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Abstract. Environmental science is increasingly reliant on
remotely sensed observations of the Earth’s surface and at-
mosphere. Observations from polar-orbiting satellites have
long supported investigations on land cover change, ecosys-
tem productivity, hydrology, climate, the impacts of distur-
bance, and more and are critical for extrapolating (upscal-
ing) ground-based measurements to larger areas. However,
the limited temporal frequency at which polar-orbiting satel-
lites observe the Earth limits our understanding of rapidly
evolving ecosystem processes, especially in areas with fre-
quent cloud cover. Geostationary satellites have observed the
Earth’s surface and atmosphere at high temporal frequency
for decades, and their imagers now have spectral resolutions
in the visible and near-infrared regions that are compara-
ble to commonly used polar-orbiting sensors like the Mod-
erate Resolution Imaging Spectroradiometer (MODIS), Vis-
ible Infrared Imaging Radiometer Suite (VIIRS), or Landsat.
These advances extend applications of geostationary Earth
observations from weather monitoring to multiple disciplines

in ecology and environmental science. We review a num-
ber of existing applications that use data from geostationary
platforms and present upcoming opportunities for observing
key ecosystem properties using high-frequency observations
from the Advanced Baseline Imagers (ABI) on the Geosta-
tionary Operational Environmental Satellites (GOES), which
routinely observe the Western Hemisphere every 5—15 min.
Many of the existing applications in environmental science
from ABI are focused on estimating land surface tempera-
ture, solar radiation, evapotranspiration, and biomass burn-
ing emissions along with detecting rapid drought develop-
ment and wildfire. Ongoing work in estimating vegetation
properties and phenology from other geostationary platforms
demonstrates the potential to expand ABI observations to es-
timate vegetation greenness, moisture, and productivity at a
high temporal frequency across the Western Hemisphere. Fi-
nally, we present emerging opportunities to address the rel-
atively coarse resolution of ABI observations through multi-
sensor fusion to resolve landscape heterogeneity and to lever-
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age observations from ABI to study the carbon cycle and
ecosystem function at unprecedented temporal frequency.

1 Introduction

Modern environmental science would be unrecognizable
without satellite remote sensing, which has revolutionized
our field since its advent over a half-century ago (Kerr
and Ostrovsky, 2003). The platforms by which we observe
the Earth system are increasingly diverse and now include
miniaturized satellites (CubeSats), sensors like the ECOsys-
tem Spaceborne Thermal Radiometer Experiment on Space
Station (ECOSTRESS) traveling on board the International
Space Station (Hulley et al., 2017), and even lidar systems
(Coyle et al., 2015; Qi et al., 2019), yet most environmental
science applications employ polar-orbiting satellites, namely
Landsat and the Moderate Resolution Imaging Spectrora-
diometer (MODIS). The Landsat and MODIS programs have
radically improved the ability of ecologists to track vegeta-
tion change and its impacts on habitat, biogeochemical cy-
cling, and other ecosystem services (De Araujo Barbosa et
al., 2015). Like all remote sensing platforms, polar-orbiting
satellites must make compromises with respect to spectral
resolution, spatial scale, and temporal scale that limit their
ability to measure all things, all the time. Notably, the 1 to2d
cadence of MODIS and Visible Infrared Imaging Radiometer
Suite (VIIRS) and 3 to 5 d cadence of the combined Landsat-
and Sentinel-2-class sensors may be insufficient for tracking
ecological phenomena that occur at shorter timescales, in-
cluding the timing of rapid environmental change (White et
al., 2009) and the diurnal behavior of land surface function,
such as sub-hourly variations in ecosystem carbon and water
fluxes (Chudnovsky et al., 2004; Grant et al., 2000).

As a part of the European Organisation for the Exploita-
tion of Meteorological Satellites (EUMETSAT), the Satellite
Application Facility for Land Surface Analysis (LSA SAF)
has leveraged high frequency observations from the Spinning
Enhanced Visible and Infrared Imager (SEVIRI) on board the
Meteosat Second Generation (MSG) geostationary satellites
to provide operational products relevant for studying vegeta-
tion, wildfires, the surface radiation budget, and the carbon
and water cycle (Trigo et al., 2011) at sub-daily timescales.
These opportunities are also available in the Western Hemi-
sphere. Focusing on the Advanced Baseline Imager (ABI),
a joint effort by the National Oceanic and Atmospheric
Administration (NOAA) and the National Aeronautics and
Space Association (NASA) on board the Geostationary Op-
erational Environmental Satellites (GOES), we argue that the
GOES constellation — commonly used as weather satellites —
represents an underexplored opportunity for environmental
science in situations where spatial resolution can be com-
promised in favor of more frequent imagery, especially now
that ABI’s spectral sensitivity has approached that of Land-
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Figure 1. A comparison of the spectral sensitivity of the Advanced
Baseline Imager (ABI) with the Landsat Operational Land Imager
(OLI) and MODIS Terra (McCorkel et al., 2020).

sat and MODIS (Table 1; Fig. 1). Given the constellation of
geostationary satellites around the world, extending environ-
mental science applications to ABI and generating relevant
data products is crucial for achieving near-global coverage
of satellite environmental data available at the timescale of
minutes. Developing algorithms that can be applied to data
from multiple geostationary satellites will be an important
component for achieving near-global coverage.

Here, we detail a number of applications by which GOES
and other geostationary satellites have enhanced or could en-
hance our understanding of ecological phenomena that oc-
cur at timescales as short as minutes. We keep our focus on
the GOES constellation, but we also discuss research and ap-
plications from various satellites in the global constellation
of geostationary satellites to provide the larger context for
emerging applications from GOES ABI. We outline the tech-
nical steps necessary to make imagery from ABI more useful
for environmental science, with an eye toward near real-time
monitoring of environmental phenomena across the globe.
We also note complementarity between GOES and other
geostationary platforms, including Japan’s Himawari-8/9,
South Korea’s GEO-KOMPSAT-2A, and European Union
Meteosat satellites — especially the forthcoming third gener-
ation (Meteosat Third Generation, MTG) — all of which have
similar spectral resolution that make near-global observation
possible (Table 1). We first review the recent efforts regard-
ing geolocation and atmospheric correction to produce sur-
face reflectance from ABI and other geostationary imagers.
We then describe new data products that can be created us-
ing state-of-the-art geostationary satellite data, with a brief
description of existing data products that are providing key
insight into Earth surface processes. Finally, we outline ex-
isting and emerging applications of observations from geo-
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stationary satellites that are ushering in the era of “hyper-
temporal” remote sensing (Miura et al., 2019) for environ-
mental science.

2 Background
2.1 Geostationary satellites: past, present, and future

Geostationary remote sensing began with the launch of
six Applications Technology Satellites (ATS), starting in
1966 (Suomi and Parent, 1968). The subsequent success-
ful launches of the Synchronous Meteorological Satellites
(SMSs) were the precursor to the GOES mission, which be-
gan in 1974 and continues to the present (Menzel, 2020).
By 1979, the global constellation of geostationary satel-
lites included the European Space Agency’s Meteosat, the
Japanese Geostationary Meteorological Satellite (GMS), and
two GOES (Menzel, 2020). In total, 17 GOES have been suc-
cessfully sent to space as of 2018, two of which — GOES-16,
positioned at 75.2 W (currently GOES-East), and GOES-17,
positioned at 137.2W (currently GOES-West) — arise from
the GOES-R series that include additional visible and near-
IR channels that are commensurate with channels observed
by Landsat and MODIS (Table 1; Fig. 1). The GOES-R series
has an expected operational lifetime to 2036, which promises
multiple years of continuous data availability. This will be
followed by the Geostationary and Extended Orbits program,
which is planned for operation in 2030-2050 and is antic-
ipated to include “GOES-R-class” imagers (Sullivan et al.,
2020).

2.2 Advanced Baseline Imager (ABI)

The ABI is the primary instrument on board GOES-16/17
and is designed for monitoring land and ocean surfaces, the
atmosphere, and cloud formation (Schmit et al., 2017, 2018).
The ABI has 16 spectral bands that measure solar reflected
radiance in the visible and near-infrared wavelengths and
emitted radiance at infrared wavelengths (Schmit and Gun-
shor, 2020). With multiple infrared bands positioned in at-
mospheric absorption regions and in atmospheric windows,
the ABI can collect information from the Earth’s surface
and multiple levels in the atmosphere (Schmit and Gun-
shor, 2020). Multiple scan modes are used to provide near-
hemispheric geographic coverage, with spatial resolutions
between 0.5 and 2km. The full disk scene consists of near-
hemispheric coverage centered at the Equator and the lon-
gitude of the sensing satellite (DOC, NOAA, NESDIS, and
NASA, 2019). The ABI also scans a scene of the con-
tiguous United States (CONUS) and two mesoscale scenes
(1000 kmx 1000 km). Operating in the flex mode, the ABI
collected a full disk image every 15 min until April 2019 but
now collects a full disk image every 10 min (with the excep-
tion of GOES-17 during parts of the year). The ABI also col-
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lects a CONUS scene every 5 min and two mesoscale scenes
every minute in the flex mode (Schmit and Gunshor, 2020).

In late April 2018, an issue with the GOES 17 ABI cool-
ing system was detected due to malfunctioning of the loop
heat pipe which transfers heat from the ABI detectors and
helps maintain adequate temperatures for proper function-
ing (Yu et al., 2019). This resulted in the loss of infrared
data during some nighttime hours, around 13:30 UTC, dur-
ing parts of the year due to the Sun heating the seven ABI
detectors faster than they can be cooled, resulting in infrared
emissions from the overheated detectors (NOAA and NASA,
2020; NOAA, 2020). This nighttime data loss can also fluc-
tuate seasonally, depending on how much solar radiation the
instrument absorbs (NOAA, 2020). A data quality flag in
the metadata of the Level 1b Radiances and Level 2 Cloud
and Moisture Imagery can identify the faulty nighttime data
(NOAA and NASA, 2020). This malfunction will result in
the loss of some nighttime data for data products that utilize
the infrared bands and are relevant for observing the full di-
urnal cycle.

3 ABI top-of-atmosphere data to surface reflectance
and surface temperature

The ABI collects top-of-atmosphere (TOA) data from a given
location at a constant view zenith angle (VZA) and vary-
ing solar zenith angles (SZA) throughout the day. While
the increased sampling of SZA creates opportunities in sur-
face bidirectional reflectance factor (BRF) modeling (Ma et
al., 2020), the large VZA at off-nadir locations can present
challenges for studying the land surface, including coars-
ened resolution, potentially degraded locational accuracy,
and more complex atmospheric compensation due to longer
slant paths. Below, we review the existing efforts to address
these challenges and make ABI imagery more suitable for
studying the land surface.

3.1 Geolocation

The geolocation accuracy of ABI on GOES-16 and GOES-
17 has been tracked and improved throughout its provisional
and operational stages using the Image Navigation and Reg-
istration (INR) Performance Assessment Tool Set (IPATS;
Tan et al., 2018, 2019, 2020). IPATS quantifies the naviga-
tion error, i.e., the difference between the location of a pixel
in ABI imagery and a reference location (Tan et al., 2020).
Some of the largest navigation errors, calculated from cor-
relations between subsets of ABI and Landsat 8 imagery
concentrated along the coast of North and South America,
were 10—13 urad less than the mission requirement of 28 prad
(1 km at nadir) in October 2019 (Tan et al., 2020). In ad-
dition to IPATS, the Geostationary-NASA Earth Exchange
(GeoNEX) processing chain adjusts the geolocation of ABI
imagery using a reference map from the Shuttle Radar Topo-
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Table 1. Instrument characteristics for the GOES-R Advanced Baseline Imager, Advanced Himawari Imager on Himawari-8/9, and the
Advanced Meteorological Imager on the Geostationary — Korea Multi-Purpose Satellite-2 (GEO-KOMPSAT-2A) (a) and the Global Ocean
Color Imager-1I (GOCI-II) on GEO-KOMPSAT-2B (b).

(a)
GOES-16/17 Himawari-8/9 GEO-KOMPSAT 2A
Advanced Baseline Advanced Himawari Advanced Meteorological
Imager (ABI) Imager (AHI) Imager (AMI)

Band Central Spatial | Band Central Spatial | Band Central Spatial
wavelength  resolution wavelength  resolution wavelength  resolution
(um) (km) (pm) (km) (pm) (km)
1 0.47 1 1 0.47 1 1 0.47 1
2 0.51 1 2 0.51 1
2 0.64 0.5 3 0.64 0.5 3 0.64 0.5
3 0.86 1 4 0.86 1 4 0.86 1
4 1.37 2 5 14 2
5 1.6 1 5 1.6 2 6 1.6 2

6 2.2 2 6 2.3 2
7 3.9 2 7 3.9 2 7 3.8 2
8 6.2 2 8 6.2 2 8 6.2 2
9 6.9 2 9 6.9 2 9 6.9 2
10 7.3 2 10 7.3 2 10 7.3 2
11 8.4 2 11 8.6 2 11 8.6 2
12 9.6 2 12 9.6 2 12 9.6 2
13 10.3 2 13 104 2 13 104 2
14 11.2 2 14 11.2 2 14 11.2 2
15 12.3 2 15 124 2 15 124 2
16 13.3 2 16 13.3 2 16 13.3 2

(b)

GEO-KOMPSAT 2B
Global Ocean Color
Imager-11 (GOCI-II)

Band Central Spatial
wavelength  resolution

(nm) (m)

1 380 250
2 412 250
3 443 250
4 490 250
5 510 250
6 555 250
7 620 250
8 660 250
9 680 250
10 709 250
11 745 250
12 865 250
13 Wideband 250

Biogeosciences, 18, 4117-4141, 2021 https://doi.org/10.5194/bg-18-4117-2021



A. M. Khan et al.: Ongoing and emerging opportunities to improve environmental science 4121

graphic Mission (SRTM) digital elevation model (DEM) and
more than 30000 landmarks along coastlines (Wang et al.,
2020). The shift in the geolocation of the red band (500 m at
nadir) between IPATS and the GeoNEX algorithm was under
0.5 pixels for a majority of the time throughout the full disk
scene but can be as large as 1-2 pixels for short periods of
time (Wang et al., 2020).

3.2 Parallax

Geostationary satellites observe most of the hemisphere at an
angle relative to the zenith, which introduces a challenge due
to parallax, i.e., the effect of observing an object from a large
VZA. Parallax can result in uncertainties in land surface ob-
servations in mountainous terrain and can introduce errors
in the mapped location of clouds (Bielifiski, 2020). These er-
rors vary by VZA and the height of the feature and are largest
for high VZA and high feature altitude relative to the surface
(Bielinski, 2020; Zaksek et al., 2013). For example, the par-
allax shift at 49° latitude from GOES-16 ABI can be as large
as 51 km for an object that is 15 km high (Whittaker, 2014).
Since the mapped location of the clouds detected depends, in
part, on the VZA, parallax shifts can also complicate com-
paring the location of clouds between sensors with different
VZA (Zaksek et al., 2013). However, it is possible to correct
for parallax shifts with knowledge of VZA and feature (cloud
or surface) altitude (Kim et al., 2017; Yeom et al., 2020).

3.3 Atmospheric correction
3.3.1 Surface reflectance

Correcting for atmospheric attenuation of radiation to derive
surface reflectance from TOA reflectance is a crucial prereq-
uisite for studying surface processes from satellite platforms.
Current efforts to estimate surface reflectance from the ABI,
the Advanced Himawari Imager (AHI), and the Geostation-
ary Ocean Color Imager (GOCI) on board the Communica-
tion, Ocean, and Meteorological Satellite (COMS) include
generating lookup tables from the Second Simulation of the
Satellite Signal in the Solar Spectrum (6S) radiative transfer
model (He et al., 2019; Tian et al., 2010; Vermote et al., 1997,
Yeom and Kim, 2015; Yeom et al., 2018, 2020). Optimal es-
timation methods that estimate surface BRF from SEVIRI
have been extended to estimate surface broadband albedo and
surface reflectance from the ABI and the AHI on Himawari-
8 (Govaerts et al., 2010; He et al., 2019, 2012; Wagner et
al., 2010). These algorithms estimate surface reflectance and
broadband surface albedo by minimizing the difference be-
tween TOA BRF estimated through radiative transfer mod-
eling and measured by the satellite (He et al., 2019, 2012).
Unlike the surface reflectance algorithm currently used for
SEVIRI, the algorithm for the ABI and the AHI takes the
diurnal variation in aerosol optical depth into account (He
et al., 2019). Originally developed for atmospheric correc-
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tion of MODIS imagery, the Multi-Angle Implementation of
Atmospheric Correction (MAIAC) has also been adapted to
provide provisional daytime surface reflectance every 10 min
for bands 1-6 of the AHI with plans to extend the algorithm
to ABI (Li et al., 2019b). The surface reflectance from the
AHI showed less variation compared to surface reflectance
from MODIS and the differences in surface reflectance be-
tween the AHI and MODIS were smaller for the red, near-
infrared (NIR), and shortwave infrared (SWIR) bands com-
pared to the blue and green bands (Li et al., 2019b). ABI
channels 1, 3, 5, and 6 are accurate to within 2 %, but channel
2 has a bias error of up to 5 % (McCorkel et al., 2020). With
geolocation, parallax, atmospheric correction, and sensor ac-
curacy taken into account, imagery from the ABI can provide
sub-hourly estimates of various land surface variables.

3.3.2 Surface temperature

Atmospheric attenuation due to water vapor requires atmo-
spheric correction of thermal data collected from satellites
and also limits surface temperature retrieval to thermal bands
that have the lowest atmospheric absorption (Sun and Pinker,
2003). A single-channel approach requires the use of one
thermal channel within an atmospheric window at around
10um and radiative transfer modeling to simulate atmo-
spheric transmittance and emission of longwave radiation
(Li et al., 2013; Pinker et al., 2019). With known land sur-
face emissivity and atmospheric profiles and simulated atmo-
spheric transmittance/emission, surface temperature can be
retrieved through the inversion of a radiative transfer equa-
tion that explains the different components of at-sensor ra-
diance (Li et al., 2013). Since accurate atmospheric profiles
over a study area can be difficult to obtain, a split-window
technique can be used to correct atmospheric absorption to
estimate surface temperature from at-sensor radiance in two
thermal bands with differential water vapor absorption (Li
et al., 2013; Ulivieri and Cannizzaro, 1985). Split-window
techniques were used in earlier estimates of surface temper-
ature from GOES thermal data, and they are based on the
relationship between surface temperature and the difference
in temperature between two adjacent thermal bands with high
emissivity and low atmospheric absorption typically centered
at 11 and 12um (Li et al., 2013; Sun and Pinker, 2003).
The split-window techniques used to generate the GOES-R
hourly land surface temperature (LST) product is discussed
in Sect. 4.4, which further expands on surface temperature
retrieval from GOES. In Sect. 4.4, we also discuss the impor-
tance of emissivity for estimating LST and current sources of
emissivity estimates used in LST retrievals from geostation-
ary satellites.

Similar to surface reflectances, the directional thermal ra-
diation recorded by sensors on satellites can also be im-
pacted by the VZA of the sensor (Diak and Whipple, 1995).
Products that utilize diurnal thermal data from GOES have
used the difference in surface radiometric temperature dur-
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ing the morning hours, which has shown to be less sensitive
to changes in VZA compared to absolute surface radiomet-
ric temperature (Anderson et al., 1997; Diak and Whipple,
1995). Other methods that address the impacts of varying
VZA include adding zenith angle correction terms to split-
window algorithms in order to address the large path lengths
at high VZA (Sun and Pinker, 2003; Yu et al., 2009).

4 Data products

Geostationary satellites can now measure a number of com-
mon vegetation indices used for ecological applications and
make measurements that support derived products, including
land surface temperature, as noted, incident solar radiation,
and more. We describe these measurements with an eye to-
ward explaining the benefits and challenges of using geosta-
tionary platforms such as the ABI for ecology and environ-
mental science.

4.1 Incident solar radiation and photosynthetically
active radiation (PAR)

Geostationary satellites are equipped to estimate incident so-
lar radiation at the Earth’s surface (Diak, 2017; Pinker et al.,
2002), critical for the surface energy balance, photosynthe-
sis, and solar power applications. Earlier efforts to do so in-
clude a simple physical model by Gautier et al. (1980), which
estimated incident solar radiation during clear and cloudy
conditions using the reflectance from the visible band of the
Visible Infrared Spin-Scan Radiometer (VISSR) on GOES-
2. The model included Rayleigh scattering and water vapor
absorption of downwelling and reflected shortwave radiation.
Cloud albedo and absorption were estimated from a linear re-
lationship with the satellite-measured cloud reflectance, and
estimates of incident solar radiation were subsequently im-
proved by including ozone absorption of shortwave radia-
tion in the atmosphere (Diak and Gautier, 1983; Diak, 2017).
Continued improvements in both the physical model and
the spatiotemporal resolution of the GOES imagery have re-
sulted in higher accuracy of hourly and daily insolation esti-
mates when compared to pyranometer measurements (Diak,
2017; Otkin et al., 2005). More recent models of the trans-
mittance of direct and diffuse shortwave radiation through
aerosol extinction by different aerosol components, gaseous
absorption, and Rayleigh scattering have provided estimates
of the surface shortwave radiation flux and its diffuse fraction
from SEVIRI observations at 15 min resolution (Carrer et al.,
2019) and could also be applied to ABI observations. Apply-
ing algorithms for estimating incident solar radiation to data
from multiple geostationary satellites can lead to near-global
coverage and be beneficial for near-global estimates of evap-
otranspiration and gross primary productivity that are driven,
in part, by solar radiation.
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Incident solar radiation in the wavelengths of photosyn-
thetically active radiation (PAR; 400-700nm) can also be
estimated using the visible bands of geostationary satellites
(Janjai and Wattan, 2011). Specifying a range of SZA, VZA,
cloud types, aerosol types, cloud extinction coefficient, and
atmospheric visibility, lookup tables generated from simu-
lations of Moderate Resolution Atmospheric Transmission
(MODTRAN) have been used to estimate downwelling PAR
from at-sensor radiance (Zhang et al., 2014; Zheng et al.,
2008). These methods have been extended to multiple geo-
stationary satellites, including GOES-11 and GOES-12 and
MODIS surface reflectance data, to generate global incident
PAR estimates (Zhang et al., 2014).

Although these methods account for elevation, validation
efforts have shown that satellite-derived PAR in high-altitude
areas can be biased when compared to ground measure-
ments, possibly due to the inaccurate specification of atmo-
spheric profiles governing water vapor corrections (Zhang et
al., 2014). Furthermore, PAR estimated from satellites has
been reported to underestimate PAR measured on the ground
when the model assumed urban aerosol absorption over ar-
eas where maritime aerosols were more dominant (Janjai and
Wattan, 2011). Despite these limitations, frequent estimates
of PAR and incident solar radiation from geostationary satel-
lites may be uniquely suited to drive the land surface mod-
els that are operating at increasingly fine spatial and tempo-
ral resolutions, providing a natural link for using geostation-
ary satellite observations to improve our understanding of the
carbon, water, and energy cycles (Williams et al., 2009).

Terrestrial photosynthesis is particularly responsive to dif-
fuse PAR, which penetrates plant canopies more efficiently
than direct PAR (Emmel et al., 2020; Gu et al., 2003). The
diffuse fraction of incoming PAR is well-described as a lin-
ear function of transmissivity, or a clearness index, through
the atmosphere within certain inflection points (Erbs et al.,
1982; Oliphant and Stoy, 2018; Weiss and Norman, 1985).
Estimates of cloud height, optical depth, and particle size,
along with aerosols from GOES, can be used to further parti-
tion incoming PAR into direct and diffuse beam fractions as
currently provided by EUMETSAT at 15 min intervals (Car-
rer et al., 2019). Such observations could ultimately prove
useful for analyses of the diurnal pattern of carbon cycling
(see Sect. 6.1), given that the variability in terrestrial carbon
cycling is often most sensitive to the variability in PAR at
timescales from minutes to days (Stoy et al., 2005).

4.2 Vegetation greenness

The normalized difference vegetation index (NDVI) — the
normalized difference between the reflectance in red and
near-infrared wavelengths — is strongly correlated to chloro-
phyll content, green biomass, leaf area index (LAI), and the
fraction of incoming PAR absorbed by leaves (fAPAR; Ga-
mon et al., 1995; Jordan, 1969; Rouse et al., 1974; Running
et al., 1986; Tucker, 1979; Tucker et al., 1985) and, there-
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fore, is a critical variable for monitoring the land surface.
The ABI also has the ability to measure the Enhanced Vege-
tation Index (EVI) which is beneficial in areas (and periods)
of dense vegetation cover where, unlike NDVI, EVI does not
saturate and in open canopy areas because of a correction
factor applied for canopy background (Huete et al., 2002;
Zhou et al., 2014). The near-infrared reflectance of vegeta-
tion (NIRv) is strongly correlated to the amount of incom-
ing PAR absorbed by, plants and therefore, photosynthesis
at half-hourly to annual timescales and has shown stronger
relationships with photosynthesis compared to NDVI (Badg-
ley et al., 2017, 2019; Baldocchi et al., 2020; Wu et al., 2020)
and can also, in principle, be measured by GOES (Table 1).

LAI from SEVIRI is produced on a daily and 10d basis
through the LSA SAF program (Trigo et al., 2011). High
temporal estimates of LAI from ABI will have widespread
utility in the Western Hemisphere by providing an important
variable needed for modeling seasonal vegetation dynamics
and energy, water, and carbon fluxes (Anderson et al., 2011;
Guan et al., 2014; Robinson et al., 2018). An ABI LAI prod-
uct can provide harmony in temporal scales and data sources
needed to estimate the fractional vegetation cover needed for
a two-source energy balance model used for estimating evap-
otranspiration from GOES thermal data (further discussion
in Sect. 5.1; Anderson et al., 2011). Similarly, the ABI LAI
product can provide a data source for plant respiration mod-
eling (see further discussion in Sect. 6.1; Robinson et al.,
2018).

The increased temporal frequency of measurements avail-
able from geostationary satellites compared to polar-orbiting
satellites provides more opportunities for measuring NDVI,
EVI, LAIL and NIRv in areas with frequent cloud cover
(Miura et al., 2019). However, the geostationary position
captures reflected radiation at varying SZA throughout the
day, and these novel Sun—sensor geometries, not previously
captured by polar orbiting satellites, can cause diurnal vari-
ation in vegetation indices calculated from TOA reflectance
(Tran et al., 2020). EVI shows less SZA-induced diurnal vari-
ation compared to NDVI and is less impacted by the midday
hot spot effect during times of the year (spring and autumn
equinox) when the SZA and AHI VZA are aligned (Tran
et al., 2020). NDVI measurements can be normalized to a
reference Sun—target—sensor geometry by estimating bidirec-
tional reflectance distribution functions (BRDFs) to address
the impacts of varying Sun—sensor geometry (Fensholt et al.,
2006; Seong et al., 2020; Tian et al., 2010; Yeom and Kim,
2015; Yeom et al., 2018). Given the SZA sensitivity of NDVI
measurements, Wheeler and Dietze (2019) demonstrated a
Bayesian model to estimate a daily midday NDVI value from
diurnal NDVI calculations using ABI observations.

4.3 Vegetation moisture

Liquid water absorption influences reflectance by plants in
the atmospheric windows of shortwave infrared (SWIR)
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wavelengths (1.3-2.5um). Reflectance by plants in the
SWIR has a negative relationship with leaf water content
(Chen et al., 2005; Gao, 1996; Tucker, 1980), and multi-
ple vegetation indices have been developed from bands in
the SWIR wavelengths to capture these phenomena, espe-
cially in the 1.55-1.75pum range (Fensholt and Sandholt,
2003; Tucker, 1980). Some notable vegetation indices that
use SWIR wavelengths are the normalized difference in-
frared index (NDII) and the normalized difference water in-
dex (NDWI) which have been formulated from the differ-
ence in reflectance (p) in the NIR (0.76-0.9) and SWIR
(1.55-2.5 ym) bands as (oNIR-pSWIR) / (oNIR + pSWIR)
(Chen et al., 2005; Fensholt and Sandholt, 2003; Gao, 1996;
Hardisky et al., 1983; Tucker, 1980). NDII has been used to
improve global estimates of canopy water content and has
provided more realistic estimates of canopy water content
in semiarid shrublands when compared to regression mod-
els without NDII (Garcia-Haro et al., 2020). NDWTI has been
useful in estimating the water content of corn (maize) fields
because it saturates at higher values than NDVI in response
to changing vegetation water content during the growing sea-
son (Chen et al., 2005; Jackson et al., 2004). The short-
wave infrared water stress indices derived from MODIS have
stronger correlations with growing season soil moisture than
NDVI in the semiarid grasses of northern Senegal, Africa
(Fensholt and Sandholt, 2003). Many of these indices and
their changes over time can now, in principle, be measured
by geostationary satellites (Table 1).

The ABI, along with the Advanced Meteorological Im-
ager (AMI) on GEO-KOMPSAT-2A, the AHI, and SEVIRI
all offer bands in the SWIR regions, with ABI band 5
placed in the refined interval of 1.55-1.75 um identified by
Tucker (1980; Table 1). Atmospherically corrected surface
reflectances from ABI, SEVIRI, AHI, and AMI can provide
near-real-time and near-global coverage for vegetation wa-
ter content. This remains a relatively unexplored opportunity
given the potential benefits of near-real-time monitoring of
vegetation status (Verger et al., 2014).

4.4 Land surface temperature

The ABI features three longwave infrared bands with spatial
resolutions of about 2 km for measuring land surface temper-
ature (LST) — the skin temperature of the uppermost layer
of the land surface — including correction for atmospheric
moisture (Yu et al., 2012). Since the emission from the land
surface diverges from a blackbody, the knowledge of land
surface emissivity is a crucial component for the retrieval of
LST from at-sensor radiance (Li et al., 2013; Sun and Pinker,
2003). Global emissivity data may be gathered by consult-
ing compiled tables of emissivities for various land covers
along with land cover classifications of the landscape (Li
et al., 2013). Land surface emissivity can also be estimated
through its relationship with the NDVI. This method only
applies to vegetation and soil and requires knowledge about
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the fractional cover of vegetation in a pixel (Li et al., 2013).
Furthermore, land surface emissivities can be estimated by
using surface temperature—emissivity separation techniques
applied to multispectral thermal satellite observations (Li et
al., 2013). Data sources for land surface emissivity in LST re-
trievals from geostationary satellites can include spectral li-
braries given a specific type of environmental surface (Peres
and DaCamara, 2005), the MODIS operational land surface
emissivity product (MODI11), or the Combined ASTER and
MODIS Emissivity over Land (CAMEL) product (Pinker et
al., 2019).

The hourly ABI LST product uses the difference between
the brightness temperatures of ABI bands 14 (11.2 um) and
15 (12.3 um) in a split-window algorithm with an added term
to correct for path length at high view zenith angles (Yu et
al., 2009, 2012). These bands were chosen because they are
placed in regions of maximum surface emission with low at-
mospheric absorption (Yu et al., 2009). However, water vapor
absorption in a more moist atmosphere (e.g., a water vapor
content greater than 2 gcm™2) at large view zenith angles
(>45°) remains an issue for the ABI LST algorithm (Yu et
al., 2009).

For the generation of a consistent, long-term record of
LST, a single channel approach has also been proposed for
LST retrieval from GOES 12 channel 4 (10.7 um) in order
to develop an algorithm that can be applied to data from
multiple GOES satellites, including for time periods from
mid-2004-2017 when only one thermal channel was avail-
able (Pinker et al., 2019). Diurnal LST time series available
from geostationary platforms have a wide range of applica-
tions in environmental monitoring, from mapping surface—
atmosphere fluxes of heat, water, and carbon dioxide to track-
ing drought and fire dynamics. These and other applications
are discussed further in the following sections.

5 Existing applications of geostationary satellites for
environmental science

5.1 Evapotranspiration, latent heat flux, and sensible
heat flux

Diurnal observations from GOES provide multiple estimates
of directional surface radiometric temperature and down-
welling solar radiation each day to estimate water and en-
ergy fluxes from the soil and canopy (Diak and Stewart,
1989). One approach for estimating evapotranspiration (ET)
that is well suited for geostationary implementation is the
Atmosphere—Land Exchange Inverse (ALEXI) model (An-
derson et al., 1997, 2007a; Mecikalski et al., 1999), which
estimates the bulk surface energy balance (net radiation, sen-
sible heat flux, latent heat flux, and soil heat flux) and the
nominal partitioning of these fluxes between the soil and
canopy. ALEXI is a time-integrated model based on the two-
source (vegetation and soil) energy balance (TSEB) approach
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of Norman et al. (1995). ALEXI models the growth and sen-
sible heating of the atmospheric boundary layer based on the
morning rise in surface radiometric temperature that can be
measured by GOES, estimating time-integrated latent heat
flux (or ET, in units of mass flux) as a residual to the over-
all energy balance (Anderson et al., 1997). The model per-
forms best when the insolation inputs are also derived from
geostationary satellite data (Sect. 4.1), giving optimal spa-
tial and temporal correspondence between net radiation forc-
ings and surface temperature response signals. In comparison
with other sources of insolation data, geostationary-based in-
solation could significantly improve ET retrievals, particu-
larly in areas of frequent cloud cover where reanalysis esti-
mates may not accurately capture the timing and spatial ex-
tents of clouds (Anderson et al., 2019; Wonsook et al., 2020).

ALEXI-based ET estimates are produced routinely at 4 km
resolution for the United States (Anderson et al., 2020). Also,
daily 2 km resolution ALEXI-based ET estimates have been
generated from ABI observations as part of the GOES ET
and Drought (GET-D) product system (Fang et al., 2019). A
surface energy balance approach has also been used to esti-
mate 30 min ET from albedo and downwelling radiation from
MSG SEVIRI over the areas covered by MSG and 3h ET in
the Haihe River Basin in China from hourly LST observa-
tions from MTSAT (Multifunctional Transport Satellites), a
Japanese geostationary satellite (Ghilain et al., 2011; Zhao et
al., 2019). By measuring LST, geostationary satellites can es-
timate sensible heat flux and, therefore, also the Bowen ratio,
which can give insight into atmospheric boundary layer heat
and moisture transport, as well as plant water stress (Diak
and Whipple, 1995). Applications of ALEXI-based ET and
energy fluxes for drought monitoring and modeling carbon
fluxes are discussed below.

5.2 Drought monitoring

Drought indicators based on remotely sensed thermal obser-
vations can improve the effectiveness of drought early warn-
ing systems due to their high spatial resolution and the ten-
dency for large decreases in ET to precede visible reductions
in vegetation biomass during early stages of drought develop-
ment (Anderson et al., 2013a; Otkin et al., 2015). The Evapo-
rative Stress Index (ESI; Anderson et al., 2013a) is a drought
indicator based on standardized anomalies in the actual-to-
reference ET ratio, where actual ET is retrieved with ALEXI
using the morning LST rise signal, typically obtained from
GOES. ESI has demonstrated the ability to provide early sig-
nals of developing vegetation stress (Anderson et al., 2007b,
2013a, 2016; Otkin et al., 2015, 2018a).

A recent prominent application of the ESI has been in the
detection of flash droughts (Otkin et al., 2013). Flash drought
conditions are characterized by a period of rapid drought in-
tensification and typically include warm air temperature and
low cloud cover anomalies, with dew point suppressions and
high winds that can increase ET and hasten the removal of
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water from ecosystems (Gerken et al., 2018; Otkin et al.,
2014, 2016, 2018b). ESI has proven to be an effective in-
dicator of moisture stress in vegetation and the onset of flash
drought conditions (Otkin et al., 2014, 2016, 2018b). For ex-
ample, rapid temporal changes in the ESI toward increas-
ing vegetation stress appeared several weeks earlier than the
point at which the U.S. Drought Monitor (USDM) classified
regions of the central United States to be experiencing mod-
erate to exceptional drought in 2003 and 2012 (Otkin et al.,
2014). The ESI was also able to capture the onset of vege-
tation stress and the subsequent vegetation recovery during
the flash drought and flash recovery sequence of 2015 in the
south central United States (Otkin et al., 2019).

Drought indices based on precipitation and atmospheric
demand highlight areas with the potential for vegetation
stress, but these stresses may not materialize due, for ex-
ample, to beneficial rainfall, management (e.g., irrigation),
or plant root access to groundwater. ESI uses LST to diag-
nose actual stress materializing on the ground and, there-
fore, has been used as a moisture stress indicator for es-
timating drought impacts on crop yields (Anderson et al.,
2016; Mladenova et al., 2017). ESI is routinely generated
at 4km resolution over the CONUS, and 5km globally, or
can be downscaled to sub-field or stand scales (30 m) us-
ing higher resolution thermal data from Landsat (Yang et al.,
2018, 2020). The ability of ESI to detect drought stress ear-
lier than USDM and other indices is shown in Fig. 2 (adapted
from Anderson et al., 2013b).

5.3 Wildfire detection and biomass burning emissions

The Automated Biomass Burning Algorithm (ABBA) was
developed from the 4 and 11 um bands of the GOES visible
infrared spin-scan radiometer atmospheric sounder (VAS) to
identify fire pixels (Prins and Menzel, 1994) based on the dif-
ferential increases in emitted radiation, with increases in tem-
perature between the two bands. The ABI fire algorithm has
adapted ABBA to detect fires from differences in the bright-
ness temperatures of the 3.9 and 11.2 um bands and provides
the location, sub-pixel size, temperature, and radiative power
of fires (C. C. Schmidt et al., 2012; T. J. Schmit et al., 2015).
Fire radiative power (FRP) is the rate at which radiation is
emitted from a fire, and for a 600-1400 K temperature range,
FRP is proportional to the difference between radiance in the
middle infrared (MIR) at 3.9 um and the regional background
radiance in MIR (Schmidt et al., 2012; Wooster, 2003; Xu et
al., 2010). Fire radiative energy (FRE) is the time-integrated
FRP during the course of a fire. Emissions of trace gases
and aerosols from biomass burning can be estimated using
FRE, a biomass combustion rate, and an emission factor spe-
cific to land cover and emitted species (Zhang et al., 2012).
The diurnal FRP cycles of various ecosystems have been es-
timated from GOES and from the fusion of FRP estimates
from GOES and MODIS to provide biomass burning emis-
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sions at hourly, daily, and monthly scales (Li et al., 2019a;
Zhang et al., 2012).

While GOES-R thermal observations can provide biomass
burning emissions at a fine temporal scale, the coarse spa-
tial resolution of GOES-R presents a challenge in detect-
ing small sub-pixel fires and emissions. Differences between
medium (20 m) and coarse resolution (500 m) imagery can
result in substantial differences in total detected burned area,
estimated emissions, and the length of the fire season (Ramo
et al., 2021). Small fires can make up a great portion of total
burned area and emissions, and they can result in a lengthen-
ing of the fire season in regions where anthropogenic fires are
prevalent (Ramo et al., 2021). Similar to other coarse-spatial-
scale emissions datasets, emissions from GOES-R should be
considered conservative in areas with substantial undetected
small fires (Ramo et al., 2021). Similar to Ramo et al. (2021),
studies comparing biomass burning emissions from GOES-
R with emissions from finer spatial resolution satellite im-
agery should reveal the magnitude of differences and trade-
offs between high temporal and spatial resolution in estimat-
ing emissions.

5.4 Plant phenology

Plant canopies have unique and observable events that oc-
cur annually as a part of their phenology. The phenology of
photosynthesis and plant growth is sensitive to temperature,
precipitation, and photoperiod (Bauerle et al., 2012; Fu et al.,
2017; Piao et al., 2019; P. C. Stoy et al., 2014), and shifts in
the phenology of carbon uptake and plant growing season
in response to changing climate have important implications
for ecosystems (Bradley et al., 1999; Xu et al., 2020). These
shifts often occur on timescales that cause uncertainty from
polar-orbiting satellites, especially when cloudy conditions
are present during spring in the temperate zone (Richardson
et al., 2013) and dry-to-wet (and wet-to-dry) seasonal transi-
tions in tropical forests (Ganguly et al., 2010). Research on
land surface phenology to date has used a combination of
satellite remote sensing and near-surface remote sensing via
webcams to detect seasonal transitions in vegetation green-
ness and photosynthesis, such as the start, peak, and end of
the growing season (Dannenberg et al., 2020; Gamon et al.,
2016; Seyednasrollah et al., 2019; Wong et al., 2019; Zhang
et al., 2003). These observations have varying spatial and
temporal resolutions, depending on the method and instru-
mentation used (Brown et al., 2016; Filippa et al., 2018; Liu
etal., 2017).

Geostationary satellites such as GOES have unique ca-
pabilities that could further enhance plant phenology re-
search. Compared to polar-orbiting satellites, the large num-
ber of diurnal observations from geostationary satellites cap-
ture greater variation in sun-angle geometries. This increased
variability allows for better BRDF adjustments and improved
investigations about the impact of the SZA on the vegeta-
tion indices used for extracting phenological transitions (Ma
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Figure 2. Comparison of drought evolution between the U.S. Drought Monitor classification, the Evaporative Stress Index (ESI), and the
Vegetation Drought Response Index (VegDRI). The figure is adapted from Anderson et al. (2013b) and distributed under a CC BY-NC-ND-

3.0 license.

et al., 2020). Time series of LAI, NDVI, and the two-band
Enhanced Vegetation Index (EVI2) from SEVIRI, AHI, and
GOCI show increased observations during cloudy conditions
and improved estimates of phenological cycles and transi-
tions (Guan et al., 2014; Miura et al., 2019; Yan et al., 2016;
Yeom and Kim, 2015; Yeom et al., 2018). Figures of time se-
ries from various papers cited above demonstrate the value of
geostationary imagers in capturing greenness trajectories as a
complement to polar-orbiting satellites. NDVI from BRDF-
adjusted reflectance from GOCI has demonstrated an im-
proved ability to monitor the growth of rice paddies in North
Korea and South Korea compared to MODIS NDVI from
BRDF-adjusted reflectance, especially during the monsoon
season which has frequent cloud cover that limits the ability
of polar-orbiting sensors to observe the surface (Yeom et al.,
2015, 2018). In the Congo Basin, the multiple annual phe-
nological cycles of greenness in evergreen broadleaf forests
were better captured by the increased observations from SE-
VIRI compared to MODIS (Yan et al., 2016). In Japan, the
greenness trajectories from an EVI2 time series revealed dif-
ferences in the length of seasonal transitions (timing between
start of spring to end of spring) between AHI and MODIS
(Yan et al., 2019).

GOES-R can also provide increased observations for the
remote sensing of dryland phenology, which can include
multiple growing cycles per year, and where phenological
transitions can be triggered by pulses of rainfall and present
an ongoing challenge for the remote sensing of land surface
phenology (Smith et al., 2019). However, since drylands fea-
ture heterogeneous vegetation, studies will need to investi-
gate whether increases in temporal resolution with coarse
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spatial resolution are enough to offer an improvement in dry-
land phenology (Smith et al., 2019). Leveraging diurnal ob-
servations from GOES to estimate greenness trajectories and
phenological transitions (Hashimoto et al., 2021; Wheeler
and Dietze, 2021) across the Western Hemisphere, coupled
with the ability to extract these transitions from AHI, SE-
VIRI, and GOCI, can result in a near-global improvement in
estimating seasonal vegetation growth and decline. The ca-
pacity of GOES to track events in plant phenology is shown
in Figs. 3 and 4 for pixels within and outside of the Kincade
fire scar, with notable increases in vegetation greenness and
moisture during March and April at the end of the typical
rainy season in California’s Mediterranean ecosystems.

5.5 Ocean color

Geostationary satellites have been used for nearly a decade
for monitoring the dynamics of ocean color. The ocean color
signal can identify suspended particulate matter and phyto-
plankton (Neukermans et al., 2009; Ruddick et al., 2014),
including harmful algal blooms (Choi et al., 2014; Noh et
al., 2018), and may be a sentinel for the impacts of cli-
mate change on marine ecosystems (Dutkiewicz et al., 2019).
Most research to date has involved the Geostationary Ocean
Color Imager (GOCI), which has transmitted eight images
per day since 2010 in six visible (412, 443, 490, 555, 660,
and 680nm) and two infrared channels (745 and 865 nm),
with 20 nm bandwidth at 500 m spatial resolution centered
around the Korean Peninsula at 128.2° E (Ahn et al., 2012;
Choi et al., 2012; Ryu and Ishizaka, 2012; Ryu et al., 2012;
Table 1). GOCI has been used to estimate ocean biogeochem-
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ical dynamics (Wang et al., 2013), including photosynthe-
sis via chlorophyll-a absorption (Concha et al., 2019; Park
et al., 2012) at diurnal timescales. Other geostationary sen-
sors, including SEVIRI on the second generation of Meteosat
(Schmetz et al., 2002) and (forthcoming) flexible combined
imager (FCI) on the third generation of Meteosat (Ouaknine
et al., 2013), are not designed explicitly for ocean color mon-
itoring but have proven useful for monitoring marine sus-
pended particulates and PAR attenuation in water (Neuker-
mans et al., 2009; Ruddick et al., 2014), as has GOES (Jol-
liff et al., 2019). All of these sensors provide an important
complement to ocean color monitoring from polar-orbiting
satellites like MODIS-AQUA, Medium-Resolution Imaging
Spectrometer (MERIS), and the Ocean Land Color Instru-
ment (OLCI) on Sentinel-3 (Nieke et al., 2012; Peschoud et
al., 2017). The persistent and consistent atmospheric charac-
terization afforded by the geostationary sensors is critical for
interpreting the relatively weak marine color signature (Rud-
dick et al., 2014).

6 Emerging applications
6.1 Carbon cycle science

Estimates of surface—atmosphere carbon flux from polar-
orbiting instruments like MODIS are usually produced on
8d to annual time steps (Zhao et al., 2005). The impact of
rapidly evolving meteorological conditions on terrestrial car-
bon uptake has gained recent attention, suggesting that more
frequent observations will improve our understanding of the
carbon cycle. Precipitation events and the resulting short-
term changes in meteorological conditions on the order of
days result in local anomalies in canopy photosynthesis and
respiration that influence seasonal ecosystem exchange (Ran-
dazzo et al., 2020). Fluctuations in carbon uptake can result
from upwind climate extremes through heat and moisture ad-
vection, revealing more complexity in how climate extremes
impact ecosystem carbon fluxes (Schumacher et al., 2020).
Smoke from large wildfires can result in a short-term de-
crease in incoming PAR but an increase in the diffuse fraction
of incoming PAR which, under the right circumstances, can
increase seasonal carbon uptake through changes in light-
use efficiency (LUE; Hemes et al., 2020). The resulting daily
anomalies in gross primary productivity (GPP) from sudden
changes in limiting resources have been shown to dispropor-
tionately affect longer-term ecosystem carbon uptake (Kan-
nenberg et al., 2020). Multiday positive anomalies in GPP
are critical for explaining its interannual variation at ecosys-
tem and global scales (Fu et al., 2019; Zscheischler et al.,
2016). All of these recent findings point to the importance of
more frequent observations of ecosystem carbon cycling to
improve our understanding of global carbon cycling.

Now that geostationary satellite imagers, such as the ABI,
measure similar spectral bands to MODIS (Fig. 1; Table 1),
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they can be used to monitor the carbon cycle in similar ways
but at higher temporal frequency. Estimates of GPP often
rely on LUE models, which are rooted in a linear relationship
between absorbed PAR (APAR) and net primary production
(Medlyn, 1998; Monteith, 1972). An ideal LUE in the ab-
sence of environmental stresses is specified and attenuated
with the use of stress functions that describe the relationship
between LUE and environmental stressors (Anderson et al.,
2000; Mahadevan et al., 2008; Robinson et al., 2018; Run-
ning et al., 2004; Yuan et al., 2007; Zhang et al., 2016; Zhao
et al., 2005). The most widely used environmental stressors
include functions to describe temperature and moisture stress
on LUE. Multiple approaches for estimating GPP from space
exist based on the LUE approach, with differences arising
from the spatiotemporal resolution of the inputs, the mete-
orological data used, incorporating the impacts of CO, fer-
tilization, environmental scalars used for adjusting LUE, and
the treatment of LUE as a constant or specific to biome, plant
functional type, or photosynthetic pathway (McCallum et al.,
2009; Robinson et al., 2018; Sims et al., 2006; Xiao et al.,
2019).

Vegetation indices calculated from GOES-R observations
will provide spatiotemporal harmony with other GOES-R in-
puts, such as downwelling shortwave radiation, in estimat-
ing APAR. Various remotely sensed vegetation indices have
been used for both estimating fAPAR to estimate APAR
and in formulations of environmental stresses on LUE. The
MODIS GPP algorithm uses NDVI and the MODIS fA-
PAR/LAI product to estimate APAR. The Vegetation Pho-
tosynthesis and Respiration Model (VPRM; Mahadevan et
al., 2008) uses a similar approach and estimates the gross
ecosystem exchange (GEE; similar to GPP) using the En-
hanced Vegetation Index (EVI) instead of NDVI. The land
surface water index (LSWI), the normalized difference be-
tween satellite-derived reflectance in near-infrared and short-
wave infrared, is used to adjust LUE in response to water
stress and leaf phenology (Mahadevan et al., 2008).

Implementing a model to estimate carbon uptake from
ABI presents opportunities to improve LUE-based models
by using emerging variables, as opposed to the commonly
used air temperature and vapor pressure deficit, to represent
environmental stressors on LUE such as soil moisture, dif-
fuse radiation, LST, and the evaporative fraction (Anderson
et al., 2000; Li et al., 2021; Yuan et al.,, 2007; Zhang et
al., 2016). Ecosystem GPP increases with increases in dif-
fuse radiation if light does not limit photosynthesis because
diffuse radiation penetrates plant canopies more readily, re-
sulting in a more even distribution of light among shaded
and sunlit leaves (Hemes et al., 2020; Mercado et al., 2009).
Incorporating the diffuse component of incoming PAR has
been noted as a priority for improving LUE models (Mc-
Callum et al., 2009; Yuan et al., 2014). Recent attempts at
incorporating diffuse radiation into LUE models as a stress
on GPP have demonstrated an enhancement of LUE during
overcast skies (Zhang et al., 2016). Fog events can be iden-
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Figure 3. Normalized difference vegetation index (NDVI) calculated using TOA reflectance factor from ABI on GOES-16 and Nadir Bidi-
rectional Reflectance Distribution Function-Adjusted Reflectance (NBAR) from MODIS on the Terra and Aqua satellites for pixels inside
and outside the Kincade fire (23 October 2019) perimeter in northern California for the period March 2019 to March 2020. The GOES
Clear Sky Mask algorithm was applied to observations from GOES. MODIS NBAR with good quality flags were used. All observations are
daytime, with a solar zenith angle of <70°. The locations of the points inside and outside of the fire perimeter are displayed in Fig. 5.

tified using GOES and increase both diffuse fraction of ra-
diation and ecosystem water use efficiency (Baguskas et al.,
2021). Partitioning estimates of PAR from ABI into diffuse
and direct components, along with the ABI LST product and
ALEXI-based estimates of sensible and latent heat flux, can
provide harmony between inputs for environmental stressors
on LUE, PAR, and vegetation indices by not having to rely
on estimates from sources other than ABI. Furthermore, esti-
mates of LAI from GOES can contribute to respiration mod-
eling data needs for estimating net primary production (NPP)
(Robinson et al., 2018).

Estimating GPP with ABI data can also benefit from var-
ious LUE model formulations that incorporate the coupling
between carbon uptake and water loss through stomatal pro-
cesses and water use efficiency (Anderson et al., 2000; Zhang
et al., 2016). Estimates of APAR from ABI can be used in
existing carbon—water coupled models through the ALEXI
framework, which can estimate hourly fluxes which respond
to diurnal variations in solar radiation and vapor pressure
deficit (VPD) along with capturing the effect of soil moisture
stress on LUE (Anderson et al., 2000). The ALEXI frame-
work presents an opportunity to use both ABI thermal data,
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as previously mentioned in Sect. 5.1, and ABI reflectance
data to estimate carbon, water, and energy fluxes simultane-
ously (Anderson et al., 2008). Diurnal estimates of carbon
uptake and water loss from ABI will enhance our understand-
ing of ecosystem water use efficiency and its response to en-
vironmental variation across geographic space. Furthermore,
there are various opportunities to study the response of car-
bon fluxes estimated from ABI data to soil moisture variabil-
ity with soil water content measured at various ground lo-
cations. This could be an important investigation considering
the noted limitations of satellite GPP estimates in their ability
to capture soil moisture effects on carbon uptake (Stocker et
al., 2019). Observations from geostationary satellites could
also, in principle, be used to assimilate instantaneous carbon
flux observations from eddy covariance towers into ecosys-
tem models (LeBauer et al., 2011).

6.2 Disturbance and recovery
Remotely sensed data have made it possible to map regional
burn severity from wildfires, while time series of measures

of greenness and primary productivity enable monitoring of
vegetation disturbance and recovery (Bolton et al., 2017;

https://doi.org/10.5194/bg-18-4117-2021



A. M. Khan et al.: Ongoing and emerging opportunities to improve environmental science

4129

Inside fire perimeter

* MODIS NBAR NDII
* GOES TOA NDII
;‘ - GOES median (local hours 10 - 14)
O GOES daily daytime mean
Fire duration
o .
S
- . o i .
= 3 - 03 . of . & .
=z o e s aed e ..'§ :
e 4 . 3; o B .i | |
C L] H .1 Sl '
4 g uﬁ,u
i
o . 8 .
g
B o S, -
Xy
P,
b3 s Eaded
S Ay
LN O S N O S B O O B S O S S N S B O B S O B S O S B B B B B B
EYT TR T TN NDODNQOMONETCTOND TN NONNDENONTCTNTTODNDTONDONQE0ON DN @
QY@ QO Y Qe T OOy O NG T AR ey Qe QTR o o
D h DD T T ITTWLDOWOHODDOODOREERNN DDDDDDDDDDODD D™ v ool AT == A
S8383833338388E3838838555053383838383383 PR rrerrsEl Sc555835083833

Outside fire perimeter

0.4

0.2

NDII

0.0

0.2

0.4

* MODIS NBAR NDII
* GOES TOA NDII

‘GOES median (local hours 10 - 14)
© GOES daily daytime mean

Fire duration
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for pixels inside and outside the Kincade fire (23 October 2019) perimeter in northern California for the period March 2019 to March 2020.
The GOES Clear Sky Mask algorithm was applied to observations from GOES. MODIS NBAR with good quality flags were used. All
observations are daytime, with a solar zenith angle of <70°. The locations of the points inside and outside of the fire perimeter are displayed

in Fig. 5.

(a) (b)

m == 0.55 T >=0.55

|

- 047 - 0.47

|

|- 0.39 - 0.39

3620000 3630000 3640000 3650000 3660000
3620000 3630000 3640000 3650000 3660000

- 03

- <=03

T T T T T T T T
-3390000 -3380000 -3370000 -3360000 -3390000 -3380000 -3370000 -3360000

(©) (d)

Fire perimeter
O Raster extent
* Inside perimeter
# Outside perimeter

42°N

0.4

40°N

03

38°N

- 0.2

36°N

34°N

|- 0.1

3620000 3630000 3640000 3850000 3660000

T T T T T T T T T T
-3390000 -3380000 -3370000 -3360000 124°W 122°W 120°W 118°W 116°W 114°W

Figure 5. TOA NDVI calculated using the TOA reflectance factor from GOES-16 imagery for (a) day of the year (DOY) 295 (22 Oc-
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00 UTC, and their difference (c) for the Kincade fire perimeter in

northern California (d) (23 October 2019; DOY 296). Gray pixels were identified as being cloudy from the GOES Clear Sky Mask algo-
rithm. The points inside and outside of the fire perimeter correspond to the time series in Figs. 3 and 4.

Goetz et al., 2006; Meng et al., 2018). Mapping damage from
hurricanes and the resulting impact to the carbon cycle has
also been possible, using remotely sensed data, through the
use of various vegetation indices related to greenness and
moisture (Chambers et al., 2007; Wang et al., 2010). The
difference in NDVI from pre- and post-fire imagery from

https://doi.org/10.5194/bg-18-4117-2021

GOES-16 shows the potential to detect variations in burn
severity and recovery from wildfires, as demonstrated for the
notable Kincade fire in 2019 in California (Fig. 5). High-
frequency estimates of NDVI (Fig. 3) and NDII (Fig. 4)
from GOES-16 can track vegetation disturbance and recov-
ery from wildfire in a similar manner to MODIS, although
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Figure 6. TOA NDVI, near-infrared reflectance of vegetation (NIRv), Enhanced Vegetation Index (EVI), and NDII calculated using the TOA
reflectance factors from GOES-16 imagery for DOY 235 (22 August 2020) at 16:00 UTC, DOY 246 (2 September 2019) at 16:00 UTC, and
their difference around the advisory track for Hurricane Laura (red line) in southern Louisiana (26 August 2020; DOY 239). Gray pixels
represent cloudy pixels from the GOES Clear Sky Mask algorithm or vegetation index values below 0 for NIRv and EVI.

the magnitude of the vegetation indices differs between the
two due to the atmospheric corrections and BRDF adjust-
ments of the MODIS TOA reflectance (Figs. 3 and 4). Varia-
tions in SZA and VZA can lead to differences in NDVI val-
ues between GOES, MODIS, and other sensors (Fensholt et
al., 2006; Pinker and Ewing, 1985), with MODIS having the
advantage of a low SZA during its overflight. These differ-
ences in viewing geometry need to be resolved to reconcile
differences between sensors. Imagery from ABI also have
the potential to estimate the regional decline in vegetation
indices after hurricanes (Fig. 6), which can potentially be
converted into the decline in GPP using methods described
in Sect. 6.1. A recent review has also highlighted the use of
geostationary imagers in monitoring landslides and flooding
(Higuchi, 2021).

6.3 Ecosystem thermodynamics
Observations of the diurnal behavior of land surface at-

tributes can also be used to improve our understanding of
the thermal properties of ecosystems. Large-scale changes to
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ecosystems, such as logging, the conversion of grasslands or
forests to farmland, and wildland fires alter the mechanisms
by which ecosystems regulate their energy acquisition and
heat exchange and are thought to be related to the degree of
complexity of the system (Kay and Schneider, 1992). The
process of ecological succession modifies the structure of an
ecosystem over time by gradually increasing its complexity
(Odum, 1969). Ecosystems should, therefore, develop an in-
creasing ability to dissipate incoming solar radiation as suc-
cession proceeds (Schneider and Kay, 1994) and, due to a
higher order of complex structures, will improve cooling by
transferring solar radiation into latent heat and metabolic en-
ergy (Norris et al., 2011). Effective energy dissipation results
in a cooler surface (with less waste heat) for biological pro-
cesses to occur. Diurnal patterns of LST can be used to quan-
tify ecological complexity (Lin et al., 2009) and entropy pro-
duction (Brunsell et al., 2011; Holdaway et al., 2010; P. Stoy
et al., 2014; Wiesner et al., 2019) and may be useful for mon-
itoring the success of ecological restoration projects that seek
to re-establish ecological function (Aerts et al., 2004).
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6.4 Satellite data fusion products

One of the most promising applications of geostationary
satellites for land surface science may simply be their ability
to provide temporally dense observations that can be com-
bined (fused) with spatially dense observations from polar-
orbiting or other satellite platforms. Such fusion products
take advantage of the best features of different platforms,
for example, by exploiting the finer spatial resolution of ob-
servations from Landsat, Sentinel-2, MODIS, VIIRS, or the
recently harmonized Landsat Sentinel-2 surface reflectance
and the temporal resolution of GOES observations. Based on
the assumption that changes in a Landsat pixel are equiva-
lent or proportional to the changes in the co-located MODIS
pixel between two dates, fusion algorithms are able to pre-
dict the surface reflectance of a Landsat pixel between ac-
quisition dates using the change observed in MODIS pix-
els between the reference and prediction date (Gao et al.,
2015). Multisensor fusion, using polar-orbiting and geosta-
tionary satellites, has provided higher spatiotemporal reso-
lution for estimates of forest disturbance, NDVI, phenology,
LST, and ET and water management, yield estimation, and
fire radiative power (Cammalleri et al., 2013, 2014; Gao et
al., 2015; Hilker et al., 2009; Knauer et al., 2016; Li et al.,
2019a; Semmens et al., 2016; Wu et al., 2015; Yang et al.,
2018; Zhao and Duan, 2020). Given the importance of con-
sidering landscape heterogeneity in using satellite data to es-
timate various ecosystem variables and model processes such
as LUE, carbon flux and storage, phenology, and ET (Ahl et
al., 2004; Cammalleri et al., 2014; Leitdo et al., 2018; Zeng et
al., 2020), multisensor data fusion offers a way to address the
relatively coarse spatial scale of imagery from geostationary
satellites as we expand their use in studying ecosystem func-
tion and surface—atmosphere exchange.

7 Conclusions

The recently increased spectral and spatial resolution of im-
agers on board geostationary satellites creates new opportu-
nities to use remotely sensed observations in environmental
science, especially when combined with ongoing and forth-
coming improvements to the spectral sensitivity of other geo-
stationary imagers. The increased diurnal sampling from the
ABI can find cloud-free observations when polar-orbiting
satellites may be hindered by cloud cover to improve time
series of vegetation greenness, canopy water content, LST,
and energy—water—carbon fluxes. Temporally dense geosta-
tionary observations have been crucial in detecting vegeta-
tion moisture stress and wildfires. Extending the use of these
observations to measure more land surface variables can cap-
ture sudden changes in ecosystem fluxes due to changing at-
mospheric conditions and extreme events. Furthermore, esti-
mations of vegetation phenological cycles can be improved
using geostationary satellites, especially by taking advan-
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tage of short periods of clear skies occurring during times
of otherwise persistent cloud cover. Studying ecosystem dis-
turbance events should also benefit through increased avail-
ability of observations pre- and post-disturbance to estimate
burned area and vegetation recovery. Multisensor fusion be-
tween relatively coarse geostationary satellite observations
and observations from platforms with finer spatial resolution
offers a way to resolve within-pixel spatial variability in het-
erogeneous landscapes.

The ongoing efforts to improve the geolocation and ra-
diometric quality of imagery and to provide higher level
collections of data with surface reflectance, similar to the
MODIS or Landsat program, will be a crucial component
of using imagery from geostationary sensors. Furthermore,
increased collaboration between the National Science Foun-
dation, NASA, and NOAA, with increased funding oppor-
tunities to pursue research utilizing imagery from geosta-
tionary sensors for investigations in the science topics we
have detailed here, will help realize the potential of these
data. Leveraging the high-frequency observations from geo-
stationary sensors for investigations in environmental science
where they have been largely untapped will expand the scope
of hyper-temporal remote sensing of the environment.

Code and data availability. The GOES-16 ABI Level 2 Cloud and
Moisture Imagery (ABI-L2-MCMIPC) used to make the figures is
available through https://registry.opendata.aws/noaa-goes/ (Schmit
et al., 2012). The GOES-16 ABI Level 2 Clear Sky Mask (ABI-
L2-ACMC) algorithm is available through NOAA’s Comprehen-
sive Large Array-data Stewardship System (CLASS) (Heidinger
and Straka, 2012). The MODIS (Terra and Aqua) Nadir Bidi-
rectional Reflectance Distribution Function-Adjusted Reflectance
(NBAR) product (MCD43A4, Schaaf and Wang, 2015) was ac-
cessed thought the Level-1 Atmosphere Archive and Distribution
System (LAADS) Distributed Active Archive Center (DAAC). The
code for producing Figs. 3-6 is available at https://github.com/
anmikhan/envirogoes.git.
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