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A B S T R A C T   

Maintaining fluid balance is critical for life. The central components that control fluid intake are only partly 
understood. This contribution to the collection of papers highlighting work by members of the Society for the 
Study of Ingestive Behavior focuses on the role that dopamine has on fluid intake and describes the roles that 
various bioregulators can have on thirst and sodium appetite by influencing dopamine systems in the brain. The 
goal of the review is to highlight areas in need of more research and to propose a framework to guide that 
research. We hope that this framework will inspire researchers in the field to investigate these interesting 
questions in order to form a more complete understanding of how fluid intake is controlled.   

1. Introduction 

Thirst is an incredibly potent experience. Most of us know what it 
feels like to be thirsty and have experienced the hedonic value that 
comes with a thirst-quenching drink. This guiding sensation and salient 
experience is important for survival because water and the balance of 
water and electrolytes in the body is essential for life. Given the 
importance of water in biological systems, in health, and in our everyday 
experiences, it is not surprising that there is an extensive literature 
describing the neural and hormonal controls of drinking. 

For decades, the study of thirst has been dominated by the double- 
depletion model that was first introduced by Epstein and Fitzsimons 
[1, 2]. This framework has been helpful in conceptualizing the two main 
fluid compartments (thus, “double”) and the separate, but overlapping, 
responses to depletion of fluid in either compartment. Indeed, water in 
the body can be separated into that existing inside our cells (intracel
lular) or outside our cells (extracellular). A reduction of water in the 
former generally occurs by an increase in the solutes in the extracellular 
space, creating osmotic pressure that draws water from the inside of 
cells into the surrounding interstitial space, thereby reducing the fluid 
inside cells without a physiologically relevant effect on the volume of 
the extracellular space. With respect to the control of fluid intake, this 
type of imbalance is detected by specialized cells called osmoreceptors 
that are found in various regions of the brain, including the organum 
vasculosum of the lamina terminalis (OVLT) and the subfornical organ 

(SFO) [3]. In contrast, loss of extracellular fluid, which includes both 
water and electrolytes, decreases volume without affecting osmolality. 
This requires a separate detection mechanism that occurs by changes in 
baroreceptor activity, which respond to altered blood pressure and 
volume in the periphery, and stimulation of the renin-angiotensin sys
tem [4]. Because of these separate but overlapping systems, the effects of 
fluid loss to either compartment can be detected and the behavior that 
results (drinking) can help restore fluid balance to the system. Indeed, 
aside from medical intervention, drinking is the only way that most 
mammals can restore whole body fluid balance, providing a strong 
motivation to drink (i.e., thirst) and to consume sodium (i.e., salt/
sodium appetite). This appetitive phase of intake is, whenever possible, 
followed by a strong consummatory phase during which animals ingest 
copious amounts of water and, in the case of extracellular fluid loss, salt. 
Fig. 1 presents a basic framework to describe how fluid intake occurs. 

Although research on the mechanisms underlying thirst has been 
important to understand the life-sustaining behavior of drinking, these 
studies also serve as a very useful model of motivated behavior in more 
general terms. Thirst, in many ways, is quintessential motivation. The 
word “thirst” itself is synonymous with desire and motivation. The first 
recognized written use of the Old English equivalent of thirst was in 
reference to a strong desire in a more general sense than a specific desire 
for water [5]. Thus, “thirst” was about motivation even before it was 
used to describe the longing for water. Although the control of fluid 
intake has been studied for decades, we still lack a complete 
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understanding of the circuits involved and how they interact with sys
tems traditionally associated with motivation and reinforcement. 
Accordingly, for our contribution to this year’s collection of SSIB papers, 
we highlight the current understanding of the neural and hormonal 
regulation of thirst and the relevant circuits that guide motivated be
haviors. Specifically, we focus on midbrain dopamine signaling and the 
mesolimbic system, mostly in studies using rats and mice as subjects, as a 
likely mediator of this behavior. We, therefore, build upon the frame
work presented in Fig. 1 throughout this review in an effort to provide a 
model that describes how various bioregulators can affect dopamine 
signaling to control fluid intake. We believe this is an area ripe for 
further study and hope this review creates a ‘thirst’ for knowledge that 
drives future research. 

2. Neural substrates of motivated behavior and fluid intake 

The neural substrates underlying motivated behavior include a va
riety of nuclei distributed throughout the brain, but in particular, the 
mesolimbic dopamine system plays a critical role in reward processing 
and motivated behavior. The classic mesolimbic dopamine system in
volves projections from the ventral tegmental area (VTA) of the 
midbrain to the nucleus accumbens (NAc), including the core (NAcC) 
and shell (NAcSh) subregions of the NAc [6, 7]. Dopamine neurons in 
the VTA also project to other targets, including the prefrontal cortex [8], 
amygdala [9], and hippocampus [10], and release other neurotrans
mitters such as glutamate [11], although discussion of this is outside the 
scope of the current review. “Reward” is a complex construct that in
cludes several separable components [12]. Activity of the VTA dopa
mine neurons can influence a variety of factors related to reward 
including learning [13, 14], impulsivity [15], and emotional valence 
[16]. Dopaminergic signaling within the VTA-to-NAc circuit is 
commonly studied for its role in governing reward and reinforcement for 
several salient targets, including food, drugs of abuse, and water and salt 
[17-24]. A variety of neural and hormonal inputs influence the activity 
of the VTA and NAc, which will be discussed in detail later in this 
review. 

Although the mesolimbic dopamine pathway is frequently associated 
with motivation and reward, the VTA is not the sole midbrain source of 
dopamine. The adjacent substantia nigra (SN), in particular the SN pars 
compacta, contains a robust population of dopaminergic neurons [25, 

26]. These dopaminergic SN cells project to dorsal striatal targets, 
including the caudate nucleus and putamen, comprising the nigrostriatal 
pathway. This dopaminergic system also has a role in reward processing, 
and additionally, has a key role in motor function and movement 
(recently reviewed in [27]). Thus, when conceptualizing the neural 
substrates underlying motivated behavior such as drinking, it is 
important to consider the roles of both of these dopaminergic systems, 
especially for disentangling the role of dopaminergic signaling in the 
appetitive versus consummatory aspects of drinking behavior. 

To form a complete understanding of the interface between thirst 
and brain circuits responsible for motivation, it is important to first 
understand the circuits that detect and otherwise respond to fluid per
turbations. This discussion must include what is meant by ‘thirst’ in this 
context. Indeed, ‘thirst’ is a subjective experience that is more easily 
probed in humans, who can be asked questions about their experiences. 
In laboratory animals, these questions only can be asked indirectly by 
measuring if the animal drinks or does not drink, and if it drinks, how 
much does it consume. Although the amount consumed may be a valid 
proxy for the level of thirst, it is difficult to know for sure. Indeed, 
humans drink without reporting thirst and can be encouraged or 
otherwise motivated to drink without any of the same subjective feeling 
that we call ‘thirst.’ A contest to consume more water in order to win a 
prize would be an example of high levels of intake, without any necessity 
for ‘thirst’ to be experienced. In this sense, those of us working with 
laboratory animals must take a leap of faith that the rat is experiencing 
something subjective, at least similar in some ways to what humans call 
thirst, when a stimulus drives drinking. In addition, we must consider 
the nature of the stimulus and the type of depletion that leads to 
drinking. Although the double-depletion model includes separate but 
overlapping structures, for the purpose here, the separation is less 
important because both forms of depletion lead to the motivation in 
question. It is also important to note that, at least in the laboratory, the 
study of thirst and sodium appetite are inextricably linked. This is likely 
because of the double-depletion model and its origins, but also because 
in the laboratory, most studies on sodium intake have provided sodium 
in fluid form. This is different from how many animals encounter sodium 
in the wild, where it is more often associated with food than with hy
dration. Sodium, however, plays a key role in the balance between 
intracellular and extracellular fluid, making it more physiologically 
relevant for fluid intake. 

Irrespective of differences in the response to intracellular or extra
cellular depletions and thirst with and without sodium appetite, the key 
structures involved are the forebrain circumventricular organs (SFO and 
OVLT), which directly or indirectly detect changes in hydration and 
have reciprocal connections with the median preoptic nucleus (MnPO) 
[28-31]. An evaluation of the anatomical connections between the SFO, 
OVLT, and MnPO with the mesolimbic and nigrostriatal structures 
described above serves as an initial step. Although early tracing studies 
reported projections from the MnPO to the VTA [32], refined ap
proaches that specifically identified inputs to dopamine cells did not 
recapitulate this finding and did not report direct connections from the 
thirst-relevant circumventricular structures to midbrain dopamine cells 
[33]. Midbrain dopamine cells, however, receive robust inputs from 
structures such as the paraventricular nucleus and lateral hypothalamus, 
which are well-studied targets of the SFO, OVLT, and MnPO [30, 34-42]. 
Accordingly, a two-step relay represents the shortest link between these 
structures and dopamine cells in the midbrain. The functional relevance 
of these projections and which relays are relevant for thirst control 
remain important open questions. 

In addition to forebrain-midbrain connections that may form links 
between thirst-relevant structures and dopamine cells, thirst and sodium 
appetite are also influenced to varying degrees by hindbrain inputs. 
Work by Geerling and colleagues, for example, has identified 
aldosterone-sensitive neurons in the caudal brainstem, specifically 
within the nucleus of the solitary tract (NTS), that project to a variety of 
targets including the VTA [43, 44]. This represents a direct pathway 

Fig. 1. The phases of fluid intake. In response to, or in anticipation of, a loss of 
fluid, thirst and fluid seeking behaviors are engaged to defend homeostasis. 
These appetitive phase behaviors lead to the consummatory phase of intake, 
during which fluids are consumed. This intake of fluid provides feedback 
through orosensory and postingestive mechanisms that are associated with 
respective differences in the number of times rats will lick in a burst of licks and 
the number of bursts of licks rats will make at a spout. These orosensory and 
postingestive signals feed back to the appetitive phase to either enhance or 
suppress thirst and fluid seeking. 
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through which aldosterone tone, which correlates with sodium need, 
can interface with the VTA to modulate fluid intake. Additional feedback 
related to consumed fluids appears to reach the brain via vagus nerve 
afferents from the gut [45, 46] that presumably engage NTS neurons. 
Given that the NTS contains neurons that project to the VTA, this rep
resents another means by which fluid-relevant signals can influence the 
VTA and engage dopamine systems that may be important for fluid 
intake control. In addition to direct NTS-to-VTA projections, signals are 
relayed through structures such as the parabrachial nucleus, which is 
critical for proper sodium intake, receives robust projections from the 
NTS, and projects to the VTA [43, 47-52]. This represents another 
possible pathway through which peripheral signals can affect sodium 
intake. How these systems function, and whether the modulation of 
dopamine signaling is one mechanism by which the act of drinking can 
decrease appetitive or consummatory phases of thirst responses, remains 
an important topic of investigation. A better understanding of the 
feedback from the gut and mouth also may help reconcile what currently 
appears to be a discrepancy in the literature. Specifically, gastric feed
back was found to have a very strong influence on fluid intake in the 
mouse [45, 46], but thirst responses were largely unaffected by gastric 
bypass surgery in the rat [53]. Moreover, fluid by mouth was shown to 
be more satiating than fluid infused directly into the gut of rats [54]. 
More research on how gut feedback influences intake in both rat and 
mouse models could help reconcile this apparent discrepancy and could 
reveal ways that intake affects and is affected by dopamine systems. 

3. Dopamine and fluid intake 

3.1. Dopamine and water intake 

Anecdotal evidence from clinical populations suggests that disrupted 
dopamine signaling is associated with changes in water intake. For 
example, decreased water intake has been reported in patients with 
Parkinson’s disease [55], while copious intake is observed in patients 
with schizophrenia [56, 57]. Seminal studies establishing a role for 
dopamine in the control of fluid intake demonstrated that central in
jections of dopamine increased water intake in hydrated rats, while the 
dopamine antagonist haloperidol inhibited water intake stimulated by 
overnight deprivation [58]. This early work also showed that after 
overnight food restriction, blocking dopamine signaling with haloper
idol decreased water intake with no change in food intake, and 
increasing dopamine signaling by giving L-dopa and a dopamine β-hy
droxylase inhibitor increased the drinking response, again with no 
change in food intake [58]. These findings are important because they 
demonstrate a selective effect of dopamine on fluid intake, and not a 
secondary change in fluid intake due to prandial drinking. Twenty years 
later, it was demonstrated that knockout of dopamine from dopamine 
producing neurons generated a mouse that drank very little water, un
less the mouse was given L-dopa to reverse the impact of the knockout. 
These mice, however, also had significant motor impairments which 
calls into question the selectivity of the drinking effects [59]. The 
“dopamine secretion interference” (DSI) mouse [60], a more recent 
model that avoids the gross motor impairments that confounded other 
transgenic dopamine manipulations, have reduced dopamine secretion 
in the striatum and NAc. These mice drink less after water deprivation, 
and the reduced intake is a function of fewer licking bursts. This 
distinction, that the effect was selective to licking bursts, is important 
because differences in burst number or burst size (number of licks per 
burst) are correlated with the nature of the change in intake. Specif
ically, changes in burst size indicate an effect on the hedonic value of the 
substance being consumed whereas changes in burst number relate to 
postingestive consequences (e.g., satiation; [61, 62]). Accordingly, the 
selective effect on burst number in the DSI mouse suggests that the 
transgenic manipulation altered postingestive feedback. This is, 
perhaps, surprising given the well-established role that dopamine plays 
in reward. This is further complicated by the finding that D1 receptor 

agonism increases intake, without selective effects on burst number or 
burst size. Treatment with a D2/D3 agonist, however, reduces drinking 
by decreasing both burst number and burst size, suggesting at least some 
effect on the orosensory response to the consumed water [60]. 

In addition to pharmacological and transgenic manipulations of 
dopamine, changes in endogenous mesolimbic dopamine related to the 
physiological state of the animal and the consumption of fluids have 
been observed. Specifically, the Roitman group has demonstrated 
changes in phasic dopamine signaling in the mesolimbic system during 
fluid intake. Intraoral infusions of water in water deprived rats increased 
phasic dopamine release in the NAcSh [23]. Their more recent work has 
also demonstrated that learned cues associated with water modify 
dopamine signaling. In water restricted rats trained to associate a cue 
with water delivery, presentation of a cue that predicted water access 
increased dopamine activity in the VTA and dopamine release in the 
NAc [24]. 

3.2. Dopamine and sodium intake 

Sodium consumption is also associated with dopamine signaling. For 
example, intraoral infusions of sodium in sodium deprived rats increases 
phasic dopamine release in the NAcSh [23]. Despite this evidence 
demonstrating a role of dopamine signaling in the control of sodium 
intake, there are mixed reports on whether dopamine stimulates or in
hibits intake. For instance, in sodium deplete rats, nonselective dopa
mine receptor antagonism and selective D2 receptor antagonism reduces 
sham, but not real, intake of sodium [63]. In more recent support for this 
finding, under both sodium replete and deplete conditions, antagonism 
of either D1 or D2 receptors decreased sodium intake, but did so 
differently. Specifically, D1 antagonism caused a reduction in burst 
number, whereas changes in intake after D2 antagonism occurred 
through reductions in both burst number and size [64]. This supports the 
idea that fluid intake changes mediated by D2 receptors occur through 
alterations in both postingestive feedback and orosensory feedback. In 
further support of these findings, treatment with a D1 or D2 antagonist 
decreased sodium intake by water deprived rats. The reduction in intake 
after the D1 antagonist occurred through a decrease in burst number, 
while the D2 antagonist decreased both burst number and burst size 
[65]. These studies suggest that dopamine signaling through both D1 
and D2 receptors increases sodium intake during dehydration or sodium 
depletion. In contrast to these results, optogenetic and chemogenetic 
activation of VTA dopamine neurons has been reported to decrease so
dium intake in sodium-deprived mice [66]. The apparent discrepancy 
could be a species difference, or could relate to other neurotransmitters 
that are co-released with dopamine from the VTA (for review see [67]) 
that could mask the intake effects observed after selective D1/D2 acti
vation or inhibition. Adding to the lack of clarity about the role of 
dopamine, work from the McEwen lab suggests that sodium appetite 
may be more directly related to changes in opiate systems [68, 69] than 
it is to changes in dopamine, although some studies from the same group 
found changes in dopamine transporter and tyrosine hydroxylase in the 
striatum that were associated with sodium appetite [70, 71]. The latter 
studies are supported by work from a separate group that found sodium 
appetite-associated decreases in dopamine transporter activity in the 
NAc [72]. These studies highlight the role of dopamine in both the 
appetitive and consummatory aspects of water and sodium intake, but as 
various manipulations of dopamine signaling produce differential ef
fects on burst size and burst number, future studies will be needed to 
clarify the potentially important details. 

4. Intake-relevant peptides as bioregulators of the dopamine 
system 

Although it is important to consider the effects of dopamine alone on 
fluid intake, dopamine is not acting alone, but rather acts in concert with 
peptide bioregulators. In this section, we focus on the roles of several 
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intake-relevant peptides on fluid intake and describe how these peptides 
may act to modulate dopamine signaling. 

4.1. Angiotensin II 

One mechanism by which dopamine controls fluid intake is through 
interactions with the renin-angiotensin system. Indeed, the angiotensin 
type 1 receptor (AT1R) and the components to synthesize endogenous 
angiotensin II (AngII), including angiotensinogen and angiotensin con
verting enzyme, are expressed within the mesolimbic and nigrostriatal 
pathways [73-78]. In vitro studies in striatal slices demonstrate that 
AngII stimulates dopamine release [79] and dopamine metabolite levels 
are increased by AngII or decreased by AT1R antagonist treatment, 
respectively [80]. Importantly, in vivo studies also demonstrate an 
excitatory effect of AngII on dopamine activity. AngII increases levels of 
dopamine metabolites in the striatum [81] and increases extracellular 
dopamine [82, 83]. All of these effects are blocked by the AT1R antag
onist losartan, demonstrating a causative role of AngII. In hydrated rats 
treated with AngII, cues associated with water also stimulate dopamine 
activity in the VTA, similar to that observed during dehydration [24]. 
Chronic antagonism of AT1R, however, also increases dopamine 
metabolite levels in the striatum which may suggest a compensatory 
mechanism of the dopamine system [80]. Nevertheless, these studies 
show that central dopamine levels are influenced by the 
renin-angiotensin system. 

Given the ability of AngII to augment dopamine release in vitro and in 
vivo, it is not surprising that dopamine signaling is related to the fluid 
intake effects of AngII. Central antagonism of dopamine signaling with 
either haloperidol or spiroperidol blocks AngII-stimulated water intake 
[58]. In addition, destruction of central dopamine neurons by lateral 
ventricle injection of oxidopamine (6-OHDA) reduces AngII-stimulated 
water intake [58, 84, 85] and selective lesions of the nigrostriatal 
pathway attenuate AngII-induced drinking [85]. Finally, selective le
sions of the dopamine neurons in the SN reduce AngII-stimulated water 
intake [86]. Given the critical role of motor function in drinking 
behavior, it is not surprising that signaling loss within the nigrostriatal 
pathway impairs intake. Whether dopamine loss in the mesolimbic 
pathway also inhibits AngII-stimulated intake is unclear. Studies of this 
nature will be critical to help disentangle how dopamine-AngII in
teractions influence the appetitive and/or consummatory aspects of 
fluid intake. 

4.2. Glucagon-like peptide-1 

In addition to our understanding of fluid intake control that has been 
gained by studying AngII, research on some peptide systems that have 
been more studied for their roles in food intake has helped build upon 
our knowledge of how fluid intake is controlled. In this respect, a more 
complete understanding of how these and other bioregulators interact 
with dopamine to impact fluid intake could be especially fruitful. One 
such bioregulator is the peptide glucagon-like peptide-1 (GLP-1). GLP-1, 
produced by the intestine and in the brain [87-89], is likely best known 
for its role in glycemic control. Indeed, GLP-1-based pharmacotherapies 
are used for the treatment of type 2 diabetes mellitus [90, 91]. GLP-1 
also has well-studied hypophagic effects [92-95] and drugs that target 
this system have received approval for the treatment of obesity or are 
under investigation for this potential use [96]. In addition to the 
well-studied effects on food intake, activation of the GLP-1 receptor 
(GLP-1R) decreases water and sodium intakes [94, 97-100]. Impor
tantly, this intake suppression persists in the absence of food [98], 
demonstrating that it occurs independent of the hypophagic effect of 
GLP-1 (e.g., [101-104]). Central injections of GLP-1R agonists decrease 
fluid intake [94, 97-100] and changes in GLP-1-relevant gene expression 
suggest a central, rather than peripheral site of action [105]. Moreover, 
unlike the increase in circulating GLP-1 observed when rats were 
allowed to eat after fasting, changes in circulating GLP-1 were not 

observed in rats allowed to drink after deprivation, supporting a primary 
role for the central GLP-1 system in fluid intake control [105]. 

The precise site(s) of action of GLP-1 within the central nervous 
system remains a topic of investigation. GLP-1R is expressed in a variety 
of structures associated with fluid intake and recent studies found that 
GLP-1R-expressing GABAergic cells in the MnPO are rapidly activated 
by drinking and inhibit SFO neurons [106]. Whether or not this is a 
target for endogenous GLP-1 in the control of thirst remains unclear, 
especially because direct injections of GLP-1 agonist into the MnPO fail 
to inhibit drinking ([106] and unpublished data). Within the central 
nervous system, there are two primary sources of GLP-1, the NTS and the 
olfactory bulb [107-109], with evidence for widespread projections 
originating from the NTS [107, 108, 110-112]. In the present context, 
the most notable locations of these projections are in areas involved in 
the regulation of ingestive behavior and motivation [108, 113-115]. The 
presence of GLP-1 fibers in the SFO and OVLT, and the demonstration of 
direct projections from the NTS to these areas, make them likely targets 
of endogenous hindbrain GLP-1 [111, 116]. In addition to the interface 
between hindbrain GLP-1 and the SFO and OVLT, GLP-1 fibers and re
ceptors are present in the VTA [108, 111, 117]. Selective activation of 
GLP-1R in the VTA suppresses a variety of motivated behaviors, 
including food intake and drug self-administration [118-121]. In
teractions of GLP-1 and dopamine systems in the control of fluid intake 
have received far less attention. Preliminary unpublished studies, 
however, found that injection of the GLP-1R agonist exendin-4 (Ex-4) 
directly into the VTA reduced drinking after water deprivation in male 
rats (Fig. 2), indicating that GLP-1 can affect fluid intake by impacting 
reward-relevant circuits. Indeed, it is tempting to speculate that hind
brain GLP-1 affects thirst through collaterals to forebrain thirst-relevant 
structures and by affecting structures involved more directly in moti
vation. Additional research is needed, however, to test these hypotheses 
and to evaluate the effects that GLP-1 may have on appetitive and 
consummatory phases of fluid intake. Nevertheless, there is clear evi
dence that GLP-1 affects fluid intake and motivation, making it an 
interesting potential link between thirst and regions responsible for 
motivation and reward. 
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Fig. 2. Injection of a GLP-1R agonist decreases water intake in the absence of 
food. Approximately 30 min before dark onset, food was removed and rats (n =
14) were given intra-VTA injection of either vehicle (300 nl 0.9% saline) or Ex-4 
(5 ng). Water intake was measured for 24 h. The injections were repeated at 
least 2 d later to complete a repeated measures design that was counter- 
balanced for order of injection. An asterisk is used to indicate p<0.05 using a 
paired t-test to analyze data from rats with accurately placed injections (n =

10). Analysis of the 4 rats with injections that were outside of the VTA found no 
effect of Ex-4 (p = 0.78). 
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4.3. Amylin 

Amylin is another feeding-related peptide that may serve as a link 
between fluid intake and motivated behavior. Amylin is produced both 
in the pancreas [122], where it is co-secreted with insulin from beta cells 
[123, 124], and in the brain [125-127]. A robust body of literature 
shows that central or peripheral administration of amylin or amylin 
agonists reduces food intake by enhancing satiation, and in turn reduces 
body weight [128-133]. In contrast, data describing the effects of amylin 
on water intake and fluid balance are relatively scarce. A few experi
ments have investigated the effect of amylin or amylin receptor agonists 
on fluid intake in rodents. Intraperitoneal administration of amylin had 
no effect on water intake in water-deprived animals [128]. Other 
research demonstrated that subcutaneous injection of amylin stimulated 
drinking in rats that were not water-deprived, but did not have access to 
food during testing [134]; however, it is important to note that a high 
dose of amylin was used in this study compared to other studies on 
amylin-induced hypophagia [128, 129, 135]. In terms of effects of 
centrally administered amylin, injection of amylin into the hypothala
mus reduces water intake when food is available [136], perhaps due to 
the hypophagic effects of this treatment and therefore concomitant re
ductions in prandial drinking. The differences in direction of effect in 
these studies may be due to experimental variables such as the hydration 
status of the animal. Mesolimbic amylin signaling clearly suppresses 
motivated behaviors such as self-administration of palatable food [137], 
and some data, described in more detail below, also suggest that mes
olimbic amylin signaling may suppress stimulated water intake [138]. 

Anatomical studies of the neural targets of amylin and amylin re
ceptor signaling support a link with fluid intake control. The amylin 
receptor comprises a G-protein coupled component, the calcitonin re
ceptor (CTR), in association with one of three receptor activity modi
fying proteins (RAMPs) which increase amylin binding specificity 
[139-141], and these elements are expressed in thirst-related structures. 
For instance, both CTR and RAMP are expressed in the SFO [142]. It is 
important, however, to note that CTR as well as RAMPs have other roles 
outside amylin signaling (reviewed in [143-146]) and the expression of 
these components does not necessarily indicate the existence of a 
functional amylin receptor. The existence of functional amylin receptors 
in the SFO is suggested by in vitro studies demonstrating that amylin can 
activate SFO neurons [147, 148]. The particular behavioral conse
quences of amylin-induced SFO activation remain unclear, as the SFO is 
involved not only in fluid intake but also feeding [149] and blood 
pressure regulation [150, 151]. Importantly, SFO neurons that are 
activated by both amylin and AngII have been identified [134], high
lighting a potential mechanism by which amylin may influence fluid 
balance. 

Amylin is known to have important roles in motivated behaviors 
such as intake of palatable foods or alcohol [137, 138, 152-155] that are 
likely related to modulation of dopamine signaling. Several pieces of 
evidence suggest that amylin receptor activation has a suppressive effect 
on mesolimbic dopamine signaling. Amylin receptor components are 
expressed in VTA dopaminergic neurons [152] as well as in the NAcC 
and NAcSh [137, 156] providing potential substrates by which amylin 
receptor activation can directly impact mesolimbic signaling. Fast scan 
cyclic voltammetry studies in rats demonstrate that intra-VTA injection 
of the amylin receptor agonist salmon calcitonin (sCT) reduces 
food-evoked phasic dopamine signaling in the NAcC [152]. Importantly, 
the reduction in NAcC dopamine appears to be relevant for 
amylin-mediated reductions in food intake, as pharmacological activa
tion of dopamine receptors in the NAcC can blunt the hypophagic effects 
of intra-VTA injection of sCT [152]. In mice, microdialysis studies have 
revealed that systemic or intra-VTA sCT can suppress alcohol-evoked 
dopamine in the NAcSh [154, 155]. Importantly, sCT can penetrate 
the blood-brain barrier and access the VTA in rodents [154], suggesting 
that direct mesolimbic amylin receptor activation could potentially 
explain the ability of peripherally administered sCT to suppress NAc 

dopamine. It also has been suggested that a pathway involving other key 
amylin responsive sites in the hindbrain is required for the ability of 
peripheral sCT to suppress dopamine in the accumbens [157]. The 
particular site(s) of action for systemically delivered amylin agonists to 
affect mesolimbic dopamine signaling, therefore, remain to be fully 
elucidated. Nevertheless, these findings collectively point toward a 
suppressive effect of amylin and amylin agonists on dopamine signaling 
in the brain, and in particular mesolimbic dopamine. 

A few experiments have specifically examined the role of amylin 
receptor signaling in mesolimbic nuclei in drinking. Intra-VTA admin
istration of sCT blunted the dipsogenic effects of lateral ventricle in
jections of AngII [138], suggesting that VTA amylin signaling may 
influence on stimulated water intake. On the other hand, VTA sCT 
reduced drinking in the presence of food, but had no effect on water 
intake in the absence of food [138]. This suggests that, under these 
conditions, VTA amylin signaling has a primary effect on food intake 
with an indirect effect on prandial drinking. Collectively, these data may 
indicate that VTA amylin signaling has more robust effects on fluid 
intake when animals are highly motivated to consume fluid. To date, 
however, examinations of the effects of intra-VTA amylin receptor 
activation on water intake have been limited to influences on drinking 
stimulated by water deprivation or AngII. Therefore, it will be important 
in future experiments to determine whether VTA amylin signaling may 
also modulate drinking induced by other dipsogenic stimuli. 

The effects of amylin receptor activation on water intake also have 
been tested in the NAcC and NAcSh subnuclei. In the NAcSh, infusion of 
amylin reduced water intake in water-deprived rats, but this effect was 
not observed when the cannulae were angled to avoid traversing the 
ventricles [158]. Injection of amylin into the NAcC had no effect on 
drinking in water-deprived rats [158]. Although these data would seem 
to indicate that amylin signaling in the accumbens does not play a role in 
drinking behavior, the potential role of NAcC/NAcSh amylin signaling 
in modulating water intake as a result of different types of dehydration is 
not well-studied. This is an important consideration because accumbens 
amylin signaling has been shown to modulate the feeding effects of the 
opioid system [159]. Therefore, it seems important to consider the 
possibility that amylin, although not producing observable effects on its 
own, may interact with other signals to produce changes in fluid intake. 

Drawing conclusions about the effects of amylin on drinking is 
further complicated by the lack of consistency in the approaches used. 
Specifically, some studies use overnight water deprivation prior to 
testing [128] whereas others use non-water-deprived animals [134]. 
Furthermore, differences in the properties of amylin and sCT (discussed 
in [160]) add more complexity when interpreting results of different 
studies. Whether reductions in mesolimbic dopamine signaling are 
relevant for amylin-mediated effects on water intake, whether different 
paradigms that stimulate water intake may be differentially affected by 
amylin, and whether appetitive and/or consummatory aspects of fluid 
intake are impacted by amylin receptor activation are all areas of 
investigation that warrant further study. 

4.4. Ghrelin 

Ghrelin, a peptide hormone produced by the stomach [161], is 
unique among feeding-related hormones due to its effect of stimulating, 
rather than suppressing, food intake. Various routes of administration of 
ghrelin in rodents and humans produce a rapid increase in feeding via 
activation of the growth hormone secretagogue receptor (GHSR) 
[162-164]. Ghrelin is another hormone frequently associated with en
ergy balance control that also has potent effects on fluid balance and 
water intake. Like amylin, ghrelin activates SFO neurons [147], 
demonstrating a link between ghrelin signaling and circumventricular 
structures involved with the control of drinking. Central or peripheral 
administration of ghrelin reduces water intake in rats [165-168], but the 
experimental conditions by which water intake is stimulated reveal 
different effects of this hormone under different experimental 
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approaches. For example, water intake stimulated by central adminis
tration of AngII is reliably suppressed by lateral ventricle injection of 
ghrelin in one-bottle tests [166, 167], as well as in two-bottle tests, when 
rats have a choice of consuming water or saline [168]. Studies exam
ining the effect of ghrelin on intake stimulated by water deprivation 
have differed, however, with some reporting no effect of ghrelin [166] 
and others reporting a suppressive effect of ghrelin [165]. The fluid 
intake effects of ghrelin are not limited to water, but extend to saline 
intake stimulated by AngII [168, 169] and also to other natriorexigenic 
stimuli such as maintenance on a sodium deficient diet [169]. Thus, 
ghrelin clearly plays a role in the control of fluid intake, but the site(s) of 
action and mechanisms underlying these effects remain unresolved. 
Hindbrain nuclei are likely involved, because 4th ventricle administra
tion of ghrelin blocks the stimulatory effects of AngII on fluid intake 
[168]. Exploration of this effect remains limited to specific dipsogenic 
and/or natriorexigenic stimuli, making it difficult to draw firm conclu
sions about the effects of ghrelin in the many ways that thirst and so
dium appetite can be induced. 

Like other feeding-relevant hormones discussed here, ghrelin also 
influences mesolimbic dopamine signaling, although this is frequently 
studied in the context of food reward rather than effects on other re
inforcers such as water or salt. GHSR is expressed in VTA dopamine 
neurons [170, 171] and ghrelin administration reliably increases the 
activity of these neurons [170]. VTA ghrelin increases operant 
responding for a palatable food [172, 173], underscoring the role of 
ghrelin in this site on motivated food-directed behavior. Pharmacolog
ical antagonism of dopamine receptors in the NAc blocks the ability of 
VTA ghrelin to increase operant responding for a palatable food [173], 
thus indicating the relevance of the classical VTA-to-NAc dopaminergic 
pathway in mediating these effects. Both peripheral and central 
administration of ghrelin have been demonstrated to impact mesolimbic 
dopamine signaling, and consistent with the excitatory effect of ghrelin 
on VTA dopamine neurons, ghrelin administration generally increases 
mesolimbic dopamine signaling. For example, peripheral injection of 
ghrelin increased dopamine in the NAcSh but not NAcC [174]. Several 
studies have indicated that administration of ghrelin into the lateral 
ventricle or directly into the VTA increases dopamine levels in the NAc 
in response to food-related stimuli [175-177]. Investigations of the 
mesolimbic dopamine response to ghrelin in the context of water intake 
are, however, relatively scarce in the literature. In euhydrated rats, 
lateral ventricle administration of ghrelin had no effect on phasic 
dopamine signaling in the VTA evoked by a water-associated cue [24]. 
Because this study did not investigate the effect of ghrelin when fluid 
balance was disrupted, it did not rule out the possibility that ghrelin 
alters dopamine signaling relevant to the salient stimulus in a motivated 
animal. In other words, an effect of ghrelin on dopamine may only be 
apparent at times when motivation to consume fluid is high. Indeed, 
mesolimbic dopamine signaling increases in response to hypertonic sa
line in sodium-deprived animals and in response to water in 
water-deprived animals [23], underscoring a link between motivation 
for fluid and dopaminergic transmission. 

4.5. Other intake-relevant peptides 

Many additional peptides are known to influence fluid intake, but in 
many cases it is more difficult to draw connections between these pep
tides and dopamine systems for control of drinking and salt intake. 
Vasopressin, for instance, is critically important in maintaining body 
fluid homeostasis. Although there are data suggesting that dopamine 
systems affect vasopressin [178-181], there does not seem to be sub
stantial evidence that vasopressin affects dopamine, and available evi
dence for a relationship in that direction is likely related to functions of 
vasopressin that are separate from its role in fluid homeostasis [182]. 
Likewise, relaxin has been shown to affect fluid intake [183], but 
without an established connection to midbrain dopamine systems. 

Other peptides are linked with both feeding and drinking, but 

investigation of how these peptides may modulate dopamine to influ
ence fluid intake remains limited. For example, oxytocin has well- 
established suppressive effects on feeding [184-187] and generally has 
suppressive effects on fluid intake [185, 187-190]. Oxytocin can 
modulate mesolimbic dopamine signaling, however, much of this liter
ature comes from investigations of social behavior [191] and modula
tion of the effects of drugs [192, 193]. A recent paper suggests that 
central administration of oxytocin decreases the VTA dopamine 
neuronal response to a palatable food [194], but VTA oxytocin 
receptor-expressing neurons are largely glutamatergic rather than 
dopaminergic [195], hinting at a complex system via which oxytocin 
may modulate mesolimbic signaling relevant to motivated behavior and 
reinforcement. This underscores the need for further research in this 
area, particularly as it pertains to ingestive behaviors and fluid balance. 
Another signal associated with both food and fluid intake is neurotensin. 
Lateral hypothalamic neurotensin neurons promote drinking while ab
lations reduce daily water intake, and chemogenetic activation increases 
ab libitum and dehydration induced water intake [196, 197]. Lateral 
hypothalamic neurotensin neurons which are activated by dehydration 
do not, however, project to either the VTA or SNc [198]. 

Although several key feeding-relevant peptides and their roles in 
drinking and motivated behavior have been reviewed here, there are 
additional feeding signals that have not been widely investigated for a 
potential role in fluid balance but are known to impact motivated be
haviors and mesolimbic dopamine signaling. For example, cholecysto
kinin (CCK), a peptide produced in the intestine and brain that reduces 
feeding and promotes satiation [199-201], has been shown to influence 
mesolimbic dopamine signaling (reviewed in [202]) and also is linked to 
control of fluid balance. Recent evidence suggests that CCK is produced 
in the SFO and acts to suppress drinking [203], and peripheral admin
istration of CCK decreases lever pressing to obtain water in 
water-deprived rodents [204], indicating a direct link between this 
peptide and water-directed motivated behavior. Another example is the 
adipose-derived hormone leptin, which promotes negative energy bal
ance (reviewed in [205-207]) and modulates mesolimbic dopamine re
sponses to food stimuli [208]. Although systemic leptin does not alter 
drinking in water-deprived animals [209], it is not clear whether effects 
might be observed with a different route of administration of leptin 
and/or a different stimulus for water intake. Overall, despite the fact 
that food intake and water intake are usually associated quite closely, 
investigation of the roles of feeding-related peptides in water intake and 
fluid balance remains limited. Because elements of the mesolimbic 
dopamine system are key targets for the feeding effects of many of these 
peptides, and because the mesolimbic dopamine system is linked to fluid 
intake as described above, it is critical to develop and test hypotheses 
about the sites of actions of these peptides and how they may interact 
with the actions of dopamine to influence drinking behavior. Further
more, it will be important to determine how these different bio
regulators influence similar neural pathways to elicit selective effects on 
feeding or drinking, depending on the physiological state of the animal. 

5. Sex differences and estrogenic modulation of dopamine and 
fluid intake 

Both organizational (early life) and activational (adult) effects of 
gonadal hormones influence the neuronal circuits that control drinking 
behavior, resulting in sex differences in intake and fluctuations in intake 
as a function of estradiol (E2) levels. Generally, sex and estrogens affect 
fluid intake stimulated by extracellular, but not intracellular, dehydra
tion, but these studies have focused exclusively on the consummatory 
aspect of intake. For example, water intake stimulated by hypertonic 
saline treatment is not different between males and females [210-212] 
and intake in females is not influenced by E2 treatment [213-216]. 
Various dipsogenic stimuli are used to produce or mimic some of the 
effects of extracellular dehydration, and sex differences and estrogenic 
effects in the drinking responses have been well reported. While there 
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are some discrepancies in the literature (reviewed in [211, 217]), males 
generally drink more water than females after treatment with the 
diuretic furosemide, the β-adrenergic agonist isoproterenol, and after 
exogenous AngII [212, 214, 218, 219]. Stimulated and daily saline 
intake, however, is often enhanced in females compared to males [218, 
220-222]. In females, endogenous and exogenous E2 decreases daily 
water and saline intake, as well as intake stimulated by AngII and 
isoproterenol [213-215, 218, 223-231]. While these activational effects 
of E2 likely contribute to the sex difference in intake after extracellular 
fluid loss, organizational effects of gonadal hormones also contribute to 
sex differences in intake. For example, a feminized brain is required for 
E2 to reduce AngII-stimulated intake [214], and a masculinized brain is 
required for the behavioral desensitization of water intake after 
repeated AngII-treatment [232]. In addition, organizational effects of 
gonadal hormones underlie sex differences in sodium intake in both rats 
[222, 233, 234] and mice [235]. Finally, water intake stimulated by 
fluid deprivation, which is a combination of extracellular and intracel
lular dehydration, is also influenced by sex and estrogens. Although E2 
treatment decreases intake stimulated by water deprivation [215], fe
males, perhaps surprisingly, consume more after deprivation than males 
[211, 236]. More research, however, on how sex and E2 affect the 
appetitive aspects of fluid intake is necessary for a complete under
standing of their role in drinking behavior. Furthermore, the precise 
mechanisms by which organizational and activational effects of gonadal 
hormones control fluid intake are unclear and also require more 
research, but sex differences within the dopaminergic system could be 
part of the answer. 

Estrogen and androgen receptors along with the sex determining 
region Y protein (SRY) are expressed within the mesolimbic and 
nigrostriatal dopamine systems [237-243]. It is, therefore, not surprising 
that there are sex differences and activational effects of gonadal hor
mones on dopamine synthesis, release, and receptor activity. The effects 
of sex and gonadal hormones have been extensively reviewed elsewhere 
[244-250], but far less has been reviewed with direct relevance to effects 
on dopamine signaling outside of drug seeking behavior. Adult females 
have approximately 15–20% fewer tyrosine hydroxylase (TH)-express
ing neurons in the SN compared to age-matched males [243, 251]. This 
sex difference can also be observed in mesencephalic tissue from E14.5 
day old mice [252], suggesting that chromosomal sex may mediate this 
difference. Indeed, the SRY gene is expressed in TH neurons in the SN 
and VTA in adult male rats [253] and mice [243], and in vitro studies 
demonstrate that the SRY gene increases TH transcription [253]. The 
four core genotype model reveals that sex chromosome complement and 
not gonadal sex mediates this sex difference in embryonic mice [252]. 
Finally, SRY downregulation in the SN decreases TH expression [243]. 
In the VTA, however, females have a greater number of TH immuno
reactive cells than males, although the mechanism driving this sex dif
ferences in unknown [251]. Activational effects of E2 do influence 
dopamine synthesis in adult females, and may contribute to this sex 
difference. For example, acute E2 increases TH mRNA levels in dopa
minergic cell bodies in the VTA, but not SN, in adult OVX female rats 
[254]. Furthermore, E2 can increase dopamine biosynthesis in striatal 
catecholaminergic terminals by rapidly enhancing phosphorylation of 
TH [255]. In addition to sex differences in dopamine synthesis, sex 
differences in dopamine projections also exist. In males, about 30% of 
midbrain to prefrontal projections are dopaminergic, whereas the pro
portion is about 50% in females [242]. Whether there are sex difference 
in projections to the NAc and what mechanism underlies this sex dif
ference is, however, unknown. 

Most evidence supporting the role of sex and gonadal hormones 
controlling dopamine function comes from studies examining dopamine 
release, which have been extensively reviewed recently [250]. Within 
the striatum, release stimulated by either electrical stimulation of the 
medial forebrain bundle, cocaine, or haloperidol results in a greater 
increase in extracellular dopamine in females compared to males [256, 
257]. While the results from these early studies demonstrated that these 

sex differences are independent of estrous cycle stage, more recent work 
from Calipari et al. has shown that VTA activity and DA release in the 
NAc is increased in estrous females, compared to males and diestrous 
females [258]. The discrepancies here could be species-specific, because 
rats were used in the earlier studies compared to mice in the report by 
Calipari, or due to differences between brain regions. There is, however, 
overwhelming evidence that activational effects of E2 increase dopa
mine release. Extracellular basal dopamine levels in the striatum are 
greater in proestrous and estrous females, compared to diestrous and 
OVX females [259, 260]. E2 treatment increases striatal dopamine levels 
in OVX females, but not males [259, 260], suggesting a role for activa
tional and organizational effects mediating differences between the 
sexes. Furthermore, loss of E2 increases striatal dopamine turnover, 
which can be reversed by E2 treatment, while gonadectomy in males has 
no effect [261]. E2 also increases striatal dopamine release stimulated 
by electrical stimulation in the SN and KCl-stimulation [262, 263]. 
Similar effects are observed in the NAc, where local E2 treatment in
creases K+ stimulated dopamine release [264]. Furthermore, amphet
amine, methamphetamine, and cocaine-stimulated dopamine release in 
the striatum have all been shown to be enhanced by E2 treatment in 
females [260, 263, 265-269], with no effect of E2 treatment in males 
[266-268]. This again, suggests that a feminized brain in combination 
with activational effects of E2 underlie sex differences in dopamine 
release. Finally, while E2 appears to act locally on presynaptic terminals 
to enhance dopamine release [255], estrogen receptors on medium 
spiny GABA neurons also attenuate GABA release, thereby enhancing 
dopamine release by a decrease in inhibition [270-273]. 

Finally, sex and gonadal hormones influence the expression of 
dopamine receptors, but again there are conflicting reports on the di
rection of these effects. Males have a greater D1 receptor density in the 
NAc [274]. Striatal D1 receptor density, however, has been reported to 
be greater in males than females [275], but also, along with D2 receptor 
density, greater in females compared to males [276]. Females have a 
higher density of and more cells expressing the D1-D2 heterodimer 
complexes than males in the NAcC and caudate putamen [274]. These 
sex differences are likely mediated, at least in part, by E2. Early in vitro 
studies with striatal neurons demonstrated that E2 reduced D2 receptor 
inhibition of adenylate cyclase activity and enhanced D1 receptor acti
vation of adenylate cyclase [277]. In vivo studies show that OVX de
creases striatal D1 receptor density [275] and that E2 treatment 
increases striatal D1 levels [278] and decreases D2 binding in the caudal 
striatum in OVX females but not castrated males [279]. Not all available 
research, however, supports the notion that E2 enhances dopamine 
signaling through receptor mediated mechanisms. For example, the 
density of striatal D1 receptors is highest on diestrus I and II, compared 
to proestrus [275]. Furthermore, in contrast to the study by Bazzett et al. 
[279], it has also been reported that OVX decreases D2 binding in the 
striatum and NAcC, which can be reversed by E2 treatment [280]. 
Regardless of these discrepancies, there is still ample evidence that E2 
enhances dopamine receptor activity, providing an indirect mechanism 
by which E2 can influence motivated behaviors. 

Despite some inconsistencies, which are inherent with any large 
body of research, we can draw the general conclusions that while males 
may have more TH expressing neurons [243, 251, 252], likely due to 
SRY gene activity [243, 252, 253], E2 enhances release of dopamine, 
and perhaps increases dopamine receptor expression in females [259, 
260, 262-264]. Because modulation of dopamine signaling by sex and 
E2 occurs in both the mesolimbic and the nigrostriatal pathways, it is 
tempting to speculate that there are effects on both appetitive and 
consummatory aspects of fluid intake. Given that studies to date have 
focused almost entirely on the consummatory phase of fluid intake, 
studies of appetitive phase intake are critically needed to explore this 
possibility. 

If dopamine is a primary dipsogen or acts in concert with other 
bioregulators to promote fluid intake, how might this system underlie 
sex differences or E2 effects on intake? In scenarios where intake is 
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greater in males than in females, such as after AngII treatment [214, 
218], the greater number of TH neurons in males, compared to females 
[243, 251, 252], may be an underlying mechanism. In scenarios where 
intake is greater in females than it is in males, such as after water 
deprivation [211, 236], enhanced dopamine release in females 
compared to males may be an underlying mechanism. The most 
well-characterized sex hormone-related effects on fluid intake, however, 
are the anti-dipsogenic and anti-natriorexigenic effects of E2. Given that 
E2 enhances dopamine signaling, and dopamine increases water intake, 
how can this be reconciled with the inhibitory effect of E2? The answer 
may be found by considering other bioregulators that are co-released 
with dopamine within the mesolimbic and nigrostriatal pathways that 
may provide an indirect way for E2 to influence dopamine signaling and, 
in turn, fluid intake. For instance, CCK is co-released with dopamine and 
has been shown to inhibit K+ stimulated dopamine release in the rostral 
NAc [281, 282]. It has been previously suggested that the anorexigenic 
effect of E2 involves a CCK-dopamine interaction [247]. Indeed, CCK 
also inhibits fluid intake [203, 283, 284], however, whether E2 poten
tiates its anti-dipsogenic effect is unknown and a ripe area for future 
research. As is unfortunately true with most neuronal functions, much 
more work is needed to understand how sex and gonadal hormones 
control fluid intake and if interactions with the dopamine system un
derlie these effects. 

6. Conclusions 

Dopamine plays a critical role in motivated behavior, but has not 
received nearly enough attention with respect to the neural controls of 
thirst and sodium appetite. Here we have reviewed available literature 
related to dopamine and fluid intake control, and present several sug
gestions for future research. Investigating bioregulators that influence 
fluid intake offers an excellent opportunity to provide a more complete 
understanding of how dopamine drives motivation for water and sodium 
and how thirst and sodium appetite are controlled. Specifically, we have 
highlighted the potential roles of AngII, GLP-1, amylin, ghrelin, sex, and 
E2 as important regulators of the dopaminergic system, and have dis
cussed how interfacing with dopamine can ultimately affect fluid intake. 
This is not to say that these bioregulators cannot affect fluid intake in
dependent of their effects on dopamine, but that interaction of these 
factors with dopamine offers a relatively unexplored mechanism for 
fluid intake control. In Fig. 3, we build upon the framework illustrated in 
Fig. 1 to propose a guide for future studies investigating the cooperative 
relationships between dopamine, bioregulators, and fluid intake. In 
particular, we believe it is important to focus on disentangling the 
contributions of mesolimbic and nigrostriatal dopamine signaling in the 
control of the appetitive versus consummatory aspects of fluid intake. 
We hope that the questions posed in this review will inspire the field to 
investigate this important yet under investigated area of research. 
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