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Abstract 20 

The Congo basin situated in equatorial Africa is home to the second largest rainforest on the globe 21 
and plays an important role in the Earth’s climate system. For instance, the Congo is one of the 22 
most convective regions in the world and enhances the tropical large-scale circulation. Although 23 
tropical convection is crucial for rainfall and the sustenance of the rainforest, the most intense 24 
thunderstorms do not necessarily produce the largest amounts of rainfall over equatorial Africa. 25 
Aiming to better understand the decreasing rainfall trend over the Congo, trends in thunderstorm 26 
intensity from 1983–2018 are analyzed in this paper using the Gálvez-Davison index (GDI) i.e., a 27 
thermodynamic index used to measure thunderstorm potential. Consistent with previous studies, 28 
thunderstorm activity increased during all seasons over the Congo. The GDI suggests that the in-29 
creasing trends in thunderstorm activity are attributable to an increase in hydrostatic instability. 30 
More specifically, the GDI shows that (1) an increase of cold troughs at 500hPa, (2) an increase in 31 
the temperature gradient between 700hPa and 950hPa, and (3) a decrease of the equivalent poten-32 
tial temperature (𝜃𝜃𝑒𝑒) gradient with height collectively act to promote taller, more intense thunder-33 
storms. This study concludes by proposing feedback mechanisms explaining the intensification of 34 
thunderstorms. The mechanisms highlight the cooling and moistening of the mid-troposphere, dry-35 
ing and warming at the surface and lower troposphere, and a decrease in vertical stability and 36 
convective inhibition. These factors may act to re-enforce the drying trend which has stressed the 37 
Congo rainforest over the past 40-years. 38 
 39 
Key words: Congo rainforest, Gálvez-Davison index, rainfall, thermodynamic stability, and trop-40 
ical thunderstorms.  41 
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1. Introduction  42 
Most of the precipitation in the tropics stems from convective rainfall (Dai 2006). Naturally, 43 

the majority of the rainfall over the Congo basin located in equatorial central Africa originates 44 
from deep convection and mesoscale convective systems (Jackson et al. 2009). The Congo basin, 45 
Amazonia, and the Indonesian maritime continent form the three most convective regions on the 46 
globe and enhance the large-scale tropical circulation (Zipser et al. 2006; Raghavendra et al. 2019). 47 
In fact, thunderstorms over the Congo are typically stronger and more intense when compared to 48 
other equatorial regions like Amazonia or Indonesia. In spite of its smaller size, the Congo is char-49 
acterized by the second largest latent heating rate from convection after the Indonesian maritime 50 
continent (Washington et al. 2013). Equatorial Africa is also associated with the greatest annual 51 
mean lightning flash rate, having a higher frequency in thunderstorm occurrence and mean flash 52 
rate than the rest of the deep tropics (Christian et al. 2003). However, despite the Congo’s formi-53 
dable convection heating rate, thunderstorm intensity and lightning activity, the second largest 54 
rainforest in the world i.e., Congo basin, receives less rainfall than Amazonia or Indonesia (Adler 55 
et al. 2017). The reduced availability of rainfall exasperates the Congo rainforest’s vulnerability 56 
to droughts when compared to other major rainforests (Zhou et al. 2014). On a concerning note, 57 
trends in the mean rainfall, forest greenness, and dry season length over the Congo basin indicate 58 
a long-term and large-scale drying trend (Zhou et al. 2014; Jiang et al. 2019). 59 

 60 
In order to understand rainfall variability and to identify potential drivers for the well-docu-61 

mented decrease in rainfall over the Congo, there exists a crucial need to understand deep convec-62 
tion. This emphasizes the need to investigate recent trends in thunderstorm activity over the Congo 63 
basin. Despite the decrease in rainfall rates in the Congo basin, Raghavendra et al. (2018) found 64 
an increase in number, size and intensity of thunderstorms over the time period of 1982–2016 65 
during April, May, and June (AMJ), using satellite data. These results were later complemented 66 
by other studies which point to a general increase in thunderstorm activity over the Congo basin 67 
throughout the year (e.g., Taylor et al. 2018; Hart et al. 2019; Raghavendra et al. 2019). This 68 
seemingly unintuitive relationship between increasing thunderstorm activity and decreasing rain-69 
fall over the Congo may be reconciled by Hamada et al. (2015), who demonstrated a weak rela-70 
tionship between thunderstorm intensity and rainfall. However, specific physical mechanisms ex-71 
plaining the complex relationship between tropical deep convection, surface rainfall, and an in-72 
crease in thunderstorm activity over the Congo have only been incompletely identified. One ex-73 
planation given for the observed increase in thunderstorm activity over the Congo basin includes 74 
an increase in horizontal wind shear attributed to an increasing temperature contrast between the 75 
equator and northern Africa (Taylor et al. 2018). 76 

 77 
Thermodynamic stability of the atmosphere is a key ingredient which determines the potential 78 

and intensity for atmospheric convection. Often, thermodynamic indices are collectively used to 79 
assess the stability of the atmosphere. Although stability indices have been widely used to forecast 80 
thunderstorms (e.g., Haklander and Van Delden 2003; Jayakrishnan and Babu 2014), Gálvez and 81 
Davison (2016) found that traditional stability indices often lack skill when attempting to predict 82 
tropical convection since the processes driving convection differ between the tropics and the extra 83 
tropics, and stability plays a different role in the development of moist convection. Quantifying 84 
tropical convection can be challenging since the skill of traditional stability indices like the Lifted-85 
Index (LI), K-Index (KI), Showalter-Index (SI) or convective available potential energy (CAPE) 86 
in predicting deep convection is limited for the tropics (Uma and Das 2019).  87 
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 88 
In the mid-latitudes, convection can be triggered by dynamic processes (e.g., frontal systems). 89 

However, tropical convection depends more on column stability and thermodynamic processes 90 
since dynamical processes are usually weak. Aiming to improve forecasts for tropical convection, 91 
the Gálvez-Davison Index (GDI) was developed by the NOAA Weather Prediction Center (WPC) 92 
in 2014, focusing on thermodynamic processes more than on dynamical processes (Gálvez and 93 
Davison 2016). Miller et al. (2019) utilized the GDI and other stability indices to forecast rainfall 94 
in Puerto Rico and found that CAPE, the KI and Total Totals had very little skill when compared 95 
to the GDI. Since the GDI is a relatively new index, follow-up studies are limited in numbers. In 96 
this study, the GDI and its sub-indices are utilized to investigate the increasing trends in thunder-97 
storm activity over the Congo during different seasons, and thus providing a perspective to under-98 
stand thermodynamic characteristics of thunderstorm as well as profound indications of changes 99 
in thunderstorm activity. The physical processes influencing the GDI trends are later diagnosed in 100 
order to gain a better understanding about the increasing trend in a thunderstorm activity and de-101 
creasing trend in rainfall over the Congo. 102 

 103 
2. Data  104 

This study focuses on the Congo basin, which is defined as the area from 5°N–5°S and 12°E–105 
25°E. All four seasons i.e., December, January, February (DJF), March, April, May (MAM), June, 106 
July, August (JJA) and September, October, November (SON) were examined. MAM and SON 107 
are the two wet seasons and DJF and JJA are the two dry seasons (Pokam et al. 2012; Dyer et al. 108 
2017), where dry seasons in the tropics represent yearly periods with low amounts of rainfall, 109 
which coincide with the seasonal shift of the tropical rain belt (Nicholson 2018; Jiang et al. 2019). 110 
Two different datasets were used in this study i.e., a satellite and reanalysis dataset. 111 

 112 
2.1 GridSat-B1 satellite data 113 

Infrared (IR) channel brightness temperature (Tb) from the Gridded Satellite (GridSat-B1) da-114 
taset sampled by the European Meteosat (MET) series of geostationary satellites, available from 115 
1981–present (Knapp 2008; Knapp et al. 2011), was used in this study. The GridSat-B1 dataset 116 
was created by remapping and merging the International Satellite Cloud Climatology Project (IS-117 
CCP) B1 data onto 0.07° × 0.07° grids using nearest-neighbor sampling at a 3-hour temporal res-118 
olution. The GridSat-B1 dataset provides a uniform set of quality controlled geostationary satellite 119 
observations for the visible (0.7µm), infrared window (11.0µm) and infrared water vapor (7.7µm) 120 
channels. However, only the IR channel Tb has received more extensive inter-satellite calibration 121 
and is thus identified as a Climate Data Record (NRC 2004). Raghavendra et al. (2020b) reported 122 
large volumes of missing data between 1982–1985 in the GridSat-B1 data record. However, Tb 123 
from 1983–2018 was used in this study since seasonal means were used, and missing data is oc-124 
curring in smaller chunks. 125 

 126 
2.2 ERA-Interim reanalysis data 127 

The ERA-Interim dataset (ERA-I; Dee et al. 2011) was used to obtain atmospheric temperature 128 
and specific humidity at 950hPa, 850hPa, 700hPa and 500hPa, and zonal (u) and meridional (v) 129 
wind at 850hPa and 500hPa at a 0.7° × 0.7° spatial resolution. Although reanalysis products other 130 
than the ERA-I dataset could have been utilized for this study, the lack of surface observations and 131 
radiosonde networks over the Congo basin makes it challenging to identify the most accurate rea-132 
nalysis dataset (Washington et al. 2013; Hua et al. 2019). However, the bias and the root-mean-133 
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square error associated with the ERA-I wind field is found to be comparable to other reanalysis 134 
datasets and therefore the ERA-I dataset is found to be adequate for this study (Hua et al. 2019).  135 

 136 
The ERA-I dataset was produced by the European Centre for Medium-Range Weather Fore-137 

casts (ECMWF) using the Integrated Forecast System (IFS) release Cy31r2 which was used for 138 
operational forecasting between 12 December 2006 and 5 June 2007 (Dee et al. 2011). Since the 139 
GDI was developed for the operational analysis and forecasting of tropical convection, the atmos-140 
phere needs to be evaluated before convection has occurred. Over the Congo basin, thunderstorm 141 
activity is strongly influenced by the tropical diurnal cycle (Yang and Slingo 2001) and convection 142 
usually peaks between 15:00 and 18:00 UTC. Therefore, monthly mean data at 12:00 UTC was 143 
used from the ERA-I reanalysis dataset for all calculations to evaluate thunderstorm activity at 144 
15:00 UTC using satellite observations from the GridSat-B1 data. The ECMWF forecast model is 145 
regarded as one of the most accurate numerical weather prediction model in the meteorological 146 
model community (Buizza et al. 2005; Wedam et al. 2009; Perez et al. 2013), therefore the ERA-147 
I reanalysis dataset is also likely to be the best reanalysis dataset choice for this study due to the 148 
3-hour lag in evaluating the reanalysis data (atmospheric variables) and satellite observations 149 
(thunderstorm activity). 150 

 151 
2.3 Dataset Limitations 152 

The GridSat-B1 dataset was derived from more than 30 geostationary satellites (Knapp et al. 153 
2008) and the data covering the Congo basin was sampled by the European Meteosat (MET) series 154 
of geostationary satellites (MET 2–10) that provide excellent coverage over Central Africa 155 
(Raghavendra et al. 2018). Despite improved data processing and inter-satellite calibrations 156 
(Knapp 2012), the possibility that long-term trends estimated from the GridSat-B1 may suffer from 157 
biases associated with inter-satellite calibrations, satellite view zenith effects, gaps in coverage, 158 
and differences in instrument spectral response functions cannot be excluded (Knapp 2016). There-159 
fore, higher-quality datasets and modeling work will be included in future studies. 160 

 161 
Differences and uncertainties among different reanalysis products, climate model simulations 162 

and satellite derived datasets over the Congo Basin (Diem et al. 2014; Hua et al. 2019), and the 163 
lack of observations to validate the model outputs and reanalysis data (Washington et al. 2013; 164 
Alsdorf et al. 2016) represent a major challenge for scientific studies over the Congo. A limitation 165 
of this study therefore includes the poor correlation between different observation and reanalysis 166 
datasets over the Congo basin, especially for moisture fields (Lee and Biasutti 2014). The fact that 167 
only one reanalysis dataset was used represents another limitation of this study. But, the data re-168 
quirements for the analysis performed for this study are very specific i.e., daily data at 12:00 UTC 169 
for specific pressure levels at a fine resolution. Therefore, only one reanalysis dataset was ana-170 
lyzed. 171 
 172 
3. Methods 173 
3.1 Thunderstorm detection 174 

In order to evaluate thunderstorm activity and trends using satellite data, low Tb values (e.g., 175 
Tb < -50°C) were used to detect cold cloud top temperatures, which may be used to quantify thun-176 
derstorm spatial extent and intensity. The lower the Tb, the deeper the convection and the stronger 177 
the intensity of the storm (Raghavendra et al. 2018). In order to detect intense thunderstorms over 178 
the Congo, cold cloud fraction with Tb between -50°C and -70°C was estimated from the re-179 
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gridded GridSat-B1 data by calculating the percentage (%) of pixels with Tb between -50°C and -180 
70°C within each 0.98° × 0.98° grid.  181 

 182 
3.2 The Galvez-Davison Index (GDI) its sub-indices 183 

The GDI was calculated as a measure of thunderstorm potential over the Congo basin. It con-184 
sists of three different sub-indices analyzing different physical processes and a terrain correction, 185 
and is calculated as follows:   186 

where the three sub-indices are the Column Buoyancy Index (CBI) considering the availability of 187 
heat and moisture in the middle and lower troposphere, the Mid-Tropospheric Warming Index 188 
(MWI) considering stabilizing and destabilizing effects of mid-level ridges and troughs, and the 189 
Inversion Index (II) considering entrainment of dry air and stabilization associated with trade wind 190 
inversions. There is also an optional terrain correction (TC) that can be added. GDI values range 191 
from around -20 to +45, indicating the thunderstorm potential. GDI values of -20 indicate fair 192 
conditions and shallow convection producing very light, isolated rain. GDI values around +45 193 
indicate a high potential for scattered to widespread thunderstorms. 194 
 195 

In order to calculate the GDI and its sub-indices, temperature and specific humidity at four 196 
vertical levels i.e., 950hPa, 850hPa, 700hPa, and 500hPa were obtained from the ERA-I data. 197 
Those four vertical levels are used to define three layers i.e., A, B, and C. A evaluates the condi-198 
tions at 950hPa, B evaluates the conditions averaged over 850hPa and 700hPa, and C evaluates 199 
the conditions at 500hPa (Gálvez and Davison 2016). Specific humidity and temperature data was 200 
used in order to obtain relative humidity for each level (Bolton 1980; Brock and Richardson 2001). 201 
The formulas used to derive mixing ratios (r), potential temperature (𝜃𝜃), and equivalent potential 202 
temperature (𝜃𝜃𝑒𝑒) proxies for each layer (Betts and Dugan 1973; Bolton 1980; Gálvez and Davison 203 
2016), which are needed to calculate the GDI, are documented in Appendix A.  204 
 205 
3.3  Column Buoyancy Index (CBI) 206 

The CBI analyzes moisture availability and temperature of the layers A and C by calculating 207 
the 𝜃𝜃𝑒𝑒 of those layers. The CBI is an enhancement factor and produces positive values. It is the 208 
only sub-index of the GDI producing positive values. The higher the CBI is, the larger is the po-209 
tential for deep convection. Deep convection is characterized by a warm and moist mid tropo-210 
spheric layer (ME) which is being reinforced by a warm and moist layer in the lower troposphere 211 
(LE). A high CBI therefore indicates the presence of a deep moist layer, leading to deep convection 212 
and potential heavy rainfall. The CBI is calculated as follows: 213 
   𝑀𝑀𝑀𝑀 = 𝜃𝜃𝑒𝑒(𝐶𝐶) − 𝛽𝛽 

 
Eq. 2 

 𝐿𝐿𝐿𝐿 =  𝜃𝜃𝑒𝑒(𝐴𝐴) −  𝛽𝛽 Eq. 3 
 

 
 𝐶𝐶𝐶𝐶𝐶𝐶 = �𝛾𝛾 ×  𝐿𝐿𝐿𝐿 ×  𝑀𝑀𝑀𝑀, 𝐿𝐿𝐿𝐿 > 0

0 , 𝐿𝐿𝐿𝐿 ≤ 0 Eq. 4 

where 𝛽𝛽 = 303 𝐾𝐾 is an empirical constant, which is used to set a lower boundary for the availa-214 
bility of heat and moisture in the boundary layer, and 𝛾𝛾 = 6.5 𝑥𝑥 10−2 [𝐾𝐾−1] is an empirical scaling 215 
factor used to obtain values comparable to the relatively better-known K-Index (Gálvez and 216 
Davison 2016). 217 

 218 

 𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐼𝐼𝐼𝐼 + 𝑇𝑇𝑇𝑇 Eq. 1 
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3.4 Mid tropospheric warming/stabilization Index (MWI) 219 
By calculating the temperature of layer C, the MWI considers mid tropospheric stabilization 220 

induced by warm ridges and destabilization by cold troughs. The MWI is an inhibition factor pro-221 
ducing negative values. If temperatures are higher than the threshold 𝜏𝜏 = 263.15 𝐾𝐾, MWI values 222 
are negative, indicating strong inhibition of convection and stabilization of the layer by a warm 223 
ridge. The MWI is calculated as follows: 224 
 𝑀𝑀𝑀𝑀𝑀𝑀 = �𝜇𝜇 ×  (𝑇𝑇500 −  𝜏𝜏), 𝑇𝑇500 −  𝜏𝜏 > 0

0, 𝑇𝑇500 −  𝜏𝜏 ≤ 0 Eq. 5 

where 𝜇𝜇 =  −7 [𝐾𝐾−1] is an empirical scaling factor which introduces a negative sign, and controls 225 
the relative weight of the MWI in the GDI formula (Gálvez and Davison 2016).  226 

 227 
3.5 Inversion Index (II) 228 

The II aims to include the effects of trade wind inversions. Like the MWI, the II is an inhibition 229 
factor, producing negative values. The II considers the stabilizing effects of inversions and dry air 230 
entrainment, which act to inhibit convection. A stability factor (IIS) is calculated by taking the 231 
difference in temperature between 950hPa and 700hPa, with lower values of IIS indicating stronger 232 
stabilization. To take dry air entrainment into account, the difference in 𝜃𝜃𝑒𝑒 between the layers A 233 
and B is considered, and a drying factor (IID) is calculated. The lower and more negative IID, the 234 
larger the decrease of 𝜃𝜃𝑒𝑒 with height, indicating the occurrence of dry air and subsidence, leading 235 
to inhibition of convection. A low IIS and IID leads to a low value for II and represents an inhibition 236 
of convection and vice-versa. The II is calculated as follows: 237 
 𝐼𝐼𝐼𝐼𝑆𝑆 =  𝑇𝑇950 −  𝑇𝑇700 

 
Eq. 6 

 𝐼𝐼𝐼𝐼𝐷𝐷 =  𝜃𝜃𝑒𝑒(𝐵𝐵) −  𝜃𝜃𝑒𝑒(𝐴𝐴) 
 

Eq. 7 
 

 
 𝐼𝐼𝐼𝐼 = �

0, 𝐼𝐼𝐼𝐼𝑆𝑆  + 𝐼𝐼𝐼𝐼𝐷𝐷 > 0
𝜎𝜎 ×  (𝐼𝐼𝐼𝐼𝑆𝑆 + 𝐼𝐼𝐼𝐼𝐷𝐷), 𝐼𝐼𝐼𝐼𝑆𝑆  + 𝐼𝐼𝐼𝐼𝐷𝐷 ≤ 0 Eq. 8 

where 𝜎𝜎 = 1.5 [𝐾𝐾−1] is an empirical factor to control the weight of the II in the GDI formula 238 
(Gálvez and Davison 2016). 239 

 240 
3.6 Terrain Correction (TC) 241 

To improve visualization over higher terrain, a TC factor can be added, which may be calcu-242 
lated as follows: 243 
 𝑇𝑇𝑇𝑇 =  𝑃𝑃3 −  

𝑃𝑃2
𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 −  𝑃𝑃1

 Eq. 9 

where 𝑃𝑃1 = 500 [ℎ𝑃𝑃𝑃𝑃], 𝑃𝑃2 = 9000 [ℎ𝑃𝑃𝑃𝑃], 𝑃𝑃3 = 18 which are empirical constants, and 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 is the 244 
surface pressure [hPa] (Gálvez and Davison 2016). The TC was not included in the GDI calcula-245 
tion in this study since the study region only experienced relatively small spatial variations in 246 
topography from 12°E to 25°E (e.g., Raghavendra et al. 2020a). Furthermore, the mean surface 247 
pressure within the Congo basin is ~960hPa which results in a relatively small value of TC ≅ 1.5, 248 
and dynamic fields such as surface pressure show relatively little variability in the tropics espe-249 
cially for seasonal timescales. Therefore, neglecting the TC term has an insignificant impact on 250 
the results presented in this paper. To clarify, the TC term should be included if the analysis or 251 
forecast period is under two weeks especially at higher elevations. 252 
 253 
3.7 Wind shear 254 
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Since the Coriolis parameter and horizontal temperature gradient is very small near the equator, 255 
dynamic–thermodynamic indices such as the Eady growth rate (e.g., Raghavendra and Milrad 256 
2019) are of little use. However, dynamics such as wind shear should not be ignored when diag-257 
nosing thunderstorms since vertical wind shear influences the structure and organization of con-258 
vective systems, as well as their evolution (Marion and Trapp 2019; Raghavendra et al. 2020a). 259 
Vertical wind shear can organize convection into convective clusters and squall lines producing 260 
intense precipitation and extending the lifetime of convective systems (Robe and Emanuel 2001;  261 
Anber et al. 2014). Wind shear also advects moisture and temperature which impact thermody-262 
namic stability (Robe and Emanuel 2001). Therefore, a relatively simple approach was used to 263 
calculate and analyze the vertical wind shear i.e., 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 =  �𝑉𝑉�⃑ 500� − �𝑉𝑉�⃑ 850�. 264 

 265 
3.8 Trend Analysis 266 

To quantify long-term changes of thunderstorm activity over the Congo, seasonal trends and 267 
interannual variability of cold cloud fraction, the GDI and its sub-indices, and wind shear were 268 
calculated. The linear trend was estimated based on least square regression at both the grid and 269 
regional levels. The statistical significance (p-value) of the linear regression was evaluated using 270 
the two-tailed Student’s test.  271 
 272 
4. Results 273 
4.1 More vigorous thunderstorms diagnosed by cold cloud top temperatures 274 

In order to quantify changes in thunderstorm activity using satellite data, the cold cloud fraction 275 
(%) with Tb ranging between -50°C and -70°C was calculated. This served as a method to quantify 276 
intense thunderstorms over the Congo, as intense storms are characterized by Tb < -50°C. Figure 277 
1a–d shows spatial patterns of the seasonal climatology and trends in cold cloud fraction, indicat-278 
ing an increase in cold cloud fraction over large parts of the study region for all seasons. The 279 
seasonal cycle can also be observed in Fig. 1a-d. The north- and southward movement of the trop-280 
ical rain belt is visible, as the tropical rain belt is characterized by enhanced convection and there-281 
fore higher percentages of cold cloud fraction. The green contours show the climatological values 282 
of the cold cloud fraction (%).  The highest values, representing the tropical rain belt, are located 283 
south of the equator in DJF, and then shift northwards to the equator in MAM. In JJA, the highest 284 
values lie north of the equator in JJA, and then shift back south again during SON (Nicholson 285 
2018).  286 
 287 

Figure 1e shows the interannual variability of the cold cloud fraction averaged over the study 288 
region and indicates significant increases in cold cloud fraction of 0.03 to 0.04 % yr-1 (p < 0.10) 289 
during all months. The detected increases in cold cloud fraction suggests that the spatial extent of 290 
thunderstorms over the Congo has been increasing during all seasons. This is consistent with pre-291 
vious works such as Hart et al. (2019) and Raghavendra et al. (2018) showing a widespread in-292 
crease in the areal extent and intensity of thunderstorms over the Congo over the past 30 years, 293 
and Chou and Chen (2010) showing an increase in convection depth in a warmer climate. 294 

 295 
4.2 Changes in GDI and its sub-indices 296 

Seasonal trends in GDI show a significant increase over large parts of the Congo (Fig. 2a-d), 297 
with the GDI significantly increasing during all seasons (0.1-0.17 yr-1; p < 0.10). The largest in-298 
crease of 0.17 yr-1 is detected in MAM and JJA, followed by SON with an increase of 0.12 yr-1,  299 
and DJF with the lowest increase of 0.1 yr-1 (Fig. 2e). This increase in GDI suggests a significant 300 
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increase in thunderstorm activity over the Congo during all seasons, which is consistent with the 301 
trends detected in cold cloud fraction. Aiming to discover the physical mechanisms responsible 302 
for the increase in thunderstorm activity, the different sub-indices of the GDI were analyzed sep-303 
arately. First, the observed trends in the GDI sub-indices are presented, and later complimented by 304 
an explanation for each trend detected in the GDI.  305 

 306 
The CBI shows a small but insignificant decrease over most of the Congo during all seasons 307 

(Fig. 3a-e). This leads to the conclusion that the interannual variability of CBI does not contribute 308 
to the increase in thunderstorm activity. The MWI is becoming weaker over most parts of the 309 
Congo, with the strongest and most significant trend in JJA, followed by MAM and SON, with 310 
DJF exhibiting the weakest trend (Fig. 4a-d). The interannual variability indicates a trend of 0.10 311 
yr-1 (p < 0.10) in JJA, 0.09 yr-1 (p < 0.10) in MAM and 0.05 yr-1 (p < 0.10) in SON. The trend for 312 
DJF is not significant at p < 0.10 (Fig. 4e). Thus, the MWI likely contributes to the increasing 313 
thunderstorm activity in MAM, JJA and SON.  314 
 315 

The II is also becoming weaker during all seasons with significant trends in almost the entire 316 
study region (Fig. 5a-d). The interannual variability shows trends of 0.10 to 0.11 yr-1 (p < 0.10) 317 
during all seasons (Fig. 5e). Since the II is the sum of two terms i.e., IID and IIS, these terms were 318 
also analyzed separately. The IID became weaker over the entire study region (Fig. 6a-d), and the 319 
linear trend in the IID increased by 0.07 to 0.08 yr-1 (p < 0.10) during all seasons as well (Fig. 6e). 320 
A smaller IID suggests that the 𝜃𝜃𝑒𝑒 gradient is decreasing with height and the entrainment of dry air 321 
over the inversion is becoming less frequent. This ultimately results in enhanced convection and 322 
thunderstorm activity (James and Markowski 2010). The IIS shows an increasing trend over most 323 
of the Congo basin, and the interannual variability increased by 0.03 to 0.07 yr-1 (Fig. 7) depending 324 
on the season, with DJF exhibiting the largest increase, followed by MAM, JJA and SON. These 325 
findings indicate that the temperature gradient between 950hPa and 700hPa is increasing, leading 326 
to a decrease in stability of the column and therefore supporting an increase in tropical convection.  327 
 328 
4.3 Wind shear 329 

Wind shear was found to be increasing significantly over the Congo during all seasons besides 330 
DJF. An increase of 0.03 to 0.07 ms-1yr-1 (p < 0.10) is shown with the largest increase in SON, 331 
followed by JJA and MAM (Fig. 8). This presents an additional factor potentially contributing to 332 
the increase in thunderstorm activity since wind shear and orography significantly influence con-333 
vection and precipitation over the Congo basin. The unique African orography with the East Afri-334 
can highlands and the Ethiopian highlands located in the northeast of the Congo modifies wind 335 
patterns by blocking tropical easterlies (zonal wind) and intensifying meridional wind around the 336 
mountain. This increase in wind shear potentially results in well-organized and intense thunder-337 
storms over the Congo basin (Marion and Trapp 2019; Raghavendra et al. 2020a). 338 
 339 
5. Discussion and Conclusions 340 

In this study, thunderstorm activity over the Congo is analyzed using satellite-derived cold 341 
cloud top temperatures and the GDI including its sub-indices (CBI, MWI, and II). The GDI is a 342 
thermodynamic index developed to better diagnose tropical convection, with the CBI analyzing 343 
the availability of heat and moisture in the middle and lower troposphere, the MWI considering 344 
stabilizing and destabilizing effects of mid-level ridges and troughs, and the II considering entrain-345 
ment of dry air and stabilization associated with trade wind inversions. The results show an 346 
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increasing trend in convective activity over the Congo during all seasons from 1983–2018, which 347 
is consistent with previous findings indicating an increase in the extent and intensity of thunder-348 
storms over equatorial Africa (e.g., Raghavendra et al. 2018; Taylor et al. 2018; Hart et al. 2019). 349 
The increase in thunderstorm activity is found to be the result of three processes: (1) a cooling of 350 
the 500hPa temperature, which may be attributable to an increase in cold troughs, diagnosed using 351 
the MWI, (2) an increase in the temperature gradient between 700hPa and 950hPa, diagnosed using 352 
the IIS, and (3) a decrease of the 𝜃𝜃𝑒𝑒 gradient with height indicating a decrease of dry air entrain-353 
ment, diagnosed using the IID. In addition, an increase in wind shear also appears to contribute to 354 
the increase in thunderstorm activity from March–November. 355 

 356 
Notwithstanding uncertainties in both satellite and reanalysis datasets (section 2.3), the trends 357 

of the GDI and its sub-indices are in good agreement with observations, including in-situ and 358 
satellite observations over the study region (e.g., Bush et al. 2020). The temperature profile over 359 
the study region (Fig. 9) shows the increase in the occurrence of cold troughs at 500hPa diagnosed 360 
using the MWI, and the increase in the temperature gradient between 700hPa and 950hPa diag-361 
nosed using the IID. In addition, the relative humidity profile (Fig. 10) indicates a drying trend of 362 
the lower levels (i.e. Congo basin) and a moistening of the upper levels. The 𝜃𝜃𝑒𝑒 profile over the 363 
study region is shown in Fig. 11 in order to evaluate the combined trends in temperature and mois-364 
ture. The decrease of the 𝜃𝜃𝑒𝑒 gradient with height diagnosed using the IID is associated with a de-365 
crease of 𝜃𝜃𝑒𝑒 in the lower troposphere (i.e. the Congo) and an increase of 𝜃𝜃𝑒𝑒 in the mid/upper trop-366 
osphere, resulting mostly from a change in moisture (i.e. a decrease in moisture in the lower trop-367 
osphere and an increase in the mid/upper troposphere) rather than a change in temperature (Soden 368 
et al. 2005; Su et al. 2006; Fu 2015; Bush et al. 2020).  369 
 370 

The frequent occurrence of cold troughs and cooling at 500hPa may be a result of an increase 371 
in the occurrence of Kelvin waves over the Congo as detected by Raghavendra et al. (2019). An 372 
increase in the occurrence of Kelvin waves may lead to an increase in cold ridges at 500hPa and 373 
thus also enhance deep convection over the Congo basin (Sinclaire et al. 2015; Schlueter et al. 374 
2019a; Schlueter et al. 2019b). On the other hand, a decrease in the 𝜃𝜃𝑒𝑒 gradient with height may 375 
be the combined effect of two processes i.e., a decrease in vegetation greenness and water content 376 
associated with droughts over the Congo, and vegetation greening over the East African highlands 377 
region (e.g. Hawinkel et al. 2016; Musau et al. 2018; Zhao et al. 2018). Moisture recycling is a 378 
crucial process in the tropical rainforests where evapotranspiration contributes substantially to re-379 
gional precipitation (e.g. Dyer et al. 2017). The large-scale forest browning observed over the 380 
Congo, reducing evapotranspiration and decreasing rainfall (Zhou et al. 2014; Hua et al. 2016; 381 
Jiang et al. 2019), may reduce the regional moisture supply and thus dry the lower troposphere. 382 
The greening over the East African highlands potentially leads to a moistening of the air parcels 383 
over the highlands (Musau et al. 2018) before being advected over the Congo basin by the easterly 384 
winds, moistening the air layers aloft the Congo. This could be one reason for the moistening of 385 
the mid-troposphere and a decrease in the 𝜃𝜃𝑒𝑒 gradient with height. 386 

 387 
The drying trend in the lower levels (i.e. the Congo basin) and moistening trend in the mid- 388 

and upper troposphere (Figure 10) may also be the consequence of the increase in deep convection, 389 
transporting moisture upwards, drying the lower levels and moistening the mid/upper troposphere. 390 
This possibly causes an increase in deep convection, as the vertical gradient in 𝜃𝜃𝑒𝑒 is relaxed, which 391 
further destabilizes the vertical column and promotes a positive feedback mechanism resulting in 392 
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taller and more intense thunderstorms. This hypothesis is complemented by previous works such 393 
as Soden and Fu (1995) and Zelinka and Hartmann (2009), showing that enhanced tropical con-394 
vection in a warming climate is responsible for the increased upper-tropospheric relative humidity, 395 
with deep convection being the primary source of high clouds and free-tropospheric water vapor 396 
through moisture transport to the mid/upper troposphere. The upward transported moisture may 397 
then be advected away from the Congo by the poleward flow of the Hadley cell or easterly flow at 398 
higher altitudes (Byrne and Schneider 2016). This may possibly lead to less rainfall given the high 399 
water recycling ratio over the Congo (Dyer et al. 2017) and could potentially explain the decrease 400 
in rainfall detected over the Congo (e.g., Fu 2015; Raghavendra et al. 2018). Further, 401 

402 
Figure 9–403 
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404 
Figure 11 suggest that the lifted condensation level (LCL) may have shifted to higher altitudes due 405 
to surface drying. Prein and Heymsfield (2020) showed that the melting height level and warm 406 
cloud depth has increased over the Congo, possibly affecting cloud microphysics and rainfall char-407 
acteristics. This supports the hypothesis of a higher LCL, reducing the rainfall reaching the surface, 408 
and ultimately causing the drying trend over the Congo basin as more water or ice particles falling 409 
out of a cloud may vaporize before reaching the ground (virga).  410 
 411 

In summary, the increase in thunderstorm activity over the Congo Basin is found to be the 412 
result of a cooling of the 500hPa temperature, an increase in the temperature gradient between 413 
700hPa and 950hPa, and a decrease of the 𝜃𝜃𝑒𝑒 gradient with height. The cooling of the 500hPa 414 
temperature may be attributable to an increase in cold troughs, which is hypothesized to be the 415 
consequence of an increase in the occurrence of Kelvin waves over the Congo (e.g., Raghavendra 416 
et al. 2019). The decrease of the 𝜃𝜃𝑒𝑒 with height is shown to be the effect of a decrease in moisture 417 
in the lower levels and an increase in moisture in the mid and upper levels (Fig. 10). The decrease 418 
in moisture in the lower levels is assumed to be a direct effect of the drying trend over the Congo, 419 
while the moistening of the mid/upper levels is hypothesized to be a result of a greening and mois-420 
tening of the East African Highlands (e.g., Musau et al. 2018), from where moist air is being ad-421 
vected over the Congo. Further, the upward transport of moist air during deep convection is hy-422 
pothesized to additionally destabilize the column and enhance convective processes. The upward 423 
transported moisture potentially being advected away by the Hadley cell, and less rainfall reaching 424 
the surface due an elevation of the LCL and melting level likely result in a decreasing trend in 425 
rainfall and enhanced drying trend over the Congo. 426 
 427 

Figure 12 summarizes the key findings of this work, including the observed changes in atmos-428 
pheric temperature and moisture from 1983–2018 leading to the detected increase in thunderstorm 429 
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activity (Fig. 12a-b), trends found in the GDI and its sub-indices including their impacts posed on 430 
atmospheric stability (Fig. 12c). It also includes a schematic of the proposed possible physical 431 
mechanisms, linking enhanced thunderstorm activity to the observed drying trend found over the 432 
Congo (Fig. 12d). In conclusion, thunderstorm activity over the Congo has increased, while rain-433 
fall has decreased significantly. The increasing trend in thunderstorm activity may be linked to an 434 
increase in the occurrence of cold troughs at 500hPa, an increase of the temperature gradient be-435 
tween 700hPa and 950hPa, and a decrease of the 𝜃𝜃𝑒𝑒 gradient with height. These mechanisms were 436 
also linked together in a positive feedback loop (Fig. 12d) which potentially explain the increase 437 
in thunderstorm activity and the decrease in surface rainfall and vegetation over the Congo. The 438 
enhanced convective activity likely moistens the mid/upper troposphere, and moisture may be 439 
transported away from the Congo basin by the poleward flow of the Hadley cell and the tropical 440 
easterlies. This transport of moisture away from the Congo which is characterized by a large water 441 
recycling ratio could be one possible reason for the observed decrease in rainfall. 442 

 443 
From a future climate perspective, significantly more work is necessary to understand rainfall 444 

and vegetation characteristics over the Congo basin. From an observations and historical climate 445 
standpoint, there is considerable spread in rainfall estimates amongst datasets (Washington et al. 446 
2013). While studies such as Fotso-Nguemo et al. (2017) have shown the relatively well-known 447 
increases in heavy rainfall events in a warmer climate using GCMs for central Africa, the complex 448 
orography and overall uncertainties amongst GCMs over the Congo basin is a non-trivial (e.g., 449 
Haensler et al. 2013; Washington et al. 2013; Raghavendra et al. 2020). Therefore, the need for 450 
high-resolution regional climate models (e.g., Tamoffo et al. 2019) and convection allowing sim-451 
ulations (Stratton et al. 2018) are necessary to further expand our understanding of both the present 452 
and future climate for Africa (especially the Congo basin).  453 
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Appendix A: Calculation of 𝜃𝜃𝑒𝑒 proxies for each layer from specific humidity and temperature, 460 
used to calculate the GDI 461 
 462 
First, relative humidity (RH) was calculated at every level using specific humidity (q) and temper-463 
ature (T) from the ERA-I dataset: 464 
 𝑒𝑒∗ = 6.112 𝑒𝑒𝑒𝑒𝑒𝑒 �

17.76𝑇𝑇
𝑇𝑇 + 243.5

� Eq. A1 

 
 𝑞𝑞∗ = 0.622

𝑒𝑒∗

𝑃𝑃
 

Eq. A2 

 𝑅𝑅𝑅𝑅 =  
𝑞𝑞
𝑞𝑞∗

× 100 

 

Eq. A3 

where 𝑒𝑒∗ is the saturated vapor pressure (hPa) and T is the temperature in °C (Bolton 1980). 𝑞𝑞∗ is 465 
the saturation specific humidity and P is the atmospheric pressure (hPa) (Brock and Richardson 466 
2001).  467 
 468 
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Potential temperature (θ; K) and mixing ratios (r; kg kg-1) were then calculated for each layer using 469 
RH (Gálvez and Davison 2016).  470 

 471 

 472 

where 𝑃𝑃𝑤𝑤𝑤𝑤 = saturation vapor pressure, 𝑃𝑃𝑤𝑤 = partial pressure of water vapor (Gálvez and Davison 473 
2016).  474 

Layer A: 
𝜃𝜃𝐴𝐴 =  𝜃𝜃950 =  𝑇𝑇950 �

1000
950 �

2
7
 

Eq. A4 

 
𝑃𝑃𝑤𝑤𝑤𝑤950 = 6.116441 × 10�

7.591386×𝑇𝑇950
𝑇𝑇950+240.7263� 

Eq. A5 

 𝑃𝑃𝑤𝑤950 =  𝑃𝑃𝑃𝑃𝑃𝑃950 ×
𝑅𝑅𝑅𝑅950

100
 Eq. A6 

 𝑟𝑟𝐴𝐴 =
621.9907

1000
×

𝑃𝑃𝑃𝑃950
950 − 𝑃𝑃𝑃𝑃950

 

 

Eq. A7 

Layer B: 
 

𝜃𝜃𝐵𝐵 =  0.5(𝜃𝜃850 + 𝜃𝜃700)  

=  0.5 �𝑇𝑇850 �
1000
850 �

2
7

+ 𝑇𝑇700 �
1000
700 �

2
7
� 

Eq. A8 

 
𝑃𝑃𝑤𝑤𝑤𝑤850 = 6.116441 × 10�

7.591386×𝑇𝑇850
𝑇𝑇850+240.7263� 

Eq. A9 

 
𝑃𝑃𝑤𝑤𝑤𝑤700 = 6.116441 × 10�

7.591386×𝑇𝑇700
𝑇𝑇700+240.7263� 

Eq. A10 

 𝑃𝑃𝑤𝑤850 =  𝑃𝑃𝑃𝑃𝑃𝑃850 ×
𝑅𝑅𝑅𝑅850

100
 Eq. A11 

 
 𝑃𝑃𝑤𝑤700 =  𝑃𝑃𝑃𝑃𝑃𝑃700 ×

𝑅𝑅𝑅𝑅700
100

 Eq. A12 
 
 

 𝑟𝑟850 =
621.9907

1000
×

𝑃𝑃𝑃𝑃850
850 − 𝑃𝑃𝑃𝑃850

 Eq. A13 

 𝑟𝑟700 =
621.9907

1000
×

𝑃𝑃𝑃𝑃700
700 − 𝑃𝑃𝑃𝑃700

 Eq. A14 

 𝑟𝑟𝐵𝐵 = 0.5(𝑟𝑟850 + 𝑟𝑟700) 
 

Eq. A15 

Layer C: 
𝜃𝜃𝐶𝐶 =  𝜃𝜃500 =  𝑇𝑇500 �

1000
500 �

2
7
 

Eq. A16 

 
𝑃𝑃𝑤𝑤𝑤𝑤500 = 6.116441 × 10�

7.591386×𝑇𝑇500
𝑇𝑇500+240.7263� 

Eq. A17 

 𝑃𝑃𝑤𝑤500 =  𝑃𝑃𝑃𝑃𝑃𝑃500 ×
𝑅𝑅𝑅𝑅500

100
 Eq. A18 

 𝑟𝑟𝐶𝐶 =
621.9907

1000
×

𝑃𝑃𝑃𝑃500
500 − 𝑃𝑃𝑃𝑃500

 

 

Eq. A19 
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 475 
The 𝜃𝜃𝑒𝑒 was then calculated, where the following formula from Betts and Dugan (1973), simpli-476 
fied by Bolton (1980) was chosen since the calculation for 𝜃𝜃𝑒𝑒 is non-trivial: 477 
 478 
 𝜃𝜃𝑒𝑒 =  𝜃𝜃 exp(

𝐿𝐿𝑜𝑜𝑟𝑟
𝐶𝐶𝑝𝑝𝑝𝑝𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿

) 

 

Eq. A20 

where 𝐿𝐿𝑜𝑜 = 2.69 𝑥𝑥 106 𝐽𝐽 𝑘𝑘𝑘𝑘−1 is the latent heat of vaporization, 𝐶𝐶𝑝𝑝𝑝𝑝 = 1005.7 𝐽𝐽 𝑘𝑘𝑘𝑘−1𝐾𝐾−1 is the 479 
specific heat of dry air at constant pressure, and 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿 is the temperature in K at the lifted conden-480 
sation level LCL. 481 
 482 
 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿 was then replaced by the 850hPa temperature (K) to work around the complex calculation 483 
for 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿, which results in the following calculation of 𝜃𝜃𝑒𝑒 used to calculate the GDI: 484 
 485 
 

𝜃𝜃𝑒𝑒 =  𝜃𝜃 exp�
𝐿𝐿𝑜𝑜𝑟𝑟

𝐶𝐶𝑝𝑝𝑝𝑝𝑇𝑇850
� 

 

Eq. A21 

   
Gálvez and Davison (2016) tested replacing 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿 by the 850hPa temperature and only found very 486 
small differences on the final GDI values. Therefore, this simplification was used in this study as 487 
well.  488 
 489 
For each layer, 𝜃𝜃𝑒𝑒 proxies are then calculated using Eq. A21: 490 
 491 
Layer A: 𝜃𝜃𝑒𝑒(𝐴𝐴) =  𝜃𝜃𝐴𝐴 exp

𝐿𝐿𝑜𝑜𝑟𝑟𝐴𝐴
𝐶𝐶𝑝𝑝𝑝𝑝𝑇𝑇850

 Eq. A22 

Layer B: 𝜃𝜃𝑒𝑒(𝐵𝐵) =  𝜃𝜃𝐵𝐵 exp
𝐿𝐿𝑜𝑜𝑟𝑟𝐵𝐵

𝐶𝐶𝑝𝑝𝑝𝑝𝑇𝑇850
+ ∝ Eq. A23 

Layer C: 𝜃𝜃𝑒𝑒(𝐶𝐶) =  𝜃𝜃𝐶𝐶 exp
𝐿𝐿𝑜𝑜𝑟𝑟𝐶𝐶

𝐶𝐶𝑝𝑝𝑝𝑝𝑇𝑇850
+ ∝ 

 

Eq. A24 

where ∝ =  −10 (𝐾𝐾) is an empirical adjustment constant aiming to limit excessive GDI values in 492 
regions with plentiful moisture at and above 850hPa (Gálvez and Davison 2016).  493 
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 640 
Figure 1: (a)-(d) Seasonal trends in cloud fraction ( % 𝑦𝑦𝑟𝑟−1) for 𝑇𝑇𝑏𝑏 between -50°C and -70°C at 641 
15:00 UTC from 1983–2018. Gray boxes (5°N-5°S and 12°E-25°E) represent the Congo basin. 642 
Trends significant at p < 0.05 are shown using a black dot. The green lines show the climatological 643 
values of the cloud fraction (%) from 1983–2018. (e) Interannual variability and trends of the 644 
seasonal mean cloud fraction with 𝑇𝑇𝑏𝑏 ranging from -50°C to -70°C at 15:00 UTC from 1983–2018 645 
over the Congo basin. 646 
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 647 
2Figure 2: (a)-(d) Seasonal trends in GDI (𝐺𝐺𝐺𝐺𝐺𝐺 𝑦𝑦𝑟𝑟−1) at 12:00 UTC from 1983–2018. Gray boxes 648 
(5°N-5°S and 12°E-25°E) represent the Congo basin. Trends significant at p < 0.05 are shown 649 
using a black dot. The green lines show the climatological values of the GDI from 1983–2018. (e) 650 
Interannual variability of the GDI at 12:00 UTC from 1983–2018 over the Congo basin. 651 

 652 
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 653 
Figure 3: (a)-(d) Seasonal trends in CBI (𝐶𝐶𝐶𝐶𝐶𝐶 𝑦𝑦𝑟𝑟−1) at 12:00 UTC from 1983–2018. Gray boxes 654 
(5°N-5°S and 12°E-25°E) represent the Congo basin. Trends significant at p < 0.05 are shown 655 
using a black dot. The green lines show the climatological values of the CBI from 1983–2018. (e) 656 
Interannual variability of the CBI at 12:00 UTC from 1983–2018 over the Congo basin. 657 
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 658 
Figure 4: (a)-(d) Seasonal trends in MWI (𝑀𝑀𝑀𝑀𝑀𝑀 𝑦𝑦𝑟𝑟−1) at 12:00 UTC from 1983–2018. Gray boxes 659 
(5°N-5°S and 12°E-25°E) represent the Congo basin. Trends significant at p < 0.05 are shown 660 
using a black dot. The green lines show the climatological values of the MWI from 1983–2018. (e) 661 
Interannual variability of the MWI at 12:00 UTC from 1983–2018 over the Congo basin. 662 
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 663 
Figure 5: (a)-(d) Seasonal trends in II (II 𝑦𝑦𝑟𝑟−1) at 12:00 UTC from 1983–2018. Gray boxes (5°N-664 
5°S and 12°E-25°E) represent the Congo basin. Trends significant at p < 0.05 are shown using a 665 
black dot. The green lines show the climatological values of the II from 1983–2018. (e) Interannual 666 
variability of the II at 12:00 UTC from 1983–2018 over the Congo basin. 667 
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 668 
Figure 6: (a)-(d) Seasonal trends in IID ( 𝐼𝐼𝐼𝐼𝐷𝐷 𝑦𝑦𝑟𝑟−1) at 12:00 UTC from 1983–2018. Gray boxes 669 
(5°N-5°S and 12°E-25°E) represent the Congo basin. Trends significant at p < 0.05 are shown 670 
using a black dot. The green lines show the climatological values of the IID from 1983–2018. (e) 671 
Interannual variability of the IID at 12:00 UTC from 1983–2018 over the Congo basin. 672 
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 673 
Figure 7: (a)-(d) Seasonal trends in IIS ( 𝐼𝐼𝐼𝐼𝑆𝑆 𝑦𝑦𝑟𝑟−1) at 12:00 UTC from 1983–2018. Gray boxes 674 
(5°N-5°S and 12°E-25°E) represent the Congo basin. Trends significant at p < 0.05 are shown 675 
using a black dot. The green lines show the climatological values of the IIS from 1983–2018. (e) 676 
Interannual variability of the IIS at 12:00 UTC from 1983–2018 over the Congo basin. 677 
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 678 
Figure 8: Interannual variability in wind shear between 500hPa and 850hPa (m/s 𝑦𝑦𝑟𝑟−1) at 12:00 679 
UTC from 1983–2018 over the Congo basin. 680 

 681 
 682 
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683 
Figure 9: Seasonal trends in temperature (10-1 × °C 𝑦𝑦𝑟𝑟−1) at 12:00 UTC from 1983–2018. Trends 684 
significant at p < 0.05 are shown using a black dot. The green lines show the climatological values 685 
(°C) from 1983–2018. 686 
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 687 
Figure 10: Seasonal trends in relative humidity (% 𝑦𝑦𝑟𝑟−1) at 12:00 UTC from 1983–2018. Trends 688 
significant at p < 0.05 are shown using a black dot. The green lines show the climatological values 689 
from 1983–2018. 690 

 691 
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692 
Figure 11: Seasonal trends in 𝜃𝜃𝑒𝑒 (10-1 × K 𝑦𝑦𝑟𝑟−1) at 12:00 UTC from 1983–2018. Trends signifi-693 
cant at p < 0.05 are shown using a black dot. The green lines show the climatological values (K) 694 
from 1983–2018. 695 
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 696 

 697 
Figure 12: (a–b) Schematic of changes in temperature and moisture (diagnosed using the GDI) 698 
and wind shear from 1983–2018 leading to the observed increase in thunderstorm activity. (c) 699 
Diagnosed trends of the GDI and its sub-indices and their impacts on atmospheric temperature, 700 
moisture and stability. (d) Feedback loop of proposed factors leading to taller and more intense 701 
thunderstorms, in turn impacting atmospheric conditions and further enhancing deep convection.  702 


