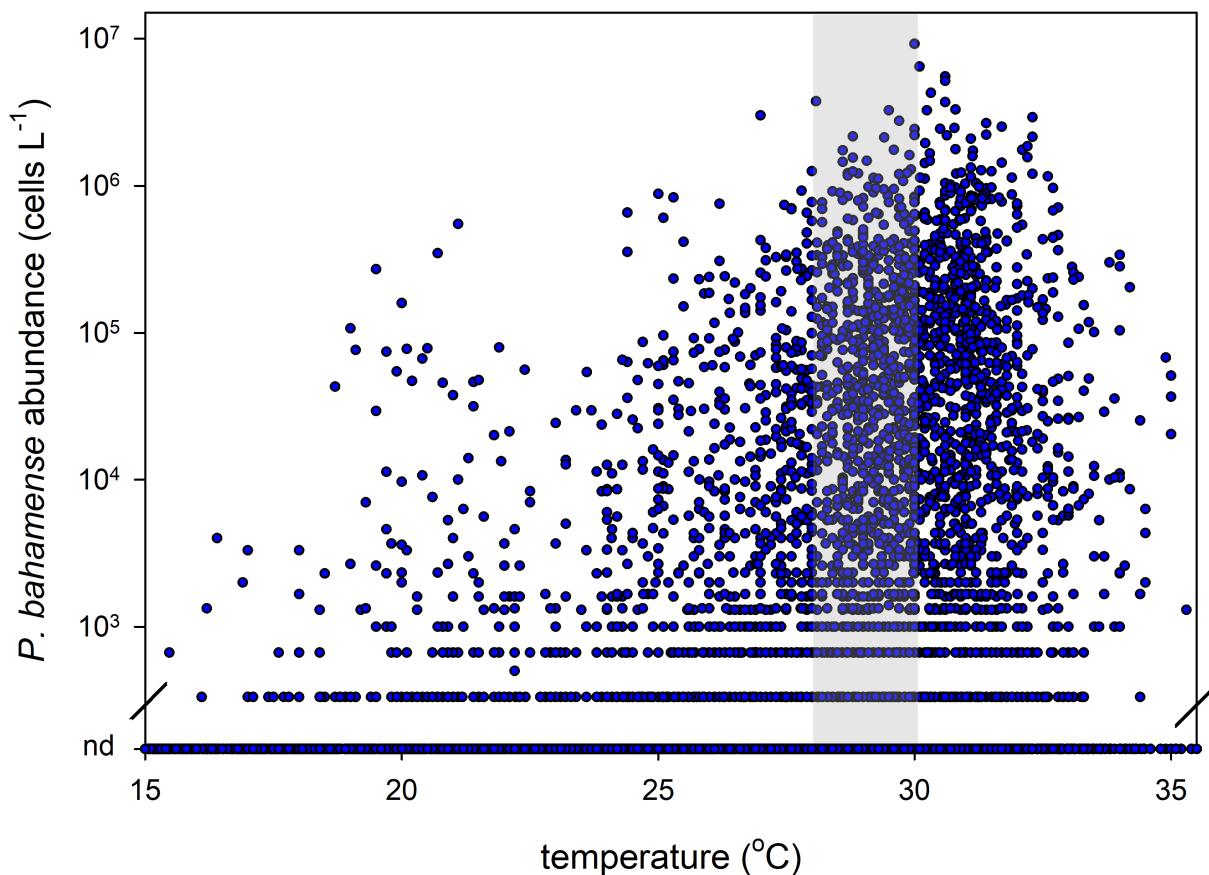
1289
1290
1291
1292
1293


Figure 10. Dormancy cycling during constant temperature storage in a simulated cyst population controlled by the chilling and heating mechanisms described in *A. catenella*. At the coldest storage temperature (2 °C), initial cycles of quiescence and dormancy occur with an approximate period of 11.5 months. At the warmest (13 °C), cycle periods are ~14.5 months long.

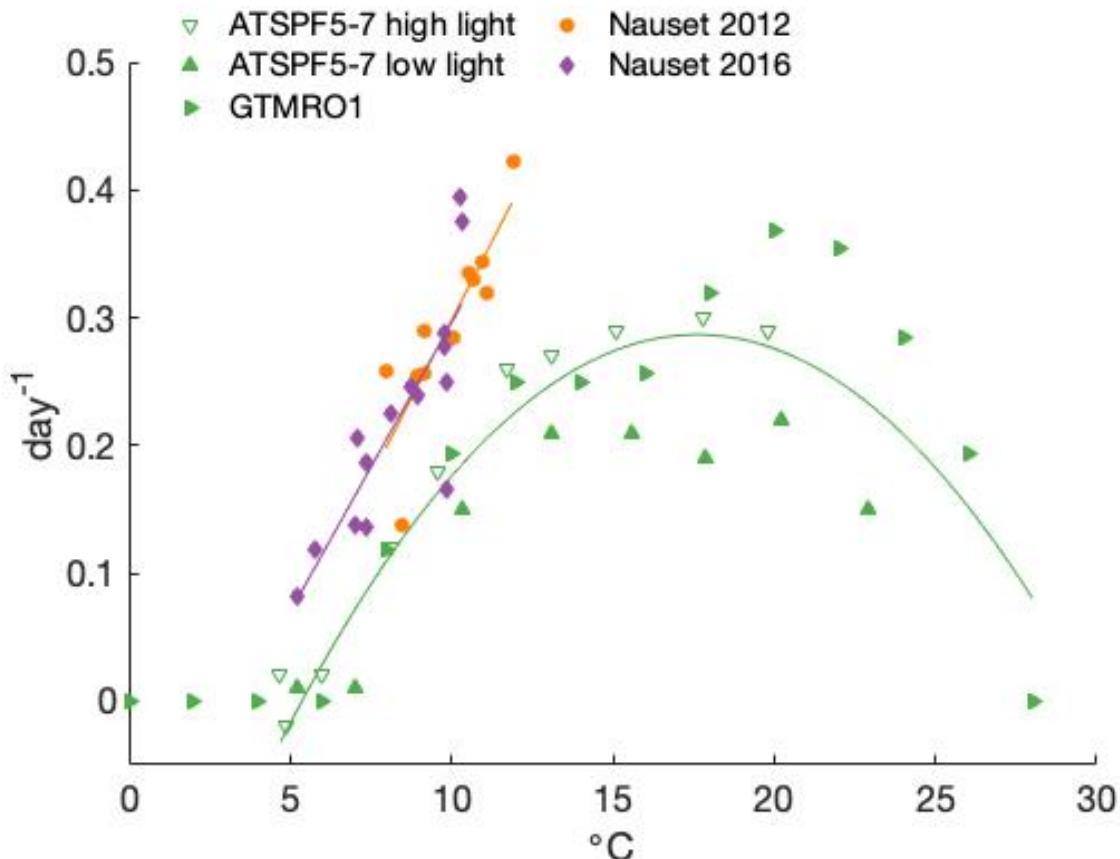
1294
1295 **Figure 11.** Numerical simulation of dormancy cycling and germling fluxes through the
1296 *Alexandrium*-derived chilling- and heating-based model. *Upper left:* Regime 1 (7 ± 3 °C), an
1297 analog of temperature seasonality experienced within Gulf of Maine cyst beds, produces stable
1298 dormancy cycling and spring and fall peaks in germling fluxes. *Upper right:* Regime 2 (10 ± 3 °C), an
1299 approximate analog of temperature seasonality experienced within Puget Sound cyst
1300 beds. Like Regime 1, Regime 2 produces stable dormancy cycling and spring and fall peaks in
1301 germling fluxes but lower overall cyst bed quiescence and germling fluxes. *Lower left:* Regime 3
1302 (13 ± 3 °C), a warming scenario with mean temperature 6 and 3 °C warmer than Regimes 1 and
1303 2, respectively. Dormancy cycles are not consistent year to year and quiescent cysts do not
1304 experience wintertime inhibition of germination. *Lower right:* Regime 4 (13 ± 10 °C) is an
1305 approximate analog of temperature seasonality experienced within Nauset Marsh cyst beds.
1306 Dormancy cycles are essentially synchronized and germling fluxes are restricted to spring
1307 warming periods.
1308


1309
1310 **Figure 12.** *Left:* Mean proportion of time that cysts are quiescent when forced by temperature
1311 regimes described in Figure 11. *Right:* Relative fluxes of germlings under the temperature
1312 regimes described in Figure 11 under an assumption that only dormancy cycling and temperature
1313 control germination (no anaerobic inhibition). Germling fluxes were calculated as the product of
1314 the quiescent fraction of the cyst population and the temperature dependent germination rate
1315 (Figs. 5 and 8), assuming constant replenishment of cysts in surficial sediments. Relative
1316 germling flux is calculated via comparison to Regime 1 ($7\pm 3^{\circ}\text{C}$), which produced germlings at
1317 the highest mean rate over the last 10 years of the 100 year simulations explored in the model.

1318


1319 **Figure 13. Top (A):** Location of Gulf of Maine (northeast U.S.) and Puget Sound regions
 1320 impacted by *A. catenella* blooms. **Bottom (B):** Northeast U.S. map with mean and range of
 1321 temperatures of cyst bed habitats. Offshore habitats (e.g., Gulf of Maine and Georges Bank;
 1322 black highlight) experience low temperature seasonality and inshore habitats (e.g., Nauset Marsh
 1323 and Northport Harbor; white highlight) experience high temperature seasonality. Extensive cyst
 1324 beds along mid-coast Maine and within the Bay of Fundy inoculate large coastal blooms within
 1325 the region annually. Georges Bank also experiences large blooms but does not support a cyst
 1326 bed. Nauset Marsh (Cape Cod, MA) and Northport Harbor (Long Island, NY) experience annual
 1327 localized blooms and both support cyst beds despite higher annual mean temperatures than
 1328 Georges Bank.

1329


1330

1331 **Figure 14.** IFCB time series of *A. catenella* bloom development, sexual induction in Nauset
 1332 Marsh during the 2012 and 2016 spring bloom seasons. In both years, blooms subsided when
 1333 temperatures and nitrogen and phosphorus concentrations remained at levels normally expected
 1334 to support further growth of vegetative cells. *Top:* Distribution of cell biovolume through time
 1335 estimates from IFCB images. Cells having biovolume less than $2^{13.8} \mu\text{m}^3$ (blue line) are gametes.
 1336 *Bottom:* The daily upper decile cell concentration observed (red, left y-axis; a measure of
 1337 concentration within vertically migrating thin layers) and the proportion of cells in the gamete
 1338 size class (blue, right y-axis). Gametogenesis is induced once maximum cell concentrations
 1339 exceed 10^6 cell L^{-1} , limiting the intensification of blooms. New cyst formation can drive rapid
 1340 declines in bloom intensity (e.g., late April 2012 and 2016, late May 2016; Brosnahan et al.,
 1341 2017). Revival of blooms as observed in 2016 may be stimulated by continued cyst germination
 1342 and the production of new germling cells.

1343

1344 **Figure 15.** Abundance of *P. bahamense* in Florida waters from 1965-2019 versus water
1345 temperature (FWC FWRI HAB Monitoring Database). Detection limit is 333 cells L⁻¹; samples
1346 where cells were not detected are represented by nd on the y-axis. The gray shaded area
1347 represents optimal growth temperatures from culture experiments (Usup et al 1994, Omura et al.,
1348 1994).

1349

1350 **Figure 16.** Growth rates from two *A. catenella* cultures – ATSPF5-7 and GTMR01 – isolated
 1351 from Nauset Marsh and from in situ observation of Nauset blooms in 2012 and 2016. Growth
 1352 rates estimated from in situ observation are estimated conservatively but are still ~2-fold higher
 1353 than rates from cultures (e.g., Brosnahan et al., 2015).