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Abstract

The Congo basin situated in equatorial Africa is home to the second largest rainforest on the globe
and plays an important role in the Earth’s climate system. For instance, the Congo is one of the
most convective regions in the world and enhances the tropical large-scale circulation. Although
tropical convection is crucial for rainfall and the sustenance of the rainforest, the most intense
thunderstorms do not necessarily produce the largest amounts of rainfall over equatorial Africa.
Aiming to better understand the decreasing rainfall trend over the Congo, trends in thunderstorm
intensity from 1983-2018 are analyzed in this paper using the Galvez-Davison index (GDI) i.e., a
thermodynamic index used to measure thunderstorm potential. Consistent with previous studies,
thunderstorm activity increased during all seasons over the Congo. The GDI suggests that the in-
creasing trends in thunderstorm activity are attributable to an increase in hydrostatic instability.
More specifically, the GDI shows that (1) an increase of cold troughs at S00hPa, (2) an increase in
the temperature gradient between 700hPa and 950hPa, and (3) a decrease of the equivalent poten-
tial temperature (6, ) gradient with height collectively act to promote taller, more intense thunder-
storms. This study concludes by proposing feedback mechanisms explaining the intensification of
thunderstorms. The mechanisms highlight the cooling and moistening of the mid-troposphere, dry-
ing and warming at the surface and lower troposphere, and a decrease in vertical stability and
convective inhibition. These factors may act to re-enforce the drying trend which has stressed the
Congo rainforest over the past 40-years.

Key words: Congo rainforest, Galvez-Davison index, rainfall, thermodynamic stability, and trop-
ical thunderstorms.
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1. Introduction

Most of the precipitation in the tropics stems from convective rainfall (Dai 2006). Naturally,
the majority of the rainfall over the Congo basin located in equatorial central Africa originates
from deep convection and mesoscale convective systems (Jackson et al. 2009). The Congo basin,
Amazonia, and the Indonesian maritime continent form the three most convective regions on the
globe and enhance the large-scale tropical circulation (Zipser et al. 2006; Raghavendra et al. 2019).
In fact, thunderstorms over the Congo are typically stronger and more intense when compared to
other equatorial regions like Amazonia or Indonesia. In spite of its smaller size, the Congo is char-
acterized by the second largest latent heating rate from convection after the Indonesian maritime
continent (Washington et al. 2013). Equatorial Africa is also associated with the greatest annual
mean lightning flash rate, having a higher frequency in thunderstorm occurrence and mean flash
rate than the rest of the deep tropics (Christian et al. 2003). However, despite the Congo’s formi-
dable convection heating rate, thunderstorm intensity and lightning activity, the second largest
rainforest in the world i.e., Congo basin, receives less rainfall than Amazonia or Indonesia (Adler
et al. 2017). The reduced availability of rainfall exasperates the Congo rainforest’s vulnerability
to droughts when compared to other major rainforests (Zhou et al. 2014). On a concerning note,
trends in the mean rainfall, forest greenness, and dry season length over the Congo basin indicate
a long-term and large-scale drying trend (Zhou et al. 2014; Jiang et al. 2019).

In order to understand rainfall variability and to identify potential drivers for the well-docu-
mented decrease in rainfall over the Congo, there exists a crucial need to understand deep convec-
tion. This emphasizes the need to investigate recent trends in thunderstorm activity over the Congo
basin. Despite the decrease in rainfall rates in the Congo basin, Raghavendra et al. (2018) found
an increase in number, size and intensity of thunderstorms over the time period of 1982-2016
during April, May, and June (AMJ), using satellite data. These results were later complemented
by other studies which point to a general increase in thunderstorm activity over the Congo basin
throughout the year (e.g., Taylor et al. 2018; Hart et al. 2019; Raghavendra et al. 2019). This
seemingly unintuitive relationship between increasing thunderstorm activity and decreasing rain-
fall over the Congo may be reconciled by Hamada et al. (2015), who demonstrated a weak rela-
tionship between thunderstorm intensity and rainfall. However, specific physical mechanisms ex-
plaining the complex relationship between tropical deep convection, surface rainfall, and an in-
crease in thunderstorm activity over the Congo have only been incompletely identified. One ex-
planation given for the observed increase in thunderstorm activity over the Congo basin includes
an increase in horizontal wind shear attributed to an increasing temperature contrast between the
equator and northern Africa (Taylor et al. 2018).

Thermodynamic stability of the atmosphere is a key ingredient which determines the potential
and intensity for atmospheric convection. Often, thermodynamic indices are collectively used to
assess the stability of the atmosphere. Although stability indices have been widely used to forecast
thunderstorms (e.g., Haklander and Van Delden 2003; Jayakrishnan and Babu 2014), Galvez and
Davison (2016) found that traditional stability indices often lack skill when attempting to predict
tropical convection since the processes driving convection differ between the tropics and the extra
tropics, and stability plays a different role in the development of moist convection. Quantifying
tropical convection can be challenging since the skill of traditional stability indices like the Lifted-
Index (LI), K-Index (KI), Showalter-Index (SI) or convective available potential energy (CAPE)
in predicting deep convection is limited for the tropics (Uma and Das 2019).
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In the mid-latitudes, convection can be triggered by dynamic processes (e.g., frontal systems).
However, tropical convection depends more on column stability and thermodynamic processes
since dynamical processes are usually weak. Aiming to improve forecasts for tropical convection,
the Gélvez-Davison Index (GDI) was developed by the NOAA Weather Prediction Center (WPC)
in 2014, focusing on thermodynamic processes more than on dynamical processes (Galvez and
Davison 2016). Miller et al. (2019) utilized the GDI and other stability indices to forecast rainfall
in Puerto Rico and found that CAPE, the KI and Total Totals had very little skill when compared
to the GDI. Since the GDI is a relatively new index, follow-up studies are limited in numbers. In
this study, the GDI and its sub-indices are utilized to investigate the increasing trends in thunder-
storm activity over the Congo during different seasons, and thus providing a perspective to under-
stand thermodynamic characteristics of thunderstorm as well as profound indications of changes
in thunderstorm activity. The physical processes influencing the GDI trends are later diagnosed in
order to gain a better understanding about the increasing trend in a thunderstorm activity and de-
creasing trend in rainfall over the Congo.

2. Data

This study focuses on the Congo basin, which is defined as the area from 5°N—5°S and 12°E—
25°E. All four seasons i.e., December, January, February (DJF), March, April, May (MAM), June,
July, August (JJA) and September, October, November (SON) were examined. MAM and SON
are the two wet seasons and DJF and JJA are the two dry seasons (Pokam et al. 2012; Dyer et al.
2017), where dry seasons in the tropics represent yearly periods with low amounts of rainfall,
which coincide with the seasonal shift of the tropical rain belt (Nicholson 2018; Jiang et al. 2019).
Two different datasets were used in this study i.e., a satellite and reanalysis dataset.

2.1 GridSat-B1 satellite data

Infrared (IR) channel brightness temperature (Tbv) from the Gridded Satellite (GridSat-B1) da-
taset sampled by the European Meteosat (MET) series of geostationary satellites, available from
1981—present (Knapp 2008; Knapp et al. 2011), was used in this study. The GridSat-B1 dataset
was created by remapping and merging the International Satellite Cloud Climatology Project (IS-
CCP) B1 data onto 0.07° x 0.07° grids using nearest-neighbor sampling at a 3-hour temporal res-
olution. The GridSat-B1 dataset provides a uniform set of quality controlled geostationary satellite
observations for the visible (0.7um), infrared window (11.0um) and infrared water vapor (7.7um)
channels. However, only the IR channel Ty has received more extensive inter-satellite calibration
and is thus identified as a Climate Data Record (NRC 2004). Raghavendra et al. (2020b) reported
large volumes of missing data between 1982—1985 in the GridSat-B1 data record. However, Tb
from 1983-2018 was used in this study since seasonal means were used, and missing data is oc-
curring in smaller chunks.

2.2 ERA-Interim reanalysis data

The ERA-Interim dataset (ERA-I; Dee et al. 2011) was used to obtain atmospheric temperature
and specific humidity at 950hPa, 850hPa, 700hPa and 500hPa, and zonal (u) and meridional (v)
wind at 850hPa and 500hPa at a 0.7° X 0.7° spatial resolution. Although reanalysis products other
than the ERA-I dataset could have been utilized for this study, the lack of surface observations and
radiosonde networks over the Congo basin makes it challenging to identify the most accurate rea-
nalysis dataset (Washington et al. 2013; Hua et al. 2019). However, the bias and the root-mean-
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square error associated with the ERA-I wind field is found to be comparable to other reanalysis
datasets and therefore the ERA-I dataset is found to be adequate for this study (Hua et al. 2019).

The ERA-I dataset was produced by the European Centre for Medium-Range Weather Fore-
casts (ECMWF) using the Integrated Forecast System (IFS) release Cy31r2 which was used for
operational forecasting between 12 December 2006 and 5 June 2007 (Dee et al. 2011). Since the
GDI was developed for the operational analysis and forecasting of tropical convection, the atmos-
phere needs to be evaluated before convection has occurred. Over the Congo basin, thunderstorm
activity is strongly influenced by the tropical diurnal cycle (Yang and Slingo 2001) and convection
usually peaks between 15:00 and 18:00 UTC. Therefore, monthly mean data at 12:00 UTC was
used from the ERA-I reanalysis dataset for all calculations to evaluate thunderstorm activity at
15:00 UTC using satellite observations from the GridSat-B1 data. The ECMWF forecast model is
regarded as one of the most accurate numerical weather prediction model in the meteorological
model community (Buizza et al. 2005; Wedam et al. 2009; Perez et al. 2013), therefore the ERA-
I reanalysis dataset is also likely to be the best reanalysis dataset choice for this study due to the
3-hour lag in evaluating the reanalysis data (atmospheric variables) and satellite observations
(thunderstorm activity).

2.3 Dataset Limitations

The GridSat-B1 dataset was derived from more than 30 geostationary satellites (Knapp et al.
2008) and the data covering the Congo basin was sampled by the European Meteosat (MET) series
of geostationary satellites (MET 2-10) that provide excellent coverage over Central Africa
(Raghavendra et al. 2018). Despite improved data processing and inter-satellite calibrations
(Knapp 2012), the possibility that long-term trends estimated from the GridSat-B1 may suffer from
biases associated with inter-satellite calibrations, satellite view zenith effects, gaps in coverage,
and differences in instrument spectral response functions cannot be excluded (Knapp 2016). There-
fore, higher-quality datasets and modeling work will be included in future studies.

Differences and uncertainties among different reanalysis products, climate model simulations
and satellite derived datasets over the Congo Basin (Diem et al. 2014; Hua et al. 2019), and the
lack of observations to validate the model outputs and reanalysis data (Washington et al. 2013;
Alsdorf et al. 2016) represent a major challenge for scientific studies over the Congo. A limitation
of this study therefore includes the poor correlation between different observation and reanalysis
datasets over the Congo basin, especially for moisture fields (Lee and Biasutti 2014). The fact that
only one reanalysis dataset was used represents another limitation of this study. But, the data re-
quirements for the analysis performed for this study are very specific i.e., daily data at 12:00 UTC
for specific pressure levels at a fine resolution. Therefore, only one reanalysis dataset was ana-
lyzed.

3. Methods
3.1 Thunderstorm detection

In order to evaluate thunderstorm activity and trends using satellite data, low Tb values (e.g.,
Tb < -50°C) were used to detect cold cloud top temperatures, which may be used to quantify thun-
derstorm spatial extent and intensity. The lower the Tb, the deeper the convection and the stronger
the intensity of the storm (Raghavendra et al. 2018). In order to detect intense thunderstorms over
the Congo, cold cloud fraction with Ty between -50°C and -70°C was estimated from the re-
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gridded GridSat-B1 data by calculating the percentage (%) of pixels with T between -50°C and -
70°C within each 0.98° x 0.98° grid.

3.2 The Galvez-Davison Index (GDI) its sub-indices

The GDI was calculated as a measure of thunderstorm potential over the Congo basin. It con-
sists of three different sub-indices analyzing different physical processes and a terrain correction,
and is calculated as follows:

GDI = CBI + MWI+ 11 +TC Eq. 1
where the three sub-indices are the Column Buoyancy Index (CBI) considering the availability of
heat and moisture in the middle and lower troposphere, the Mid-Tropospheric Warming Index
(MWI) considering stabilizing and destabilizing effects of mid-level ridges and troughs, and the
Inversion Index (II) considering entrainment of dry air and stabilization associated with trade wind
inversions. There is also an optional terrain correction (TC) that can be added. GDI values range
from around -20 to +45, indicating the thunderstorm potential. GDI values of -20 indicate fair
conditions and shallow convection producing very light, isolated rain. GDI values around +45
indicate a high potential for scattered to widespread thunderstorms.

In order to calculate the GDI and its sub-indices, temperature and specific humidity at four
vertical levels 1.e., 950hPa, 850hPa, 700hPa, and 500hPa were obtained from the ERA-I data.
Those four vertical levels are used to define three layers i.e., A, B, and C. A evaluates the condi-
tions at 950hPa, B evaluates the conditions averaged over 850hPa and 700hPa, and C evaluates
the conditions at 500hPa (Galvez and Davison 2016). Specific humidity and temperature data was
used in order to obtain relative humidity for each level (Bolton 1980; Brock and Richardson 2001).
The formulas used to derive mixing ratios (r), potential temperature (8), and equivalent potential
temperature (8, ) proxies for each layer (Betts and Dugan 1973; Bolton 1980; Galvez and Davison
2016), which are needed to calculate the GDI, are documented in Appendix A.

3.3 Column Buoyancy Index (CBI)

The CBI analyzes moisture availability and temperature of the layers A and C by calculating
the 8, of those layers. The CBI is an enhancement factor and produces positive values. It is the
only sub-index of the GDI producing positive values. The higher the CBI is, the larger is the po-
tential for deep convection. Deep convection is characterized by a warm and moist mid tropo-
spheric layer (ME) which is being reinforced by a warm and moist layer in the lower troposphere
(LE). A high CBI therefore indicates the presence of a deep moist layer, leading to deep convection
and potential heavy rainfall. The CBI is calculated as follows:

_ (v X LE X ME,  LE >0 Eq. 4
cBI = { 0, LE<0

where f = 303 K is an empirical constant, which is used to set a lower boundary for the availa-
bility of heat and moisture in the boundary layer, and y = 6.5 x 1072 [K~1] is an empirical scaling
factor used to obtain values comparable to the relatively better-known K-Index (Gélvez and
Davison 2016).
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3.4 Mid tropospheric warming/stabilization Index (MW]I)

By calculating the temperature of layer C, the MWI considers mid tropospheric stabilization
induced by warm ridges and destabilization by cold troughs. The MWI is an inhibition factor pro-
ducing negative values. If temperatures are higher than the threshold T = 263.15 K, MWI values
are negative, indicating strong inhibition of convection and stabilization of the layer by a warm
ridge. The MWI is calculated as follows:

_ fu X (Tsgp — 1), Tsgo— 7>0 Eq.5
MWI_{ 0, TSOO_TSO
where u = —7 [K~1] is an empirical scaling factor which introduces a negative sign, and controls

the relative weight of the MWI in the GDI formula (Galvez and Davison 2016).

3.5 Inversion Index (1I)

The II aims to include the effects of trade wind inversions. Like the MWI, the II is an inhibition
factor, producing negative values. The II considers the stabilizing effects of inversions and dry air
entrainment, which act to inhibit convection. A stability factor (Ils) is calculated by taking the
difference in temperature between 950hPa and 700hPa, with lower values of IIs indicating stronger
stabilization. To take dry air entrainment into account, the difference in 8, between the layers A
and B is considered, and a drying factor (IIp) is calculated. The lower and more negative Ilp, the
larger the decrease of 8, with height, indicating the occurrence of dry air and subsidence, leading
to inhibition of convection. A low IIs and IIp leads to a low value for II and represents an inhibition
of convection and vice-versa. The Il is calculated as follows:

Ilg = Tos0 — T700 Eq. 6
IID = 93(3) — ge(A) Eq 7
o x (s +1Ip), I +1I, <0

where 0 = 1.5 [K 1] is an empirical factor to control the weight of the II in the GDI formula
(Galvez and Davison 2016).

3.6 Terrain Correction (TC)

To improve visualization over higher terrain, a TC factor can be added, which may be calcu-
lated as follows:
TC = Py — kB Eq. 9

Pspe — Py

where P; = 500 [hPa], P, = 9000 [hPa], P; = 18 which are empirical constants, and Pgp is the
surface pressure [hPa] (Galvez and Davison 2016). The TC was not included in the GDI calcula-
tion in this study since the study region only experienced relatively small spatial variations in
topography from 12°E to 25°E (e.g., Raghavendra et al. 2020a). Furthermore, the mean surface
pressure within the Congo basin is ~960hPa which results in a relatively small value of TC = 1.5,
and dynamic fields such as surface pressure show relatively little variability in the tropics espe-
cially for seasonal timescales. Therefore, neglecting the TC term has an insignificant impact on
the results presented in this paper. To clarify, the TC term should be included if the analysis or
forecast period is under two weeks especially at higher elevations.

3.7 Wind shear
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Since the Coriolis parameter and horizontal temperature gradient is very small near the equator,
dynamic—thermodynamic indices such as the Eady growth rate (e.g., Raghavendra and Milrad
2019) are of little use. However, dynamics such as wind shear should not be ignored when diag-
nosing thunderstorms since vertical wind shear influences the structure and organization of con-
vective systems, as well as their evolution (Marion and Trapp 2019; Raghavendra et al. 2020a).
Vertical wind shear can organize convection into convective clusters and squall lines producing
intense precipitation and extending the lifetime of convective systems (Robe and Emanuel 2001;
Anber et al. 2014). Wind shear also advects moisture and temperature which impact thermody-
namic stability (Robe and Emanuel 2001). Therefore, a relatively simple approach was used to

calculate and analyze the vertical wind shear i.e., Wind shear = |I7500| — |I7850 |

3.8 Trend Analysis

To quantify long-term changes of thunderstorm activity over the Congo, seasonal trends and
interannual variability of cold cloud fraction, the GDI and its sub-indices, and wind shear were
calculated. The linear trend was estimated based on least square regression at both the grid and
regional levels. The statistical significance (p-value) of the linear regression was evaluated using
the two-tailed Student’s test.

4. Results
4.1 More vigorous thunderstorms diagnosed by cold cloud top temperatures

In order to quantify changes in thunderstorm activity using satellite data, the cold cloud fraction
(%) with Ty ranging between -50°C and -70°C was calculated. This served as a method to quantify
intense thunderstorms over the Congo, as intense storms are characterized by Tb < -50°C. Figure
la—d shows spatial patterns of the seasonal climatology and trends in cold cloud fraction, indicat-
ing an increase in cold cloud fraction over large parts of the study region for all seasons. The
seasonal cycle can also be observed in Fig. 1a-d. The north- and southward movement of the trop-
ical rain belt is visible, as the tropical rain belt is characterized by enhanced convection and there-
fore higher percentages of cold cloud fraction. The green contours show the climatological values
of the cold cloud fraction (%). The highest values, representing the tropical rain belt, are located
south of the equator in DJF, and then shift northwards to the equator in MAM. In JJA, the highest
values lie north of the equator in JJA, and then shift back south again during SON (Nicholson
2018).

Figure le shows the interannual variability of the cold cloud fraction averaged over the study
region and indicates significant increases in cold cloud fraction of 0.03 to 0.04 % yr' (p < 0.10)
during all months. The detected increases in cold cloud fraction suggests that the spatial extent of
thunderstorms over the Congo has been increasing during all seasons. This is consistent with pre-
vious works such as Hart et al. (2019) and Raghavendra et al. (2018) showing a widespread in-
crease in the areal extent and intensity of thunderstorms over the Congo over the past 30 years,
and Chou and Chen (2010) showing an increase in convection depth in a warmer climate.

4.2 Changes in GDI and its sub-indices

Seasonal trends in GDI show a significant increase over large parts of the Congo (Fig. 2a-d),
with the GDI significantly increasing during all seasons (0.1-0.17 yr''; p < 0.10). The largest in-
crease of 0.17 yr'! is detected in MAM and JJA, followed by SON with an increase of 0.12 yr’!,
and DJF with the lowest increase of 0.1 yr'! (Fig. 2e). This increase in GDI suggests a significant
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increase in thunderstorm activity over the Congo during all seasons, which is consistent with the
trends detected in cold cloud fraction. Aiming to discover the physical mechanisms responsible
for the increase in thunderstorm activity, the different sub-indices of the GDI were analyzed sep-
arately. First, the observed trends in the GDI sub-indices are presented, and later complimented by
an explanation for each trend detected in the GDI.

The CBI shows a small but insignificant decrease over most of the Congo during all seasons
(Fig. 3a-e). This leads to the conclusion that the interannual variability of CBI does not contribute
to the increase in thunderstorm activity. The MWI is becoming weaker over most parts of the
Congo, with the strongest and most significant trend in JJA, followed by MAM and SON, with
DJF exhibiting the weakest trend (Fig. 4a-d). The interannual variability indicates a trend of 0.10
yr'! (p <0.10) in JJA, 0.09 yr'! (p <0.10) in MAM and 0.05 yr! (p < 0.10) in SON. The trend for
DJF is not significant at p < 0.10 (Fig. 4e). Thus, the MWI likely contributes to the increasing
thunderstorm activity in MAM, JJA and SON.

The II is also becoming weaker during all seasons with significant trends in almost the entire
study region (Fig. 5a-d). The interannual variability shows trends of 0.10 to 0.11 yr'! (p < 0.10)
during all seasons (Fig. 5e). Since the II is the sum of two terms i.e., IIp and IIs, these terms were
also analyzed separately. The IIp became weaker over the entire study region (Fig. 6a-d), and the
linear trend in the IIp increased by 0.07 to 0.08 yr'! (p < 0.10) during all seasons as well (Fig. 6e).
A smaller IIp suggests that the 6, gradient is decreasing with height and the entrainment of dry air
over the inversion is becoming less frequent. This ultimately results in enhanced convection and
thunderstorm activity (James and Markowski 2010). The IIs shows an increasing trend over most
of the Congo basin, and the interannual variability increased by 0.03 to 0.07 yr'! (Fig. 7) depending
on the season, with DJF exhibiting the largest increase, followed by MAM, JJA and SON. These
findings indicate that the temperature gradient between 950hPa and 700hPa is increasing, leading
to a decrease in stability of the column and therefore supporting an increase in tropical convection.

4.3 Wind shear

Wind shear was found to be increasing significantly over the Congo during all seasons besides
DJF. An increase of 0.03 to 0.07 ms'yr! (p < 0.10) is shown with the largest increase in SON,
followed by JJA and MAM (Fig. 8). This presents an additional factor potentially contributing to
the increase in thunderstorm activity since wind shear and orography significantly influence con-
vection and precipitation over the Congo basin. The unique African orography with the East Afri-
can highlands and the Ethiopian highlands located in the northeast of the Congo modifies wind
patterns by blocking tropical easterlies (zonal wind) and intensifying meridional wind around the
mountain. This increase in wind shear potentially results in well-organized and intense thunder-
storms over the Congo basin (Marion and Trapp 2019; Raghavendra et al. 2020a).

S. Discussion and Conclusions

In this study, thunderstorm activity over the Congo is analyzed using satellite-derived cold
cloud top temperatures and the GDI including its sub-indices (CBI, MWI, and II). The GDI is a
thermodynamic index developed to better diagnose tropical convection, with the CBI analyzing
the availability of heat and moisture in the middle and lower troposphere, the MWI considering
stabilizing and destabilizing effects of mid-level ridges and troughs, and the II considering entrain-
ment of dry air and stabilization associated with trade wind inversions. The results show an
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increasing trend in convective activity over the Congo during all seasons from 1983-2018, which
is consistent with previous findings indicating an increase in the extent and intensity of thunder-
storms over equatorial Africa (e.g., Raghavendra et al. 2018; Taylor et al. 2018; Hart et al. 2019).
The increase in thunderstorm activity is found to be the result of three processes: (1) a cooling of
the 500hPa temperature, which may be attributable to an increase in cold troughs, diagnosed using
the MWI, (2) an increase in the temperature gradient between 700hPa and 950hPa, diagnosed using
the IIs, and (3) a decrease of the 8, gradient with height indicating a decrease of dry air entrain-
ment, diagnosed using the IIp. In addition, an increase in wind shear also appears to contribute to
the increase in thunderstorm activity from March—-November.

Notwithstanding uncertainties in both satellite and reanalysis datasets (section 2.3), the trends
of the GDI and its sub-indices are in good agreement with observations, including in-situ and
satellite observations over the study region (e.g., Bush et al. 2020). The temperature profile over
the study region (Fig. 9) shows the increase in the occurrence of cold troughs at 500hPa diagnosed
using the MWI, and the increase in the temperature gradient between 700hPa and 950hPa diag-
nosed using the IIp. In addition, the relative humidity profile (Fig. 10) indicates a drying trend of
the lower levels (i.e. Congo basin) and a moistening of the upper levels. The 8, profile over the
study region is shown in Fig. 11 in order to evaluate the combined trends in temperature and mois-
ture. The decrease of the 6, gradient with height diagnosed using the IIp is associated with a de-
crease of 6, in the lower troposphere (i.e. the Congo) and an increase of 6, in the mid/upper trop-
osphere, resulting mostly from a change in moisture (i.e. a decrease in moisture in the lower trop-
osphere and an increase in the mid/upper troposphere) rather than a change in temperature (Soden
et al. 2005; Su et al. 2006; Fu 2015; Bush et al. 2020).

The frequent occurrence of cold troughs and cooling at 500hPa may be a result of an increase
in the occurrence of Kelvin waves over the Congo as detected by Raghavendra et al. (2019). An
increase in the occurrence of Kelvin waves may lead to an increase in cold ridges at 500hPa and
thus also enhance deep convection over the Congo basin (Sinclaire et al. 2015; Schlueter et al.
2019a; Schlueter et al. 2019b). On the other hand, a decrease in the 6, gradient with height may
be the combined effect of two processes i.e., a decrease in vegetation greenness and water content
associated with droughts over the Congo, and vegetation greening over the East African highlands
region (e.g. Hawinkel et al. 2016; Musau et al. 2018; Zhao et al. 2018). Moisture recycling is a
crucial process in the tropical rainforests where evapotranspiration contributes substantially to re-
gional precipitation (e.g. Dyer et al. 2017). The large-scale forest browning observed over the
Congo, reducing evapotranspiration and decreasing rainfall (Zhou et al. 2014; Hua et al. 2016;
Jiang et al. 2019), may reduce the regional moisture supply and thus dry the lower troposphere.
The greening over the East African highlands potentially leads to a moistening of the air parcels
over the highlands (Musau et al. 2018) before being advected over the Congo basin by the easterly
winds, moistening the air layers aloft the Congo. This could be one reason for the moistening of
the mid-troposphere and a decrease in the 8, gradient with height.

The drying trend in the lower levels (i.e. the Congo basin) and moistening trend in the mid-
and upper troposphere (Figure 10) may also be the consequence of the increase in deep convection,
transporting moisture upwards, drying the lower levels and moistening the mid/upper troposphere.
This possibly causes an increase in deep convection, as the vertical gradient in 6, is relaxed, which
further destabilizes the vertical column and promotes a positive feedback mechanism resulting in



393 taller and more intense thunderstorms. This hypothesis is complemented by previous works such
394  as Soden and Fu (1995) and Zelinka and Hartmann (2009), showing that enhanced tropical con-
395  vection in a warming climate is responsible for the increased upper-tropospheric relative humidity,
396  with deep convection being the primary source of high clouds and free-tropospheric water vapor
397  through moisture transport to the mid/upper troposphere. The upward transported moisture may
398  then be advected away from the Congo by the poleward flow of the Hadley cell or easterly flow at
399  higher altitudes (Byrne and Schneider 2016). This may possibly lead to less rainfall given the high
400  water recycling ratio over the Congo (Dyer et al. 2017) and could potentially explain the decrease
401  in rainfall detected over the Congo (e.g., Fu 2015; Raghavendra et al. 2018). Further,
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Figure 11 suggest that the lifted condensation level (LCL) may have shifted to higher altitudes due
to surface drying. Prein and Heymsfield (2020) showed that the melting height level and warm
cloud depth has increased over the Congo, possibly affecting cloud microphysics and rainfall char-
acteristics. This supports the hypothesis of a higher LCL, reducing the rainfall reaching the surface,
and ultimately causing the drying trend over the Congo basin as more water or ice particles falling
out of a cloud may vaporize before reaching the ground (virga).

In summary, the increase in thunderstorm activity over the Congo Basin is found to be the
result of a cooling of the 500hPa temperature, an increase in the temperature gradient between
700hPa and 950hPa, and a decrease of the 6, gradient with height. The cooling of the 500hPa
temperature may be attributable to an increase in cold troughs, which is hypothesized to be the
consequence of an increase in the occurrence of Kelvin waves over the Congo (e.g., Raghavendra
et al. 2019). The decrease of the 8, with height is shown to be the effect of a decrease in moisture
in the lower levels and an increase in moisture in the mid and upper levels (Fig. 10). The decrease
in moisture in the lower levels is assumed to be a direct effect of the drying trend over the Congo,
while the moistening of the mid/upper levels is hypothesized to be a result of a greening and mois-
tening of the East African Highlands (e.g., Musau et al. 2018), from where moist air is being ad-
vected over the Congo. Further, the upward transport of moist air during deep convection is hy-
pothesized to additionally destabilize the column and enhance convective processes. The upward
transported moisture potentially being advected away by the Hadley cell, and less rainfall reaching
the surface due an elevation of the LCL and melting level likely result in a decreasing trend in
rainfall and enhanced drying trend over the Congo.

Figure 12 summarizes the key findings of this work, including the observed changes in atmos-
pheric temperature and moisture from 1983-2018 leading to the detected increase in thunderstorm

11



430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

465
466
467
468

activity (Fig. 12a-b), trends found in the GDI and its sub-indices including their impacts posed on
atmospheric stability (Fig. 12c). It also includes a schematic of the proposed possible physical
mechanisms, linking enhanced thunderstorm activity to the observed drying trend found over the
Congo (Fig. 12d). In conclusion, thunderstorm activity over the Congo has increased, while rain-
fall has decreased significantly. The increasing trend in thunderstorm activity may be linked to an
increase in the occurrence of cold troughs at 500hPa, an increase of the temperature gradient be-
tween 700hPa and 950hPa, and a decrease of the 8, gradient with height. These mechanisms were
also linked together in a positive feedback loop (Fig. 12d) which potentially explain the increase
in thunderstorm activity and the decrease in surface rainfall and vegetation over the Congo. The
enhanced convective activity likely moistens the mid/upper troposphere, and moisture may be
transported away from the Congo basin by the poleward flow of the Hadley cell and the tropical
easterlies. This transport of moisture away from the Congo which is characterized by a large water
recycling ratio could be one possible reason for the observed decrease in rainfall.

From a future climate perspective, significantly more work is necessary to understand rainfall
and vegetation characteristics over the Congo basin. From an observations and historical climate
standpoint, there is considerable spread in rainfall estimates amongst datasets (Washington et al.
2013). While studies such as Fotso-Nguemo et al. (2017) have shown the relatively well-known
increases in heavy rainfall events in a warmer climate using GCMs for central Africa, the complex
orography and overall uncertainties amongst GCMs over the Congo basin is a non-trivial (e.g.,
Haensler et al. 2013; Washington et al. 2013; Raghavendra et al. 2020). Therefore, the need for
high-resolution regional climate models (e.g., Tamoffo et al. 2019) and convection allowing sim-
ulations (Stratton et al. 2018) are necessary to further expand our understanding of both the present
and future climate for Africa (especially the Congo basin).
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Appendix A: Calculation of 8, proxies for each layer from specific humidity and temperature,
used to calculate the GDI

First, relative humidity (RH) was calculated at every level using specific humidity (q) and temper-
ature (T) from the ERA-I dataset:

) 17.76T Eq. Al
e = 6112 exp [m
e Eq. A2
q" = 0.622— 4
RH = %x 100 Eq. A3

where e” is the saturated vapor pressure (hPa) and T is the temperature in °C (Bolton 1980). g* is
the saturation specific humidity and P is the atmospheric pressure (hPa) (Brock and Richardson
2001).
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469  Potential temperature (8; K) and mixing ratios (r; kg kg™') were then calculated for each layer using
470  RH (Gélvez and Davison 2016).

04 = O9s0 = Tos0 (W)
7.591386><T950] Eq. A5
Pngso = 6.116441 x 101To501240.7263
RHgsg Eqg. A6
PW950 = PW5950 X W d
_ 621.9907 o Pwgs Eq. A7
4T 77000 " 950 — Pwos,
471
Layer B: 93 = 0'5(0850 + 9700) Eq A8
2 2
1000\7 1000\7
= 051 Tes0 < 850 ) 700 ( 700 )
7.591386><T850] Eq. A9
PWS850 = 6.116441 X 101Tes0+240.7263
7.591386><T700] Eq. A10
PWS700 = 6.116441 X 10LT700+240.7263
RHgs Eq. All
PW850 = PW5850 X W d
RH7¢ Eq. A12
PW700 = PWS700 X W q
621.9907 Pwgs Eq. A13
Tgso = X
1000 850 - PW850
621.9907 Pwsg0 Eq. A14
700 = X
1000 700 - PW700
15 = 0.5(7g50 + 7700) Eq. A15
472
Layer C: 1000 Z Eq. Al6
Oc = 500 = Ts00 (m)
7.591386><T500] Eq. Al7
PWSSOO = 6.116441 X 10LTs00+240.7263
RHj500 Eq. A18
PWSOO = PWSSOOX 100 q
_ 621.9907 9 Pwcgo Eq. A19
€T 71000 " 500 — Pwggg

473  where P, = saturation vapor pressure, B, = partial pressure of water vapor (Galvez and Davison
474  2016).
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The 8, was then calculated, where the following formula from Betts and Dugan (1973), simpli-
fied by Bolton (1980) was chosen since the calculation for 6, is non-trivial:

Lr Eqg. A20
6. = 6 exp(z dOT LCL) q
p

where L, = 2.69 x 10° ] kg~" is the latent heat of vaporization, C,4 = 1005.7 ] kg~'K ™' is the

specific heat of dry air at constant pressure, and T}, is the temperature in K at the lifted conden-
sation level LCL.

T, . was then replaced by the 850hPa temperature (K) to work around the complex calculation
for T;c;, which results in the following calculation of 6, used to calculate the GDI:

L,r Eq. A21
98=9exp< 2 > a

Galvez and Davison (2016) tested replacing T}, by the 850hPa temperature and only found very
small differences on the final GDI values. Therefore, this simplification was used in this study as
well.

For each layer, 6, proxies are then calculated using Eq. A21:

Layer A: Lomy Eq. A22
Y Qe(A) = QA eXp ° q
deTSSO
: Lom
Layer B: Becsy = O XP LI Eq. A23
deTSSO
: L,7
Layer C: Becc) = Oc exp ofc . o Eq. A24
CpaTgso
where « = —10 (K) is an empirical adjustment constant aiming to limit excessive GDI values in

regions with plentiful moisture at and above 850hPa (Gélvez and Davison 2016).
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Figure 1: (a)-(d) Seasonal trends in cloud fraction (% yr~1) for T, between -50°C and -70°C at
15:00 UTC from 1983—-2018. Gray boxes (5°N-5°S and 12°E-25°E) represent the Congo basin.
Trends significant at p < 0.05 are shown using a black dot. The green lines show the climatological
values of the cloud fraction (%) from 1983-2018. (e) Interannual variability and trends of the
seasonal mean cloud fraction with Ty, ranging from -50°C to -70°C at 15:00 UTC from 1983-2018
over the Congo basin.
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2Figure 2: (a)-(d) Seasonal trends in GDI (GDI yr~1) at 12:00 UTC from 1983—2018. Gray boxes
(5°N-5°S and 12°E-25°E) represent the Congo basin. Trends significant at p < 0.05 are shown
using a black dot. The green lines show the climatological values of the GDI from 1983—-2018. (e)
Interannual variability of the GDI at 12:00 UTC from 1983-2018 over the Congo basin.
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Figure 3: (a)-(d) Seasonal trends in CBI (CBI yr=1) at 12:00 UTC from 1983-2018. Gray boxes
(5°N-5°S and 12°E-25°E) represent the Congo basin. Trends significant at p < 0.05 are shown
using a black dot. The green lines show the climatological values of the CBI from 1983-2018. (e)
Interannual variability of the CBI at 12:00 UTC from 1983-2018 over the Congo basin.
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Figure 4: (a)-(d) Seasonal trends in MWI (MW yr~1) at 12:00 UTC from 1983—-2018. Gray boxes
(5°N-5°S and 12°E-25°E) represent the Congo basin. Trends significant at p < 0.05 are shown
using a black dot. The green lines show the climatological values of the MWI from 1983—-2018. (e)
Interannual variability of the MWI at 12:00 UTC from 1983—2018 over the Congo basin.
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Figure 5: (a)-(d) Seasonal trends in I (Il yr~1) at 12:00 UTC from 1983-2018. Gray boxes (5°N-
5°S and 12°E-25°E) represent the Congo basin. Trends significant at p < 0.05 are shown using a
black dot. The green lines show the climatological values of the Il from 1983-2018. (e) Interannual
variability of the Il at 12:00 UTC from 1983—-2018 over the Congo basin.
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Figure 6: (a)-(d) Seasonal trends in IIp (11, yr~t) at 12:00 UTC from 1983-2018. Gray boxes
(5°N-5°S and 12°E-25°E) represent the Congo basin. Trends significant at p < 0.05 are shown
using a black dot. The green lines show the climatological values of the IIp from 1983-2018. (e)
Interannual variability of the IIp at 12:00 UTC from 1983—-2018 over the Congo basin.
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673
674  Figure 7: (a)-(d) Seasonal trends in Ils ( IIg yr~) at 12:00 UTC from 1983-2018. Gray boxes

675  (5°N-5°S and 12°E-25°E) represent the Congo basin. Trends significant at p < 0.05 are shown
676  using a black dot. The green lines show the climatological values of the Ils from 1983-2018. (e)
677  Interannual variability of the Ils at 12:00 UTC from 1983-2018 over the Congo basin.
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678
679  Figure 8: Interannual variability in wind shear between 500hPa and 850hPa (m/s yr~1) at 12:00

680  UTC from 1983-2018 over the Congo basin.
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684  Figure 9: Seasonal trends in temperature (107" x °Cyr=1) at 12:00 UTC from 1983-2018. Trends

685  significant at p < 0.05 are shown using a black dot. The green lines show the climatological values
686  (°C) from 1983-2018.
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688  Figure 10: Seasonal trends in relative humidity (% yr~1) at 12:00 UTC from 1983-2018. Trends

689  significant at p < 0.05 are shown using a black dot. The green lines show the climatological values
690  from 1983-2018.
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693  Figure 11: Seasonal trends in 8, (10" X K yr~1) at 12:00 UTC from 1983-2018. Trends signifi-

694  cant at p < 0.05 are shown using a black dot. The green lines show the climatological values (K)
695  from 1983-2018.
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698  Figure 12: (a—b) Schematic of changes in temperature and moisture (diagnosed using the GDI)
699  and wind shear from 1983-2018 leading to the observed increase in thunderstorm activity. (c)
700  Diagnosed trends of the GDI and its sub-indices and their impacts on atmospheric temperature,
701  moisture and stability. (d) Feedback loop of proposed factors leading to taller and more intense
702 thunderstorms, in turn impacting atmospheric conditions and further enhancing deep convection.
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