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a b s t r a c t

We present a data-driven modeling strategy to overcome improperly modeled dynamics for systems
exhibiting complex spatio-temporal behaviors. We propose a Deep Learning framework to resolve the
differences between the true dynamics of the system and the dynamics given by a model of the system
that is either inaccurately or inadequately described. Our machine learning strategy leverages data
generated from the improper system model and observational data from the actual system to create
a neural network to model the dynamics of the actual system. We evaluate the proposed framework
using numerical solutions obtained from three increasingly complex dynamical systems. Our results
show that our system is capable of learning a data-driven model that provides accurate estimates
of the system states both in previously unobserved regions as well as for future states. Our results
show the power of state-of-the-art machine learning frameworks in estimating an accurate prior of
the system’s true dynamics that can be used for prediction up to a finite horizon.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Recent breakthroughs in machine learning (ML) and artificial
ntelligence (AI) have shown a remarkable ability to extract rela-
ionships and correlations in data and events. Indeed, there now
xist highly scalable solutions for object detection and recog-
ition, machine translation, text-to-speech conversion, recom-
ender systems, and information retrieval. Recent advances in
achine learning and data analytics have yielded transformative

esults across diverse scientific disciplines [1–5]. Enabled by the
ecreasing price to performance ratio of sensing, data storage,
nd computational resources in the past decade, data-driven ma-
hine learning strategies are taking center stage across many
cientific disciplines.
In the realm of complex spatiotemporal dynamical systems,

ata-driven machine learning strategies have been employed
or reduced-order models (ROMs) [6–10], discovery of system
dynamics [11–22], computation of dynamical system solutions
23–28], and prediction of future dynamics [26,28–32]. These
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recent developments spurred by the current enthusiasm sur-
rounding ML and AI strategies can be broadly classified into two
categories: works that investigate the feasibility of existing ML/AI
algorithms and architectures, and those centered around the
development of new algorithms and architectures. Existing work
whose main objective is the former have focused on the power of
ML/AI techniques to significantly reduce the steep computation
and data storage costs associated with high-fidelity computa-
tional fluid dynamics (CFD) efforts [6–10,26,29–32]. These works
ften leverage existing CFD models to generate ground truth,
raining, and testing datasets to evaluate well-studied convolu-
ional neural networks (CNN) [6,30,32], long short-term memory
LSTM) networks [9], generative adversarial networks (GAN) [10],
nd existing ML/AI frameworks [8,29,31]. Nevertheless, exist-
ng ML/AI strategies are predicated on access to large amounts
f labeled data where explicit knowledge derived from well-
stablished first principles are difficult to encode.
Works in the second category that directly address these

hallenges include sparse regression techniques [12,15–18,22]
nd physics-informed neural networks (PINNs) [23–26]. Sparse
dentification is a data-driven system identification strategy
hat balances model complexity with descriptiveness [17]. Since
he dynamics of most physical systems are governed by only a
ew important terms [17], sparse identification selects from a
inite set of candidate dictionary functions whose linear combi-
ation describes the system dynamics [16]. On the other hand,
INNs are neural networks that are trained to solve supervised
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earning tasks whose dynamics can be described by general non-
inear PDEs. The key advantage of PINNs is their data-efficiency
n the training phase. Sparse regression techniques such as those
ound in [12,15–18,22] require large amounts of relatively clean
ata to accurately compute numerical gradients, whereas PINNs
o not require any data on gradients of the flow field (nor
heir numerical approximations). As such, PINNs perform more
obustly when data is sparse and/or noisy relative to the com-
lexity of the underlying system dynamics [23,24]. In contrast,
yed et al. ([21]) use actual observations of a system whose
ynamics are given by an ordinary differential equation to train
he neural network weights. Once trained, the network provides
n equation-free model representation of the system dynamics.
ifferent from [12,15–18,22–24], the work does not directly ad-
ress the issue of data-efficiency but assumes the network has
ccess to a sufficiently large set of training data.
In this work, we take inspiration from [12,15,17,19,20,22–24,

8] and present a data-driven Deep Learning framework capable
f resolving the differences between the actual dynamics of a
omplex nonlinear system and that of the same system which has
een improperly or inaccurately modeled. Given an inaccurate
r inadequate model of a system, our proposed ML strategy
ombines data from this inaccurate/inadequate model with ob-
ervational data from the actual system to learn the dynamics
f the actual system. The result is a neural network model that
an accurately estimate the system states in regions with no ob-
ervations and/or provide predictions for future states. Different
rom [12,15,17,22–24], our approach provides an equation-free
epresentation of the system dynamics that successfully esti-
ates the underlying physics that drives the process. We evaluate

he proposed framework using three different dynamical systems
ach with increasing complexity. Our results show how the pro-
osed strategy is not only capable of resolving improperly or
naccurately modeled dynamics but also can learn the dynamics
f the actual system and provide accurate future predictions.
While our approach is similar to [28,33], we make use of

STMs in our deep learning network rather than a simple multi-
ayer perceptron [33] or reservoir computer [28]. Our approach is
eneral and may be used for a wide range of dynamical systems
f different dimension and complexity, including examples in
hich the known model is missing external forcing functions
r other known dynamics. Even for these complicated scenar-
os, we demonstrate in this article the power of our method to
uccessfully predict the dynamics wherein simpler approaches
ill fail. Since our output is a neural network representation of
he system model, the output of our network can be fed into
xisting data-driven model discovery techniques [11,13,14,16,17]
o obtain closed-form equation representations of the dynamical
ystem.
The paper is organized as follows: we list our assumptions

nd provide a concise formulation of our problem in Section 2.
he design of the network architecture and our methodology is
escribed in Section 3. We discuss how we evaluate our method-
logy in Fig. 3 and present our results with discussion in Sec-
ion 5. Conclusions and directions for future work are contained
n Section 6.

. Problem formulation

We consider a spatio-temporal process u(x, t) ∈ Rm, where
∈ W represents a point in the environment W ⊂ Rn and

∈ [ts, tf ] represents the time within an observation interval of
nterest. The actual model of the process that governs u is denoted
y Mact and is given by a partial differential equation (PDE) of the
orm

= N [u, f , . . . , f , g , . . . , g ], (1)
t 1 p 1 r

2

here N [·] is a nonlinear differential operator, where fi =

i(x, t) ∈ Rnfi , i = 1, . . . , p and gi = gi(x, t) ∈ Rngi , i = 1, . . . , r
re external phenomena that impact u. LetMcurr denote the model
hat is obtained from the current understanding of the physics of
. Then Mcurr is given by the PDE with form

t = Ñ [u, f1, . . . , fp], (2)

here Ñ [·] is also a nonlinear differential operator. Here, the fi
enote the p external phenomena whose impact on u is currently
nown and the gi denote the r external phenomena that affect
but are not captured in Mcurr . Note that in general, gi could

epresent some error in fi so that gi = fi + ϵ where ϵ denotes the
ifference between fi and gi. Furthermore, Ñ is used to denote any
ifferences in system parameters between Mcurr and Mact . Thus,
hile Mcurr represents the current understanding of the process,
his understanding is incomplete or inadequate and thus Mcurr is
ot an accurate representation of the process model.
Given a set of coordinates S = {sj|sj = (xj, tj), xj ∈ W, tj ∈

ts, tf ], j = 1, . . . , ndata}, let Ûact = {ûactj |j = 1, . . . , ndata} be
he set of observations of u obtained by measuring the actual
rocess at coordinates sj ∈ S. Similarly, let Ucurr = {ucurrj} and
act = {uactj} be the solution sets obtained from Mcurr and Mact
espectively, at the coordinates in S. In this work, Uact is based on
omputer simulations, but could in fact be measured experimen-
ally. For simplicity, we assume that there are no measurement
rrors, i.e., ûactj ≡ uactj for each ûactj ∈ Ûact and uactj ∈ Uact
btained at the same coordinate sj ∈ S.
Given Uact , Ucurr and observations of a subset of the gi at the

oordinates in S, the objective of this work is to develop a neural
etwork based model Mnn that better estimates the process u in
nd potentially beyond the space–time domain W × [ts, tf ]. Let
∗ = ∥Mact − M∗∥ ≥ 0 represent some measure of the error of
he output of a given model with respect to the output of Mact
n a given domain. We want enn ≤ ecurr in all domains (ideally
nn = ecurr only when ecurr = 0), i.e., the neural network should be
uch better at predicting/estimating u than the existing model.
To illustrate, consider a mass–spring–damper system with

ass m, damping coefficient c and spring constant k that is
ubjected to two external forcing functions given by F1(t) =

1 cos (ω1t) and F2(t) = A2 cos (ω2t). If the displacement of the
ass is denoted by y, the actual model of the system Mact is given
y the ordinary differential equation (ODE)

ÿ + cẏ + ky = F1 + F2. (3)

et us assume that due to modeling and measurement errors, the
odel that we have access to, Mcurr , is given by

˜ ÿ + c̃ẏ + k̃y = F1. (4)

ote that this model only captures part of the forcing function
nd has errors in the mass, spring, and damping coefficients.
iven measurements of the displacement y, our work seeks to
evelop a neural network, whose output closely resembles that
f the actual model Mact for the same initial conditions. Denoting
he output of the actual, current and neural network models by
act (t), ycurr (t) and ynn(t) respectively, we would like ∥ynn(t) −

act (t)∥ < ϵ < ∥ycurr (t) − yact (t)∥, where ideally ϵ is small. In
ther words, we would like the trained neural network output to
lways be a better approximation of the ground truth than the
urrent model output or match the ground truth exactly. Lastly,
n our proposed framework, the neural network model Mnn only
rovides outputs for the ODE, e.g., y, ẏ, and ÿ rather than the
quation of the actual ODE.
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. Methodology

The proposed method uses a neural network based framework
o ‘‘bridge the gap’’ betweenMcurr andMact . Neural networks have
ecently been used in a plethora of prediction and estimation
roblems. However, in most of these solutions, large quantities of
raining data are required to obtain good prediction performance.
his is especially true for prediction/estimation problems involv-
ng complex dynamical systems. In this work, we mitigate this
ata inefficiency problem by incorporating existing knowledge of
he process into the neural network architecture.

The fundamental hypothesis of our work is that the current
nderstanding of the physics of u given by Mcurr , has substan-
ial information that the neural network can exploit in order to
rovide better predictions of the process. Thus, in addition to
he space–time coordinates (x, t) and, where applicable, external
orcing terms gi, we also use the output from Mcurr as an input to
he neural network. This input may be presented to the network
n different formats, e.g., data generated from a reduced-order
odel [34,35], coefficients and functions from a sparse identifica-

ion of the process [17,22], output data from a numerical model,
tc.
Furthermore, the behavior of any dynamical system depends

eavily on the initial and boundary conditions. In the absence
f explicit initial and boundary conditions, these spatio-temporal
ependencies have to be captured by the network in a purely
ata-driven manner. We facilitate this by (1) using Long Short-
erm Memory (LSTM) stages in our network to capture temporal
ependencies, and (2) providing the network with data in a
pace–time hypercube around the point of interest.

eural networks and LSTM networks
Artificial neural networks (ANN) are powerful nonlinear sta-

istical models which consist of multiple layers of interconnected
odes such that every connection represents a weight. Each node
alculates a weighted sum of the outputs of neurons which are
onnected to it as well as a bias term. By representing the system
n terms of layers, neural networks are able to learn features
xhibited by highly nonlinear and complex data in a powerful hi-
rarchical fashion. The nonlinearity of these networks comes from
he use of nonlinear activation functions in the neural net nodes.
he neural net is trained by minimizing a loss function. The min-
mization is commonly done by a gradient-based optimization
lgorithm that makes use of backpropagation – a computationally
fficient algorithm that computes the gradient of the loss function
ith respect to the weights at each layer. Common optimization
lgorithms include stochastic gradient descent, Adam [36], and
dagrad [37]. The optimization algorithm commonly performs
pdates to the weights using batches of the dataset. A complete
ass through all the dataset batches is usually referred to as an
poch.
The most basic structure of a neural network is a fully con-

ected or dense ANN as displayed in Fig. 1. Each node in the
eural network is governed by an activation function al+1(Wlal +
l) where Wl and bl denote the weights matrix and bias vector for
ayer l respectively. Common choices for al+1 include the sigmoid
unction commonly denoted by σ (·), the hyperbolic tangent func-
ion tanh(·), and rectified linear unit function ReLU(·). We refer
he reader to [38] for a detailed review of activation functions.

In choosing a neural network architecture, we make note that
ur problem is in nature time-dependent. More concretely, the
roblem imposes an order on the sequence of observations that
ust be preserved. In general, standard artificial neural networks
re not well-suited to learn such orders since the weights in
ach ANN layer are fully connected to the previous layer. This
orces the ANN to consider the entire sequence at once. Recurrent
 t

3

Fig. 1. A general dense layer architecture.

Fig. 2. A general architecture for an LSTM layer.

Neural Networks (RNNs), on the other hand, are a different type
of neural network that is well suited for sequence learning prob-
lems. They are equipped with a memory unit which is updated
for each new observation. Thus, parameters of the network are
shared for each step in the sequence. As such, RNNs rather than
ANNs are most commonly employed to learn time dependencies.

The Long Short-Term Memory (LSTM) network is a variant of
RNNs. LSTMs address the bottlenecks in traditional RNNs such
as the vanishing gradient problem [39] which hampers learning
f long data sequences. The LSTM memory unit is usually called
he cell, denoted by C , which is regulated by three gates: an
nput gate I, a forget gate F , and an output gate O. The input
ate controls the contribution of the input to the cell, the forget
ate controls what parts of the cell to keep, and the output gate
ontrols the contribution of the cell to the output of the LSTM.
schematic of the architecture can be found in Fig. 2, with h

epresenting the output of the network while the input of the
etwork is represented with s. The equations to compute the
ates and states are given by

Ft = σ (WF · [ht−1, st ] + bF ),
It = σ (WI · [ht−1, st ] + bI),

C̄t = tanh(WC · [ht−1, st ] + bC ),

Ct = Ft ∗ Ct−1 + It ∗ C̄t , (5)

t = σ (WO · [ht−1, st ] + bO),
ht = Ot ∗ tanh(Ct ),

here C̄ is the updated state, W is the weights matrix, b is the
ias vector for each gate, st is the input to the network at time
, and * denotes the Hadamard product. The forget gate reduces
verfitting by controlling how an incoming input contributes to

he hidden state. This structure is the key reason why LSTMs
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o not suffer from the vanishing gradient problem exhibited by
NNs. For more detailed discussions on ANNs, RNNs, and LSTMs,
e refer the interested reader to [40–43].

nput data format to the network
The network predicts/estimates the process on a point by

oint basis. In order to capture the spatio-temporal dependen-
ies between the inputs and the output at each coordinate j,
e consider a n + 1 dimensional space–time hypercube of the

nputs around this coordinate. We consider k data points along
ach dimension, resulting in kn+1 number of data points for each
nput. In general, the larger the choice of k, the larger the input
ata and thus the higher the computational load. In this work,
e choose k = 3 to limit the computational burden. Thus for
cenarios where n = 2, as shown in Fig. 3(a), we would consider
hypercube with 27 vertices for each input.

.1. Architecture of the neural network

Our proposed neural network architecture is composed of
hree stages as shown in Fig. 3(b). We modify the architecture for
ach problem by changing the number of layers/nodes at different
tages of the architecture. The three stages of the network are:

• Stage 1: Time distributed dense stage with D1 layers;
• Stage 2: Long Short-Term Memory (LSTM) stage with D2

layers; and
• Stage 3: Dense output stage with D3 layers.

he three stages are described below in detail.

tage 1: Time distributed dense layers
This stage consists of a set of parallel dense layers that work on

he inputs at each time slice independently. The purpose of this
tage is to give the network the ability to pre-process the data and
earn a representation that is most optimal for the LSTM stage.
hile most research in the literature employing LSTM networks
o so without this pre-processing layer, our experiments have
emonstrated that adding this stage improves the convergence
f the network. The activation function for layer l in this stage is
enoted as al,t where t denotes the time step. In this case, W and
are shared for each time step. The output of this layer is then

assed to Stage 2.

4

tage 2: LSTM stage
The LSTM is a type of Deep Learning architecture that is

esigned to exploit long term dependencies in time series data.
iven the nature of dynamical systems data where time-based
ependencies are abundant, LSTMs are a powerful choice to
odel such data. Thus, after the data has been processed by a
equence of dense layers in Stage 1, we apply a sequence of LSTM
ayers in Stage 2. The equations for the LSTM layer are given by
q. (5) with st replaced by aL,t , where L is the number of the last
ayer in Stage 1. The output of the LSTM layer from the final time
tep is then used as the input to the Stage 3.

tage 3: Dense output stage
Stage 3 consists of a sequence of dense layers. This stage

erves as a final stop for processing the data before producing the
utput. The output of the last dense layer is the final predicted
utput unn from the neural network. The output of the network
s used in the following loss function to train the network

oss(uact , unn) =
1
M

M∑
i=1

(uact i − unni )
2, (6)

here M is the dimension of the output u.

. Methodology evaluation

To quantitatively and qualitatively evaluate our methodol-
gy, we consider different dynamical systems each with increas-
ng complexity. The proposed learning framework is evaluated
ith respect to its ability to reproduce the dynamics of the
ctual system and its ability to predict future observations on a
oint-by-point basis.

.1. Candidate systems

We consider three candidate systems to test our hypothesis
n, with each system being progressively more complex. Each
andidate system exhibits one of the three types of differences
etweenMact andMcurr : (1) differences in system parameters, e.g.,
t = Ñ [u, f1, . . . , fp] with gi = 0 for all i = 1, . . . , r; (2) differ-
nces in external forcing functions and/or boundary conditions,
.g., ut = Ñ [u, f1, . . . , fp] with gi = fi + ϵ for i = 1, . . . , r with
≤ p; and (3) missing terms in the partial differential equation
escribing the dynamics of the system, e.g., ut = Ñ [u, f1, . . . , fp]
ith g ̸= 0. We briefly describe the candidate systems below.
1
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ystem 1: 1D heat equation
In our first system, we assume both the actual model Mact and

urrent model Mcurr system dynamics are given by

t = D∗uxx, (7)

where x ∈ R, u ∈ R is the temperature, and D∗ is the diffusion
coefficient and is set to either Dact or Dcurr . In this scenario, the
discrepancy in the models arises due to a mismatch in the actual
and assumed diffusion coefficients.

System 2: Lid cavity problem
For our second system, we consider a modified version of the

lid cavity problem presented in [44]. The actual model, Mact , is
given by

ut = −(u · ∇)u − ∇p +
1
Re

∇
2u + F . (8)

In [44], F is chosen to be an external body force with a whirlpool
effect. In this work, we employ the same F as in [44] but include
a periodic element to F whose components are given by

Fx = (12 − 24y)x4 + (−24 + 48y)x3+

(−48y + 72y2 − 48y3 + 12)x2+

(−2 + 24y − 72y2 + 48y3)x+

(1 − 4y + 12y2 − 8y3)120 sin (e1.3t + 80t),

Fy = (8 − 48y + 48y2)x3+

(−12 + 72y − 72y2)x2+

(4 − 24y + 48y2 − 48y3 + 24y4)x+

(−12y2 + 24y3 − 12y4)120 cos (e1.3t + 80t).

In this system, the assumed model, Mcurr , is given by the
Navier–Stokes equation for incompressible flows,

ut = −(u · ∇)u − ∇p +
1
Re

∇
2u (9)

with ∇u = 0, where x ∈ W ⊂ R2 denotes the position, u ∈ R2

is the flow velocity, Re is the Reynolds number, and p is the
pressure. In contrast to the classical lid cavity problem, where the
domain W is a square in which the top boundary moves with a
constant speed, we assume the dynamics are subject to periodic
boundary conditions at the top and bottom boundaries of the
square given by

utop = [2 sin ((e1.2t + 60)t)],

ubottom = [2 sin ((e1.2t + 50)t)].

System 3: Flow around a cylinder
For our third system, we consider the 2D flow around a cylin-

der modeled using the Navier–Stokes equations. The cylinder
has a 1m radius and is centered at (20, 20) in a 50m × 40 m
rectangular workspace. For the actual system, Mact , the cylinder
moves vertically along the y = 20 axis such that its center
moves periodically between (20, 21) and (20, 19) at a frequency
of 0.3927 rad/sec . The velocity profile at the left boundary is set
to be a uniform stream while a zero pressure outflow condition
is imposed at the right boundary. The Reynolds number is set
to 200. In this scenario, the system model or dynamics, Mcurr , is
assumed to be that of the stationary cylinder placed in the same
uniform free stream flow, at the same location, with the same
radius, operating at the same Reynolds number. We note that the
oscillation frequency for the moving cylinder in Mact is set to be

approximately the vortex shedding frequency of Mcurr . s

5

Table 1
Neural network parameters for System 1. Note that TDDL stands for Time
Distributed Dense Layer, LSTM stands for Long Short-Term Memory, and ReLU
stands for Rectified Linear Unit.
Layer Kind Activation Function Number of Nodes

Input 0: Ucurr , Coordinates N/A N/A

Layer 1: TDDL[Input 0] ReLU 32

Layer 2: LSTM Layer[Layer 1] Tanh/Sigmoid 64

Layer 3: LSTM Layer[Layer 2] Tanh/Sigmoid 32

Layer 4: LSTM Layer[Layer 3] Tanh/Sigmoid 32

Layer 5: Dense Layer[Layer 4] ReLU 10

Layer 6: Dense Layer [Layer 5] Linear 1

Table 2
Neural network parameters for System 2. Note that TDDL stands for Time
Distributed Dense Layer, LSTM stands for Long Short-Term Memory, and ReLU
stands for Rectified Linear Unit.
Layer Kind Activation Function Number of Nodes

Input 0: Ucurr , F , Coordinates N/A N/A

Layer 1: TDDL[Input 0] ReLU 32

Layer 2:TDDL[Layer 1] ReLU 64

Layer 3: LSTM Layer[Layer 2] Tanh/Sigmoid 64

Layer 4: LSTM Layer[Layer 3] Tanh/Sigmoid 32

Layer 5: LSTM Layer[Layer 4] Tanh/Sigmoid 32

Layer 6: Dense Layer [Layer 5] ReLU 10

Layer 7: Dense Layer [Layer 6] Linear 2

Table 3
Neural network parameters for System 3. Note that TDDL stands for Time
Distributed Dense Layer, LSTM stands for Long Short-Term Memory, and ReLU
stands for Rectified Linear Unit.
Layer Kind Activation Function Number of Nodes

Input 0: Ucurr , Coordinates,
Cylinder Position

N/A N/A

Layer 1: TDDL[Input 0] ReLU 32

Layer 2: TDDL[Layer 1] ReLU 64

Layer 3: LSTM Layer[Layer 2] Tanh/Sigmoid 64

Layer 4: LSTM Layer[Layer 3] Tanh/Sigmoid 32

Layer 5: LSTM Layer[Layer 4] Tanh/Sigmoid 32

Layer 6: Dense Layer [Layer 5] ReLU 10

Layer 7: Dense Layer [Layer 6] Linear 2

4.2. Implementation

The details of each system’s architecture are summarized in
Tables 1, 2, and 3. We use Adam [36], a powerful and computa-
ionally efficient optimization algorithm with the recommended
efault parameters to initialize the algorithm. We set the algo-
ithm batch size to 64, and used the Python package Keras [45] to
rain the network for a total of 50 epochs. Note that for our dense
ayers, we chose ReLU as our activation function. The function
emonstrated the best performance on our tasks.
Given the lightweight nature of our networks and the small

ize of input data, we trained the networks on a CPU Intel(R)
ore(TM) i7-8750H CPU @ 2.20 GHz. Tensorflow, the backend of
eras, automatically distributes training on multiple cores. The
verage time for completing one epoch for Systems 1, 2, and 3
s 1, 60, and 40 s respectively. The differences in training time
etween each system are mostly due to the training set size. The
arginal difference between each system architecture does not
ignificantly change the training time.
It is important to note that expanding the neural net input

ize will impact the computational time. Adding more points
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o the hypercube will result in d more connections where d is
the number of nodes in the Stage 1 first layer. These d new
onnections represent the new input contribution to each node
n the first layer. We can also apply the network on longer data
equences. This would not result in any new connections, but it
ill result in applying Stages 1 and 2 of the network on the added
ime steps. Both of these changes, when studied independently,
ill result in a constant increase in the number of operations for
oth prediction and training.
There is also an impact on computational time through the

ddition of more data. In training neural networks, we apply
he same vectorized operations, mostly matrix multiplications, on
atches of data. The nature of this computational process means
hat for each new data point, the number of operations for both
raining and prediction increases by a constant factor.

Finally we note that in solving new problems, we might need
o expand the network representational capacity by adding more
odes and layers. The change in the computational cost of the
etwork will heavily depend on the size and complexity of the
ew network. However, recent advances in GPU development tai-
ored specifically for Deep Learning offer a range of solutions for
uilding optimized and scalable implementations of complicated
nd heavy architectures.

.3. Datasets

In this work, we employ numerical solutions to the actual and
ssumed models, Mact and Mcurr , to generate the ground truth,
est, and training datasets. The ground truth and actual system
bservations, Uact , are obtained by numerically solving Mact . Simi-
arly, the values for Ucurr are obtained by numerically solvingMcurr
for the assumed parameter values, e.g., Ñ . For System 1, the 1D
heat equation given by Eq. (7) was solved using the finite volume
based PDE solver in Python (FiPy). The equation was discretized
on a spatial 50 × 1 grid over 0.006 s with time step of 0.000012.
The number of time frames is 500. For System 2, a finite difference
scheme was used to solve the Navier Stokes equations given by
(8)–(9). The equation was discretized on a spatial 30 × 30 grid
over 2 s with time step of 0.001. The number of time frames
is 2000. Lastly, numerical solutions for System 3, flow around a
cylinder, were obtained using OpenFoam [46]. The datasets for
Uact and Ucurr were obtained on a largely uniform grid consisting
of approximately 100 × 70 points over 2000 s using OpenFoam’s
pimpleFoam solver with a solution time step of 0.001 s. However,
Uact and Ucurr consist of data obtained at every second over the
total 2000 s simulation run and thus the data consist of 2000 time
frames.

Training and test datasets are comprised of both Ucurr and Uact .
Assuming Uact and Ucurr consists of N frames (Nx ×Ny grid points
in each frame), we partition the data into four sets: training,
validation, local test, and future test. For the training, validation,
and local test sets, we consider K consecutive frames. In order to
split the data in the K frames between the three sets, we split
the set of Nx × Ny grid points at each frame randomly between
training, validation and local test sets. We choose to include 60%
of the grid points in the training set, 10% of the grid points in the
validation set, and 30% of the grid points in the local test set. Note
that the split is the same for each frame. For the future test set,
we consider the remaining T = N − K frames with all the grid
points. We use the training set to train the network, the validation
set to test the effect of hyperparameter optimization and different
network architectures on the network performance, the local test
set to measure the chosen network ability to generalize over
unseen grid points, and the future test set to measure the network
ability to generalize over unseen dynamics, i.e., predict future
observations.
6

For System 1, we include the first 150 frames in the training,
validation, and local test sets (K = 150) and the last 350 frames
(T = 350) in the future test set. This setup results in a total of
4,144 points for training, 740 points for validation, 2,220 for local
test, and 16,800 for future test. For System 2, we use the first
1,000 frames for training (K = 1, 000), validation and local test
and use the last 1,000 (T = 1, 000) frames for the future test. This
results in a total of 469,060 points for training, 77,844 points for
validation, 235,528 points for local test, and 784,000 points for
future test. For System 3, we use 100 frames of data between the
frames 500 and 600, i.e., between 500 and 600 s, for the training,
validation and local test set. We used the 1,400 frames after 600 s
for the future test. This results in a total of 399,800 points for
training, 66,600 for validation, 200,000 points for local test, and
9,786,000 points for future test.

4.4. Evaluation metrics

To assess model performance, we use two benchmarks to
measure the difference between two sets of F frames: Set1 (tested
set) and Set2 (ground truth). In our evaluation, Set1 will either be
Ucurr or Unn and Set2 will be Uact .

Mean Squared Errors (MSE). The first benchmark uses the mean
squared difference between Set1 and Set2. For 2D output, we take
the average of the two outputs for every point before computing
the MSE. We also include the mean magnitude square difference
(MMSD) and the mean cosine similarity (MCS) between the two
sets in the benchmark for the Lid Cavity and the Flow Around a
Cylinder problems in Systems 2 and 3 since both are 2D systems.

Proper orthogonal decomposition. The second benchmark com-
pares the proper orthogonal decomposition (POD) modes that
accounts for 99% of the system variation. Complex nonlinear dy-
namical systems can exhibit significant spatiotemporal variations,
often at differing scales. To extract the dominant dynamics of
these systems, techniques for modal analysis are often used to
construct a reduced order representation of the dynamics. POD
is a data-driven reduced order modeling strategy that is often
used to identify the dominant dynamics of a system purely from
observations [34,35].

Given N snapshots of the system states which can be obtained
either through measurements and/or numerical simulations, let
x(t) = [x1(t), . . . , xk(t)]⊤ denote the set of spatial coordinates in
W at t = 1, . . . ,N . We note that the points in x(t) correspond to
the grid points in which uact and ucurr values are provided at some
given time t . Using x(t), we can construct a covariance matrix as

K =
1
m

m∑
t=1

x(t)x(t)⊤ =
1
m

XX⊤, (10)

where X ∈ Rn×m with its columns as x(t). To extract the dom-
inant dynamic modes from the data given by x(t) = [x1(t), . . . ,
xk(t)]⊤ for t = 1, . . . ,N , we obtain the low dimensional basis for
the data by solving the symmetric eigenvalue problem

Kφi = λiφi,

where K has N eigenvalues such that λ1 ≥ λ2... ≥ λN ≥ 0 and
the eigenvectors φ are pairwise orthonormal.

The original basis is then truncated into a new basis Φ by
choosing k eigenvectors that capture the desired fraction, E, of the
total variance of the system, such that their eigenvalues satisfy∑k

i=1 λi∑n
i=1 λi

≥ E.

ach term x(t) can be written as

x(t) = Φc(t), (11)
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Fig. 4. (a) System 1: Temperature as a function of the spatial and temporal coordinates for (left) Ucurr , (middle) Unn , and (right) Uact . (b) MSE between Uact and Ucurr
(light blue) and Uact and Unn (dark blue) for system 1. (c) Cosine similarity between the first principal POD mode of Uact and Ucurr (light blue) and Uact and Unn (dark
blue) for system 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. System 2: Vector field at t = 1.147 s for (left) Ucurr , (middle) Unn , and (right) Uact .
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here c(t) = [c1(t), . . . , ck(t)]⊤ holds time-dependent coef-
icients and Φ ∈ Rn×k with its columns as φ1, . . . , φk . The
ow-dimensional, orthogonal subspace associated with Φ is an
ptimal approximation of the data with respect to minimizing
east squares error.

To compare the POD modes, we compute the inner prod-
ct, i.e. the cosine similarity, between the two sets of principal
omponents obtained for Set1 and Set2. We call this metric CS-
OD, for short. We calculate the statistics of both benchmarks
n two cases: Case 1, Set1 is Mcurr and Case 2, Set1 is Mnn. Case
provides a relative baseline for measuring the performance of

he neural net in Case 2. We report the first benchmark statistics
ver training, local test, and future test sets, and the second
enchmark statistics over the entire simulation.

. Results and discussion

We present and discuss the results of our proposed learning
ramework for each of the candidate systems.

ystem 1: 1D heat equation
Fig. 4(a) shows the temperature data generated by Mact , Mcurr ,

nd Mnn for the entire spatiotemporal domain. In these simula-
ions, Dact and Dcurr were set to 15 and 1 mm2/s respectively.
ualitatively we see that the network model does an excellent job
n resolving the inaccurately modeled dynamics and accurately
aptures the true dynamics of the system. Fig. 4(b) quantitatively
hows the network’s ability to generalize over local unseen grid
oints as well as data in the future set. In fact, one can see
hat the error between Uact and Unn is orders of magnitudes less
than that of U and U . Moreover, the error bars between
act curr

7

Uact and Unn are so small that the orange bars are not visible in
the graph (the exact values for comparison are denoted in the
figure). The quantitative results are further confirmed in Fig. 4(c)
which shows the CS-POD for the POD modes. In this problem, the
POD decomposition of Unn over the entire simulation yielded two
principal modes as did the POD decomposition of Uact . The agree-
ment between these POD modes is excellent as demonstrated by
a CS-POD values that are very close to unity, as seen in Fig. 4(c).

ystem 2: Lid cavity problem
Fig. 5 shows a snapshot of the vector field generated by Mact ,

curr , and Mnn for the entire domain at t = 1.147 s. As with
ystem 1, we see qualitatively that the network model does an
xcellent job in resolving the inaccurately modeled dynamics
nd does accurately capture the actual dynamics of the system.
ig. 6(a)–6(c) quantitatively show the network’s ability to com-
ine Ucurr and observations of g1 = F to correctly predict Uact over

local unseen grid points as well as data in the future set. Figs. 6(a)
and 6(b) show respectively that the MSE and MMSD between
Uact and Unn are orders of magnitudes less than that of Uact and
Ucurr . The quantitative results are further confirmed in Figs. 6(c)
which shows that the mean cosine similarity between Uact and
Unn is close to unity thus demonstrating that Unn is resolving the
actual dynamics to a far greater degree than is Ucurr . Similarly,
Fig. 6(d) shows the CS-POD for the first six principal POD modes
over the entire simulation. The CS-POD values again demonstrate
the network’s ability to resolve the actual system’s dynamics. In
short, the high degree of accuracy shows that our network is
capable of correctly predicting observations both in previously
unseen regions in the workspace as well as in future time steps.



M. Qraitem, D. Kularatne, E. Forgoston et al. Physica D 414 (2020) 132736
Fig. 6. (a) MSE between Uact and Ucurr (light blue) and Uact and Unn (dark blue) for system 2. (b) MMSD between Uact and Ucurr (light blue) and Uact and Unn (dark
blue) for system 2. (c) Mean cosine similarity between Uact and Ucurr and Uact and Unn for system 2. (d) Cosine similarity between the first five POD modes of Uact
and Ucurr (light blue) and Uact and Unn (dark blue) for system 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
It is important to note that the periods of the body force
and the moving upper and lower boundaries in System 2 are
not constant. In fact, they change exponentially as a function of
time. Ideally, the trained network should capture this exponential
change in the periods and be able to accurately predict future
values outside of the training frames. In reality though, the pre-
diction accuracy would degrade the farther out the prediction
times are from the training times. To quantify this behavior,
three training regimes were considered with different training
set lengths. The training sets for the three regimes contained the
first 500 frames, first 750 frames, and the first 1000 frames of
the dataset respectively. We evaluated the system’s predictive
power using intervals of 250 future output frames and the results
are shown in Fig. 7. The metric (MSE, MCS and MMSD) for each
interval is computed across all 250 frames in that interval. As
8

expected, the prediction accuracy degrades the further out the
prediction time is from the training set. For this particular case,
the network is able to predict approximately one training period
into the future, with a fair degree of accuracy.

System 3: Flow around the cylinder
Fig. 8 shows a snapshot of the magnitude of the velocity field

at t = 1390 s generated by Mact , Mcurr , and Mnn. In these results,
the Reynolds numbers for both Mact and Mcurr were set to 200.
As with the previous two systems, we see qualitatively that the
network model does an excellent job in resolving the inaccurately
modeled dynamics and does accurately capture the actual dy-
namics of the system. In particular, note that the network model
Mnn is accurately capturing the vortex shedding frequency while

theMcurr vortices are out of phase with the actual vortex shedding
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Fig. 7. Comparison between the predictive power of the Mnn trained using the first 500, 750, and 1000 frames. The x axis denotes the time interval in increments
of 250. The metric for each interval represents the metric value computed for the frames in that interval.
pattern. As in the previous systems, Figs. 9(a)–9(c) quantitatively
show the network’s ability to combine values of Ucurr as well as
g1 = O(t) (where O indicates the position of the cylinder at time
t) to correctly predict Uact over local unseen grid points as well
as data in the future test set. Figs. 9(a) and 9(b) show respec-
tively that the MSE and MMSD between Uact and Unn is orders
of magnitudes less than that of Uact and Ucurr . The quantitative
results are further confirmed in Figs. 9(c) which shows that the
mean cosine similarity between Uact and Unn are close to unity
thus demonstrating that Unn is resolving the actual dynamics to
a far greater degree than is Ucurr . Similarly, Fig. 9(d) shows the
CS-POD for the first six principal POD modes over the entire
simulation. The CS-POD values again demonstrate the network’s
ability to resolve the actual system’s dynamics. In short, the high
degree of accuracy shows that our network is capable of correctly
predicting observations both in previously unseen regions in the
workspace as well as in future time steps for systems exhibiting
more complex dynamics.

To evaluate the predictive performance of Mnn, we focus on
the network’s ability to identify the periodicity of the oscilla-
tions. Since System 3 is periodic, once the network learns the
true periodicity of the dynamics, it has effectively learned the
true dynamics of the system for all future times. To quantify
the difference in periodicity between the model output and the
ground truth, the following analysis was performed. For each
point in the local test set, τi, we consider its time series from
frame 600, the last frame in the training set, to frame 2000 in
both Unn and Uact . We denote these as Unn(τi, 600–2000) and
Uact (τi, 600–2000) respectively. We start by computing the fre-
quency spectrums of Unn(τi, 600–2000) and Uact (τi, 600–200) us-
ing the Fast Fourier Transform (FFT) which we denote as FFTnn
and FFTact . Consider the percentage mean absolute difference
between the frequencies that corresponds to the energy peaks
between FFTnn and FFTact which we denote by %∆(FFTUnn , FFTUact ).
The mean of %∆(FFTUnn , FFTUact ) is then computed for every grid
point in the local test set which resulted in a value of 0.0239.
This analysis indicates that the neural network output not only
accurately captures the periodicity of the underlying phenomena
but it is able to correctly identify the global features of the
dynamics. In short, once the network captures the periodicity, it
can then predict the system’s behavior at any time in the future.

6. Conclusion and future work

We have proposed a data-driven modeling strategy based
on a neural network machine learning framework that enables
9

Fig. 8. System 3: Magnitude of the velocity profile given by (left) Ucurr , (middle)
Unn , and (right) Uact at time t = 1390 s.

one to overcome improperly or inadequately modeled dynam-
ics for systems that exhibit complex spatiotemporal behavior.
Given a system model that does not accurately capture the true
dynamics, our machine learning strategy uses data generated
from the improper system model combined with observational
data from the actual system to create a neural network model.
As we have shown with three complex dynamical systems, the
network model that is created is capable of accurately resolv-
ing the incomplete or inaccurate dynamics to generate solutions
that compare very favorably with the actual dynamics, both in
previously unobserved regions as well as for future states.
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Fig. 9. (a) MSE between Uact and Ucurr (light blue) and Uact and Unn (dark blue) for system 3. (b) MMSD between Uact and Ucurr (light blue) and Uact and Unn (dark
blue) for system 3. (c) Mean cosine similarity between Uact and Ucurr and Uact and Unn for system 3. (d) Cosine similarity between the first six POD modes of Uact
and Ucurr (light blue) and Uact and Unn (dark blue) for system 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Our approach leverages state-of-the-art machine learning
frameworks and existing, but limited, knowledge of the physical
constraints that drives a process. The result is an equation-free
representation of the system dynamics that encodes a baseline
understanding of the underlying physics that drives the process.
Since our output is a neural network representation of the system
model, the output of our network consists of a set of pointwise
inferences and thus is equation-free. Nevertheless, the output
can be fed into existing data-driven model discovery techniques
to obtain closed-form equation representations of the dynamical
system [17,18].

In future, we plan to perform a detailed analysis on our learn-
ng framework performance for different error bounds to bet-
er understand acceptable deviations from the true model. As-
ociated with this is the effect of noise, and to this end we
 g

10
plan to investigate how measurement uncertainty in Ûact impacts
he performance of Mnn. Since real-world systems are inherently
oisy, we must be able to incorporate noisy observational data
hile still accurately capturing the system’s dynamics. As such,

t is important to be able to deal with situations where every
bservation is subject to a noise that is non-negligible or with
ituations where one has very noisy outlier observations. While
he impact of noise on a network’s performance is well docu-
ented and studied in the computer vision literature [47], its

mpacts on networks modeling more complex phenomena are
ess well understood. A complete analysis of the effect of noise
ncludes consideration of both additive and multiplicative noise,
nd involves analyzing simulated systems where deterministic
nd stochastic elements can be tightly controlled to establish
round truth for comparisons.
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By developing methods that can deal with negligible and
non-negligible noise, we will enable the study of complex and
high-dimensional systems including those found in fluid dynam-
ics and in particular geophysical fluid dynamics. Fluid flows are
complex and exhibit multi-scale phenomena whose dynamics are
not at all well-understood. Even the underlying physical mecha-
nisms for flows are not fully understood. In the future, we plan to
use the framework developed in this article to make predictions
and estimations. For example, in a geophysical flow, information
such as wind forcing or data from depth, may not be included in
the models. Even with noisy and sparse observations, we would
like to investigate if our framework can be used to accurately
resolve the inadequately modeled dynamics.
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