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Abstract

By drawing an analogy to the spreading dynamics of an infectious disease, the authors derive a fractional-order susceptible—
infected—removed (SIR) model to examine the user adoption and abandonment of online social networks, where adoption is
analogous to infection, and abandonment is analogous to recovery. They modify the traditional SIR model with demography, so
that both infectious and noninfectious abandonment dynamics are incorporated into the model. More precisely, they consider
two types of abandonment: (i) infectious abandonment resulting from interactions between an abandoned and an adopted
member, and (ii) noninfectious abandonment which is not influenced by an abandoned member. In addition, they study the
existence and uniqueness of nonnegative solutions of the model, as well as the existence and stability of its equilibria. They
establish a nonnegative threshold quantity R8‘ for the model and show that if R(‘;‘ < 1, the user-free equilibrium Ej is locally
asymptotically stable. In addition, they find a region of attraction for Ey. If RS‘ > 1, they prove that the model has a
unique user-prevailing equilibrium E™* that is globally asymptotically stable. Their stability results also show that the infectious
abandonment dynamics do not contribute to the stability of the user-free and user-prevailing equilibria, and that it only affects
the location of the user-prevailing equilibrium. The Jacobian matrix technique and the Lyapunov function method are used to
show the stability of the equilibria. They perform numerical simulations to verify these theoretical results. Finally, they conduct
a case study of fitting their model to some historical Instagram user data to show the effectiveness of the model.
© 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

In recent years online social networks (OSNs) have become more prevalent in the diffusion of information and the
building of social relations among a huge number of people. With OSNs, information on the latest news headlines,
election results, etc., can be effectively spread across vast networks. This process is referred to as information
diffusion [50]. Because OSNs have a significant impact on society [20,22], it has become increasingly important to
gain a deeper understanding of their dynamics. As a result, this may increase the efficiency of distributing relevant
information to any given user and reduce unwanted information over social media. Thus, a variety of techniques and
methods have been developed by numerous researchers to understand network structure, user interactions, traffic
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properties [6,8,26,39,46], and to investigate the characteristics of information diffusion [31,47]. These mentioned
works employ empirical approaches, utilizing data mining and statistical schemes, to study the characteristics of
information diffusion over OSNs. However, it is still a difficult task to fully understand information diffusion over
OSNss due to the intricacy of human dynamics and social interactions, the rapid change of social network platforms,
and the large scale of users and information [9,50].

Recently, mathematical modeling has played an increasing role in understanding information diffusion in OSNs
since they can predict how a specific diffusion process would unfold in a given network from the temporal process
and/or spatial point of view by learning from past diffusion processes [8,9,30,36,50]. Modeling how information
spreads is of outstanding interest for stopping the spread of viruses, analyzing how misinformation spreads, etc [20].
Most models can be classified as either graph based predictive models or non-graph based predictive models [20].
In the present paper, we study non-graph based predictive models. Partial differential equation (PDE) models
and epidemiological models based on ordinary differential equations (ODEs) are two important non-graph based
predictive models. The former models are built on the intuitive cyber-distance among online users and can be used
to study both temporal and spatial patterns of information diffusion processes in OSNs. The dynamics of these
models is given by a logistic equation that models the density of influenced users at a given distance from the
source and at a given time. Some recent work on such models include [9,30,50]. The latter models only consider
temporal process and can be used to describe user adoption and abandonment dynamics of user activity of OSNs.
With large amounts of data available to researchers, it can also be used to predict the future trend of a given
online platform. Some known work on models based on ODEs can be found in [23,32,35,36,49,52]. In particular,
papers [35,36] used ODE compartmental models to study the dynamical behaviors of rumor spreading in complex
social networks with hesitating mechanisms. Paper [23] established an interplay ODE model with impulsive effects
between official information and rumor spreading to stimulate government emergency strategies. In [49], the authors
proposed an ODE information spreading model including the mechanisms of sharing, reviewing, collecting, and
stifling to describe the dynamic process of information spreading.

We would like to point out that most existing results on OSNs study how information spreads in OSNs. Work
on user adoption and abandonment of OSNs can be rarely seen in the literature. To the best of our knowledge, the
only paper studying user adoption and abandonment of OSNs is the paper [8] where a modified epidemiological
model was used to explain user adoption and abandonment of OSNs (see Eq. (3.1) in Section 3 for the model). Our
goal in this paper is to study the user adoption and abandonment of an OSN. Thus, this work will fill the research
void on this subject.

Moreover, our search of the literature shows that all the available mathematical models for OSNs currently utilize
derivatives and integrals of integer order. As it is noted in [28], the classical calculus provides a powerful tool for
explaining and modeling important dynamic processes in many areas of applied sciences. However, many complex
systems have anomalies such as network traffic and cellular diffusion processes, to name a few. The dynamics of
these processes cannot be fully characterized by classic derivative models. Fractional differential equations are more
useful here because of their nonlocal nature; that is, they possess memory and can capture the history of the variables.
Another advantage of fractional-order systems is that greater degrees of freedom are allowed in the models. For
instance, in [12] a better approximation to the known real data is obtained for a dengue fever outbreak model
of fractional-order by adjusting the values of the order. The reader is referred to [4,11,12,17,28,34,43] for more
details on the benefits of models based on fractional differential equations. In recent years fractional differential
equations have become more popular, as they have been applied to many different types of dynamical systems.
See [2-4,10-12,19,21,24,25,37,42] and the references therein for recent works.

In this paper we will first construct a fractional-order epidemiological model to study user adoption and
abandonment of an OSN, with adoption being analogous to infection and abandonment being analogous to
recovery. Our model utilizes fractional-order ODEs and modifies the traditional susceptible—infected—removed (SIR)
model with demography, so that it incorporates both infectious and noninfectious abandonment dynamics; i.e., the
infectious abandonment as a result of interactions between abandoned and adopted members and the noninfectious
abandonment without being influenced by abandoned members. We then discuss the existence and uniqueness of
nonnegative solutions of the model and study the existence and stability of its equilibria. We utilize the Jacobian
matrix technique and the Lyapunov function method to show the stability of the equilibria. We perform numerical
simulations to illustrate our results. Finally, we demonstrate the performance of our model by fitting it to some
historical Instagram user data.
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We want to comment that our model (see Eq. (3.9)) covers the integer-order model as a special case. Please refer
to the last paragraph in Section 3 for a discussion on this. Even for the integer-order case, the model is still new
and was not previously studied in the literature.

The rest of this paper is organized as follows: Section 2 contains some preliminary results, Section 3 studies
the model formulation, Section 4 discusses the existence and uniqueness of nonnegative solutions of the model,
Section 5 investigates the equilibria and stability analysis of the model, Section 6 presents numerical simulations of
the theoretical results, Section 7 contains a case study of fitting our model to some historical Instagram data, and
finally, Section 8 summarizes the conclusions of the paper.

2. Preliminary results

We first recall some basic definitions and properties of the fractional calculus. Additional information on
fractional calculus can be found in [11,28,43].

Definition 2.1. Let f be a function defined on [a, b] and 1 > 0. The Riemann—Liouville fractional integral of
order n for the function f is defined by

L
I'(n)

provided the right-hand side is pointwise defined on [a, b], where I'(-) is the gamma function. For n = 0, we set
«D? = I, the identity operator.

D) = / (t =)' fls)ds, t€la,b],

Remark 2.1. When n=n €N, ,D, " f(¢) coincides with the nth integral of the form

1

D0 = o

/ (t — )" f(s)ds, t€la,bl.

Let AC([a, b], R) be the space of real-valued functions f that are absolutely continuous on [a, b]. For n € N,
let AC"([a, b], R) be the space of real-valued functions f that have continuous derivatives up to order n — 1 on
[a, b] such that f®~D e AC([a, b], R).

Definition 2.2. Letn > 0,n € N, and f € AC"([a, b], R). The Caputo fractional derivative of order n for the
function f is defined by

] t
DTV O = —— / (t =)™ fM(s)ds, n—1<n<n,
F(l’l - 77) a
ARG} n=n.
It is known that £/ f(1) — f~V(®) — f*~P(0) as n — n — L and D] (1) — f*1) as 1 — n.

Dl @) =

Definition 2.3. Let n > 0. The function E, defined by

0 2
B = 2 TG
is called the Mittag-Leffler function of order 7.
The function E,(z) is entire. For the special cases where n = 1 and n = 2, we have

E((z)=¢€ and E,(z) = cosh(,/2).
Lemma 2.1 (/[11]). If f is continuous and n > 0, then SD,”GD,_"f(t) = f(1).

Lemma 2.2 ([11]). If n>0,r >0, ¢ € [—m, ], and A = re'?, then lim,_, o E,(—At") =0 for |¢| < %
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We now present some results related to the stability of fractional-order systems. Let {2 be an open subset of R”.
For « € (0, 1], we consider the initial value problem (IVP) consisting of an autonomous fractional-order system

EDIx(t) = g(x), x(ty) = xo, (2.1)

where g : 2 — R” is locally Lipschitz continuous in x.
Definition 2.4. A point x* is called an equilibrium of the system (2.1) if g(x*) = 0.

Lemma 2.3 ([3,19,41]). Let J(x*) denote the Jacobian matrix of the system (2.1) evaluated at an equilibrium
point x*, and let \;, i =1, ..., n, be the eigenvalues of J(x*). Then x* is locally asymptotically stable if and only
if largA)| > 5, i=1,...,n

To prove our stability results, we will use the following lemma, whose parts (a) and (b) are proved in [1, Lemma
1] and [48, Lemma 3.1], respectively.

Lemma 2.4. Assume that a € (0,1] and f € AC([a, 00), RY). For any t > a, we have

(a) 35D2 f2(1) < F(OSDE £ (1);
(b) CD* [f(t) —f — f*In %] < (1 _ %) DY f(t), where f* € RY.

Let V e C'(£2,R) and o € (0, 1]. The ath order Caputo derivative of V(x) along the solution x(¢) of the system
EDx(1) = g(x), t € [a, 00), is given by

dV dx
DV (x(t)) = DY === ).
DIV (x(@)) ; Ix 41

We will also need the following fractional version of the well-known LaSalle’s invariance principle.

Lemma 2.5 ([24]). Assume that D is a bounded closed set in R" and that every solution of fo‘x(t) = g(x),
t € [a, 00), starting from a point in D, remains in D for all time t. Assume, further, that V.e C'(D, R) such that
aCDf‘V(x(t)) < 0, where x(t) is any solution of the system aCDf‘x(t) =gx). Let E={xeD: aCDf‘V = 0}, and let
M be the largest invariant subset of E. Then every solution x(t) of SD%x(t) = g(x), t € [a, o0), originating in D
tends to M as t — oo. In particular, if M = {0}, x(t) > 0 as t — oo.

3. Model formulation

3.1. An integer order SIR model

Many epidemiological models have been developed to better understand the transmission pattern of infectious
diseases [38]. A simple and well-studied model, introduced by Kermack and McKendrick in [27], is the SIR
model. In this model, derivatives of integer order are utilized and the entire population N is divided into three
compartments or classes: susceptible (S), infected (I), and recovered/immune (R). The flows of people between
the three compartments are modeled. The applications of epidemiological models to non-disease situations have
been previously proposed in [5,7,8,51] to model the spread of less tangible notions such as ideas. In [8] the authors
remarked that ideas, akin to disease, spread infectiously between people before eventually dying out. Communicative
contacts between different people spread ideas. People ultimately lose interest in the idea and no longer manifest
it, which can be regarded as the gain of immunity to the idea. By drawing an analogy to the dynamics that govern
the spread of an infectious disease, the authors propose the infectious recovery SIR model

1S

§ =
518 nhiR

p=22 R 3.1)
N N
nIR
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Table 1
Descriptions of the model parameters.
Notations Meaning Units
S Potential OSN new users Number of people
1 OSN current users Number of people
R Population opposed to OSN use Number of people
N The summation of S, 7, and R Number of people
A Recruitment/migration rate of new users into the population Number of people per unit of time
) Transmission rate at which potential users join OSN [Number of people xunit of time] ™!
n OSN infectious abandonment rate as a result of interactions [Number of people xunit of time]~!
with people who opposed to OSN use
n Per capita natural death rate [Unit of time]~!
v OSN noninfectious abandonment rate without being [Unit of time]™!

influenced by other users who opposed to OSN use

l

A . 5 Population
__ A~ | Potential OSN OSN Users (1) N Opposed to
Users (S) OSNs (R)
B H 1

Fig. 1. Conceptual illustration of the OSN dynamics in the model (3.2).

to analyze user adoption and abandonment of OSNs, where, as noted above, adoption is analogous to infection and
abandonment is analogous to recovery. The OSN dynamical interpretation of the parameters in the model (3.1) can
be found in Table 1.

The model (3.1) utilizes the standard incidence and assumes that the total population is a constant and that contact
between a recovered and an infected member of the population is required for recovery. However, in practice the
number of total users may not be a constant as a result of population migration or death. Users may quit OSNs
because of other reasons without being influenced by recovered users. The contacts among users may increase with
an increase in the total population. To incorporate these considerations, the modified version of the traditional SIR
model with demography

S'=A—-3851—pus,
I'"=68SI —nIR — (u+v)I, (3.2)
R =nIR + vl — uR,

can be used, where the mass action incidence is utilized. The descriptions of the model parameters are provided
in Table 1. Here two kinds of abandonment dynamics are considered in the model (3.2). Its flowchart is shown in
Fig. 1.

For models (3.1) and (3.2), the state at each time does not depend on the previous history of the systems. They
are memoryless, so-called Markovian, processes. However, the epidemic processes evolution and control in human
societies cannot be considered without any memory effect. When an idea spreads within a human population, the
experience or knowledge of individuals about that idea should affect their responses. As noted above, fractional
differential equations are valuable tools to model the dynamics of OSNs. It has been observed in [4,11,12,17] that
models based on fractional-order derivatives can provide better agreement between measured and simulated data
than classical models based on integer order derivatives.



630 J.R. Graef, L. Kong, A. Ledoan et al. / Mathematics and Computers in Simulation 178 (2020) 625-645

3.2. A fractional-order SIR model

We wish to convert the model (3.2) into a fractional-order problem that will incorporate memory effects into
the system. One way to approach this might seem to be to just replace the derivatives on the left hand sides of the
equations in the system (3.2) by the corresponding Caputo fractional derivatives. This results in the model

§D¥S = A —3§SI — S,

DY =881 —nIR — (u+v)I, (3.3)

SDYR=nIR+vI — uR.
However, this model is not consistent. A simple dimensional analysis shows that the expressions on the left hand
of (3.3) have the dimension of (time)™*, and all right hand sides of (3.3) have the dimension of (time)~'. Such
flaws have been observed in the papers [12,15,45]. These papers also discussed how to fix the dimension mismatch;
see [12, p. 616] [1], [15, p. 204], and [45, pp. 513-515].

To construct a dimensionally consistent model, we assume that the initial populations of the three compartments
satisfy the initial conditions (ICs)

SO0)=3S8y, I1(0)=1,, and R(0)= Ry, (3.4)
where Sy, Iy, and R are nonnegative real numbers. The model (3.2) is equivalent to the integral form
S(t) = So + [y [A —85(s)I(s) — uS(s)1ds,
1(t) =1y + fot [6S(s)I(s) — nI(s)R(s) — (u + v)I(s)]ds, 3.5)
R(t) = Ro + [y NI (s)R(s) + vI(s) — uR(s)]ds.
In order to include the influence of memory effects, we rewrite (3.5) in terms of time-dependent integrals
Si) =Sy + fol M(t,s)[A —8S(s)I(s) — uS(s)]ds,

I(t) = Iy + f(f Mz, s)[8S()I(s) —nl(s)R(s) — (n +v)I(s)]ds, (3.6)
R(t) = Ry + [y M(t,5) [nI(s)R(s) + vI(s) — wR(s)]ds,

where M (¢, s) plays the role of a time-dependent memory kernel and is equal to a delta function (¢, s) in a classical
Markov process. To incorporate long-term memory effects, a proper choice of M can be a power-law correlation
function [2,44] which exhibits a slow decay such that the state of the system at early times also contributes to the
evolution of the system. Thus, we select

1
M(t,s) = —(t—s)*", ae(,1l
(t,s) F(a)( 5) a € (0,1]
Substituting this choice for M into (3.6) and using Definition 2.1, we obtain

S() = So = oD, “[A =85S (1) — nS®)],
I(t) = Io = oD [8S()1(1) — nI()R(t) — (u + ) (1)], (3.7)
R(t) = Ro = oD [nI(t)R(t) + vI(1) — uR()].
Once again, the dimensions of the system (3.7) are technically somewhat inconsistent. For each equation,
the left hand side has the dimension of number of people, and the right hand side has the dimension of

number of people x [unit of time]*~!. Thus, we need to modify the right-hand sides to make the dimensions match.
One straightforward way of doing this is to write (3.7) as follows:

S(1) = So = oD, * [A* = B*SI (1) — u*S(1)],
1(t) = Iy = oD, [B*SI(1) — y*I(OR(1) — (u* +v)I(1)], (3.8)
R(t) = Ro = oD [y*I(t)R(2) + v¥I (1) — n*R(1)],

where 1 and v are given in Table 1 and the dynamical interpretation of A, 8, and y is given in Table 2.
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Table 2

Dynamical interpretation of A, 8, and y.
Notations Meaning Units
A Recruitment/migration rate of new users into the population [Number of people]é x [unit of time]~!
B Transmission rate at which potential users join OSN [Number of people]’é X [unit of time]™*
y OSN infectious abandonment rate as a result of interactions [Number of peop]e]’é X [unit of time] ™%

with people who opposed to OSN use

Now, applying a fractional Caputo derivative of order o on both sides of each equation in (3.8) and Lemma 2.1,
we derive the fractional-order model
DS =AY — BoST — peS,
§DY1 = ST — y*IR — (u* + v¥)I, (3.9)
SDYR = y*IR +v*I — u*R.
Both sides of the equations in (3.9) have the same dimensions. Here and henceforth, we focus our attention on this
model.

When introducing a convolution integral with a power-law memory kernel, fractional derivatives are useful to
describe memory effects in the dynamics of OSNs. The decaying rate of the memory kernel M depends on the value
of a. A smaller value of « corresponds to more slowly decaying time-correlation functions. In [17] a justification
of the fractional-order derivative is given, and it is shown that the fractional order o can be interpreted as an index
of memory of the system. Since OCD;" y() — y'(t) as @« — 17, the model (3.9) tends toward the memoryless model
(3.2) as @« — 1. Thus, the model (3.2) can be regarded as a special case of the model (3.9). For simplicity, the
same memory contributions (i.e., the same value of «) are assumed in the model (3.2) for different states of S, I,
and R. When having different memory contributions, the technique introduced in [16] can be employed to obtain a
fractionalization of the model (3.2). More complicated kernel functions could be investigated to take into account
different time scales. Related ideas on fractionalization of integer order models can be found in [15,16,37,44].

4. Existence and uniqueness of nonnegative solutions
We begin with an existence and invariance result for our model.

Theorem 4.1. The model (3.9), with the ICs (3.4), has a unique nonnegative solution for every (Sy, Iy, Ry) € Ri_.
Moreover, the compact set

A(x
9={(S,I,R)6R3+:0§S+I+R§E} (4.1

is a positively invariant set and attracts all solutions of the model (3.9) initiating in Ri.

Proof. Let
S() So
X®)=\| 1@ |, Xo=| L |,
R([) RQ
and
fiX(@®) A% — BAST — u®sS
fX@)=1 LX@) | =| B*SI—y“IR —(u*+v")I
f3(X(2)) y*IR + vl — u*R

The mod.el.(3..9), with the ICs (3.4), can be written as ng‘X = f(X) with X(0) = Xy. The Jacobian matrix
= % of f is continuous on R3. By [29, Remark 1.2.1], f is locally Lipschitz on R3. By [33, Remark
3.8], the model (3.9), with the ICs (3.4), has a unique solution for every (Sy, Iy, Ro) € ]Ri.

We show that, for every (Sy, Iy, Ro) € Ri, the unique solution (S, I, R) of model (3.9), with the ICs (3.4), is

nonnegative. We deny and distinguish seven cases.
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Case (a): There exist tg, t7, tg € (0, 00) such that

S(ts) <0 and S(r) >0 forall 7 € [0, t5), 4.2)
I(t;)) <0and I(t) >0 forall z € [0, 1), 4.3)
R(tg) <0 and R(r) > 0 for all ¢ € [0, tg). (4.4)

Case (b): S(t) is nonnegative on R, and (4.3) and (4.4) hold.

Case (c): 1(t) is nonnegative on R, and (4.2) and (4.4) hold.

Case (d): R(t) is nonnegative on R, and (4.2) and (4.3) hold.

Case (e): S(t), 1(t) are nonnegative on R and (4.4) holds.

Case (f): S(t), R(t) are nonnegative on R, and (4.3) holds.

Case (g): 1(t), R(t) are nonnegative on R, and (4.2) holds.

Below, we prove by contradiction that none of these cases can occur. Assume that Case (a) holds. There are
three possibilities here.

Subcase (al): ts = min{ts, t;, tg}. From the first equation in (3.9),

0DfS = —(B*1 4+ n*)S = —k1 S,
where k1 = B* max;eo,1,1 1(t) + u* > 0. Thus,
S(t) > S(0)Ey(—kt*) for all ¢ € [0, t5].

Hence, S(ts) > 0. This contradicts the assumption that S(zs) < O.
Subcase (a2): t; = min{tg, t;, tg}. From the second equation in (3.9),

oDI T = —(y R+ p + v = =i,
where ky = y® max;epo,,) R(#) + u* + v¥ > 0. Thus,
I(t) > I(0)E,(—k>t*) for all ¢ € [0, t;].

Hence, 1(#;) > 0. This contradicts the assumption that /(#;) < O.
Subcase (a3): tg = min{ts, t;, tg}. From the third equation in (3.9),

SDYR > —p®R  for all t € [0, tz].
Thus,
R(t) > R(0)E(—p*t*) for all ¢ € [0, tx].

Hence, R(tg) > 0. This contradicts the assumption R(tg) < 0.

Combining Subcases (al)—(a3), we conclude that Case (a) cannot occur.

Assume now that Case (b) holds. Proceeding similarly as in Case (a) and considering the subcases t; =
min{t;, tg} and tg = min{z;, 1z}, we can show that Case (b) cannot occur either. Similar arguments can be used to
show that Cases (c)—(g) cannot occur. Since none of Cases (a)—(g) can occur, we conclude that the unique solution
(S, 1, R) is nonnegative.

Next, we prove that the set {2, defined by (4.1), is positively invariant. By adding the equations in (3.9), we
obtain

SDX(S+1+R) =A% —u*(S+1+R);
ie.,
SDYN = A% — u*N.
In view of [11, Remark 7.1] (or [28, Proposition 5.10]), it follows that
t
N@) = NO)Ey(—p%) + A% / $7 B (— 1) ds
0

A A
- <——a + N(O)) Eo(—p1") + —. (4.5)
0 0
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Here we note that E,(—u*t*) > 0. If N(0) < ﬁ—z, we have

o

S@)+ 1)+ R(t) = N@) < %

Thus, {2 is positively invariant.

Finally, we show that (2 attracts all solutions of the model (3.9) initiating in Ri. By Lemma 2.2, lim;_, » E,
(—pu*t*) = 0. From (4.5), we see that lim;_, o, N(t) = ﬁ—z Hence, {2 attracts all solutions of the model (3.9)
initiating in Ri. This completes the proof of the theorem. [J

5. Equilibria and stability analysis
5.1. Stability of user-free equilibrium

It is clear that the model (3.9) has a unique user-free equilibrium (which is equivalent to the disease-free
equilibrium in epidemiological models)

Eo = (ﬁ,o, 0). (5.1)
e
We evaluate the associated Jacobian of this model at Ej, which takes the form
—peI — p® —pS 0
J = Bl BES — y*R — (u* +v%) -yl . 5.2)
0 y*R 4+ " yoI — p”
At E,, the Jacobian
e R
JE)=| 0 B —urtv) 0
0 ve —p®
has the eigenvalues
‘B(MAC{

M=A=—u% and Az;= —(u* +v).

o

The eigenvalues A; and X, are obviously negative, and A3 is negative if and only if
ﬁa A(X
Ry =———— <1
ue(u® + v®)
The scalar R is a dimensionless threshold quantity. When o = 1, R is usually referred to as the reproduction
number of the network, which measures the number of new secondary OSN users one infectious OSN user will

produce in a population consisting only of potential OSN users.
From the above analysis and Lemma 2.3, the following result is immediate.

(5.3)

Theorem 5.1.  The user-free equilibrium Eq is locally asymptotically stable if R} < 1 and unstable if Rj > 1.

Theorem 5.1 shows that if the initial values (Sy, Iy, Ry) € Ri are sufficiently close to Ej, the unique solution
of the model (3.9), with the ICs (3.4), converges to E,. However, no explicit region of attraction is given here. By
using the Lyapunov function method, we next obtain an explicit region of attraction.

Theorem 5.2. Assume that R§ < 1. The compact set 2, defined by (4.1), is a region of attraction of the user-free
equilibrium E\.

Proof. We need to show that, for every (S, Iy, Ro) € {2, the unique solution (S, I, R) of the model (3.9), with the
ICs (3.4), converges to Ej. Define the Lyapunov function Vy(¢) by

1, 1 A :
Vo) = ="+ (S——=+1+R) .
2 2 u
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By Theorem 4.1, the set {2 is positively invariant. Since (Sy, Iy, Ryp) € {2, we have § < ﬁ—z From Lemma 2.4(a)
and (3.9), it follows that
A A%
6Dy V(1) < 1(DYT) + (S—W—i-]—i-R)ng‘ <S— ﬁ—i-l—i-R)

o

A
=1[,3aSI—VaIR—(M°’+v°‘)I]+<S—ﬁ—i-l—i-R) [A% — u*(S+ 1+ R)]

<12 ﬂaAa_(a+a _ O(IZR_ o S_ﬁ I R2
< " uw vY) y 2 Ma+ +

o

a o 2( lgaAvt ) a2 a< A )2
=W +v)I'|———————— 1) —y*I*R—p*|(S——+I+R
Ma(“/a‘i‘va) l‘l/a

A 2
=" +v)I*(R§ — 1) — y*I’R — pu° (S——+I+R> .
MO{
Since R} < 1, we have §D* V(1) < 0. Moreover, {D*Vy(t) = 0 if and only if S+ R = 2—3 and I = 0; i.e.,

E={S,IR) : ng‘Vo(t)=O}={(S,O,R) : S+R=A—z}.
W

By Lemma 2.5, every solution of model (3.9) initiating in {2 tend to the largest invariant set in E. Thus,
lim;_, o I(t) = 0. For I = 0, from (3.9) we obtain

{ §DES = A% — oS,
SDYR = —u“R.
In a manner similar to obtaining (4.5), we find that the solution of (5.4) is
{ S = (=45 + 50)) Ea(=p1) + 45,
R(1) = R(0)Eq(—pn*1%).
By Lemma 2.2, lim;_, », S(¢) = ﬁ—z and lim,_, o, R(¢) = 0. Thus, (S, I, R) — Ej as t — oo. This completes the
proof of the theorem. [

(5.4)

5.2. Stability of user-prevailing equilibrium

We first show the existence of a unique user-prevailing equilibrium of the model (3.9) if Rj > 1. Here the
user-prevailing equilibrium is the analogue of the endemic equilibrium in epidemiological models.

Theorem 5.3. Assume that Rf > 1. The model (3.9) has a unique user-prevailing equilibrium E* = (S*, I'*, R¥),
where

AC{ OtR*
= =t (5-5)
ﬂal* _l’_ Ma J/(YR* + va
and R* is the unique positive solution of the quadratic equation in R given by
AP+ Yy R+ 1B + y o (u +v)
oo a fayN.,a o fo o 1 (56)
+ (u*v* — BYA*)y¥IR + B* A%y F_l =0.
0

Remark 5.1.  Since Rj > 1, (5.6) has a negative constant term and a positive discriminant. Thus, it has a unique
positive solution R*.

Proof. From Definition 2.4, a user-prevailing equilibrium of the model (3.9) satisfies the equations
0= A% — B*ST — u®s,
0=p8*SI — y*IR — (u* +v9)I, (5.7)
0=y*IR+v*I — u*R.



J.R. Graef, L. Kong, A. Ledoan et al. / Mathematics and Computers in Simulation 178 (2020) 625-645 635

Using the first and the equations in (5.7), we have

A% *“R
S=—-  and 1=-F2%_ (5.8)
IBaI + Ma yotR + o
from which
AO[ OtR + v(X AO[
“u®*R « = a(éi_}_ a)R)_’_ apa’ (5.9
ST R T I 2 14 M
Adding the last two equations in (5.7) yields
BEST — u*I = u*R. (5.10)

We use (5.8) and (5.9) to eliminate S and / and obtain
ﬂa(yaR + va)AaMaR B /’LzaR
[ (B* +y IR + p*ve](y*R +v*)  y*R +v*
Since we are looking for user-prevailing equilibria, I # 0. By the second equation in (5.8), R # 0. Thus, we can
divide the above equation by u*R to obtain

ﬁ(){(yﬂtR _"_ va)AO{ _ MO{ _
(n(B* + YR + n*v*I(y*R +v*)  y“R+v
and (5.6) follows. By Remark 5.1, (5.6) has a unique positive solution R*. Once R* is known, we can use the

second equation in (5.8) to get a positive /* and the first equation in (5.8) to obtain a positive S*; i.e., we have
(5.5). This completes the proof of the theorem. [

(02

Remark 5.2.  We present an alternative way to show the existence of the unique user-prevailing equilibrium
E* = (S*, I'*, R*) of (3.9). As in the proof of Theorem 5.1, a user-prevailing equilibrium of (3.9) satisfies (5.7).
Moreover, (5.8) and (5.10) hold. Using the third equation in (5.7), we have

vl
R=— . 5.1D)
ue —yel
From (5.11), we see that 0 < I < ’;—Z This is because R will be negative if [ > ’;—Z Substituting the first equation
in (5.8) and (5.11) into (5.10), we obtain
BUA*T wy VI
ﬁa1+ua Ma_yal'
As we are searching for user-prevailing equilibria, I # 0. Then dividing the above equation by I yields
aAot oL,o
p =t (5.12)

S l’l/ — .
ﬂal + Mox Ma _ ya]

Motivated by (5.12), we introduce the function f defined by

ﬂa/lol Mava "

)= - —u".
,BQI-I-,LLO‘ Ma—)/al

Then f(I) — —o0 as [ — (*;—)7

aAOt aAOt_ o o o
Fy =2 e e SR REEVD e e s,
w W
and
2(1/101 o0, o
fiiay=- P 5= pry 5 <0 for0<1 <™
B+ p)y> (u* —y*I) y*

Thus, there exists a unique /* € (0, ‘;—Z) such that f(I*) = 0; i.e., (5.12) has a unique positive solution 7*. Using
the first equation in (5.8) and (5.11), we can compute S* and R*.
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We now study the stability of the user-prevailing equilibrium E* = (S*, I'*, R¥).
Theorem 5.4. The user-prevailing equilibrium E* = (S*, I'*, R*) is globally asymptotically stable.

Proof. Let #(x) =x — 1 —Inx, x > 0. Define the Lyapunov function V,(¢) by
Vi) = Fi(t) + Fx(t) + F5(1) + Fu(t),
where

F=sao(2 Bo=r19o(L By = LR (R
0= s‘) 20 = (T) 0= R (R—)

S+I1+R
S* + I* + R*

Below, we evaluate the «a-th order Caputo derivatives of F;, i = 1, 2, 3, 4, by applying Lemma 2.4(b). From the
first equation in (5.7), we have

AO( — ,BO[S*I* +/¢LD[S*

and

Ft)=(S*+1*+R") <

Using this and the first equation in (3.9), we obtain

S —§*
SD*Fy(t) < S §D*s

S —85*

== (A% = B*ST — u*S)
S — S

= [1*(S* = 8) + B*(S*I* — SI)]
S-S oy % o R QX o *

= — [1%(S* = 8) + BI*(S* — S) + B*SU* — D]

o« o Q)2
— _(M +ﬂ IS)(S S ) +‘Bo¢(S _ S*)(I* _ I) (513)

In view of the second equation in (5.7), we have

Ma+va=ﬂas*_yaR*-

By the second equation in (3.9), we obtain
Cra I - I*C o
oDy Fy(t) < TOD’ 1
I -1

[B*ST — y*IR — (u* +v)I]

I—-1TI*
=7 [B*ST — y“IR — (B*S™ — y*R)I]
-1 a * a *
=—7 [BI(S — §7) —y"I(R — RY)]
= BS — SHU —I") — y*“(I — I")(R — R"). (5.14)
From the third equation in (5.7), we see that
o O(I* val*
uo=vy + R

This, together with the third equation in (3.9), implies that
y*R* R —R*
YeR*+v* R
y*R* R—R*
= yDt R* + vC{ R

SDYFs(t) < SDIR

(y*IR +v*I — u*R)
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“R* R—R* “I*R
-_r y“IR—}—v"‘I—y“I*R—v
YYR*+1v¢ R R*

“R* R_R* I I
-_r [y“Ra-F)+v“R<—-—-—>]

y*R* +v¢ R R R*
_ Y*R*(R—R") “(1 - 1%+ V[I(R*— R)+ R(I — I')]
- YER* 4 e 4 RR*
Ay (R — R* 2
— (I — YR — Ry — LR =R (5.15)

(y*R* +v¥)R
Adding the equations in (5.7) together yields
A% = pu*(S* + I* + RY).
Using this equation and (3.9), we obtain
S+I+R—(S+I"+R"

oD Fy(r) < Yepe(s + 1+ R)

S+I+R
_E=8+Ud-I"+R-R) ,
= STTR (A% — u*( S+ 1 + R)]
_(S—F%HI—F%HR—RﬂX
- S+I+R

WS =8+ U*— 1)+ (R* — R)]
pel(S — 89+ U —I*) 4+ (R — RH]
B S+I1+R '
From (5.13)—(5.16), it follows that

DI Vi(0) < 5D Fy(t) + GDf Fa(t) + G Dff F(1) + G Df Fa(1)
(u* + BI")(S — §*  y“v*I(R — R*)?
B S © (yR*+v9)R
pel(S — 8+ U —I')+ (R — R
B S+I1+R '
Thus, {D?Vi(t) < 0 and §D2Vi(t) = 0 if and only if S = S*, I = I*, and R = R*. So the largest invariant set of
{(S,I,R) : ng‘ Vi(t) = 0} is the singleton {E*}. From Theorem 4.1, we note that the set {2 attracts all solutions

of model (3.9) initiating in Ri By Lemma 2.5, E* is global asymptotically stable. This completes the proof of the
theorem. [J

(5.16)

Remark 5.3. From (5.3), we see that the threshold quantity Rj does not depend on the infectious abandonment
rate y. The analysis in this section shows that y has no contribution to the stability of E, and E*. However, y has
an affect the location of E* in Ri. This is evident in Theorem 5.3 and the simulations in the next section.

6. Numerical simulations

An Adams-type predictor—corrector method [13,14,18] is applied to obtain a numerical solution of the model
(3.9). The reader is referred to [13] for the details of the algorithm. The values of the parameters in the model (3.9)
and the initial values are chosen for illustration purposes.

6.1. User-free equilibrium

We first consider the user-free equilibrium E( for model (3.9) with the parameters given in Table 3.

From (5.1) and (5.3), it follows that Ey =~ (0.1395,0,0) and Rf < 1. By Theorem 5.1, Eg is locally
asymptotically stable. In view of Theorem 5.2, the numerical simulations are carried out using initial points from
{2 defined by (4.1). The initial points are given in Table 4. The trajectories are shown in Fig. 2. The numerical
simulations show that all the trajectories converge to Ey. This is consistent with Theorems 5.1 and 5.2.
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Table 3
Parameters for the user-free equilibrium Ej.
Parameter Value Parameter Value
o 0.6 B 0.1
y 0.03 A 0.03
n 0.8 v 0.4
Table 4
List of initial points (So, /o, Ro).
No. So I() RO
1 0.0002 0.0022 0.0019
2 0.1302 0.0022 0.0019
3 0.0002 0.0205 0.0019
4 0.1302 0.0205 0.0019
5 0.0002 0.0022 0.0131
6 0.1302 0.0022 0.0131
7 0.0002 0.0205 0.0131
8 0.1302 0.0205 0.0131
Table 5
Parameters for the endemic equilibrium E*.
Parameter Value Parameter Value
o 0.6 B 0.1
y 0.03 A 0.07
m 0.008 v 0.4
/
[
I
1
0.015 |,
! P
| e
0.01 1/ P
¥ <
o« H /7
4
0.005 Ih I /
W
v
0 \ 0.025

Fig. 2. Locally asymptotically stability of Ej.

6.2. User-prevailing equilibrium

We now consider the model (3.9) with the parameters indicated in Table 5. From (5.3)—(5.6), E* ~ (2.8755,
0.0611, 0.7380) and R§ > 1. By Theorem 5.4, E* is globally asymptotically stable. The numerical simulations are
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Table 6

List of initial points (So, o, Ro).
No. So Iy Ry
1 0.8 1 0.7
2 4 1 0.7
3 0.8 3 0.7
4 4 3 0.7
5 0.8 1 1.5
6 4 1 1.5
7 0.8 3 1.5
8 4 3 1.5

T —
5= o o ,/:—_——---~ \n\.\
,¢ -~ '\_\~ ~.

S ’ 4 0

Fig. 3. Globally asymptotically stability of E*.
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carried out based on the initial points indicated in Table 6. The trajectories are shown in Fig. 3. The numerical

simulations show that all the trajectories converge to E*. This is consistent with Theorem 5.4.

6.3. Dependence of parameters

We next investigate the impact of the parameters y and « on the solution while all other parameters are fixed.

6.3.1. Dependence on y

In view of (5.3), it is notable that Rf is independent of the noninfectious abandonment rate y. However, as
indicated above, y will impact the location of the user-prevailing equilibrium E* given by (5.5) and (5.6). To
illustrate this, the locations of E* with respect to various values of y, while other parameters are fixed as in Table 5,

are given in Fig. 4.

6.3.2. Dependence on o

Finally, we investigate the impact of index of memory « to the solution while other parameters are fixed. The
values of B, ¥, A, u, and v are given as in Table 5. The initial point is (0.8, 1, 0.7). The numerical simulations
are carried out for « = 0.4, 0.6, 0.8, 0.9, 0.95, and 1. When a = 1, the model (3.9) reduces to the first-order
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v =0.03
v =0.09
* v=0.27
% =081

¥ ¥

0.8
*
0.7
0.6 —
o 0.5 -
0.07
s 34 .57 oo
Fig. 4. Location of E* with respect to y.
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Fig. 5. Graph of S with respect to «.

ODE system (3.2). The solutions, S, I, R, are plotted in Figs. 5-7, respectively. The trajectories are plotted in
Fig. 8. These figures suggest that the dynamical behavior of the model (3.9) varies with respect to @ and that
different types of dynamical behaviors may be obtained by simply adjusting the value of «. This illustrates that
fractional differential equation models offer more degrees of freedom than the traditional integer order models and
thus modeling with fractional differential equations has more advantages than using the traditional integer order
models.
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Fig. 6. Graph of I with respect to «.
4 T T T T T T T
— = 0.4
a=0.6
: a=08 | |
35 — =09 |
a =0.95
a=1
0-5 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

t

Fig. 7. Graph of R with respect to «.

7. Case study: Fitting model to instagram data

In this section, we demonstrate the performance of model (3.9) by fitting it to the historical Instagram user data
given in [40]. Let {I (%), I(t), ..., I(tg)} represent the active Instagram users (observations) at times fo, ..., fg.
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@
1

Fig. 8. Trajectories of the model (3.9) with respect to «.

Table 7
Model fitting parameters.
Parameter Value Parameter Value
o 0.3359 B 1.8024¢—4
y 5.2713e—4 A 0.9812
% 1.1164e—5 v 3.1131e—12

Then the model parameters © := {A, «, B, ¥, i, v} are determined by minimizing

K 2
L) =Y o (16 ©) — [w))
i=0
where wy, ..., wg are pre-set weights and 7(¢; ©) denotes the solution / in model (3.9) subject to parameter set
©. Due to the fact that it is difficult to get real data for S and R, we simply let Ry = 0 and S; be the total internet
users at 7.

A total of 12 observations of the monthly active Instagram users between January 2013 and June 2018 are given
in [40]. The first 10 observations are used for parameter estimation. The parameter values are given in Table 7. Then
with these values, the model is used to predict the last two observations. The predicted values and the historical
data are given in Fig. 9. It is clear that the predicted values matches the real data very well.

8. Conclusion

The preceding discussion illustrates how fractional derivatives can be applied to the study of the OSN dynamics.
We have discussed the fractional-order SIR model (3.9), as a generalization of the traditional SIR model with
demography, to understand the user adoption and abandonment of OSNs. This model employs the Caputo fractional
derivative and incorporates infectious and noninfectious abandonment dynamics. We have established the existence
and uniqueness of nonnegative solutions and investigated the existence and stability of the model’s equilibria, with
the latter being achieved using the Jacobian matrix technique and the Lyapunov function method. More precisely,
when the threshold quantity Ry satisfies Rf < 1, the user-free equilibrium Ej is locally asymptotically stable.
This asserts that all the users will eventually lose interest in the OSN. Likewise, when R{ > 1, the user-prevailing
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Fig. 9. Model fitting for Instagram users from 2013-2018. The observations on the left-hand side of the dash line are used for model fitting.

equilibrium E* exists and is globally asymptotically stable. This means that the OSN always attracts the users’
interest and that the users will largely prevail. Thus, the OSN providers may use R{ to obtain some useful
information to gauge the performance of their networks. By (5.3), we see that R{ is increasing in the transmission
rate B and the migration rate /A, and decreasing in the natural death rate u and the noninfectious abandonment rate
v. An OSN provider can influence the values of 8, A, and v by taking necessary marketing strategies such as TV
advertisements and email marketing to increase people’s awareness of the network. This will very possibly increase
the values of B and A, and decrease the value of v, and consequently, the value of Ry will be increased. Moreover,
as illustrated in Section 7, our model can be used to predict the future users of an OSN.

In view of (5.3), it is interesting that Ry depends on all the parameters in the model except the infectious
abandonment rate y, which is not what one would expect. Our main results show that y does not affect the
stability of Ey and E*. However, y does alter where E* is positioned in R3, as is evident in (5.5) and (5.6).
Our numerical simulations, based on a variation of the Adams-type predictor—corrector method, confirm what we
observe theoretically. In fact, these simulations also show that the order o of the model influences the dynamics of
the S, I, R curves and the trajectories of the model.
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