Physica D 414 (2020) 132736

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd —_— ——

Bridging the gap: Machine learning to resolve improperly modeled N

Check for

dynamics™

Maan Qraitem **, Dhanushka Kularatne °, Eric Forgoston ¢, M. Ani Hsieh "

2 Department of Computer Science, Colby College, Waterville, ME 04901, USA
b Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
¢ Department of Applied Mathematics and Statistics, Montclair State University, Montclair, NJ 07043, USA

ARTICLE INFO ABSTRACT

Article history:

Received 31 December 2019

Received in revised form 13 August 2020
Accepted 7 September 2020

Available online 11 September 2020
Communicated by B. Hamzi

We present a data-driven modeling strategy to overcome improperly modeled dynamics for systems
exhibiting complex spatio-temporal behaviors. We propose a Deep Learning framework to resolve the
differences between the true dynamics of the system and the dynamics given by a model of the system
that is either inaccurately or inadequately described. Our machine learning strategy leverages data
generated from the improper system model and observational data from the actual system to create
a neural network to model the dynamics of the actual system. We evaluate the proposed framework
using numerical solutions obtained from three increasingly complex dynamical systems. Our results
show that our system is capable of learning a data-driven model that provides accurate estimates
of the system states both in previously unobserved regions as well as for future states. Our results
show the power of state-of-the-art machine learning frameworks in estimating an accurate prior of
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the system’s true dynamics that can be used for prediction up to a finite horizon.
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1. Introduction

Recent breakthroughs in machine learning (ML) and artificial
intelligence (AI) have shown a remarkable ability to extract rela-
tionships and correlations in data and events. Indeed, there now
exist highly scalable solutions for object detection and recog-
nition, machine translation, text-to-speech conversion, recom-
mender systems, and information retrieval. Recent advances in
machine learning and data analytics have yielded transformative
results across diverse scientific disciplines [1-5]. Enabled by the
decreasing price to performance ratio of sensing, data storage,
and computational resources in the past decade, data-driven ma-
chine learning strategies are taking center stage across many
scientific disciplines.

In the realm of complex spatiotemporal dynamical systems,
data-driven machine learning strategies have been employed
for reduced-order models (ROMs) [6-10], discovery of system
dynamics [11-22], computation of dynamical system solutions
[23-28], and prediction of future dynamics [26,28-32]. These
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recent developments spurred by the current enthusiasm sur-
rounding ML and Al strategies can be broadly classified into two
categories: works that investigate the feasibility of existing ML/AI
algorithms and architectures, and those centered around the
development of new algorithms and architectures. Existing work
whose main objective is the former have focused on the power of
ML/AI techniques to significantly reduce the steep computation
and data storage costs associated with high-fidelity computa-
tional fluid dynamics (CFD) efforts [6-10,26,29-32]. These works
often leverage existing CFD models to generate ground truth,
training, and testing datasets to evaluate well-studied convolu-
tional neural networks (CNN) [6,30,32], long short-term memory
(LSTM) networks [9], generative adversarial networks (GAN) [10],
and existing ML/AI frameworks [8,29,31]. Nevertheless, exist-
ing ML/AI strategies are predicated on access to large amounts
of labeled data where explicit knowledge derived from well-
established first principles are difficult to encode.

Works in the second category that directly address these
challenges include sparse regression techniques [12,15-18,22]
and physics-informed neural networks (PINNs) [23-26]. Sparse
identification is a data-driven system identification strategy
that balances model complexity with descriptiveness [17]. Since
the dynamics of most physical systems are governed by only a
few important terms [17], sparse identification selects from a
finite set of candidate dictionary functions whose linear combi-
nation describes the system dynamics [16]. On the other hand,
PINNs are neural networks that are trained to solve supervised
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learning tasks whose dynamics can be described by general non-
linear PDEs. The key advantage of PINNSs is their data-efficiency
in the training phase. Sparse regression techniques such as those
found in [12,15-18,22] require large amounts of relatively clean
data to accurately compute numerical gradients, whereas PINNs
do not require any data on gradients of the flow field (nor
their numerical approximations). As such, PINNs perform more
robustly when data is sparse and/or noisy relative to the com-
plexity of the underlying system dynamics [23,24]. In contrast,
Ayed et al. ([21]) use actual observations of a system whose
dynamics are given by an ordinary differential equation to train
the neural network weights. Once trained, the network provides
an equation-free model representation of the system dynamics.
Different from [12,15-18,22-24], the work does not directly ad-
dress the issue of data-efficiency but assumes the network has
access to a sufficiently large set of training data.

In this work, we take inspiration from [12,15,17,19,20,22-24,
28] and present a data-driven Deep Learning framework capable
of resolving the differences between the actual dynamics of a
complex nonlinear system and that of the same system which has
been improperly or inaccurately modeled. Given an inaccurate
or inadequate model of a system, our proposed ML strategy
combines data from this inaccurate/inadequate model with ob-
servational data from the actual system to learn the dynamics
of the actual system. The result is a neural network model that
can accurately estimate the system states in regions with no ob-
servations and/or provide predictions for future states. Different
from [12,15,17,22-24], our approach provides an equation-free
representation of the system dynamics that successfully esti-
mates the underlying physics that drives the process. We evaluate
the proposed framework using three different dynamical systems
each with increasing complexity. Our results show how the pro-
posed strategy is not only capable of resolving improperly or
inaccurately modeled dynamics but also can learn the dynamics
of the actual system and provide accurate future predictions.

While our approach is similar to [28,33], we make use of
LSTMs in our deep learning network rather than a simple multi-
layer perceptron [33] or reservoir computer [28]. Our approach is
general and may be used for a wide range of dynamical systems
of different dimension and complexity, including examples in
which the known model is missing external forcing functions
or other known dynamics. Even for these complicated scenar-
ios, we demonstrate in this article the power of our method to
successfully predict the dynamics wherein simpler approaches
will fail. Since our output is a neural network representation of
the system model, the output of our network can be fed into
existing data-driven model discovery techniques [11,13,14,16,17]
to obtain closed-form equation representations of the dynamical
system.

The paper is organized as follows: we list our assumptions
and provide a concise formulation of our problem in Section 2.
The design of the network architecture and our methodology is
described in Section 3. We discuss how we evaluate our method-
ology in Fig. 3 and present our results with discussion in Sec-
tion 5. Conclusions and directions for future work are contained
in Section 6.

2. Problem formulation

We consider a spatio-temporal process u(x,t) € R™, where
x € W represents a point in the environment W C R" and
t € [ts, tr] represents the time within an observation interval of
interest. The actual model of the process that governs u is denoted
by M. and is given by a partial differential equation (PDE) of the
form

u[:N[uvflv--'7fpagl7'-'7g1’]7 (1)
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where A[-] is a nonlinear differential operator, where f; =
fix,t) eRY, i=1,...,pand g =gi(x,t) e R, i=1,...,r
are external phenomena that impact u. Let M, denote the model
that is obtained from the current understanding of the physics of
u. Then M., is given by the PDE with form

ut:J\Nf[u7flv'-'7f}J]s (2)

where A/[-] is also a nonlinear differential operator. Here, the f;
denote the p external phenomena whose impact on u is currently
known and the g; denote the r external phenomena that affect
u but are not captured in M.,,. Note that in general, g; could
represent some error in f; so that g; = f; + € where ¢ denotes the
difference between f; and g;. Furthermore, N is used to denote any
differences in system parameters between M.y, and M. Thus,
while M, represents the current understanding of the process,
this understanding is incomplete or inadequate and thus M, is
not an accurate representation of the process model.

Given a set of coordinates S = {sjls; = (x;,t)), X € W, ; €
[ts, tf]s J =1,..., ndata}v let User = {ﬁactjU =1,..., ndata} be
the set of observations of u obtained by measuring the actual
process at coordinates s; € S. Similarly, let Ugr = {uwrrj} and
Ut = {uactj} be the solution sets obtained from Mgy, and Mg
respectively, at the coordinates in S. In this work, U, is based on
computer simulations, but could in fact be measured experimen-
tally. For simplicity, we assume that there are no measurement
errors, ie., ﬂaaj = Uqy for each ﬁwj € Ugee and Uge; € Ugcr
obtained at the same coordinate s; € S.

Given Ugy, Uqyyr and observations of a subset of the g; at the
coordinates in S, the objective of this work is to develop a neural
network based model M, that better estimates the process u in
and potentially beyond the space-time domain W x [t;, t]. Let
e, = ||[Mge — M,]| > 0 represent some measure of the error of
the output of a given model with respect to the output of My
in a given domain. We want e,, < ey, in all domains (ideally
enn = ecurr only when e, = 0), i.e., the neural network should be
much better at predicting/estimating u than the existing model.

To illustrate, consider a mass-spring-damper system with
mass m, damping coefficient ¢ and spring constant k that is
subjected to two external forcing functions given by Fi(t) =
A cos(wqt) and Fp(t) = A, cos(wst). If the displacement of the
mass is denoted by y, the actual model of the system M is given
by the ordinary differential equation (ODE)

my +cy +ky = F; + F,. (3)

Let us assume that due to modeling and measurement errors, the
model that we have access to, Mg, is given by

My + &y + ky = F. (4)

Note that this model only captures part of the forcing function
and has errors in the mass, spring, and damping coefficients.
Given measurements of the displacement y, our work seeks to
develop a neural network, whose output closely resembles that
of the actual model M, for the same initial conditions. Denoting
the output of the actual, current and neural network models by
YVace(t), Yeurr(t) and yy,(t) respectively, we would like ||y, (t) —
Yat(O) < € < |[Yeurr(t) — Yace(t)]l, where ideally € is small. In
other words, we would like the trained neural network output to
always be a better approximation of the ground truth than the
current model output or match the ground truth exactly. Lastly,
in our proposed framework, the neural network model M,, only
provides outputs for the ODE, e.g, y, y, and ¥ rather than the
equation of the actual ODE.
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3. Methodology

The proposed method uses a neural network based framework
to “bridge the gap” between M, and M. Neural networks have
recently been used in a plethora of prediction and estimation
problems. However, in most of these solutions, large quantities of
training data are required to obtain good prediction performance.
This is especially true for prediction/estimation problems involv-
ing complex dynamical systems. In this work, we mitigate this
data inefficiency problem by incorporating existing knowledge of
the process into the neural network architecture.

The fundamental hypothesis of our work is that the current
understanding of the physics of u given by M., has substan-
tial information that the neural network can exploit in order to
provide better predictions of the process. Thus, in addition to
the space-time coordinates (x, t)and, where applicable, external
forcing terms g;, we also use the output from M., as an input to
the neural network. This input may be presented to the network
in different formats, e.g., data generated from a reduced-order
model [34,35], coefficients and functions from a sparse identifica-
tion of the process [17,22], output data from a numerical model,
etc.

Furthermore, the behavior of any dynamical system depends
heavily on the initial and boundary conditions. In the absence
of explicit initial and boundary conditions, these spatio-temporal
dependencies have to be captured by the network in a purely
data-driven manner. We facilitate this by (1) using Long Short-
Term Memory (LSTM) stages in our network to capture temporal
dependencies, and (2) providing the network with data in a
space-time hypercube around the point of interest.

Neural networks and LSTM networks

Artificial neural networks (ANN) are powerful nonlinear sta-
tistical models which consist of multiple layers of interconnected
nodes such that every connection represents a weight. Each node
calculates a weighted sum of the outputs of neurons which are
connected to it as well as a bias term. By representing the system
in terms of layers, neural networks are able to learn features
exhibited by highly nonlinear and complex data in a powerful hi-
erarchical fashion. The nonlinearity of these networks comes from
the use of nonlinear activation functions in the neural net nodes.
The neural net is trained by minimizing a loss function. The min-
imization is commonly done by a gradient-based optimization
algorithm that makes use of backpropagation - a computationally
efficient algorithm that computes the gradient of the loss function
with respect to the weights at each layer. Common optimization
algorithms include stochastic gradient descent, Adam [36], and
Adagrad [37]. The optimization algorithm commonly performs
updates to the weights using batches of the dataset. A complete
pass through all the dataset batches is usually referred to as an
epoch.

The most basic structure of a neural network is a fully con-
nected or dense ANN as displayed in Fig. 1. Each node in the
neural network is governed by an activation function a;(W,a; +
b;) where W, and b; denote the weights matrix and bias vector for
layer [ respectively. Common choices for a;;; include the sigmoid
function commonly denoted by o (-), the hyperbolic tangent func-
tion tanh(-), and rectified linear unit function ReLU(-). We refer
the reader to [38] for a detailed review of activation functions.

In choosing a neural network architecture, we make note that
our problem is in nature time-dependent. More concretely, the
problem imposes an order on the sequence of observations that
must be preserved. In general, standard artificial neural networks
are not well-suited to learn such orders since the weights in
each ANN layer are fully connected to the previous layer. This
forces the ANN to consider the entire sequence at once. Recurrent
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Fig. 2. A general architecture for an LSTM layer.

Neural Networks (RNNs), on the other hand, are a different type
of neural network that is well suited for sequence learning prob-
lems. They are equipped with a memory unit which is updated
for each new observation. Thus, parameters of the network are
shared for each step in the sequence. As such, RNNs rather than
ANNs are most commonly employed to learn time dependencies.

The Long Short-Term Memory (LSTM) network is a variant of
RNNs. LSTMs address the bottlenecks in traditional RNNs such
as the vanishing gradient problem [39] which hampers learning
of long data sequences. The LSTM memory unit is usually called
the cell, denoted by C, which is regulated by three gates: an
input gate Z, a forget gate 7, and an output gate O. The input
gate controls the contribution of the input to the cell, the forget
gate controls what parts of the cell to keep, and the output gate
controls the contribution of the cell to the output of the LSTM.
A schematic of the architecture can be found in Fig. 2, with h
representing the output of the network while the input of the
network is represented with s. The equations to compute the
gates and states are given by

Fr =0(Wg - [he_1, s]] + br),

Iy = o(Wz - [he—1, s¢] + bz),

d = tanh(Wc¢ - [he_1, $t]1 + bc),

C=F*C1+T %G, (5)
Or =0(Wo - [he—1, 5:] + bo),

ht = O * tanh(Ct),

where C is the updated state, W is the weights matrix, b is the
bias vector for each gate, s; is the input to the network at time
t, and * denotes the Hadamard product. The forget gate reduces

overfitting by controlling how an incoming input contributes to
the hidden state. This structure is the key reason why LSTMs
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Fig. 3. (a) Format of the inputs to the network. For each input to the network, we consider data in a n + 1 hypercube around the point of interest. Along each
dimension, k data points are included resulting in k"*! number of data points for each input. In this figure, k = 3. (b) The general architecture of our final model
which is composed of three stages. The number of layers and nodes in each stage depends on the problem.

do not suffer from the vanishing gradient problem exhibited by
RNNs. For more detailed discussions on ANNs, RNNs, and LSTMs,
we refer the interested reader to [40-43].

Input data format to the network

The network predicts/estimates the process on a point by
point basis. In order to capture the spatio-temporal dependen-
cies between the inputs and the output at each coordinate j,
we consider a n + 1 dimensional space-time hypercube of the
inputs around this coordinate. We consider k data points along
each dimension, resulting in k™! number of data points for each
input. In general, the larger the choice of k, the larger the input
data and thus the higher the computational load. In this work,
we choose k = 3 to limit the computational burden. Thus for
scenarios where n = 2, as shown in Fig. 3(a), we would consider
a hypercube with 27 vertices for each input.

3.1. Architecture of the neural network

Our proposed neural network architecture is composed of
three stages as shown in Fig. 3(b). We modify the architecture for
each problem by changing the number of layers/nodes at different
stages of the architecture. The three stages of the network are:

e Stage 1: Time distributed dense stage with D; layers;

e Stage 2: Long Short-Term Memory (LSTM) stage with D,
layers; and

e Stage 3: Dense output stage with D3 layers.

The three stages are described below in detail.

Stage 1: Time distributed dense layers

This stage consists of a set of parallel dense layers that work on
the inputs at each time slice independently. The purpose of this
stage is to give the network the ability to pre-process the data and
learn a representation that is most optimal for the LSTM stage.
While most research in the literature employing LSTM networks
do so without this pre-processing layer, our experiments have
demonstrated that adding this stage improves the convergence
of the network. The activation function for layer [ in this stage is
denoted as a; where ¢ denotes the time step. In this case, W and
b are shared for each time step. The output of this layer is then
passed to Stage 2.

Stage 2: LSTM stage

The LSTM is a type of Deep Learning architecture that is
designed to exploit long term dependencies in time series data.
Given the nature of dynamical systems data where time-based
dependencies are abundant, LSTMs are a powerful choice to
model such data. Thus, after the data has been processed by a
sequence of dense layers in Stage 1, we apply a sequence of LSTM
layers in Stage 2. The equations for the LSTM layer are given by
Eq. (5) with s; replaced by a; , where L is the number of the last
layer in Stage 1. The output of the LSTM layer from the final time
step is then used as the input to the Stage 3.

Stage 3: Dense output stage

Stage 3 consists of a sequence of dense layers. This stage
serves as a final stop for processing the data before producing the
output. The output of the last dense layer is the final predicted
output u,, from the neural network. The output of the network
is used in the following loss function to train the network

M

1
M Z(uacti — Unp; )2,

i=1

Loss(uqct, Unn) =

(6)

where M is the dimension of the output wu.
4. Methodology evaluation

To quantitatively and qualitatively evaluate our methodol-
ogy, we consider different dynamical systems each with increas-
ing complexity. The proposed learning framework is evaluated
with respect to its ability to reproduce the dynamics of the
actual system and its ability to predict future observations on a
point-by-point basis.

4.1. Candidate systems

We consider three candidate systems to test our hypothesis
on, with each system being progressively more complex. Each
candidate system exhibits one of the three types of differences
between My and M, (1) differences in system parameters, e.g.,
u = Nu, fi,....fpl withg; = 0 for all i = 1,...,r; (2) differ-
ences in external forcing functions and/or boundary conditions,
eg, U = Nu, fi,....f,]withg = fi+ € fori = 1,...,r with
r < p; and (3) missing terms in the partial differential equation
describing the dynamics of the system, e.g., u; = Nu, fi, ... Jpl
with g; # 0. We briefly describe the candidate systems below.
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System 1: 1D heat equation
In our first system, we assume both the actual model M, and
current model M, system dynamics are given by

U :D*uxx; (7)

where x € R, u € R is the temperature, and D, is the diffusion
coefficient and is set to either Dy or Dg,r. In this scenario, the
discrepancy in the models arises due to a mismatch in the actual
and assumed diffusion coefficients.

System 2: Lid cavity problem

For our second system, we consider a modified version of the
lid cavity problem presented in [44]. The actual model, My, is
given by

1
ut:—(u-V)u—Vp+§V2u+F‘ (8)

In [44], F is chosen to be an external body force with a whirlpool
effect. In this work, we employ the same F as in [44] but include
a periodic element to F whose components are given by

Fo = (12 — 24y)x* + (=24 + 48y)x*+
(—48y + 72y — 48y® + 12)x°+
(=2 + 24y — 72y? + 48y°)x+
(1 — 4y + 12y* — 8y*)120ssin (!> + 80t),
F, = (8 — 48y + 48y*)X*+
(—12 + 72y — 72y* X+
(4 — 24y + 48y* — 48y + 24yt )x+
—12y° 4+ 24y — 12y*)120cos (e = + 80t).
(—12y* + 24y® — 12y*)120 cos (e"** + 80¢)

In this system, the assumed model, M, is given by the
Navier-Stokes equation for incompressible flows,

1
U =—u-Vu—Vp+—vau (9)
Re

with Vu = 0, where x € W C R? denotes the position, u € R?
is the flow velocity, Re is the Reynolds number, and p is the
pressure. In contrast to the classical lid cavity problem, where the
domain W is a square in which the top boundary moves with a
constant speed, we assume the dynamics are subject to periodic
boundary conditions at the top and bottom boundaries of the
square given by

Urop = [2sin((e"* 4 60)L)],
Upottom = [2 Sin((e]lt + 50)t)].

System 3: Flow around a cylinder

For our third system, we consider the 2D flow around a cylin-
der modeled using the Navier-Stokes equations. The cylinder
has a 1m radius and is centered at (20, 20) in a 50m x 40 m
rectangular workspace. For the actual system, M, the cylinder
moves vertically along the y = 20 axis such that its center
moves periodically between (20, 21) and (20, 19) at a frequency
of 0.3927 rad/sec. The velocity profile at the left boundary is set
to be a uniform stream while a zero pressure outflow condition
is imposed at the right boundary. The Reynolds number is set
to 200. In this scenario, the system model or dynamics, My, is
assumed to be that of the stationary cylinder placed in the same
uniform free stream flow, at the same location, with the same
radius, operating at the same Reynolds number. We note that the
oscillation frequency for the moving cylinder in M, is set to be
approximately the vortex shedding frequency of M.
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Table 1

Neural network parameters for System 1. Note that TDDL stands for Time
Distributed Dense Layer, LSTM stands for Long Short-Term Memory, and ReLU
stands for Rectified Linear Unit.

Layer Kind Activation Function Number of Nodes
Input 0: Uy, Coordinates N/A N/A

Layer 1: TDDL[Input 0] RelLU 32

Layer 2: LSTM Layer[Layer 1] Tanh/Sigmoid 64

Layer 3: LSTM Layer|[Layer 2] Tanh/Sigmoid 32

Layer 4: LSTM Layer[Layer 3] Tanh/Sigmoid 32

Layer 5: Dense Layer|[Layer 4] RelLU 10

Layer 6: Dense Layer [Layer 5] Linear 1

Table 2

Neural network parameters for System 2. Note that TDDL stands for Time
Distributed Dense Layer, LSTM stands for Long Short-Term Memory, and ReLU
stands for Rectified Linear Unit.

Layer Kind Activation Function Number of Nodes
Input 0: Uy, F, Coordinates N/A N/A

Layer 1: TDDL[Input 0] RelLU 32

Layer 2:TDDL[Layer 1] ReLU 64

Layer 3: LSTM Layer[Layer 2] Tanh/Sigmoid 64

Layer 4: LSTM Layer[Layer 3] Tanh/Sigmoid 32

Layer 5: LSTM Layer[Layer 4] Tanh/Sigmoid 32

Layer 6: Dense Layer [Layer 5] ReLU 10

Layer 7: Dense Layer [Layer 6] Linear 2

Table 3

Neural network parameters for System 3. Note that TDDL stands for Time
Distributed Dense Layer, LSTM stands for Long Short-Term Memory, and ReLU
stands for Rectified Linear Unit.

Layer Kind Activation Function Number of Nodes
Input 0: Ug,r, Coordinates, N/A N/A

Cylinder Position

Layer 1: TDDL[Input 0] RelLU 32

Layer 2: TDDL[Layer 1] ReLU 64

Layer 3: LSTM Layer|[Layer 2] Tanh/Sigmoid 64

Layer 4: LSTM Layer[Layer 3] Tanh/Sigmoid 32

Layer 5: LSTM Layer|[Layer 4] Tanh/Sigmoid 32

Layer 6: Dense Layer [Layer 5] ReLU 10

Layer 7: Dense Layer [Layer 6] Linear 2

4.2. Implementation

The details of each system’s architecture are summarized in
Tables 1, 2, and 3. We use Adam [36], a powerful and computa-
tionally efficient optimization algorithm with the recommended
default parameters to initialize the algorithm. We set the algo-
rithm batch size to 64, and used the Python package Keras [45] to
train the network for a total of 50 epochs. Note that for our dense
layers, we chose ReLU as our activation function. The function
demonstrated the best performance on our tasks.

Given the lightweight nature of our networks and the small
size of input data, we trained the networks on a CPU Intel(R)
Core(TM) i7-8750H CPU @ 2.20 GHz. Tensorflow, the backend of
Keras, automatically distributes training on multiple cores. The
average time for completing one epoch for Systems 1, 2, and 3
is 1, 60, and 40 s respectively. The differences in training time
between each system are mostly due to the training set size. The
marginal difference between each system architecture does not
significantly change the training time.

It is important to note that expanding the neural net input
size will impact the computational time. Adding more points
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to the hypercube will result in d more connections where d is
the number of nodes in the Stage 1 first layer. These d new
connections represent the new input contribution to each node
in the first layer. We can also apply the network on longer data
sequences. This would not result in any new connections, but it
will result in applying Stages 1 and 2 of the network on the added
time steps. Both of these changes, when studied independently,
will result in a constant increase in the number of operations for
both prediction and training.

There is also an impact on computational time through the
addition of more data. In training neural networks, we apply
the same vectorized operations, mostly matrix multiplications, on
batches of data. The nature of this computational process means
that for each new data point, the number of operations for both
training and prediction increases by a constant factor.

Finally we note that in solving new problems, we might need
to expand the network representational capacity by adding more
nodes and layers. The change in the computational cost of the
network will heavily depend on the size and complexity of the
new network. However, recent advances in GPU development tai-
lored specifically for Deep Learning offer a range of solutions for
building optimized and scalable implementations of complicated
and heavy architectures.

4.3. Datasets

In this work, we employ numerical solutions to the actual and
assumed models, My and M, to generate the ground truth,
test, and training datasets. The ground truth and actual system
observations, Uy, are obtained by numerically solving M. Simi-
larly, the values for U, are obtained by numerically solving M
for the assumed parameter values, e.g., N. For System 1, the 1D
heat equation given by Eq. (7) was solved using the finite volume
based PDE solver in Python (FiPy). The equation was discretized
on a spatial 50 x 1 grid over 0.006 s with time step of 0.000012.
The number of time frames is 500. For System 2, a finite difference
scheme was used to solve the Navier Stokes equations given by
(8)-(9). The equation was discretized on a spatial 30 x 30 grid
over 2 s with time step of 0.001. The number of time frames
is 2000. Lastly, numerical solutions for System 3, flow around a
cylinder, were obtained using OpenFoam [46G]. The datasets for
Uy and Uy, were obtained on a largely uniform grid consisting
of approximately 100 x 70 points over 2000 s using OpenFoam'’s
pimpleFoam solver with a solution time step of 0.001 s. However,
Uy and Ugy consist of data obtained at every second over the
total 2000 s simulation run and thus the data consist of 2000 time
frames.

Training and test datasets are comprised of both Ug,; and Ug.
Assuming Uy and Ug,r consists of N frames (Ny x N, grid points
in each frame), we partition the data into four sets: training,
validation, local test, and future test. For the training, validation,
and local test sets, we consider K consecutive frames. In order to
split the data in the K frames between the three sets, we split
the set of Ny x N, grid points at each frame randomly between
training, validation and local test sets. We choose to include 60%
of the grid points in the training set, 10% of the grid points in the
validation set, and 30% of the grid points in the local test set. Note
that the split is the same for each frame. For the future test set,
we consider the remaining T = N — K frames with all the grid
points. We use the training set to train the network, the validation
set to test the effect of hyperparameter optimization and different
network architectures on the network performance, the local test
set to measure the chosen network ability to generalize over
unseen grid points, and the future test set to measure the network
ability to generalize over unseen dynamics, i.e., predict future
observations.
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For System 1, we include the first 150 frames in the training,
validation, and local test sets (K = 150) and the last 350 frames
(T = 350) in the future test set. This setup results in a total of
4,144 points for training, 740 points for validation, 2,220 for local
test, and 16,800 for future test. For System 2, we use the first
1,000 frames for training (K = 1, 000), validation and local test
and use the last 1,000 (T = 1, 000) frames for the future test. This
results in a total of 469,060 points for training, 77,844 points for
validation, 235,528 points for local test, and 784,000 points for
future test. For System 3, we use 100 frames of data between the
frames 500 and 600, i.e., between 500 and 600 s, for the training,
validation and local test set. We used the 1,400 frames after 600 s
for the future test. This results in a total of 399,800 points for
training, 66,600 for validation, 200,000 points for local test, and
9,786,000 points for future test.

4.4. Evaluation metrics

To assess model performance, we use two benchmarks to
measure the difference between two sets of F frames: Set; (tested
set) and Set; (ground truth). In our evaluation, Set; will either be
Ueyrr or Upp and Set, will be Ug.

Mean Squared Errors (MSE). The first benchmark uses the mean
squared difference between Set; and Set,. For 2D output, we take
the average of the two outputs for every point before computing
the MSE. We also include the mean magnitude square difference
(MMSD) and the mean cosine similarity (MCS) between the two
sets in the benchmark for the Lid Cavity and the Flow Around a
Cylinder problems in Systems 2 and 3 since both are 2D systems.

Proper orthogonal decomposition. The second benchmark com-
pares the proper orthogonal decomposition (POD) modes that
accounts for 99% of the system variation. Complex nonlinear dy-
namical systems can exhibit significant spatiotemporal variations,
often at differing scales. To extract the dominant dynamics of
these systems, techniques for modal analysis are often used to
construct a reduced order representation of the dynamics. POD
is a data-driven reduced order modeling strategy that is often
used to identify the dominant dynamics of a system purely from
observations [34,35].

Given N snapshots of the system states which can be obtained
either through measurements and/or numerical simulations, let
X(t) = [x1(t), ..., x(t)]" denote the set of spatial coordinates in
Watt=1,...,N. We note that the points in x(t) correspond to
the grid points in which uy. and ug,, values are provided at some
given time t. Using x(t), we can construct a covariance matrix as

1¢ T_ Lot
K=—") xtx(t) = —XX", (10)
m m

t=1

where X € R™™ with its columns as x(t). To extract the dom-
inant dynamic modes from the data given by x(t) = [x(t), ...,

x ()] fort =1,..., N, we obtain the low dimensional basis for
the data by solving the symmetric eigenvalue problem
K¢; = ri¢;.

where K has N eigenvalues such that A > A,... > Ay > 0 and
the eigenvectors ¢ are pairwise orthonormal.

The original basis is then truncated into a new basis @ by
choosing k eigenvectors that capture the desired fraction, E, of the
total variance of the system, such that their eigenvalues satisfy

k
Zi:l Ai
Z?:l Ai
Each term x(t) can be written as

x(t) = Pc(t), (11)

> E.
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Fig. 4. (a) System 1: Temperature as a function of the spatial and temporal coordinates for (left) Uy, (middle) Uy, and (right) Uge. (b) MSE between Uge and Ueyr
(light blue) and Uy and Uy, (dark blue) for system 1. (c) Cosine similarity between the first principal POD mode of U, and Ug,, (light blue) and U, and Uy, (dark
blue) for system 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. System 2: Vector field at t = 1.147 s for (left) Ugyy, (middle) Uy, and (right) Uge.

where c(t) = [ci(t),...,c(t)]" holds time-dependent coef-
ficients and @ € R™* with its columns as ¢, ..., ¢,. The
low-dimensional, orthogonal subspace associated with & is an
optimal approximation of the data with respect to minimizing
least squares error.

To compare the POD modes, we compute the inner prod-
uct, i.e. the cosine similarity, between the two sets of principal
components obtained for Set; and Set,. We call this metric CS-
POD, for short. We calculate the statistics of both benchmarks
on two cases: Case 1, Set; is M,y and Case 2, Set; is Mpy,. Case
1 provides a relative baseline for measuring the performance of
the neural net in Case 2. We report the first benchmark statistics
over training, local test, and future test sets, and the second
benchmark statistics over the entire simulation.

5. Results and discussion

We present and discuss the results of our proposed learning
framework for each of the candidate systems.

System 1: 1D heat equation

Fig. 4(a) shows the temperature data generated by Mye, Mcyrr,
and M, for the entire spatiotemporal domain. In these simula-
tions, Dy and Dy, were set to 15 and 1 mm?/s respectively.
Qualitatively we see that the network model does an excellent job
in resolving the inaccurately modeled dynamics and accurately
captures the true dynamics of the system. Fig. 4(b) quantitatively
shows the network’s ability to generalize over local unseen grid
points as well as data in the future set. In fact, one can see
that the error between U, and U, is orders of magnitudes less
than that of U, and Ug,,. Moreover, the error bars between

U and Uy, are so small that the orange bars are not visible in
the graph (the exact values for comparison are denoted in the
figure). The quantitative results are further confirmed in Fig. 4(c)
which shows the CS-POD for the POD modes. In this problem, the
POD decomposition of Uy, over the entire simulation yielded two
principal modes as did the POD decomposition of U,. The agree-
ment between these POD modes is excellent as demonstrated by
a CS-POD values that are very close to unity, as seen in Fig. 4(c).

System 2: Lid cavity problem

Fig. 5 shows a snapshot of the vector field generated by My,
My, and My, for the entire domain at t = 1.147 s. As with
System 1, we see qualitatively that the network model does an
excellent job in resolving the inaccurately modeled dynamics
and does accurately capture the actual dynamics of the system.
Fig. 6(a)-6(c) quantitatively show the network’s ability to com-
bine U, and observations of g; = F to correctly predict U, over
local unseen grid points as well as data in the future set. Figs. 6(a)
and 6(b) show respectively that the MSE and MMSD between
Uqee and Uy, are orders of magnitudes less than that of U, and
Ucyrr. The quantitative results are further confirmed in Figs. 6(c)
which shows that the mean cosine similarity between U,; and
Upy is close to unity thus demonstrating that Uy, is resolving the
actual dynamics to a far greater degree than is Ug,,. Similarly,
Fig. 6(d) shows the CS-POD for the first six principal POD modes
over the entire simulation. The CS-POD values again demonstrate
the network’s ability to resolve the actual system’s dynamics. In
short, the high degree of accuracy shows that our network is
capable of correctly predicting observations both in previously
unseen regions in the workspace as well as in future time steps.
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Fig. 6. (a) MSE between Uy and Ugy,, (light blue) and U, and Uy, (dark blue) for system 2. (b) MMSD between U, and Uy, (light blue) and U, and Uy, (dark
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and Uy (light blue) and U, and Uy, (dark blue) for system 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

It is important to note that the periods of the body force
and the moving upper and lower boundaries in System 2 are
not constant. In fact, they change exponentially as a function of
time. Ideally, the trained network should capture this exponential
change in the periods and be able to accurately predict future
values outside of the training frames. In reality though, the pre-
diction accuracy would degrade the farther out the prediction
times are from the training times. To quantify this behavior,
three training regimes were considered with different training
set lengths. The training sets for the three regimes contained the
first 500 frames, first 750 frames, and the first 1000 frames of
the dataset respectively. We evaluated the system’s predictive
power using intervals of 250 future output frames and the results
are shown in Fig. 7. The metric (MSE, MCS and MMSD) for each
interval is computed across all 250 frames in that interval. As

expected, the prediction accuracy degrades the further out the
prediction time is from the training set. For this particular case,
the network is able to predict approximately one training period
into the future, with a fair degree of accuracy.

System 3: Flow around the cylinder

Fig. 8 shows a snapshot of the magnitude of the velocity field
at t = 1390 s generated by M., My, and Mp,. In these results,
the Reynolds numbers for both My, and M, were set to 200.
As with the previous two systems, we see qualitatively that the
network model does an excellent job in resolving the inaccurately
modeled dynamics and does accurately capture the actual dy-
namics of the system. In particular, note that the network model
My, is accurately capturing the vortex shedding frequency while
the M+ vortices are out of phase with the actual vortex shedding
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Fig. 7. Comparison between the predictive power of the M,, trained using the first 500, 750, and 1000 frames. The x axis denotes the time interval in increments
of 250. The metric for each interval represents the metric value computed for the frames in that interval.

pattern. As in the previous systems, Figs. 9(a)-9(c) quantitatively
show the network’s ability to combine values of U, as well as
g1 = O(t) (where O indicates the position of the cylinder at time
t) to correctly predict U, over local unseen grid points as well
as data in the future test set. Figs. 9(a) and 9(b) show respec-
tively that the MSE and MMSD between Uy, and U, is orders
of magnitudes less than that of U, and Ug,,. The quantitative
results are further confirmed in Figs. 9(c) which shows that the
mean cosine similarity between U, and Uy, are close to unity
thus demonstrating that Uy, is resolving the actual dynamics to
a far greater degree than is Ugy,,. Similarly, Fig. 9(d) shows the
CS-POD for the first six principal POD modes over the entire
simulation. The CS-POD values again demonstrate the network’s
ability to resolve the actual system’s dynamics. In short, the high
degree of accuracy shows that our network is capable of correctly
predicting observations both in previously unseen regions in the
workspace as well as in future time steps for systems exhibiting
more complex dynamics.

To evaluate the predictive performance of M,,, we focus on
the network’s ability to identify the periodicity of the oscilla-
tions. Since System 3 is periodic, once the network learns the
true periodicity of the dynamics, it has effectively learned the
true dynamics of the system for all future times. To quantify
the difference in periodicity between the model output and the
ground truth, the following analysis was performed. For each
point in the local test set, 7;, we consider its time series from
frame 600, the last frame in the training set, to frame 2000 in
both Uy, and Ug;. We denote these as Up,(t;, 600-2000) and
Uqct(Ti, 600-2000) respectively. We start by computing the fre-
quency spectrums of Up,(t;, 600-2000) and Uy (7, 600-200) us-
ing the Fast Fourier Transform (FFT) which we denote as FFTy,
and FFT,. Consider the percentage mean absolute difference
between the frequencies that corresponds to the energy peaks
between FFT,, and FFT,.; which we denote by %A(FFTy,,. FFTy,, ).
The mean of XA(FFTy,,, FFTy,, ) is then computed for every grid
point in the local test set which resulted in a value of 0.0239.
This analysis indicates that the neural network output not only
accurately captures the periodicity of the underlying phenomena
but it is able to correctly identify the global features of the
dynamics. In short, once the network captures the periodicity, it
can then predict the system’s behavior at any time in the future.

6. Conclusion and future work

We have proposed a data-driven modeling strategy based
on a neural network machine learning framework that enables

M act
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Fig. 8. System 3: Magnitude of the velocity profile given by (left) Ug, (middle)
Upnn, and (right) Uy at time ¢t = 1390 s.

one to overcome improperly or inadequately modeled dynam-
ics for systems that exhibit complex spatiotemporal behavior.
Given a system model that does not accurately capture the true
dynamics, our machine learning strategy uses data generated
from the improper system model combined with observational
data from the actual system to create a neural network model.
As we have shown with three complex dynamical systems, the
network model that is created is capable of accurately resolv-
ing the incomplete or inaccurate dynamics to generate solutions
that compare very favorably with the actual dynamics, both in
previously unobserved regions as well as for future states.
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version of this article.)

Our approach leverages state-of-the-art machine learning
frameworks and existing, but limited, knowledge of the physical
constraints that drives a process. The result is an equation-free
representation of the system dynamics that encodes a baseline
understanding of the underlying physics that drives the process.
Since our output is a neural network representation of the system
model, the output of our network consists of a set of pointwise
inferences and thus is equation-free. Nevertheless, the output
can be fed into existing data-driven model discovery techniques
to obtain closed-form equation representations of the dynamical
system [17,18].

In future, we plan to perform a detailed analysis on our learn-
ing framework performance for different error bounds to bet-
ter understand acceptable deviations from the true model. As-
sociated with this is the effect of noise, and to this end we

10

plan to investigate how measurement uncertainty in ﬁact impacts
the performance of M,,. Since real-world systems are inherently
noisy, we must be able to incorporate noisy observational data
while still accurately capturing the system’s dynamics. As such,
it is important to be able to deal with situations where every
observation is subject to a noise that is non-negligible or with
situations where one has very noisy outlier observations. While
the impact of noise on a network’s performance is well docu-
mented and studied in the computer vision literature [47], its
impacts on networks modeling more complex phenomena are
less well understood. A complete analysis of the effect of noise
includes consideration of both additive and multiplicative noise,
and involves analyzing simulated systems where deterministic
and stochastic elements can be tightly controlled to establish
ground truth for comparisons.
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By developing methods that can deal with negligible and
non-negligible noise, we will enable the study of complex and
high-dimensional systems including those found in fluid dynam-
ics and in particular geophysical fluid dynamics. Fluid flows are
complex and exhibit multi-scale phenomena whose dynamics are
not at all well-understood. Even the underlying physical mecha-
nisms for flows are not fully understood. In the future, we plan to
use the framework developed in this article to make predictions
and estimations. For example, in a geophysical flow, information
such as wind forcing or data from depth, may not be included in
the models. Even with noisy and sparse observations, we would
like to investigate if our framework can be used to accurately
resolve the inadequately modeled dynamics.
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