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Abstract

In this paper, a discrete Markov chain model is developed to describe the inven-
tory at a bike share station. The uniqueness of solutions is first studied. Then the
model calibration is considered by investigating a constrained optimization prob-
lem. Numerical simulations involving real data are conducted to demonstrate the
model effectiveness as well.
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1 Introduction

Bike share systems have become more and more popular around the world. The reader
is referred to [3,8—10] and the references therein for a brief review of bike share history
as well as the development of bike sharing in USA. The rebalancing of bikes among bike
stations is an important solution to supplement the bikes or free the docks at a station,
and has been studied from different perspectives; see for example [5, 13, 14]. Clearly,
an accurate prediction of station inventory, i.e. the number of bikes at a station, will
significantly increase the efficiency of rebalancing. Motivated by this thought, we will
develop models to describe the changes in the inventory at a bike station.
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It is notable that differential equation (DE) models based on the mean-field method
have been developed to investigate the bike share problem, see for example [6,7,12,15].
Due to some technical reasons, those models considered the proportions of stations with
k bikes at time ¢ instead of the inventory at an individual station, see [15]. As a result,
those works focus on the macro trend of a bike share system, which is different from
our objective.

At the individual station level, Graef et al. [8] developed a type of deterministic
fractional DE model to study the inventory at individual stations. Those models were
further investigated in [16]. Since the outputs of the deterministic models should be
understood as the average inventory, it is difficult to exactly match the model outputs
with a sample path, i.e. the real data on a single day. To overcome this limitation, we
will view the station inventory as a stochastic process X and model it by a Markov
chain model. Due to the fact that almost all real datasets are discretely sampled, we
will directly consider the discrete Markov chain models so that it is easy to calibrate
the models with real data. In addition to the average inventory E(X ), our model will
also output the standard deviation o that allows us to calculate the confidence intervals
[E(X)—o0,E(X)+0]and [E(X)—20, E(X)+ 20]. Therefore, our models may return
more reasonable results than the deterministic models.

This paper is organized as follows: after this introduction, the discrete bike share
inventory model is developed in Section 2. The general model calibration methodology
is presented in Section 3. Numerical simulations are given in Section 4. The last section,
Section 5, contains a summary and a discussion of the future work.

2 Discrete Bike Share Inventory Model

In this section, we will develop a Markov chain model for the inventory at a bike share
station. Assume the maximum capacity at the station is /N and the number of bikes at
the station is described by a discrete stochastic process X. Hence the possible values of
X are [0, N]z, where [a, b]7 denotes the discrete interval {a, ..., b} for any integers a
and b with a < b. Our goal is to develop a model to predict the probability when X = z
at time ¢, denoted by p(z, t).

Inventory
X

AX = (Inflow — OQutflow)
Figure 2.1: Station inventory flowchart.
Assume the station inventory X is determined by two processes, the bike return (In-

flow) process and bike pickup (Outflow) process, see Figure 2.1. Then the net inventory
change A X is the difference of the inflow and the outflow. Let ¢, be the initial time of
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the model and At be a sufficiently small time step size such that for any ¢ > t,, the only
possible values of AX over [t,t + At] are {—1,0,1}. Then all the possible changes of
AX over [t,t + At] and the associated probabilities are listed in Table 2.1.

| AX | Probability |
1 | a(zx,t)At — the probability a bike is returned, a(N,t) =

—1 | d(x,t)At — the probability a bike is picked up, d(0,t) =

0 1 — (a(z,t) 4+ d(x,t)) At — otherwise.

0;
0;

Table 2.1: Possible changes of AX over [t,t + At].

Remark 2.1. Note that z = N implies the station is full. Hence it is impossible to return
a bike, i.e. a(N,-) = 0. Similarly, z = 0 implies the station is empty. Hence it is
impossible to rent a bike, i.e. d(0,-) = 0.

By Table 2.1 and the idea of the Chapman—Kolmogorov equation, we derive a dis-
crete nonhomogeneous Markov chain model defined by

p(0, tir1) =p(0,4:)[1 — a(0,2;) At] + p(1,1;)d(1, 1;) A, (2.1)

p(x, tiv1) =p(x, t;)[1 — (alz, t;) + d(x, ;) At] + p(x + 1, t;)d(x + 1, t;) At
+p(x—1,t)a(z —1,t)At, z=z=1,....,N—1, (2.2)

p(N,tir1) =p(N,t;)[1 — d(N,t;)At] + p(N — 1,t;)a(N — 1,t;) At, (2.3)

where t; = to +iAt,i =0,...,T — 1.
Assume the inventory at ¢y is xy. Then the initial condition for Model (2.1)—(2.3) is
p(x,to) = 0240, = €1[0,N]z 2.4)
with J, ., the Kronecker delta defined by

17 T = Zo,
61’,x0 = .
0, otherwise.
Let P(t;) = (p(0,t;),...,p(N,t;))" € RV be a (N + 1) dimensional column vector
with ()T being the transpose. Then (2.1)—(2.4) can be written as the vector form
P(ti1) = A(t)P(t;), i=0,...,T—1, (2.5)
P(to) = (p(0,t0), ..., p(N,t0))" = (1,,(0),..., 1, (N))T, (2.6)
where A(t;) = [ammn(ti)] € M(n+1)x(v+1) is a (N 4 1) x (N + 1) tridiagonal matrix
defined by
1 — (a(m,t;) +d(m,t;))At, m=mn, m=0,...,N,
d(n,t;)At, = 1, m=0...,N—1,
’ a(n,t;)At, n=m-—1,m=1,..., N,
0, otherwise.
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It is clear that Model (2.5), (2.6) (or (2.1)—(2.4)) is a discrete linear time-variant system.
Some useful results of Model (2.5), (2.6) are given as follows.

Theorem 2.2. Assume a(x,t;) > 0 and d(x,t;) > 0 for any v € [0,N]z and i €
0,7 — 1]z. Then

(a) Model (2.5), (2.6) has a unique solution defined by

(b) Assume that At is sufficiently small such that for any x € [0, Nz and i € [0,T —
1z, a(z,t;)At € [0,1], d(z,t;)At € [0,1], and (a(x,t;) + d(z,t;))At € [0, 1].
Let p be the solution of (2.1)~(2.4). Then we have p(x,t;) € [0,1], z € [0, N]z,

N

ande(x,ti) =1i=1,...,T.

Proof. Part (a) is well-known, see for example [11, Theorem 4.1].
Part (b) can be proven by 1nduct10n By (2.1)-(2.4), it is easy to verify p(z,t;) > 0,

z N]z, and Zp x,ty) = Zp x,tg) = 1. Assume for any i € [0,7 — 1]z,
=0

p(x,t;) > 0,z € [0, N]z, and ZP(%W = 1. Then by (2.1)~(2.3), p(z,ti+1) > 0,
=0

N
z € [0, Nz and Y p(a.tip) = Y pla,t;) = 1. =

=0

Remark 2.3. Theorem 2.2 ensures that when the step size At is sufficiently small, the
solution of Model (2.5), (2.6) will always be a probability mass function defined on
[0, N]z. Therefore, Model (2.5), (2.6) defines a discrete nonhomogeneous Markov chain
model.

3 Model Calibration

It is obvious that inflow and outflow probability functions a and d in Table 2.1 play a
crucial role in Model (2.5), (2.6). In this section, we will explore various forms of a and
d and examine the model performance by calibrating the model with real data.
Throughout this section, we assume that the inflow probability function a is propor-
tional to the normalized average inflow function a(t) and the outflow probability func-
tion d is proportional to the normalized average outflow function d( ). Both @ and d can
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be aggregated from historical data published online; see for example [1,2]. Therefore,
we let a and d be defined by

1 0)a =0,...,N—1
a(:c,t; @) _ {51@, @)CL(t)? i:(])\; ) ; (31)

and

d(z,t;0) = {0 (3.2)

where u; and usy are two non-negative functions determined by both time ¢ and a pa-
rameter vector © = (04, ...,0,) € R". In the sequel, we will use a(-; ©), d(-; ©) etc. to
emphasize that the functions rely on ©. For instance,

We will calibrate Model (3.3), (2.6) with real data by adjusting ©. We always assume
that the station inventory is observed at ¢ty and ¢7. Additionally, let K be a finite subset
of [1,T — 1]z that the station inventory are observed at {t; | i € K}. Let {Y'(¢;) | i €
K U {ty,tr}} be the average inventory observation. Define L : R" — R by

L(©) = Z Q; <Z xp(z,t;) — Y(ti)> + ar (Z xp(z,tr) — Y(tT)>

iEKU{to} =0

+ ar1f(0), (3.4)

where {«;} are preset positive weights and f : R” — R is a continuous and coercive
function, i.e.

lim f(O) = occ. (3.5)

©]| =00

Then the model calibration can be conducted by finding a © € R" that minimizes the
objective function L(©) subject to the constraint (3.3), (2.6).

Remark 3.1. It is clear that all the norms in R" are equivalent since R" is a finite dimen-
sional space. Without loss of generality, the Euclidean norm is chosen in (3.5). Other
norms can be used as well.

We first consider the existence of the minimum point of L.

Theorem 3.2. Let L be defined by (3.4). Assume functions a and d defined by (3.1) and

(3.2) are continuous with respect to ©, and f is a continuous and coercive function.
Then there exists a ©* € R" that minimizes L(©) subject to the constraint (3.3), (2.6).
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Proof. Let {©,} C R" be a minimizing sequence of L, i.e.
lim L(©,) = @12@ L(O).

n—oo

Since f is coercive and

Y w (Z apla,t;) — Y(ti)> +ar (Z ap(a, tr) — Y(tﬂ) > 0,

ieKU{to} z=0
L is coercive as well. Hence {©,,} is bounded. Thus there exist ©* € R" and a subse-
quence {O,,} C {©,} with ©,, — ©" as n" — oo. Therefore,
lim L(©,/) = L(O*) = inf L(O).

n/—o0 OcR"

The proof is complete. [

Remark 3.3. (a) The involvement of the coercive function f in (3.4) serves two purposes:
(i) it is needed in the proof of Theorem 3.2 to guarantee the existence of the minimum
point; and (i1) it is used to control certain properties, e.g. the magnitudes, of the inflow
and outflow probabilities.

(b) In practice, the coefficient a1 in (3.4) may be much smaller than «;, 1 =
O, o, O

The necessary conditions of the minimum point can also be studied by the idea given
in [4, Section 2.2].

Theorem 3.4. Let a, ,(t;0) be defined by (2.7), (x,y) € [0,N]z x [0,N]z. As-
sume the functions f and a, , are differentiable with respect to 0y, k = 1,...,r. Let
© € R" be a minimum point of L defined by (3.4) subject to (3.3), (2.6), P(t;) =
(p(0,t:),...,p(N,t:))T be the solution of (3.3), (2.6) respect to ©, and

IAt) = Nolty), ., An(t) RV i=1,...,T}

be a multiplier sequence. Then P, )\, and © must simultaneously satisfy (3.3), (2.6),

Ae(t7) = 2z (Z xp(z,tr) — Y(tT)> , (3.6)

=0

N

Aa(ti) =) Nj(tip1)aja(ti; ©) + 2042 [pr:ct Y (t)]|, (3.7)
§=0

r=0,....,N,v=1,..., T —1,

and
T-1 N N P
aTH@Gk + ZZM i+1)p(Y, ti )80kaxy(t“®) kE=1,...,r.

s
Il
o
8
Il
=)
<
Il
=)
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Proof. This result is proven by the Lagrange multiplier method. Let ¢ be defined by

O(pAO)= > (Z ap(x,t;) — Y(@) +ar (Z ap(x, tr) — Y(tT)>

ieKU{to} =0

T-1 N N
+ara f(O) + Y ) Aaltipn) | D any (1 O)p(y, ) — pla, ti-i-l)] :
=0 =0 y=0

Then the necessary conditions can be obtained by setting the partial derivatives of @
with respect to all the components of p, A, and © to 0. We omit the details. [l

4 Numerical Simulation

In this section, we will explore three types of functions {u;, us} and apply the method-
ology developed in Section 3 to calibrate Model (3.3), (2.6).

4.1 Data Description and Processing

Bike station data from Capital Bikeshare Bike [1] in Washington DC are used in our
experiments. We collected data from a bike station between 10 August 2019 and 1
December 2019. The original data was roughly sampled at 1 record every minute, but
at times there could be a delay in the data recording. To reduce any issue with data
processing, the data were bucketed in half hour buckets and the average values (the
return counts, rental counts, and bikes counts at each bike station) of that time period
were taken. To ensure consistency, the inventory, return counts (inflow), and the pickup
counts (outflow) are trimmed such that the start and end times are consistent. Then the
average inventory {Y (¢;) }, normalized average inflow {a(¢;)}, and normalized average
outflow {d(t;)} are calculated, i = 0, ..., 47.

4.2 Choice of Inflow/Outflow Probability Functions

We will consider three types of functions: polynomials, step functions, and piecewise
linear functions.

(1) Polynomials of degree 6. In this case, © = (0y,...,014) € R™. Let uy, us, and
f(©) be defined by

6 6
ur(t; ©) = Z O, ua(t;0) = Z 05t
1=0 1=0

and
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(2) Step functions. In this case, © = (0y,...,0y) € R, Let uy, uy, and f(O©) be

defined by
O, to<t<t, Ous, to <t <ty
Oy, t1 <t <ty Or9, t1 <1<ty
w(t0) =" T o) = T
Os7, tag <t < tyr, Ogs, tas <t < tyy,
and f(© Z 0z
(3) Piecewise linear functions. In this case, © = (64,...,09) € R%. Let uy, us, and

f(©) be defined by

Oiva — 0 .
U1<t, @) = 9i+1 + H(t — tz), t e [tiati+1]a 1=20,...,46,
i+ [

0;v50 — 0;
U (t;0) = 0449 + M(

and f(© Z 0z.

Then the model (3.3), (2.6) is calibrated by solving the constrained optimization prob-
lem (3.4), (3.3), (2.6) with respect to these three types of functions. Based on the cali-
brated model solutions, the mean

t—tz>, t e [ti;ti+1]a 1=20,...,46,
tiv1 — 1

and the standard deviation

o(t;) = prxt (Zmpxt)

are calculated, 7 = 1,...,7. Then the average historical inventory data and F/(X) are
given in Figures 4.1-4.3. To reflect the stochastic characteristics of our model, two
regions formed by F(X) 4+ o and E(X) + 20 respectively are plotted in the figures as
well.

Remark 4.1. By Figures 4.1-4.3, it is clear that the model with piecewise linear func-
tions has the best performance. However, the polynomials only have 14 variables to
determine while the piecewise linear functions have 96 variables to determine. It takes
much less time to solve the optimization problem (3.4), (3.3), (2.6) with polynomials.
Therefore, the model with polynomials may be used either as an ad-hoc model to esti-
mate the trend of the inventory with lower requirement on the accuracy, or to generate
the initial guess of models with other types of {u, us}.
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—— Markov Chain Model \
| |—— Avg. bike inventory /

w
o

Bikes at Station
- N N
(4] o (6]

-
o

0 L L L L L L L I
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time

Figure 4.1: Model calibration using polynomials.
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Figure 4.2: Model calibration using step functions.

4.3 Model Application

To demonstrate the application of the calibrated model, a numerical simulation is also
carried out when the initial inventory is assumed to be 10 bikes at 6 am. The prediction
results are given in Figures 4.4 and 4.5. The probability distributions of inventory at 3
particular time (8:00, 10:00, 12:00) are given in Figure 4.6. By Figure 4.6, there is a
bigger probability that the station inventory will be 0 at 10:00. Therefore, a rebalancing



372 A. Chadwick, S.S. Ho, Y. Li, and M. Wang

t |— Avg. bike inventory

w
o

—— Markov Chain Model /

Bikes at Station
- N N
(4] o (6]

-
o

0 L L L L L L L i I
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time

Figure 4.3: Model calibration using piecewise linear functions.

could be planned in advance as a proactive solution.

—— Markov Chain Model

— N n w
6,1 o [4)] o

Bikes at Station

-
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0 . . _ ,
06:00 08:00 10:00 12:00
Time

Figure 4.4: Predicted average inventory and confidence intervals using piecewise linear

functions {uy, us}.
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Figure 4.5: Solution of the model using piecewise linear functions {u;, us}.
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Figure 4.6: Probability distribution of inventory at 8:00, 10:00, and 12:00.
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5 Conclusion and Discussion

In this paper, a discrete nonhomogeneous Markov chain model is developed to describe
the inventory at a bike share station. The uniqueness of the solutions and a constrained
optimization problem raised from the model calibration process are studied. Then nu-
merical simulations are carried out to demonstrate the effectiveness of the model.
Numerical simulations show that the model performance may be improved by choos-
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ing different types of functions {u;, us}. This observation motivates us to explore the
feasibility of using non-traditional functions {u, us}, e.g. neural networks. Theorem
3.2 further provides guidance to develop non-standard loss function for the neural net-
works. This will be studied in a future paper.
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