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Abstract

By drawing an analogy to the spreading dynamics of an infectious disease, the authors derive a fractional-order susceptible–
infected–removed (SIR) model to examine the user adoption and abandonment of online social networks, where adoption is
analogous to infection, and abandonment is analogous to recovery. They modify the traditional SIR model with demography, so
that both infectious and noninfectious abandonment dynamics are incorporated into the model. More precisely, they consider
two types of abandonment: (i) infectious abandonment resulting from interactions between an abandoned and an adopted
member, and (ii) noninfectious abandonment which is not influenced by an abandoned member. In addition, they study the
existence and uniqueness of nonnegative solutions of the model, as well as the existence and stability of its equilibria. They
establish a nonnegative threshold quantity Rα

0 for the model and show that if Rα
0 < 1, the user-free equilibrium E0 is locally

symptotically stable. In addition, they find a region of attraction for E0. If Rα
0 > 1, they prove that the model has a

nique user-prevailing equilibrium E∗ that is globally asymptotically stable. Their stability results also show that the infectious
bandonment dynamics do not contribute to the stability of the user-free and user-prevailing equilibria, and that it only affects
he location of the user-prevailing equilibrium. The Jacobian matrix technique and the Lyapunov function method are used to
how the stability of the equilibria. They perform numerical simulations to verify these theoretical results. Finally, they conduct
case study of fitting their model to some historical Instagram user data to show the effectiveness of the model.

c 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.

eywords: Online social networks; Fractional-order SIR models; Equilibrium; Stability analysis; Lyapunov functions; Numerical simulation

1. Introduction

In recent years online social networks (OSNs) have become more prevalent in the diffusion of information and the
building of social relations among a huge number of people. With OSNs, information on the latest news headlines,
election results, etc., can be effectively spread across vast networks. This process is referred to as information
diffusion [50]. Because OSNs have a significant impact on society [20,22], it has become increasingly important to
gain a deeper understanding of their dynamics. As a result, this may increase the efficiency of distributing relevant
information to any given user and reduce unwanted information over social media. Thus, a variety of techniques and
methods have been developed by numerous researchers to understand network structure, user interactions, traffic
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properties [6,8,26,39,46], and to investigate the characteristics of information diffusion [31,47]. These mentioned
works employ empirical approaches, utilizing data mining and statistical schemes, to study the characteristics of
information diffusion over OSNs. However, it is still a difficult task to fully understand information diffusion over
OSNs due to the intricacy of human dynamics and social interactions, the rapid change of social network platforms,
and the large scale of users and information [9,50].

Recently, mathematical modeling has played an increasing role in understanding information diffusion in OSNs
since they can predict how a specific diffusion process would unfold in a given network from the temporal process
and/or spatial point of view by learning from past diffusion processes [8,9,30,36,50]. Modeling how information
spreads is of outstanding interest for stopping the spread of viruses, analyzing how misinformation spreads, etc [20].
Most models can be classified as either graph based predictive models or non-graph based predictive models [20].
In the present paper, we study non-graph based predictive models. Partial differential equation (PDE) models
and epidemiological models based on ordinary differential equations (ODEs) are two important non-graph based
predictive models. The former models are built on the intuitive cyber-distance among online users and can be used
to study both temporal and spatial patterns of information diffusion processes in OSNs. The dynamics of these
models is given by a logistic equation that models the density of influenced users at a given distance from the
source and at a given time. Some recent work on such models include [9,30,50]. The latter models only consider
temporal process and can be used to describe user adoption and abandonment dynamics of user activity of OSNs.
With large amounts of data available to researchers, it can also be used to predict the future trend of a given
online platform. Some known work on models based on ODEs can be found in [23,32,35,36,49,52]. In particular,
papers [35,36] used ODE compartmental models to study the dynamical behaviors of rumor spreading in complex
social networks with hesitating mechanisms. Paper [23] established an interplay ODE model with impulsive effects
between official information and rumor spreading to stimulate government emergency strategies. In [49], the authors
proposed an ODE information spreading model including the mechanisms of sharing, reviewing, collecting, and
stifling to describe the dynamic process of information spreading.

We would like to point out that most existing results on OSNs study how information spreads in OSNs. Work
on user adoption and abandonment of OSNs can be rarely seen in the literature. To the best of our knowledge, the
only paper studying user adoption and abandonment of OSNs is the paper [8] where a modified epidemiological
model was used to explain user adoption and abandonment of OSNs (see Eq. (3.1) in Section 3 for the model). Our
goal in this paper is to study the user adoption and abandonment of an OSN. Thus, this work will fill the research
void on this subject.

Moreover, our search of the literature shows that all the available mathematical models for OSNs currently utilize
derivatives and integrals of integer order. As it is noted in [28], the classical calculus provides a powerful tool for
explaining and modeling important dynamic processes in many areas of applied sciences. However, many complex
systems have anomalies such as network traffic and cellular diffusion processes, to name a few. The dynamics of
these processes cannot be fully characterized by classic derivative models. Fractional differential equations are more
useful here because of their nonlocal nature; that is, they possess memory and can capture the history of the variables.
Another advantage of fractional-order systems is that greater degrees of freedom are allowed in the models. For
instance, in [12] a better approximation to the known real data is obtained for a dengue fever outbreak model
of fractional-order by adjusting the values of the order. The reader is referred to [4,11,12,17,28,34,43] for more
details on the benefits of models based on fractional differential equations. In recent years fractional differential
equations have become more popular, as they have been applied to many different types of dynamical systems.
See [2–4,10–12,19,21,24,25,37,42] and the references therein for recent works.

In this paper we will first construct a fractional-order epidemiological model to study user adoption and
abandonment of an OSN, with adoption being analogous to infection and abandonment being analogous to
recovery. Our model utilizes fractional-order ODEs and modifies the traditional susceptible–infected–removed (SIR)
model with demography, so that it incorporates both infectious and noninfectious abandonment dynamics; i.e., the
infectious abandonment as a result of interactions between abandoned and adopted members and the noninfectious
abandonment without being influenced by abandoned members. We then discuss the existence and uniqueness of
nonnegative solutions of the model and study the existence and stability of its equilibria. We utilize the Jacobian
matrix technique and the Lyapunov function method to show the stability of the equilibria. We perform numerical
simulations to illustrate our results. Finally, we demonstrate the performance of our model by fitting it to some

historical Instagram user data.
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We want to comment that our model (see Eq. (3.9)) covers the integer-order model as a special case. Please refer
o the last paragraph in Section 3 for a discussion on this. Even for the integer-order case, the model is still new
nd was not previously studied in the literature.

The rest of this paper is organized as follows: Section 2 contains some preliminary results, Section 3 studies
he model formulation, Section 4 discusses the existence and uniqueness of nonnegative solutions of the model,
ection 5 investigates the equilibria and stability analysis of the model, Section 6 presents numerical simulations of

he theoretical results, Section 7 contains a case study of fitting our model to some historical Instagram data, and
nally, Section 8 summarizes the conclusions of the paper.

. Preliminary results

We first recall some basic definitions and properties of the fractional calculus. Additional information on
ractional calculus can be found in [11,28,43].

efinition 2.1. Let f be a function defined on [a, b] and η > 0. The Riemann–Liouville fractional integral of
rder η for the function f is defined by

a D−η
t f (t) =

1
Γ (η)

∫ t

a
(t − s)η−1 f (s)ds, t ∈ [a, b],

rovided the right-hand side is pointwise defined on [a, b], where Γ (·) is the gamma function. For η = 0, we set
D0

t = I , the identity operator.

Remark 2.1. When η = n ∈ N, a D−η
t f (t) coincides with the nth integral of the form

a D−n
t f (t) =

1
(n − 1)!

∫ t

a
(t − s)n−1 f (s)ds, t ∈ [a, b].

Let AC([a, b],R) be the space of real-valued functions f that are absolutely continuous on [a, b]. For n ∈ N,
et ACn([a, b],R) be the space of real-valued functions f that have continuous derivatives up to order n − 1 on
a, b] such that f (n−1)

∈ AC([a, b],R).

efinition 2.2. Let η ≥ 0, n ∈ N, and f ∈ ACn([a, b],R). The Caputo fractional derivative of order η for the
unction f is defined by

C
a Dη

t f (t) =

⎧⎨⎩ a D−(n−η)
t f (n)(t) =

1
Γ (n − η)

∫ t

a
(t − s)n−η−1 f (n)(s)ds, n − 1 < η < n,

f (n)(t), η = n.

It is known that C
a Dη

t f (t) → f (n−1)(t) − f (n−1)(0) as η → n − 1 and C
a Dη

t f (t) → f (n)(t) as η → n.

efinition 2.3. Let η > 0. The function Eη defined by

Eη(z) =

∞∑
j=0

z j

Γ ( jη + 1)

is called the Mittag-Leffler function of order η.

The function Eη(z) is entire. For the special cases where η = 1 and η = 2, we have

E1(z) = ez and E2(z) = cosh(
√

z).

Lemma 2.1 ([11]). If f is continuous and η ≥ 0, then C
a Dη

t a D−η
t f (t) = f (t).

emma 2.2 ([11]). If η > 0, r > 0, ϕ ∈ [−π, π], and λ = reiϕ , then lim E (−λtη) = 0 for |ϕ| <
ηπ .
t→∞ η 2
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We now present some results related to the stability of fractional-order systems. Let Ω be an open subset of Rn .
For α ∈ (0, 1], we consider the initial value problem (IVP) consisting of an autonomous fractional-order system

C
a Dα

t x(t) = g(x), x(t0) = x0, (2.1)

where g : Ω → Rn is locally Lipschitz continuous in x .

Definition 2.4. A point x∗ is called an equilibrium of the system (2.1) if g(x∗) = 0.

Lemma 2.3 ([3,19,41]). Let J (x∗) denote the Jacobian matrix of the system (2.1) evaluated at an equilibrium
point x∗, and let λi , i = 1, . . . , n, be the eigenvalues of J (x∗). Then x∗ is locally asymptotically stable if and only
if | arg(λi )| > απ

2 , i = 1, . . . , n.

To prove our stability results, we will use the following lemma, whose parts (a) and (b) are proved in [1, Lemma
] and [48, Lemma 3.1], respectively.

emma 2.4. Assume that α ∈ (0, 1] and f ∈ AC([a, ∞),R+). For any t ≥ a, we have

(a) 1
2

C
a Dα

t f 2(t) ≤ f (t)C
a Dα

t f (t);
(b) C

a Dα
t

[
f (t) − f ∗

− f ∗ ln f (t)
f ∗

]
≤

(
1 −

f ∗

f (t)

)
C
a Dα

t f (t), where f ∗
∈ R+.

Let V ∈ C1(Ω ,R) and α ∈ (0, 1]. The αth order Caputo derivative of V (x) along the solution x(t) of the system
Dα

t x(t) = g(x), t ∈ [a, ∞), is given by

C
a Dα

t V (x(t)) = a D−(1−α)
t

(
dV
dx

dx
dt

)
.

We will also need the following fractional version of the well-known LaSalle’s invariance principle.

Lemma 2.5 ([24]). Assume that D is a bounded closed set in Rn and that every solution of C
a Dα

t x(t) = g(x),
∈ [a, ∞), starting from a point in D, remains in D for all time t. Assume, further, that V ∈ C1(D,R) such that
Dα

t V (x(t)) ≤ 0, where x(t) is any solution of the system C
a Dα

t x(t) = g(x). Let E = {x ∈ D :
C
a Dα

t V = 0}, and let
M be the largest invariant subset of E. Then every solution x(t) of C

a Dα
t x(t) = g(x), t ∈ [a, ∞), originating in D

ends to M as t → ∞. In particular, if M = {0}, x(t) → 0 as t → ∞.

. Model formulation

.1. An integer order SIR model

Many epidemiological models have been developed to better understand the transmission pattern of infectious
iseases [38]. A simple and well-studied model, introduced by Kermack and McKendrick in [27], is the SIR
odel. In this model, derivatives of integer order are utilized and the entire population N is divided into three

ompartments or classes: susceptible (S), infected (I), and recovered/immune (R). The flows of people between
he three compartments are modeled. The applications of epidemiological models to non-disease situations have
een previously proposed in [5,7,8,51] to model the spread of less tangible notions such as ideas. In [8] the authors
emarked that ideas, akin to disease, spread infectiously between people before eventually dying out. Communicative
ontacts between different people spread ideas. People ultimately lose interest in the idea and no longer manifest
t, which can be regarded as the gain of immunity to the idea. By drawing an analogy to the dynamics that govern
he spread of an infectious disease, the authors propose the infectious recovery SIR model⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S′
= −

δ I S
N

,

I ′
=

δ I S
N

−
ηI1 R

N
,

R′
=

ηI R
,

(3.1)
N
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able 1
escriptions of the model parameters.

Notations Meaning Units

S Potential OSN new users Number of people
I OSN current users Number of people
R Population opposed to OSN use Number of people
N The summation of S, I , and R Number of people
A Recruitment/migration rate of new users into the population Number of people per unit of time
δ Transmission rate at which potential users join OSN [Number of people ×unit of time]−1

η OSN infectious abandonment rate as a result of interactions
with people who opposed to OSN use

[Number of people ×unit of time]−1

µ Per capita natural death rate [Unit of time]−1

ν OSN noninfectious abandonment rate without being
influenced by other users who opposed to OSN use

[Unit of time]−1

Fig. 1. Conceptual illustration of the OSN dynamics in the model (3.2).

to analyze user adoption and abandonment of OSNs, where, as noted above, adoption is analogous to infection and
abandonment is analogous to recovery. The OSN dynamical interpretation of the parameters in the model (3.1) can
be found in Table 1.

The model (3.1) utilizes the standard incidence and assumes that the total population is a constant and that contact
between a recovered and an infected member of the population is required for recovery. However, in practice the
number of total users may not be a constant as a result of population migration or death. Users may quit OSNs
because of other reasons without being influenced by recovered users. The contacts among users may increase with
an increase in the total population. To incorporate these considerations, the modified version of the traditional SIR
model with demography⎧⎨⎩

S′
= A − δSI − µS,

I ′
= δSI − ηI R − (µ + ν)I,

R′
= ηI R + ν I − µR,

(3.2)

can be used, where the mass action incidence is utilized. The descriptions of the model parameters are provided
in Table 1. Here two kinds of abandonment dynamics are considered in the model (3.2). Its flowchart is shown in
Fig. 1.

For models (3.1) and (3.2), the state at each time does not depend on the previous history of the systems. They
are memoryless, so-called Markovian, processes. However, the epidemic processes evolution and control in human
societies cannot be considered without any memory effect. When an idea spreads within a human population, the
experience or knowledge of individuals about that idea should affect their responses. As noted above, fractional
differential equations are valuable tools to model the dynamics of OSNs. It has been observed in [4,11,12,17] that
models based on fractional-order derivatives can provide better agreement between measured and simulated data

than classical models based on integer order derivatives.
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3.2. A fractional-order SIR model

We wish to convert the model (3.2) into a fractional-order problem that will incorporate memory effects into
the system. One way to approach this might seem to be to just replace the derivatives on the left hand sides of the
equations in the system (3.2) by the corresponding Caputo fractional derivatives. This results in the model⎧⎪⎨⎪⎩

C
0 Dα

t S = Λ − δSI − µS,

C
0 Dα

t I = δSI − ηI R − (µ + ν)I,
C
0 Dα

t R = ηI R + ν I − µR.

(3.3)

owever, this model is not consistent. A simple dimensional analysis shows that the expressions on the left hand
f (3.3) have the dimension of (time)−α , and all right hand sides of (3.3) have the dimension of (time)−1. Such
aws have been observed in the papers [12,15,45]. These papers also discussed how to fix the dimension mismatch;
ee [12, p. 616] [1], [15, p. 204], and [45, pp. 513–515].

To construct a dimensionally consistent model, we assume that the initial populations of the three compartments
atisfy the initial conditions (ICs)

S(0) = S0, I (0) = I0, and R(0) = R0, (3.4)

here S0, I0, and R0 are nonnegative real numbers. The model (3.2) is equivalent to the integral form⎧⎪⎨⎪⎩
S(t) = S0 +

∫ t
0 [A − δS(s)I (s) − µS(s)] ds,

I (t) = I0 +
∫ t

0 [δS(s)I (s) − ηI (s)R(s) − (µ + ν)I (s)] ds,
R(t) = R0 +

∫ t
0 [ηI (s)R(s) + ν I (s) − µR(s)] ds.

(3.5)

n order to include the influence of memory effects, we rewrite (3.5) in terms of time-dependent integrals⎧⎪⎨⎪⎩
S(t) = S0 +

∫ t
0 M(t, s) [A − δS(s)I (s) − µS(s)] ds,

I (t) = I0 +
∫ t

0 M(t, s) [δS(s)I (s) − ηI (s)R(s) − (µ + ν)I (s)] ds,
R(t) = R0 +

∫ t
0 M(t, s) [ηI (s)R(s) + ν I (s) − µR(s)] ds,

(3.6)

here M(t, s) plays the role of a time-dependent memory kernel and is equal to a delta function δ(t, s) in a classical
arkov process. To incorporate long-term memory effects, a proper choice of M can be a power-law correlation

unction [2,44] which exhibits a slow decay such that the state of the system at early times also contributes to the
volution of the system. Thus, we select

M(t, s) =
1

Γ (α)
(t − s)α−1, α ∈ (0, 1].

ubstituting this choice for M into (3.6) and using Definition 2.1, we obtain⎧⎨⎩
S(t) − S0 = 0 D−α

t [A − δS(t)I (t) − µS(t)] ,

I (t) − I0 = 0 D−α
t [δS(t)I (t) − ηI (t)R(t) − (µ + ν)I (t)] ,

R(t) − R0 = 0 D−α
t [ηI (t)R(t) + ν I (t) − µR(t)] .

(3.7)

nce again, the dimensions of the system (3.7) are technically somewhat inconsistent. For each equation,
he left hand side has the dimension of number of people, and the right hand side has the dimension of
umber of people × [unit of time]α−1. Thus, we need to modify the right-hand sides to make the dimensions match.
ne straightforward way of doing this is to write (3.7) as follows:⎧⎨⎩

S(t) − S0 = 0 D−α
t [Λα

− βα S(t)I (t) − µα S(t)] ,

I (t) − I0 = 0 D−α
t [βα S(t)I (t) − γ α I (t)R(t) − (µα

+ να)I (t)] ,

R(t) − R0 = 0 D−α
t [γ α I (t)R(t) + να I (t) − µα R(t)] ,

(3.8)

here µ and ν are given in Table 1 and the dynamical interpretation of Λ, β, and γ is given in Table 2.
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able 2
ynamical interpretation of Λ, β, and γ .

Notations Meaning Units

Λ Recruitment/migration rate of new users into the population [Number of people]
1
α ×[unit of time]−1

β Transmission rate at which potential users join OSN [Number of people]−
1
α ×[unit of time]−α

γ OSN infectious abandonment rate as a result of interactions
with people who opposed to OSN use

[Number of people]−
1
α ×[unit of time]−α

Now, applying a fractional Caputo derivative of order α on both sides of each equation in (3.8) and Lemma 2.1,
we derive the fractional-order model⎧⎪⎨⎪⎩

C
0 Dα

t S = Λα
− βα SI − µα S,

C
0 Dα

t I = βα SI − γ α I R − (µα
+ να)I,

C
0 Dα

t R = γ α I R + να I − µα R.

(3.9)

Both sides of the equations in (3.9) have the same dimensions. Here and henceforth, we focus our attention on this
model.

When introducing a convolution integral with a power-law memory kernel, fractional derivatives are useful to
describe memory effects in the dynamics of OSNs. The decaying rate of the memory kernel M depends on the value
of α. A smaller value of α corresponds to more slowly decaying time-correlation functions. In [17] a justification
of the fractional-order derivative is given, and it is shown that the fractional order α can be interpreted as an index
of memory of the system. Since C

0 Dα
t y(t) → y′(t) as α → 1−, the model (3.9) tends toward the memoryless model

3.2) as α → 1. Thus, the model (3.2) can be regarded as a special case of the model (3.9). For simplicity, the
ame memory contributions (i.e., the same value of α) are assumed in the model (3.2) for different states of S, I ,
nd R. When having different memory contributions, the technique introduced in [16] can be employed to obtain a
ractionalization of the model (3.2). More complicated kernel functions could be investigated to take into account
ifferent time scales. Related ideas on fractionalization of integer order models can be found in [15,16,37,44].

. Existence and uniqueness of nonnegative solutions

We begin with an existence and invariance result for our model.

heorem 4.1. The model (3.9), with the ICs (3.4), has a unique nonnegative solution for every (S0, I0, R0) ∈ R3
+

.
oreover, the compact set

Ω =

{
(S, I, R) ∈ R3

+
: 0 ≤ S + I + R ≤

Λα

µα

}
(4.1)

s a positively invariant set and attracts all solutions of the model (3.9) initiating in R3
+

.

roof. Let

X (t) =

⎛⎝ S(t)
I (t)
R(t)

⎞⎠ , X0 =

⎛⎝ S0
I0
R0

⎞⎠ ,

nd

f (X (t)) =

⎛⎝ f1(X (t))
f2(X (t))
f3(X (t))

⎞⎠ =

⎛⎝ Λα
− βα SI − µα S

βα SI − γ α I R − (µα
+ να)I

γ α I R + να I − µα R

⎞⎠ .

he model (3.9), with the ICs (3.4), can be written as C
0 Dα

t X = f (X ) with X (0) = X0. The Jacobian matrix
∂ f
∂ X =

∂( f1, f2, f3)
∂(S,I,R) of f is continuous on R3

+
. By [29, Remark 1.2.1], f is locally Lipschitz on R3

+
. By [33, Remark

.8], the model (3.9), with the ICs (3.4), has a unique solution for every (S0, I0, R0) ∈ R3
+

.
We show that, for every (S0, I0, R0) ∈ R3

+
, the unique solution (S, I, R) of model (3.9), with the ICs (3.4), is

onnegative. We deny and distinguish seven cases.
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Case (a): There exist tS, tI , tR ∈ (0, ∞) such that

S(tS) < 0 and S(t) ≥ 0 for all t ∈ [0, tS), (4.2)

I (tI ) < 0 and I (t) ≥ 0 for all t ∈ [0, tI ), (4.3)

R(tR) < 0 and R(t) ≥ 0 for all t ∈ [0, tR). (4.4)

Case (b): S(t) is nonnegative on R+, and (4.3) and (4.4) hold.
Case (c): I (t) is nonnegative on R+, and (4.2) and (4.4) hold.
Case (d): R(t) is nonnegative on R+, and (4.2) and (4.3) hold.
Case (e): S(t), I (t) are nonnegative on R+ and (4.4) holds.
Case (f): S(t), R(t) are nonnegative on R+ and (4.3) holds.
Case (g): I (t), R(t) are nonnegative on R+ and (4.2) holds.
Below, we prove by contradiction that none of these cases can occur. Assume that Case (a) holds. There are

three possibilities here.
Subcase (a1): tS = min{tS, tI , tR}. From the first equation in (3.9),

C
0 Dα

t S ≥ −(βα I + µα)S ≥ −κ1S,

where κ1 = βα maxt∈[0,tS ] I (t) + µα > 0. Thus,

S(t) ≥ S(0)Eα(−κ1tα) for all t ∈ [0, tS].

Hence, S(tS) ≥ 0. This contradicts the assumption that S(tS) < 0.
Subcase (a2): tI = min{tS, tI , tR}. From the second equation in (3.9),

C
0 Dα

t I ≥ −(γ α R + µα
+ να)I ≥ −κ2 I,

where κ2 = γ α maxt∈[0,tI ] R(t) + µα
+ να > 0. Thus,

I (t) ≥ I (0)Eα(−κ2tα) for all t ∈ [0, tI ].

Hence, I (tI ) ≥ 0. This contradicts the assumption that I (tI ) < 0.
Subcase (a3): tR = min{tS, tI , tR}. From the third equation in (3.9),

C
0 Dα

t R ≥ −µα R for all t ∈ [0, tR].

Thus,

R(t) ≥ R(0)Eα(−µαtα) for all t ∈ [0, tR].

Hence, R(tR) ≥ 0. This contradicts the assumption R(tR) < 0.
Combining Subcases (a1)–(a3), we conclude that Case (a) cannot occur.
Assume now that Case (b) holds. Proceeding similarly as in Case (a) and considering the subcases tI =

min{tI , tR} and tR = min{tI , tR}, we can show that Case (b) cannot occur either. Similar arguments can be used to
show that Cases (c)–(g) cannot occur. Since none of Cases (a)–(g) can occur, we conclude that the unique solution
(S, I, R) is nonnegative.

Next, we prove that the set Ω , defined by (4.1), is positively invariant. By adding the equations in (3.9), we
obtain

C
0 Dα

t (S + I + R) = Λα
− µα(S + I + R);

i.e.,
C
0 Dα

t N = Λα
− µα N .

In view of [11, Remark 7.1] (or [28, Proposition 5.10]), it follows that

N (t) = N (0)Eα(−µαtα) + Λαα

∫ t

0
sα−1 E ′

α(−µαtα)ds

=

(
−
Λα

α
+ N (0)

)
Eα(−µαtα) +

Λα

α
. (4.5)
µ µ
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ere we note that Eα(−µαtα) ≥ 0. If N (0) ≤
Λα

µα , we have

S(t) + I (t) + R(t) = N (t) ≤
Λα

µα
.

Thus, Ω is positively invariant.
Finally, we show that Ω attracts all solutions of the model (3.9) initiating in R3

+
. By Lemma 2.2, limt→∞ Eα

−µαtα) = 0. From (4.5), we see that limt→∞ N (t) =
Λα

µα . Hence, Ω attracts all solutions of the model (3.9)
nitiating in R3

+
. This completes the proof of the theorem. □

. Equilibria and stability analysis

.1. Stability of user-free equilibrium

It is clear that the model (3.9) has a unique user-free equilibrium (which is equivalent to the disease-free
quilibrium in epidemiological models)

E0 =

(
Λα

µα
, 0, 0

)
. (5.1)

e evaluate the associated Jacobian of this model at E0, which takes the form

J =

⎛⎝ −βα I − µα
−βα S 0

βα I βα S − γ α R − (µα
+ να) −γ α I

0 γ α R + να γ α I − µα

⎞⎠ . (5.2)

t E0, the Jacobian

J (E0) =

⎛⎜⎝ −µα
−

βαΛα

µα 0

0 βαΛα

µα − (µα
+ να) 0

0 να
−µα

⎞⎟⎠
has the eigenvalues

λ1 = λ2 = −µα and λ3 =
βαΛα

µα
− (µα

+ να).

he eigenvalues λ1 and λ2 are obviously negative, and λ3 is negative if and only if

Rα
0 :=

βαΛα

µα(µα + να)
< 1. (5.3)

he scalar Rα
0 is a dimensionless threshold quantity. When α = 1, Rα

0 is usually referred to as the reproduction
umber of the network, which measures the number of new secondary OSN users one infectious OSN user will
roduce in a population consisting only of potential OSN users.

From the above analysis and Lemma 2.3, the following result is immediate.

heorem 5.1. The user-free equilibrium E0 is locally asymptotically stable if Rα
0 < 1 and unstable if Rα

0 > 1.

Theorem 5.1 shows that if the initial values (S0, I0, R0) ∈ R3
+

are sufficiently close to E0, the unique solution
f the model (3.9), with the ICs (3.4), converges to E0. However, no explicit region of attraction is given here. By
sing the Lyapunov function method, we next obtain an explicit region of attraction.

heorem 5.2. Assume that Rα
0 < 1. The compact set Ω , defined by (4.1), is a region of attraction of the user-free

quilibrium E0.

roof. We need to show that, for every (S0, I0, R0) ∈ Ω , the unique solution (S, I, R) of the model (3.9), with the
Cs (3.4), converges to E0. Define the Lyapunov function V0(t) by

V0(t) =
1

I 2
+

1
(

S −
Λα

α
+ I + R

)2

.

2 2 µ
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By Theorem 4.1, the set Ω is positively invariant. Since (S0, I0, R0) ∈ Ω , we have S ≤
Λα

µα . From Lemma 2.4(a)
and (3.9), it follows that

C
0 Dα

t V0(t) ≤ I (C
0 Dα

t I ) +

(
S −

Λα

µα
+ I + R

)
C
0 Dα

t

(
S −

Λα

µα
+ I + R

)
= I [βα SI − γ α I R − (µα

+ να)I ] +

(
S −

Λα

µα
+ I + R

) [
Λα

− µα(S + I + R)
]

≤ I 2
(

βαΛα

µα
− (µα

+ να)
)

− γ α I 2 R − µα

(
S −

Λα

µα
+ I + R

)2

= (µα
+ να)I 2

(
βαΛα

µα(µα + να)
− 1

)
− γ α I 2 R − µα

(
S −

Λα

µα
+ I + R

)2

= (µα
+ να)I 2 (

Rα
0 − 1

)
− γ α I 2 R − µα

(
S −

Λα

µα
+ I + R

)2

.

Since Rα
0 < 1, we have C

0 Dα
t V0(t) ≤ 0. Moreover, C

0 Dα
t V0(t) = 0 if and only if S + R =

Λα

µα and I = 0; i.e.,

E = {(S, I, R) :
C
0 Dα

t V0(t) = 0} =

{
(S, 0, R) : S + R =

Λα

µα

}
.

y Lemma 2.5, every solution of model (3.9) initiating in Ω tend to the largest invariant set in E . Thus,
imt→∞ I (t) = 0. For I = 0, from (3.9) we obtain{ C

0 Dα
t S = Λα

− µα S,
C
0 Dα

t R = −µα R.
(5.4)

n a manner similar to obtaining (4.5), we find that the solution of (5.4) is{
S(t) =

(
−

Λα

µα + S(0)
)

Eα(−µαtα) +
Λα

µα ,

R(t) = R(0)Eα(−µαtα).

y Lemma 2.2, limt→∞ S(t) =
Λα

µα and limt→∞ R(t) = 0. Thus, (S, I, R) → E0 as t → ∞. This completes the
roof of the theorem. □

.2. Stability of user-prevailing equilibrium

We first show the existence of a unique user-prevailing equilibrium of the model (3.9) if Rα
0 > 1. Here the

ser-prevailing equilibrium is the analogue of the endemic equilibrium in epidemiological models.

heorem 5.3. Assume that Rα
0 > 1. The model (3.9) has a unique user-prevailing equilibrium E∗

= (S∗, I ∗, R∗),
here

S∗
=

Λα

βα I ∗ + µα
, I ∗

=
µα R∗

γ α R∗ + να
, (5.5)

and R∗ is the unique positive solution of the quadratic equation in R given by

µα(βα
+ γ α)γ α R2

+ [(βα
+ γ α)µα(µα

+ να)

+ (µανα
− βαΛα)γ α]R + βαΛανα

(
1

Rα
0

− 1
)

= 0.
(5.6)

emark 5.1. Since Rα
0 > 1, (5.6) has a negative constant term and a positive discriminant. Thus, it has a unique

ositive solution R∗.

roof. From Definition 2.4, a user-prevailing equilibrium of the model (3.9) satisfies the equations⎧⎨⎩
0 = Λα

− βα SI − µα S,

0 = βα SI − γ α I R − (µα
+ να)I,

α α α

(5.7)

0 = γ I R + ν I − µ R.
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sing the first and the equations in (5.7), we have

S =
Λα

βα I + µα
and I =

µα R
γ α R + να

, (5.8)

rom which

S =
Λα

βαµα R
γ α R+να + µα

=
(γ α R + να)Λα

µα(βα + γ α)R + µανα
. (5.9)

dding the last two equations in (5.7) yields

βα SI − µα I = µα R. (5.10)

e use (5.8) and (5.9) to eliminate S and I and obtain

βα(γ α R + να)Λαµα R
[µα(βα + γ α)R + µανα](γ α R + να)

−
µ2α R

γ α R + να
= µα R.

ince we are looking for user-prevailing equilibria, I ̸= 0. By the second equation in (5.8), R ̸= 0. Thus, we can
ivide the above equation by µα R to obtain

βα(γ α R + να)Λα

[µα(βα + γ α)R + µανα](γ α R + να)
−

µα

γ α R + να
= 1,

nd (5.6) follows. By Remark 5.1, (5.6) has a unique positive solution R∗. Once R∗ is known, we can use the
econd equation in (5.8) to get a positive I ∗ and the first equation in (5.8) to obtain a positive S∗; i.e., we have
5.5). This completes the proof of the theorem. □

emark 5.2. We present an alternative way to show the existence of the unique user-prevailing equilibrium
E∗

= (S∗, I ∗, R∗) of (3.9). As in the proof of Theorem 5.1, a user-prevailing equilibrium of (3.9) satisfies (5.7).
oreover, (5.8) and (5.10) hold. Using the third equation in (5.7), we have

R =
να I

µα − γ α I
. (5.11)

rom (5.11), we see that 0 ≤ I ≤
µα

γ α . This is because R will be negative if I >
µα

γ α . Substituting the first equation
in (5.8) and (5.11) into (5.10), we obtain

βαΛα I
βα I + µα

− µα I =
µανα I

µα − γ α I
.

s we are searching for user-prevailing equilibria, I ̸= 0. Then dividing the above equation by I yields

βαΛα

βα I + µα
− µα

=
µανα

µα − γ α I
. (5.12)

otivated by (5.12), we introduce the function f defined by

f (I ) =
βαΛα

βα I + µα
−

µανα

µα − γ α I
− µα.

Then f (I ) → −∞ as I →

(
µα

γ α

)−

,

f (0) =
βαΛα

µα
− µα

− να
=

βαΛα
− µα(µα

+ να)
µα

> 0 if Rα
0 > 1,

nd

f ′(I ) = −
β2αΛα

(βα I + µα)2 −
µαναγ α

(µα − γ α I )2 < 0 for 0 ≤ I <
µα

γ α
.

hus, there exists a unique I ∗
∈

(
0,

µα

γ α

)
such that f (I ∗) = 0; i.e., (5.12) has a unique positive solution I ∗. Using

he first equation in (5.8) and (5.11), we can compute S∗ and R∗.
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We now study the stability of the user-prevailing equilibrium E∗
= (S∗, I ∗, R∗).

heorem 5.4. The user-prevailing equilibrium E∗
= (S∗, I ∗, R∗) is globally asymptotically stable.

roof. Let Φ(x) = x − 1 − ln x , x > 0. Define the Lyapunov function V1(t) by

V1(t) = F1(t) + F2(t) + F3(t) + F4(t),

here

F1(t) = S∗Φ

(
S
S∗

)
, F2(t) = I ∗Φ

(
I
I ∗

)
, F3(t) =

γ α(R∗)2

γ α R∗ + να
Φ

(
R
R∗

)
,

and

F4(t) =
(
S∗

+ I ∗
+ R∗

)
Φ

(
S + I + R

S∗ + I ∗ + R∗

)
.

Below, we evaluate the α-th order Caputo derivatives of Fi , i = 1, 2, 3, 4, by applying Lemma 2.4(b). From the
rst equation in (5.7), we have

Λα
= βα S∗ I ∗

+ µα S∗.

Using this and the first equation in (3.9), we obtain

C
0 Dα

t F1(t) ≤
S − S∗

S
C
0 Dα

t S

=
S − S∗

S
(Λα

− βα SI − µα S)

=
S − S∗

S

[
µα(S∗

− S) + βα(S∗ I ∗
− SI )

]
=

S − S∗

S

[
µα(S∗

− S) + βα I ∗(S∗
− S) + βα S(I ∗

− I )
]

= −
(µα

+ βα I ∗)(S − S∗)2

S
+ βα(S − S∗)(I ∗

− I ). (5.13)

n view of the second equation in (5.7), we have

µα
+ να

= βα S∗
− γ α R∗.

y the second equation in (3.9), we obtain

C
0 Dα

t F2(t) ≤
I − I ∗

I
C
0 Dα

t I

=
I − I ∗

I
[βα SI − γ α I R − (µα

+ να)I ]

=
I − I ∗

I
[βα SI − γ α I R − (βα S∗

− γ α R∗)I ]

=
I − I ∗

I
[βα I (S − S∗) − γ α I (R − R∗)]

= βα(S − S∗)(I − I ∗) − γ α(I − I ∗)(R − R∗). (5.14)

rom the third equation in (5.7), we see that

µα
= γ α I ∗

+
να I ∗

R∗
.

his, together with the third equation in (3.9), implies that

C
0 Dα

t F3(t) ≤
γ α R∗

γ α R∗ + να

R − R∗

R
C
0 Dα

t R

=
γ α R∗ R − R∗

(γ α I R + να I − µα R)

γ α R∗ + να R
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=
γ α R∗

γ α R∗ + να

R − R∗

R

(
γ α I R + να I − γ α I ∗ R −

να I ∗ R
R∗

)
=

γ α R∗

γ α R∗ + να

R − R∗

R

[
γ α R(I − I ∗) + να R

(
I
R

−
I ∗

R∗

)]
=

γ α R∗(R − R∗)
γ α R∗ + να

{
γ α(I − I ∗) +

να[I (R∗
− R) + R(I − I ∗)]

R R∗

}
= γ α(I − I ∗)(R − R∗) −

γ ανα I (R − R∗)2

(γ α R∗ + να)R
. (5.15)

dding the equations in (5.7) together yields

Λα
= µα(S∗

+ I ∗
+ R∗).

sing this equation and (3.9), we obtain

C
0 Dα

t F4(t) ≤
S + I + R − (S∗

+ I ∗
+ R∗)

S + I + R
C
0 Dα

t (S + I + R)

=
(S − S∗) + (I − I ∗) + (R − R∗)

S + I + R
[Λα

− µα(S + I + R)]

=
(S − S∗) + (I − I ∗) + (R − R∗)

S + I + R
×

µα[(S∗
− S) + (I ∗

− I ) + (R∗
− R)]

= −
µα[(S − S∗) + (I − I ∗) + (R − R∗)]2

S + I + R
. (5.16)

rom (5.13)–(5.16), it follows that
C
0 Dα

t V1(t) ≤
C
0 Dα

t F1(t) +
C
0 Dα

t F2(t) +
C
0 Dα

t F3(t) +
C
0 Dα

t F4(t)

= −
(µα

+ βα I ∗)(S − S∗)2

S
−

γ ανα I (R − R∗)2

(γ α R∗ + να)R

−
µα[(S − S∗) + (I − I ∗) + (R − R∗)]2

S + I + R
.

hus, C
0 Dα

t V1(t) ≤ 0 and C
0 Dα

t V1(t) = 0 if and only if S = S∗, I = I ∗, and R = R∗. So the largest invariant set of
(S, I, R) :

C
0 Dα

t V1(t) = 0} is the singleton {E∗
}. From Theorem 4.1, we note that the set Ω attracts all solutions

f model (3.9) initiating in R3
+

By Lemma 2.5, E∗ is global asymptotically stable. This completes the proof of the
heorem. □

emark 5.3. From (5.3), we see that the threshold quantity Rα
0 does not depend on the infectious abandonment

ate γ . The analysis in this section shows that γ has no contribution to the stability of E0 and E∗. However, γ has
n affect the location of E∗ in R3

+
. This is evident in Theorem 5.3 and the simulations in the next section.

. Numerical simulations

An Adams-type predictor–corrector method [13,14,18] is applied to obtain a numerical solution of the model
3.9). The reader is referred to [13] for the details of the algorithm. The values of the parameters in the model (3.9)
nd the initial values are chosen for illustration purposes.

.1. User-free equilibrium

We first consider the user-free equilibrium E0 for model (3.9) with the parameters given in Table 3.
From (5.1) and (5.3), it follows that E0 ≃ (0.1395, 0, 0) and Rα

0 < 1. By Theorem 5.1, E0 is locally
symptotically stable. In view of Theorem 5.2, the numerical simulations are carried out using initial points from

defined by (4.1). The initial points are given in Table 4. The trajectories are shown in Fig. 2. The numerical
imulations show that all the trajectories converge to E . This is consistent with Theorems 5.1 and 5.2.
0
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Table 3
Parameters for the user-free equilibrium E0.

Parameter Value Parameter Value

α 0.6 β 0.1
γ 0.03 Λ 0.03
µ 0.8 ν 0.4

Table 4
List of initial points (S0, I0, R0).

No. S0 I0 R0

1 0.0002 0.0022 0.0019
2 0.1302 0.0022 0.0019
3 0.0002 0.0205 0.0019
4 0.1302 0.0205 0.0019
5 0.0002 0.0022 0.0131
6 0.1302 0.0022 0.0131
7 0.0002 0.0205 0.0131
8 0.1302 0.0205 0.0131

Table 5
Parameters for the endemic equilibrium E∗.

Parameter Value Parameter Value

α 0.6 β 0.1
γ 0.03 Λ 0.07
µ 0.008 ν 0.4

Fig. 2. Locally asymptotically stability of E0.

.2. User-prevailing equilibrium

We now consider the model (3.9) with the parameters indicated in Table 5. From (5.3)–(5.6), E∗
≃ (2.8755,

0.0611, 0.7380) and Rα > 1. By Theorem 5.4, E∗ is globally asymptotically stable. The numerical simulations are
0
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Table 6
List of initial points (S0, I0, R0).

No. S0 I0 R0

1 0.8 1 0.7
2 4 1 0.7
3 0.8 3 0.7
4 4 3 0.7
5 0.8 1 1.5
6 4 1 1.5
7 0.8 3 1.5
8 4 3 1.5

Fig. 3. Globally asymptotically stability of E∗.

arried out based on the initial points indicated in Table 6. The trajectories are shown in Fig. 3. The numerical
imulations show that all the trajectories converge to E∗. This is consistent with Theorem 5.4.

6.3. Dependence of parameters

We next investigate the impact of the parameters γ and α on the solution while all other parameters are fixed.

6.3.1. Dependence on γ

In view of (5.3), it is notable that Rα
0 is independent of the noninfectious abandonment rate γ . However, as

indicated above, γ will impact the location of the user-prevailing equilibrium E∗ given by (5.5) and (5.6). To
illustrate this, the locations of E∗ with respect to various values of γ , while other parameters are fixed as in Table 5,
are given in Fig. 4.

6.3.2. Dependence on α

Finally, we investigate the impact of index of memory α to the solution while other parameters are fixed. The
values of β, γ , Λ, µ, and ν are given as in Table 5. The initial point is (0.8, 1, 0.7). The numerical simulations
are carried out for α = 0.4, 0.6, 0.8, 0.9, 0.95, and 1. When α = 1, the model (3.9) reduces to the first-order
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Fig. 4. Location of E∗ with respect to γ .

Fig. 5. Graph of S with respect to α.

DE system (3.2). The solutions, S, I , R, are plotted in Figs. 5–7, respectively. The trajectories are plotted in
ig. 8. These figures suggest that the dynamical behavior of the model (3.9) varies with respect to α and that
ifferent types of dynamical behaviors may be obtained by simply adjusting the value of α. This illustrates that
ractional differential equation models offer more degrees of freedom than the traditional integer order models and
hus modeling with fractional differential equations has more advantages than using the traditional integer order

odels.
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Fig. 6. Graph of I with respect to α.

Fig. 7. Graph of R with respect to α.

. Case study: Fitting model to instagram data

In this section, we demonstrate the performance of model (3.9) by fitting it to the historical Instagram user data
iven in [40]. Let { Î (t ), Î (t ), . . . , Î (t )} represent the active Instagram users (observations) at times t , . . . , t .
0 1 K 0 K
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Fig. 8. Trajectories of the model (3.9) with respect to α.

Table 7
Model fitting parameters.

Parameter Value Parameter Value

α 0.3359 β 1.8024e−4
γ 5.2713e−4 Λ 0.9812
µ 1.1164e−5 ν 3.1131e−12

Then the model parameters Θ := {Λ, α, β, γ, µ, ν} are determined by minimizing

L(Θ) =

K∑
i=0

ωi

(
I (ti ;Θ) − Î (ti )

)2
,

here ω0, . . . , ωK are pre-set weights and I (t;Θ) denotes the solution I in model (3.9) subject to parameter set
. Due to the fact that it is difficult to get real data for S and R, we simply let R0 = 0 and S0 be the total internet

sers at t0.
A total of 12 observations of the monthly active Instagram users between January 2013 and June 2018 are given

n [40]. The first 10 observations are used for parameter estimation. The parameter values are given in Table 7. Then
ith these values, the model is used to predict the last two observations. The predicted values and the historical
ata are given in Fig. 9. It is clear that the predicted values matches the real data very well.

. Conclusion

The preceding discussion illustrates how fractional derivatives can be applied to the study of the OSN dynamics.
e have discussed the fractional-order SIR model (3.9), as a generalization of the traditional SIR model with

emography, to understand the user adoption and abandonment of OSNs. This model employs the Caputo fractional
erivative and incorporates infectious and noninfectious abandonment dynamics. We have established the existence
nd uniqueness of nonnegative solutions and investigated the existence and stability of the model’s equilibria, with
he latter being achieved using the Jacobian matrix technique and the Lyapunov function method. More precisely,
hen the threshold quantity Rα

0 satisfies Rα
0 < 1, the user-free equilibrium E0 is locally asymptotically stable.

his asserts that all the users will eventually lose interest in the OSN. Likewise, when Rα > 1, the user-prevailing
0
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Fig. 9. Model fitting for Instagram users from 2013–2018. The observations on the left-hand side of the dash line are used for model fitting.

equilibrium E∗ exists and is globally asymptotically stable. This means that the OSN always attracts the users’
interest and that the users will largely prevail. Thus, the OSN providers may use Rα

0 to obtain some useful
nformation to gauge the performance of their networks. By (5.3), we see that Rα

0 is increasing in the transmission
ate β and the migration rate Λ, and decreasing in the natural death rate µ and the noninfectious abandonment rate
. An OSN provider can influence the values of β, Λ, and ν by taking necessary marketing strategies such as TV
dvertisements and email marketing to increase people’s awareness of the network. This will very possibly increase
he values of β and Λ, and decrease the value of ν, and consequently, the value of Rα

0 will be increased. Moreover,
s illustrated in Section 7, our model can be used to predict the future users of an OSN.

In view of (5.3), it is interesting that Rα
0 depends on all the parameters in the model except the infectious

bandonment rate γ , which is not what one would expect. Our main results show that γ does not affect the
tability of E0 and E∗. However, γ does alter where E∗ is positioned in R3

+
, as is evident in (5.5) and (5.6).

ur numerical simulations, based on a variation of the Adams-type predictor–corrector method, confirm what we
bserve theoretically. In fact, these simulations also show that the order α of the model influences the dynamics of
he S, I, R curves and the trajectories of the model.
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