

Analyzing intensifying thunderstorms over the Congo Basin using the Gálvez-Davison index from 1983–2018

By

Kathrin Alber, Ajay Raghavendra, Liming Zhou,
Yan Jiang, Heather S. Sussman, and Stephen L. Solimine

Department of Atmospheric and Environmental Sciences
University at Albany, State University of New York, Albany, NY, 12222, USA

Corresponding Author: Kathrin Alber (kalber2@albany.edu)

Name	ORCID
Kathrin Alber	0000-0001-9476-3719
Ajay Raghavendra	0000-0002-1707-6963
Liming Zhou	0000-0002-7009-2487
Yan Jiang	0000-0002-1472-2288
Heather S. Sussman	0000-0002-5045-345X
Stephen L. Solimine	0000-0002-5322-6041

Accepted for publication in
Climate Dynamics
October 19, 2020

Abstract

The Congo basin situated in equatorial Africa is home to the second largest rainforest on the globe and plays an important role in the Earth's climate system. For instance, the Congo is one of the most convective regions in the world and enhances the tropical large-scale circulation. Although tropical convection is crucial for rainfall and the sustenance of the rainforest, the most intense thunderstorms do not necessarily produce the largest amounts of rainfall over equatorial Africa. Aiming to better understand the decreasing rainfall trend over the Congo, trends in thunderstorm intensity from 1983–2018 are analyzed in this paper using the Gálvez-Davison index (GDI) i.e., a thermodynamic index used to measure thunderstorm potential. Consistent with previous studies, thunderstorm activity increased during all seasons over the Congo. The GDI suggests that the increasing trends in thunderstorm activity are attributable to an increase in hydrostatic instability. More specifically, the GDI shows that (1) an increase of cold troughs at 500hPa, (2) an increase in the temperature gradient between 700hPa and 950hPa, and (3) a decrease of the equivalent potential temperature (θ_e) gradient with height collectively act to promote taller, more intense thunderstorms. This study concludes by proposing feedback mechanisms explaining the intensification of thunderstorms. The mechanisms highlight the cooling and moistening of the mid-troposphere, drying and warming at the surface and lower troposphere, and a decrease in vertical stability and convective inhibition. These factors may act to re-enforce the drying trend which has stressed the Congo rainforest over the past 40-years.

Key words: Congo rainforest, Gálvez-Davison index, rainfall, thermodynamic stability, and tropical thunderstorms.

42 **1. Introduction**

43 Most of the precipitation in the tropics stems from convective rainfall (Dai 2006). Naturally,
44 the majority of the rainfall over the Congo basin located in equatorial central Africa originates
45 from deep convection and mesoscale convective systems (Jackson et al. 2009). The Congo basin,
46 Amazonia, and the Indonesian maritime continent form the three most convective regions on the
47 globe and enhance the large-scale tropical circulation (Zipser et al. 2006; Raghavendra et al. 2019).
48 In fact, thunderstorms over the Congo are typically stronger and more intense when compared to
49 other equatorial regions like Amazonia or Indonesia. In spite of its smaller size, the Congo is char-
50 acterized by the second largest latent heating rate from convection after the Indonesian maritime
51 continent (Washington et al. 2013). Equatorial Africa is also associated with the greatest annual
52 mean lightning flash rate, having a higher frequency in thunderstorm occurrence and mean flash
53 rate than the rest of the deep tropics (Christian et al. 2003). However, despite the Congo's formi-
54 dable convection heating rate, thunderstorm intensity and lightning activity, the second largest
55 rainforest in the world i.e., Congo basin, receives less rainfall than Amazonia or Indonesia (Adler
56 et al. 2017). The reduced availability of rainfall exasperates the Congo rainforest's vulnerability
57 to droughts when compared to other major rainforests (Zhou et al. 2014). On a concerning note,
58 trends in the mean rainfall, forest greenness, and dry season length over the Congo basin indicate
59 a long-term and large-scale drying trend (Zhou et al. 2014; Jiang et al. 2019).

60
61 In order to understand rainfall variability and to identify potential drivers for the well-docu-
62 mented decrease in rainfall over the Congo, there exists a crucial need to understand deep convec-
63 tion. This emphasizes the need to investigate recent trends in thunderstorm activity over the Congo
64 basin. Despite the decrease in rainfall rates in the Congo basin, Raghavendra et al. (2018) found
65 an increase in number, size and intensity of thunderstorms over the time period of 1982–2016
66 during April, May, and June (AMJ), using satellite data. These results were later complemented
67 by other studies which point to a general increase in thunderstorm activity over the Congo basin
68 throughout the year (e.g., Taylor et al. 2018; Hart et al. 2019; Raghavendra et al. 2019). This
69 seemingly unintuitive relationship between increasing thunderstorm activity and decreasing rain-
70 fall over the Congo may be reconciled by Hamada et al. (2015), who demonstrated a weak rela-
71 tionship between thunderstorm intensity and rainfall. However, specific physical mechanisms ex-
72 plaining the complex relationship between tropical deep convection, surface rainfall, and an in-
73 crease in thunderstorm activity over the Congo have only been incompletely identified. One ex-
74 planation given for the observed increase in thunderstorm activity over the Congo basin includes
75 an increase in horizontal wind shear attributed to an increasing temperature contrast between the
76 equator and northern Africa (Taylor et al. 2018).

77
78 Thermodynamic stability of the atmosphere is a key ingredient which determines the potential
79 and intensity for atmospheric convection. Often, thermodynamic indices are collectively used to
80 assess the stability of the atmosphere. Although stability indices have been widely used to forecast
81 thunderstorms (e.g., Haklander and Van Delden 2003; Jayakrishnan and Babu 2014), Gálvez and
82 Davison (2016) found that traditional stability indices often lack skill when attempting to predict
83 tropical convection since the processes driving convection differ between the tropics and the extra
84 tropics, and stability plays a different role in the development of moist convection. Quantifying
85 tropical convection can be challenging since the skill of traditional stability indices like the Lifted-
86 Index (LI), K-Index (KI), Showalter-Index (SI) or convective available potential energy (CAPE)
87 in predicting deep convection is limited for the tropics (Uma and Das 2019).

88
89 In the mid-latitudes, convection can be triggered by dynamic processes (e.g., frontal systems).
90 However, tropical convection depends more on column stability and thermodynamic processes
91 since dynamical processes are usually weak. Aiming to improve forecasts for tropical convection,
92 the Gálvez-Davison Index (GDI) was developed by the NOAA Weather Prediction Center (WPC)
93 in 2014, focusing on thermodynamic processes more than on dynamical processes (Gálvez and
94 Davison 2016). Miller et al. (2019) utilized the GDI and other stability indices to forecast rainfall
95 in Puerto Rico and found that CAPE, the KI and Total Totals had very little skill when compared
96 to the GDI. Since the GDI is a relatively new index, follow-up studies are limited in numbers. In
97 this study, the GDI and its sub-indices are utilized to investigate the increasing trends in thunder-
98 storm activity over the Congo during different seasons, and thus providing a perspective to under-
99 stand thermodynamic characteristics of thunderstorm as well as profound indications of changes
100 in thunderstorm activity. The physical processes influencing the GDI trends are later diagnosed in
101 order to gain a better understanding about the increasing trend in a thunderstorm activity and de-
102 creasing trend in rainfall over the Congo.
103

104 2. Data

105 This study focuses on the Congo basin, which is defined as the area from 5°N–5°S and 12°E–
106 25°E. All four seasons i.e., December, January, February (DJF), March, April, May (MAM), June,
107 July, August (JJA) and September, October, November (SON) were examined. MAM and SON
108 are the two wet seasons and DJF and JJA are the two dry seasons (Pokam et al. 2012; Dyer et al.
109 2017), where dry seasons in the tropics represent yearly periods with low amounts of rainfall,
110 which coincide with the seasonal shift of the tropical rain belt (Nicholson 2018; Jiang et al. 2019).
111 Two different datasets were used in this study i.e., a satellite and reanalysis dataset.
112

113 2.1 GridSat-B1 satellite data

114 Infrared (IR) channel brightness temperature (T_b) from the Gridded Satellite (GridSat-B1) da-
115 taset sampled by the European Meteosat (MET) series of geostationary satellites, available from
116 1981–present (Knapp 2008; Knapp et al. 2011), was used in this study. The GridSat-B1 dataset
117 was created by remapping and merging the International Satellite Cloud Climatology Project (IS-
118 CCP) B1 data onto $0.07^\circ \times 0.07^\circ$ grids using nearest-neighbor sampling at a 3-hour temporal res-
119 olution. The GridSat-B1 dataset provides a uniform set of quality controlled geostationary satellite
120 observations for the visible ($0.7\mu\text{m}$), infrared window ($11.0\mu\text{m}$) and infrared water vapor ($7.7\mu\text{m}$)
121 channels. However, only the IR channel T_b has received more extensive inter-satellite calibration
122 and is thus identified as a Climate Data Record (NRC 2004). Raghavendra et al. (2020b) reported
123 large volumes of missing data between 1982–1985 in the GridSat-B1 data record. However, T_b
124 from 1983–2018 was used in this study since seasonal means were used, and missing data is oc-
125 ccurring in smaller chunks.
126

127 2.2 ERA-Interim reanalysis data

128 The ERA-Interim dataset (ERA-I; Dee et al. 2011) was used to obtain atmospheric temperature
129 and specific humidity at 950hPa, 850hPa, 700hPa and 500hPa, and zonal (u) and meridional (v)
130 wind at 850hPa and 500hPa at a $0.7^\circ \times 0.7^\circ$ spatial resolution. Although reanalysis products other
131 than the ERA-I dataset could have been utilized for this study, the lack of surface observations and
132 radiosonde networks over the Congo basin makes it challenging to identify the most accurate rea-
133 nalysis dataset (Washington et al. 2013; Hua et al. 2019). However, the bias and the root-mean-

134 square error associated with the ERA-I wind field is found to be comparable to other reanalysis
135 datasets and therefore the ERA-I dataset is found to be adequate for this study (Hua et al. 2019).
136

137 The ERA-I dataset was produced by the European Centre for Medium-Range Weather Fore-
138 casts (ECMWF) using the Integrated Forecast System (IFS) release Cy31r2 which was used for
139 operational forecasting between 12 December 2006 and 5 June 2007 (Dee et al. 2011). Since the
140 GDI was developed for the operational analysis and forecasting of tropical convection, the atmos-
141 phere needs to be evaluated before convection has occurred. Over the Congo basin, thunderstorm
142 activity is strongly influenced by the tropical diurnal cycle (Yang and Slingo 2001) and convection
143 usually peaks between 15:00 and 18:00 UTC. Therefore, monthly mean data at 12:00 UTC was
144 used from the ERA-I reanalysis dataset for all calculations to evaluate thunderstorm activity at
145 15:00 UTC using satellite observations from the GridSat-B1 data. The ECMWF forecast model is
146 regarded as one of the most accurate numerical weather prediction model in the meteorological
147 model community (Buizza et al. 2005; Wedam et al. 2009; Perez et al. 2013), therefore the ERA-
148 I reanalysis dataset is also likely to be the best reanalysis dataset choice for this study due to the
149 3-hour lag in evaluating the reanalysis data (atmospheric variables) and satellite observations
150 (thunderstorm activity).

151 2.3 Dataset Limitations

152 The GridSat-B1 dataset was derived from more than 30 geostationary satellites (Knapp et al.
153 2008) and the data covering the Congo basin was sampled by the European Meteosat (MET) series
154 of geostationary satellites (MET 2–10) that provide excellent coverage over Central Africa
155 (Raghavendra et al. 2018). Despite improved data processing and inter-satellite calibrations
156 (Knapp 2012), the possibility that long-term trends estimated from the GridSat-B1 may suffer from
157 biases associated with inter-satellite calibrations, satellite view zenith effects, gaps in coverage,
158 and differences in instrument spectral response functions cannot be excluded (Knapp 2016). There-
159 fore, higher-quality datasets and modeling work will be included in future studies.
160

161 Differences and uncertainties among different reanalysis products, climate model simulations
162 and satellite derived datasets over the Congo Basin (Diem et al. 2014; Hua et al. 2019), and the
163 lack of observations to validate the model outputs and reanalysis data (Washington et al. 2013;
164 Alsdorf et al. 2016) represent a major challenge for scientific studies over the Congo. A limitation
165 of this study therefore includes the poor correlation between different observation and reanalysis
166 datasets over the Congo basin, especially for moisture fields (Lee and Biasutti 2014). The fact that
167 only one reanalysis dataset was used represents another limitation of this study. But, the data re-
168 quirements for the analysis performed for this study are very specific i.e., daily data at 12:00 UTC
169 for specific pressure levels at a fine resolution. Therefore, only one reanalysis dataset was ana-
170 lyzed.
171

172 3. Methods

173 3.1 Thunderstorm detection

174 In order to evaluate thunderstorm activity and trends using satellite data, low T_b values (e.g.,
175 $T_b < -50^{\circ}\text{C}$) were used to detect cold cloud top temperatures, which may be used to quantify thun-
176 derstorm spatial extent and intensity. The lower the T_b , the deeper the convection and the stronger
177 the intensity of the storm (Raghavendra et al. 2018). In order to detect intense thunderstorms over
178 the Congo, cold cloud fraction with T_b between -50°C and -70°C was estimated from the re-

180 gridded GridSat-B1 data by calculating the percentage (%) of pixels with T_b between -50°C and -
181 70°C within each $0.98^\circ \times 0.98^\circ$ grid.

183 3.2 The Galvez-Davison Index (GDI) its sub-indices

184 The GDI was calculated as a measure of thunderstorm potential over the Congo basin. It con-
185 sists of three different sub-indices analyzing different physical processes and a terrain correction,
186 and is calculated as follows:

$$187 GDI = CBI + MWI + II + TC \quad \text{Eq. 1}$$

188 where the three sub-indices are the Column Buoyancy Index (CBI) considering the availability of
189 heat and moisture in the middle and lower troposphere, the Mid-Tropospheric Warming Index
190 (MWI) considering stabilizing and destabilizing effects of mid-level ridges and troughs, and the
191 Inversion Index (II) considering entrainment of dry air and stabilization associated with trade wind
192 inversions. There is also an optional terrain correction (TC) that can be added. GDI values range
193 from around -20 to +45, indicating the thunderstorm potential. GDI values of -20 indicate fair
194 conditions and shallow convection producing very light, isolated rain. GDI values around +45
195 indicate a high potential for scattered to widespread thunderstorms.

196 In order to calculate the GDI and its sub-indices, temperature and specific humidity at four
197 vertical levels i.e., 950hPa, 850hPa, 700hPa, and 500hPa were obtained from the ERA-I data.
198 Those four vertical levels are used to define three layers i.e., **A**, **B**, and **C**. **A** evaluates the condi-
199 tions at 950hPa, **B** evaluates the conditions averaged over 850hPa and 700hPa, and **C** evaluates
200 the conditions at 500hPa (Gálvez and Davison 2016). Specific humidity and temperature data was
201 used in order to obtain relative humidity for each level (Bolton 1980; Brock and Richardson 2001).
202 The formulas used to derive mixing ratios (r), potential temperature (θ), and equivalent potential
203 temperature (θ_e) proxies for each layer (Betts and Dugan 1973; Bolton 1980; Gálvez and Davison
204 2016), which are needed to calculate the GDI, are documented in Appendix A.

206 3.3 Column Buoyancy Index (CBI)

207 The CBI analyzes moisture availability and temperature of the layers **A** and **C** by calculating
208 the θ_e of those layers. The CBI is an enhancement factor and produces positive values. It is the
209 only sub-index of the GDI producing positive values. The higher the CBI is, the larger is the po-
210 tential for deep convection. Deep convection is characterized by a warm and moist mid tropo-
211 spheric layer (ME) which is being reinforced by a warm and moist layer in the lower troposphere
212 (LE). A high CBI therefore indicates the presence of a deep moist layer, leading to deep convection
213 and potential heavy rainfall. The CBI is calculated as follows:

$$214 ME = \theta_{e(C)} - \beta \quad \text{Eq. 2}$$

$$215 LE = \theta_{e(A)} - \beta \quad \text{Eq. 3}$$

$$216 CBI = \begin{cases} \gamma \times LE \times ME, & LE > 0 \\ 0, & LE \leq 0 \end{cases} \quad \text{Eq. 4}$$

217 where $\beta = 303\text{ K}$ is an empirical constant, which is used to set a lower boundary for the avail-
218 ability of heat and moisture in the boundary layer, and $\gamma = 6.5 \times 10^{-2} [\text{K}^{-1}]$ is an empirical scaling
219 factor used to obtain values comparable to the relatively better-known K-Index (Gálvez and
220 Davison 2016).

219 *3.4 Mid tropospheric warming/stabilization Index (MWI)*

220 By calculating the temperature of layer **C**, the MWI considers mid tropospheric stabilization
 221 induced by warm ridges and destabilization by cold troughs. The MWI is an inhibition factor pro-
 222 ducing negative values. If temperatures are higher than the threshold $\tau = 263.15\text{ K}$, MWI values
 223 are negative, indicating strong inhibition of convection and stabilization of the layer by a warm
 224 ridge. The MWI is calculated as follows:

$$225 \quad MWI = \begin{cases} \mu \times (T_{500} - \tau), & T_{500} - \tau > 0 \\ 0, & T_{500} - \tau \leq 0 \end{cases} \quad \text{Eq. 5}$$

226 where $\mu = -7\text{ [K}^{-1}\text{]}$ is an empirical scaling factor which introduces a negative sign, and controls
 227 the relative weight of the MWI in the GDI formula (Gálvez and Davison 2016).

228 *3.5 Inversion Index (II)*

229 The II aims to include the effects of trade wind inversions. Like the MWI, the II is an inhibition
 230 factor, producing negative values. The II considers the stabilizing effects of inversions and dry air
 231 entrainment, which act to inhibit convection. A stability factor (II_S) is calculated by taking the
 232 difference in temperature between 950hPa and 700hPa, with lower values of II_S indicating stronger
 233 stabilization. To take dry air entrainment into account, the difference in θ_e between the layers **A**
 234 and **B** is considered, and a drying factor (II_D) is calculated. The lower and more negative II_D, the
 235 larger the decrease of θ_e with height, indicating the occurrence of dry air and subsidence, leading
 236 to inhibition of convection. A low II_S and II_D leads to a low value for II and represents an inhibition
 237 of convection and vice-versa. The II is calculated as follows:

$$238 \quad II_S = T_{950} - T_{700} \quad \text{Eq. 6}$$

$$239 \quad II_D = \theta_{e(B)} - \theta_{e(A)} \quad \text{Eq. 7}$$

$$240 \quad II = \begin{cases} 0, & II_S + II_D > 0 \\ \sigma \times (II_S + II_D), & II_S + II_D \leq 0 \end{cases} \quad \text{Eq. 8}$$

241 where $\sigma = 1.5\text{ [K}^{-1}\text{]}$ is an empirical factor to control the weight of the II in the GDI formula
 242 (Gálvez and Davison 2016).

243 *3.6 Terrain Correction (TC)*

244 To improve visualization over higher terrain, a TC factor can be added, which may be calcu-
 245 lated as follows:

$$246 \quad TC = P_3 - \frac{P_2}{P_{SFC} - P_1} \quad \text{Eq. 9}$$

247 where $P_1 = 500\text{ [hPa]}$, $P_2 = 9000\text{ [hPa]}$, $P_3 = 18$ which are empirical constants, and P_{SFC} is the
 248 surface pressure [hPa] (Gálvez and Davison 2016). The TC was not included in the GDI calcula-
 249 tion in this study since the study region only experienced relatively small spatial variations in
 250 topography from 12°E to 25°E (e.g., Raghavendra et al. 2020a). Furthermore, the mean surface
 251 pressure within the Congo basin is $\sim 960\text{hPa}$ which results in a relatively small value of $TC \cong 1.5$,
 252 and dynamic fields such as surface pressure show relatively little variability in the tropics espe-
 253 cially for seasonal timescales. Therefore, neglecting the TC term has an insignificant impact on
 254 the results presented in this paper. To clarify, the TC term should be included if the analysis or
 forecast period is under two weeks especially at higher elevations.

255 *3.7 Wind shear*

255 Since the Coriolis parameter and horizontal temperature gradient is very small near the equator,
256 dynamic-thermodynamic indices such as the Eady growth rate (e.g., Raghavendra and Milrad
257 2019) are of little use. However, dynamics such as wind shear should not be ignored when diag-
258 nosing thunderstorms since vertical wind shear influences the structure and organization of con-
259 vective systems, as well as their evolution (Marion and Trapp 2019; Raghavendra et al. 2020a).
260 Vertical wind shear can organize convection into convective clusters and squall lines producing
261 intense precipitation and extending the lifetime of convective systems (Robe and Emanuel 2001;
262 Anber et al. 2014). Wind shear also advects moisture and temperature which impact thermody-
263 namic stability (Robe and Emanuel 2001). Therefore, a relatively simple approach was used to
264 calculate and analyze the vertical wind shear i.e., $Wind\ shear = |\vec{V}_{500}| - |\vec{V}_{850}|$.

266 3.8 Trend Analysis

267 To quantify long-term changes of thunderstorm activity over the Congo, seasonal trends and
268 interannual variability of cold cloud fraction, the GDI and its sub-indices, and wind shear were
269 calculated. The linear trend was estimated based on least square regression at both the grid and
270 regional levels. The statistical significance (p-value) of the linear regression was evaluated using
271 the two-tailed Student's test.

273 4. Results

274 4.1 More vigorous thunderstorms diagnosed by cold cloud top temperatures

275 In order to quantify changes in thunderstorm activity using satellite data, the cold cloud fraction
276 (%) with T_b ranging between -50°C and -70°C was calculated. This served as a method to quantify
277 intense thunderstorms over the Congo, as intense storms are characterized by $T_b < -50^{\circ}\text{C}$. Figure
278 1a-d shows spatial patterns of the seasonal climatology and trends in cold cloud fraction, indicat-
279 ing an increase in cold cloud fraction over large parts of the study region for all seasons. The
280 seasonal cycle can also be observed in Fig. 1a-d. The north- and southward movement of the trop-
281 ical rain belt is visible, as the tropical rain belt is characterized by enhanced convection and there-
282 fore higher percentages of cold cloud fraction. The green contours show the climatological values
283 of the cold cloud fraction (%). The highest values, representing the tropical rain belt, are located
284 south of the equator in DJF, and then shift northwards to the equator in MAM. In JJA, the highest
285 values lie north of the equator in JJA, and then shift back south again during SON (Nicholson
286 2018).

287 Figure 1e shows the interannual variability of the cold cloud fraction averaged over the study
288 region and indicates significant increases in cold cloud fraction of **0.03** to **0.04** % yr^{-1} ($p < 0.10$)
289 during all months. The detected increases in cold cloud fraction suggests that the spatial extent of
290 thunderstorms over the Congo has been increasing during all seasons. This is consistent with pre-
291 vious works such as Hart et al. (2019) and Raghavendra et al. (2018) showing a widespread in-
292 crease in the areal extent and intensity of thunderstorms over the Congo over the past 30 years,
293 and Chou and Chen (2010) showing an increase in convection depth in a warmer climate.

296 4.2 Changes in GDI and its sub-indices

297 Seasonal trends in GDI show a significant increase over large parts of the Congo (Fig. 2a-d),
298 with the GDI significantly increasing during all seasons (**0.1-0.17** yr^{-1} ; $p < 0.10$). The largest in-
299 crease of **0.17** yr^{-1} is detected in MAM and JJA, followed by SON with an increase of **0.12** yr^{-1} ,
300 and DJF with the lowest increase of **0.1** yr^{-1} (Fig. 2e). This increase in GDI suggests a significant

increase in thunderstorm activity over the Congo during all seasons, which is consistent with the trends detected in cold cloud fraction. Aiming to discover the physical mechanisms responsible for the increase in thunderstorm activity, the different sub-indices of the GDI were analyzed separately. First, the observed trends in the GDI sub-indices are presented, and later complimented by an explanation for each trend detected in the GDI.

The CBI shows a small but insignificant decrease over most of the Congo during all seasons (Fig. 3a-e). This leads to the conclusion that the interannual variability of CBI does not contribute to the increase in thunderstorm activity. The MWI is becoming weaker over most parts of the Congo, with the strongest and most significant trend in JJA, followed by MAM and SON, with DJF exhibiting the weakest trend (Fig. 4a-d). The interannual variability indicates a trend of **0.10** yr^{-1} ($p < 0.10$) in JJA, **0.09** yr^{-1} ($p < 0.10$) in MAM and **0.05** yr^{-1} ($p < 0.10$) in SON. The trend for DJF is not significant at $p < 0.10$ (Fig. 4e). Thus, the MWI likely contributes to the increasing thunderstorm activity in MAM, JJA and SON.

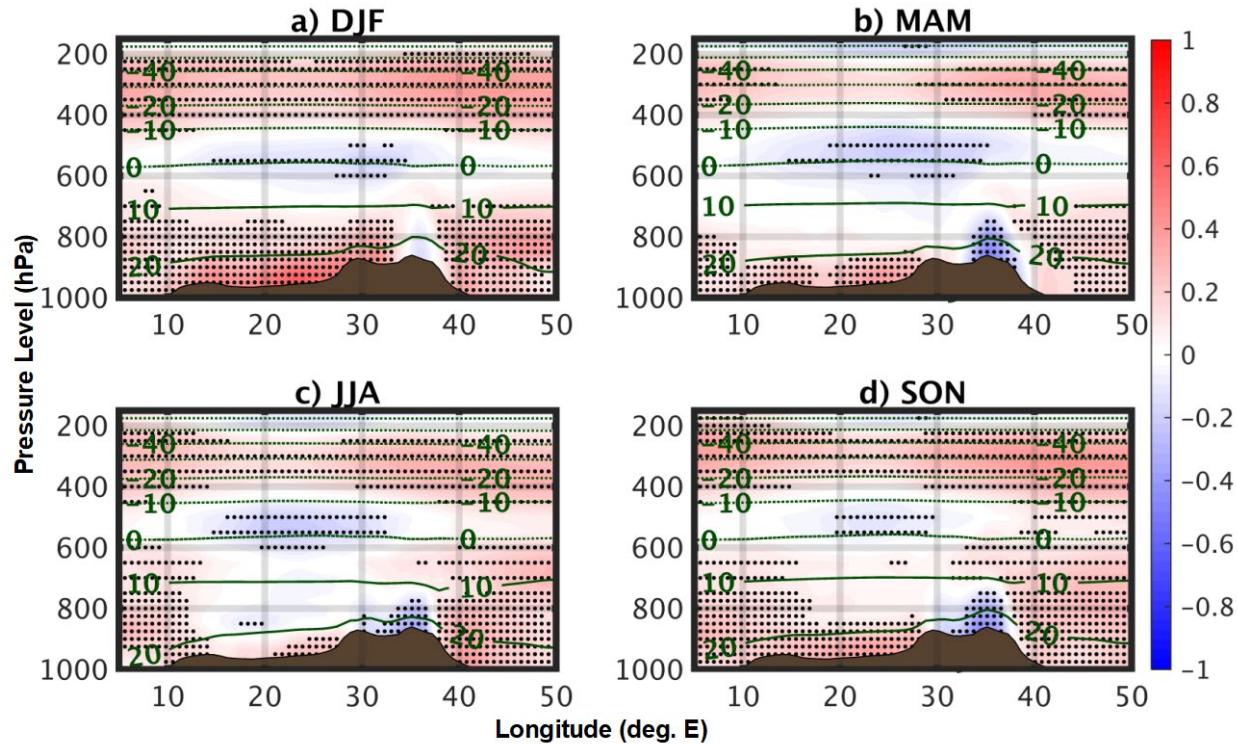
The II is also becoming weaker during all seasons with significant trends in almost the entire study region (Fig. 5a-d). The interannual variability shows trends of **0.10** to **0.11** yr^{-1} ($p < 0.10$) during all seasons (Fig. 5e). Since the II is the sum of two terms i.e., II_D and II_S , these terms were also analyzed separately. The II_D became weaker over the entire study region (Fig. 6a-d), and the linear trend in the II_D increased by **0.07** to **0.08** yr^{-1} ($p < 0.10$) during all seasons as well (Fig. 6e). A smaller II_D suggests that the θ_e gradient is decreasing with height and the entrainment of dry air over the inversion is becoming less frequent. This ultimately results in enhanced convection and thunderstorm activity (James and Markowski 2010). The II_S shows an increasing trend over most of the Congo basin, and the interannual variability increased by **0.03** to **0.07** yr^{-1} (Fig. 7) depending on the season, with DJF exhibiting the largest increase, followed by MAM, JJA and SON. These findings indicate that the temperature gradient between 950hPa and 700hPa is increasing, leading to a decrease in stability of the column and therefore supporting an increase in tropical convection.

4.3 Wind shear

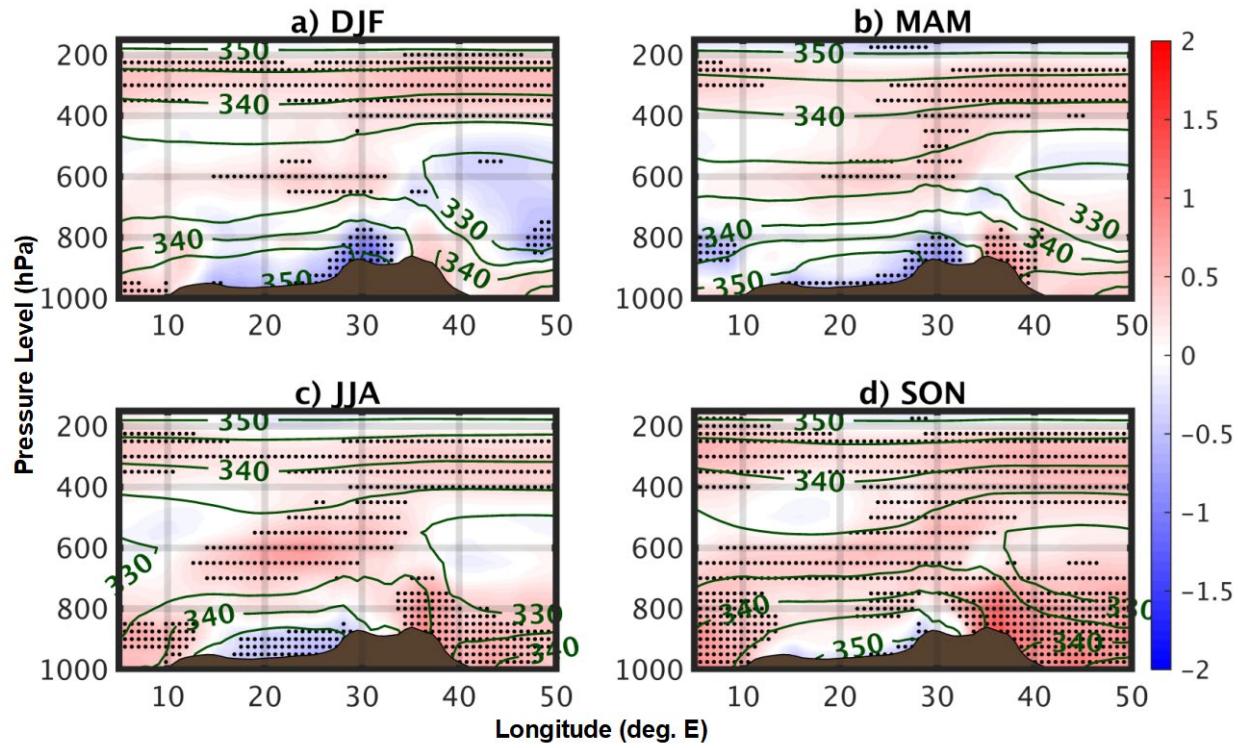
Wind shear was found to be increasing significantly over the Congo during all seasons besides DJF. An increase of **0.03** to **0.07** $\text{ms}^{-1}\text{yr}^{-1}$ ($p < 0.10$) is shown with the largest increase in SON, followed by JJA and MAM (Fig. 8). This presents an additional factor potentially contributing to the increase in thunderstorm activity since wind shear and orography significantly influence convection and precipitation over the Congo basin. The unique African orography with the East African highlands and the Ethiopian highlands located in the northeast of the Congo modifies wind patterns by blocking tropical easterlies (zonal wind) and intensifying meridional wind around the mountain. This increase in wind shear potentially results in well-organized and intense thunderstorms over the Congo basin (Marion and Trapp 2019; Raghavendra et al. 2020a).

5. Discussion and Conclusions

In this study, thunderstorm activity over the Congo is analyzed using satellite-derived cold cloud top temperatures and the GDI including its sub-indices (CBI, MWI, and II). The GDI is a thermodynamic index developed to better diagnose tropical convection, with the CBI analyzing the availability of heat and moisture in the middle and lower troposphere, the MWI considering stabilizing and destabilizing effects of mid-level ridges and troughs, and the II considering entrainment of dry air and stabilization associated with trade wind inversions. The results show an


347 increasing trend in convective activity over the Congo during all seasons from 1983–2018, which
348 is consistent with previous findings indicating an increase in the extent and intensity of thunder-
349 storms over equatorial Africa (e.g., Raghavendra et al. 2018; Taylor et al. 2018; Hart et al. 2019).
350 The increase in thunderstorm activity is found to be the result of three processes: (1) a cooling of
351 the 500hPa temperature, which may be attributable to an increase in cold troughs, diagnosed using
352 the MWI, (2) an increase in the temperature gradient between 700hPa and 950hPa, diagnosed using
353 the IIs, and (3) a decrease of the θ_e gradient with height indicating a decrease of dry air entrain-
354 ment, diagnosed using the II_D. In addition, an increase in wind shear also appears to contribute to
355 the increase in thunderstorm activity from March–November.

356
357 Notwithstanding uncertainties in both satellite and reanalysis datasets (*section 2.3*), the trends
358 of the GDI and its sub-indices are in good agreement with observations, including in-situ and
359 satellite observations over the study region (e.g., Bush et al. 2020). The temperature profile over
360 the study region (Fig. 9) shows the increase in the occurrence of cold troughs at 500hPa diagnosed
361 using the MWI, and the increase in the temperature gradient between 700hPa and 950hPa diag-
362 nosed using the II_D. In addition, the relative humidity profile (Fig. 10) indicates a drying trend of
363 the lower levels (i.e. Congo basin) and a moistening of the upper levels. The θ_e profile over the
364 study region is shown in Fig. 11 in order to evaluate the combined trends in temperature and mois-
365 ture. The decrease of the θ_e gradient with height diagnosed using the II_D is associated with a de-
366 crease of θ_e in the lower troposphere (i.e. the Congo) and an increase of θ_e in the mid/upper tropo-
367 sphere, resulting mostly from a change in moisture (i.e. a decrease in moisture in the lower tropo-
368 sphere and an increase in the mid/upper troposphere) rather than a change in temperature (Soden
369 et al. 2005; Su et al. 2006; Fu 2015; Bush et al. 2020).


370
371 The frequent occurrence of cold troughs and cooling at 500hPa may be a result of an increase
372 in the occurrence of Kelvin waves over the Congo as detected by Raghavendra et al. (2019). An
373 increase in the occurrence of Kelvin waves may lead to an increase in cold ridges at 500hPa and
374 thus also enhance deep convection over the Congo basin (Sinclaire et al. 2015; Schlueter et al.
375 2019a; Schlueter et al. 2019b). On the other hand, a decrease in the θ_e gradient with height may
376 be the combined effect of two processes i.e., a decrease in vegetation greenness and water content
377 associated with droughts over the Congo, and vegetation greening over the East African highlands
378 region (e.g. Hawinkel et al. 2016; Musau et al. 2018; Zhao et al. 2018). Moisture recycling is a
379 crucial process in the tropical rainforests where evapotranspiration contributes substantially to re-
380 gional precipitation (e.g. Dyer et al. 2017). The large-scale forest browning observed over the
381 Congo, reducing evapotranspiration and decreasing rainfall (Zhou et al. 2014; Hua et al. 2016;
382 Jiang et al. 2019), may reduce the regional moisture supply and thus dry the lower troposphere.
383 The greening over the East African highlands potentially leads to a moistening of the air parcels
384 over the highlands (Musau et al. 2018) before being advected over the Congo basin by the easterly
385 winds, moistening the air layers aloft the Congo. This could be one reason for the moistening of
386 the mid-troposphere and a decrease in the θ_e gradient with height.

387
388 The drying trend in the lower levels (i.e. the Congo basin) and moistening trend in the mid-
389 and upper troposphere (Figure 10) may also be the consequence of the increase in deep convection,
390 transporting moisture upwards, drying the lower levels and moistening the mid/upper troposphere.
391 This possibly causes an increase in deep convection, as the vertical gradient in θ_e is relaxed, which
392 further destabilizes the vertical column and promotes a positive feedback mechanism resulting in

393 taller and more intense thunderstorms. This hypothesis is complemented by previous works such
 394 as Soden and Fu (1995) and Zelinka and Hartmann (2009), showing that enhanced tropical con-
 395 viction in a warming climate is responsible for the increased upper-tropospheric relative humidity,
 396 with deep convection being the primary source of high clouds and free-tropospheric water vapor
 397 through moisture transport to the mid/upper troposphere. The upward transported moisture may
 398 then be advected away from the Congo by the poleward flow of the Hadley cell or easterly flow at
 399 higher altitudes (Byrne and Schneider 2016). This may possibly lead to less rainfall given the high
 400 water recycling ratio over the Congo (Dyer et al. 2017) and could potentially explain the decrease
 401 in rainfall detected over the Congo (e.g., Fu 2015; Raghavendra et al. 2018). Further,

402
 403 Figure 9—

404
 405 Figure 11 suggest that the lifted condensation level (LCL) may have shifted to higher altitudes due
 406 to surface drying. Prein and Heymsfield (2020) showed that the melting height level and warm
 407 cloud depth has increased over the Congo, possibly affecting cloud microphysics and rainfall char-
 408 acteristics. This supports the hypothesis of a higher LCL, reducing the rainfall reaching the surface,
 409 and ultimately causing the drying trend over the Congo basin as more water or ice particles falling
 410 out of a cloud may vaporize before reaching the ground (virga).
 411

412 In summary, the increase in thunderstorm activity over the Congo Basin is found to be the
 413 result of a cooling of the 500hPa temperature, an increase in the temperature gradient between
 414 700hPa and 950hPa, and a decrease of the θ_e gradient with height. The cooling of the 500hPa
 415 temperature may be attributable to an increase in cold troughs, which is hypothesized to be the
 416 consequence of an increase in the occurrence of Kelvin waves over the Congo (e.g., Raghavendra
 417 et al. 2019). The decrease of the θ_e with height is shown to be the effect of a decrease in moisture
 418 in the lower levels and an increase in moisture in the mid and upper levels (Fig. 10). The decrease
 419 in moisture in the lower levels is assumed to be a direct effect of the drying trend over the Congo,
 420 while the moistening of the mid/upper levels is hypothesized to be a result of a greening and mois-
 421 tening of the East African Highlands (e.g., Musau et al. 2018), from where moist air is being ad-
 422 vected over the Congo. Further, the upward transport of moist air during deep convection is hy-
 423 pothesized to additionally destabilize the column and enhance convective processes. The upward
 424 transported moisture potentially being advected away by the Hadley cell, and less rainfall reaching
 425 the surface due an elevation of the LCL and melting level likely result in a decreasing trend in
 426 rainfall and enhanced drying trend over the Congo.
 427

428 Figure 12 summarizes the key findings of this work, including the observed changes in atmos-
 429 pheric temperature and moisture from 1983–2018 leading to the detected increase in thunderstorm

430 activity (Fig. 12a-b), trends found in the GDI and its sub-indices including their impacts posed on
 431 atmospheric stability (Fig. 12c). It also includes a schematic of the proposed possible physical
 432 mechanisms, linking enhanced thunderstorm activity to the observed drying trend found over the
 433 Congo (Fig. 12d). In conclusion, thunderstorm activity over the Congo has increased, while rain-
 434 fall has decreased significantly. The increasing trend in thunderstorm activity may be linked to an
 435 increase in the occurrence of cold troughs at 500hPa, an increase of the temperature gradient be-
 436 between 700hPa and 950hPa, and a decrease of the θ_e gradient with height. These mechanisms were
 437 also linked together in a positive feedback loop (Fig. 12d) which potentially explain the increase
 438 in thunderstorm activity and the decrease in surface rainfall and vegetation over the Congo. The
 439 enhanced convective activity likely moistens the mid/upper troposphere, and moisture may be
 440 transported away from the Congo basin by the poleward flow of the Hadley cell and the tropical
 441 easterlies. This transport of moisture away from the Congo which is characterized by a large water
 442 recycling ratio could be one possible reason for the observed decrease in rainfall.
 443

444 From a future climate perspective, significantly more work is necessary to understand rainfall
 445 and vegetation characteristics over the Congo basin. From an observations and historical climate
 446 standpoint, there is considerable spread in rainfall estimates amongst datasets (Washington et al.
 447 2013). While studies such as Fotso-Nguemo et al. (2017) have shown the relatively well-known
 448 increases in heavy rainfall events in a warmer climate using GCMs for central Africa, the complex
 449 orography and overall uncertainties amongst GCMs over the Congo basin is a non-trivial (e.g.,
 450 Haensler et al. 2013; Washington et al. 2013; Raghavendra et al. 2020). Therefore, the need for
 451 high-resolution regional climate models (e.g., Tamoffo et al. 2019) and convection allowing sim-
 452 ulations (Stratton et al. 2018) are necessary to further expand our understanding of both the present
 453 and future climate for Africa (especially the Congo basin).
 454

455 *Acknowledgments*

456 This work is supported by the National Science Foundation (NSF AGS-1535426 and AGS-
 457 1854486). Heather S. Sussman acknowledges the funding support from the Science, Mathematics,
 458 and Research for Transformation (SMART) fellowship.
 459

460 **Appendix A: Calculation of θ_e proxies for each layer from specific humidity and temperature, 461 used to calculate the GDI**

462 First, relative humidity (RH) was calculated at every level using specific humidity (q) and temper-
 463 ature (T) from the ERA-I dataset:
 464

$$e^* = 6.112 \exp \left[\frac{17.76T}{T + 243.5} \right] \quad \text{Eq. A1}$$

$$q^* = 0.622 \frac{e^*}{P} \quad \text{Eq. A2}$$

$$RH = \frac{q}{q^*} \times 100 \quad \text{Eq. A3}$$

465 where e^* is the saturated vapor pressure (hPa) and T is the temperature in °C (Bolton 1980). q^* is
 466 the saturation specific humidity and P is the atmospheric pressure (hPa) (Brock and Richardson
 467 2001).
 468

469 Potential temperature (θ ; K) and mixing ratios (r ; kg kg^{-1}) were then calculated for each layer using
 470 RH (Gálvez and Davison 2016).

Layer A:

$$\theta_A = \theta_{950} = T_{950} \left(\frac{1000}{950} \right)^{\frac{2}{7}} \quad \text{Eq. A4}$$

$$P_{ws950} = 6.116441 \times 10^{\left[\frac{7.591386 \times T_{950}}{T_{950} + 240.7263} \right]} \quad \text{Eq. A5}$$

$$P_{w950} = P_{ws950} \times \frac{RH_{950}}{100} \quad \text{Eq. A6}$$

$$r_A = \frac{621.9907}{1000} \times \frac{P_{w950}}{950 - P_{w950}} \quad \text{Eq. A7}$$

471

Layer B: $\theta_B = 0.5(\theta_{850} + \theta_{700})$ Eq. A8

$$= 0.5 \left[T_{850} \left(\frac{1000}{850} \right)^{\frac{2}{7}} + T_{700} \left(\frac{1000}{700} \right)^{\frac{2}{7}} \right]$$

$$P_{ws850} = 6.116441 \times 10^{\left[\frac{7.591386 \times T_{850}}{T_{850} + 240.7263} \right]} \quad \text{Eq. A9}$$

$$P_{ws700} = 6.116441 \times 10^{\left[\frac{7.591386 \times T_{700}}{T_{700} + 240.7263} \right]} \quad \text{Eq. A10}$$

$$P_{w850} = P_{ws850} \times \frac{RH_{850}}{100} \quad \text{Eq. A11}$$

$$P_{w700} = P_{ws700} \times \frac{RH_{700}}{100} \quad \text{Eq. A12}$$

$$r_{850} = \frac{621.9907}{1000} \times \frac{P_{w850}}{850 - P_{w850}} \quad \text{Eq. A13}$$

$$r_{700} = \frac{621.9907}{1000} \times \frac{P_{w700}}{700 - P_{w700}} \quad \text{Eq. A14}$$

$$r_B = 0.5(r_{850} + r_{700}) \quad \text{Eq. A15}$$

472

Layer C: $\theta_C = \theta_{500} = T_{500} \left(\frac{1000}{500} \right)^{\frac{2}{7}}$ Eq. A16

$$P_{ws500} = 6.116441 \times 10^{\left[\frac{7.591386 \times T_{500}}{T_{500} + 240.7263} \right]} \quad \text{Eq. A17}$$

$$P_{w500} = P_{ws500} \times \frac{RH_{500}}{100} \quad \text{Eq. A18}$$

$$r_C = \frac{621.9907}{1000} \times \frac{P_{w500}}{500 - P_{w500}} \quad \text{Eq. A19}$$

473 where P_{ws} = saturation vapor pressure, P_w = partial pressure of water vapor (Gálvez and Davison
 474 2016).

475
476
477
478

The θ_e was then calculated, where the following formula from Betts and Dugan (1973), simplified by Bolton (1980) was chosen since the calculation for θ_e is non-trivial:

$$\theta_e = \theta \exp\left(\frac{L_o r}{C_{pd} T_{LCL}}\right) \quad \text{Eq. A20}$$

479 where $L_o = 2.69 \times 10^6 \text{ J kg}^{-1}$ is the latent heat of vaporization, $C_{pd} = 1005.7 \text{ J kg}^{-1} \text{ K}^{-1}$ is the
480 specific heat of dry air at constant pressure, and T_{LCL} is the temperature in K at the lifted condens-
481 ation level LCL.

482
483 T_{LCL} was then replaced by the 850hPa temperature (K) to work around the complex calculation
484 for T_{LCL} , which results in the following calculation of θ_e used to calculate the GDI:
485

$$\theta_e = \theta \exp\left(\frac{L_o r}{C_{pd} T_{850}}\right) \quad \text{Eq. A21}$$

486 Gálvez and Davison (2016) tested replacing T_{LCL} by the 850hPa temperature and only found very
487 small differences on the final GDI values. Therefore, this simplification was used in this study as
488 well.

489
490 For each layer, θ_e proxies are then calculated using Eq. A21:
491

Layer A: $\theta_{e(A)} = \theta_A \exp\frac{L_o r_A}{C_{pd} T_{850}}$ Eq. A22

Layer B: $\theta_{e(B)} = \theta_B \exp\frac{L_o r_B}{C_{pd} T_{850}} + \alpha$ Eq. A23

Layer C: $\theta_{e(C)} = \theta_C \exp\frac{L_o r_C}{C_{pd} T_{850}} + \alpha$ Eq. A24

492 where $\alpha = -10$ (K) is an empirical adjustment constant aiming to limit excessive GDI values in
493 regions with plentiful moisture at and above 850hPa (Gálvez and Davison 2016).

494 **References**

495 Adler RF, G, G, Sapiro M, Wang JJ, Huffman GJ (2017) Global precipitation: Means, variations
496 and trends during the satellite era (1979–2014). *Surv Geophys* 38:679–699

497 Alsdorf D et al. (2016) Opportunities for hydrologic research in the Congo Basin. *Rev 304 Geophys* 54:378–409

498 Anber U, Wang S, Sobel AH (2014) Response of atmospheric convection to vertical wind shear:
499 Cloud-system resolving simulations with parameterized large-scale circulation. Part I: Specified
500 radiative cooling. *J Atmos Sci* 71:2976–2993

501 Betts AK, Dugan FJ (1973) Empirical formula for saturation psuedoadiabats and saturation equiv-
502 alent potential temperature. *J Appl Meteor* 12:731–732

503 Bolton D (1980) The computation of equivalent potential temperature. *Mon Wea Rev* 108:1046–
504 1053

505 Brock FV, Richardson SJ (2001) Meteorological Measurement Systems. Oxford University Press
506 290pp

507 Buizza R, Houtekamer PL, Toth Z, Pellerin G, Wei M, Zhu Y (2005) A comparison of the
508 ECMWF, MSC, and NCEP global ensemble prediction systems. *Mon Wea Rev* 133:1076–
509 1097

510 Bush ER, Jeffery K, Bunnefeld N, Tutin C, Musgrave R, Moussavou G, Mihindou V, Malhi Y,
511 Lehmann D, Edzang Ndong J, Makaga L, Abernethy K (2020) Rare ground data confirm sig-
512 nificant warming and drying in western equatorial Africa. *PeerJ* 8:e8732

513 Byrne MP, Schneider T (2016) Narrowing of the ITCZ in a warming climate: Physical mecha-
514 nisms. *Geophys Res Lett* 43:11350–11357

515 Chou C, Chen C-A (2010) Depth of convection and the weakening of tropical circulation in global
516 warming. *J. Climate.* 23:3019–3030

517 Christian HJ, Blakeslee RJ, Boccipio DJ, Boeck WL, Buechler DE, Driscoll KT, Goodman SJ,
518 Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of
519 lightning as observed from space by the Optical Transient Detector. *J Geophys Res* 108:4005

520 Dai A (2006) Precipitation characteristics in eighteen coupled climate models. *J Climate* 19:4605–
521 4630

522 Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and
523 performance of the data assimilation system. *Q J R Meteorol Soc* 137:553–597

524 Diem J, Ryan S, Hartter J, Palace M (2014) Satellite-based rainfall data reveal a recent drying
525 trend in central equatorial Africa. *Clim Change* 126:263–272

526 Dyer ELE, Jones DBA, Nusbaumer J, Li H, Collins O, Vettoretti G, Noone D (2017) Congo Basin
527 precipitation: assessing seasonality, regional interactions, and sources of moisture. *J Geophys
528 Res Atmos* 122:6882–6898

529 Fotso-Nguemo TC, Chamani R, Yepdo ZD, Sonkoué D, Matsaguim CN, Vondou DA, Tanessong
530 RS (2018) Projected trends of extreme rainfall events from CMIP5 models over central Africa.
531 *Atmo Sci Lett* 19:1–8

532 Fu R (2015) Global warming-accelerated drying in the tropics. *Proc Natl Acad Sci USA* 112:3593–
533 3594

534 Gálvez JM, Davison M (2016) The Gálvez-Davison Index for Tropical Convection.
535 http://www.wpc.ncep.noaa.gov/international/gdi/GDI_Manuscript_V20161021.pdf Accessed
536 24 Apr 2020

537 Haensler A, Saeed F, Jacob D (2013) Assessment of projected climate change signals over central
538 Africa based on a multitude of global and regional climate projections. In: *Climate Change*
539

540 Scenarios for the Congo Basin. [Haensler A, Jacob D, Kabat P, Ludwig F (eds.)]. Climate
541 Service Centre Report No. 11, Hamburg, Germany, ISSN: 2192-4058.

542 Haklander A, van Delden AJ (2003) Thunderstorm predictors and their forecast skill for the Neth-
543 erlands. *Atmos Res* 67–68:273–299

544 Hamada A, Takayabu YN, Liu C, Zipser EJ (2015) Weak linkage between the heaviest rainfall
545 and tallest storms. *Nat Commun* 6:6213

546 Hart NCG, Washington R, Maidment RI (2019) Deep Convection over Africa: Annual Cycle,
547 ENSO, and Trends in the Hotspots. *Bull Am Meteorol Soc* 32:8791–8811

548 Hawinkel P, Thiery W, Lhermitte S, Swinnen E, Verbist B, Van Orshoven J, Muys B (2016) Veg-
549 etation response to precipitation variability in East Africa controlled by biogeographical fac-
550 tors. *J Geophys Res* 121:2422–44

551 Hua W, Zhou L, Nicholson SE, Chen H, Qin M (2019) Assessing reanalysis data for understanding
552 rainfall climatology and variability over Central Equatorial Africa. *Climate Dyn* 53:651–669

553 Jackson B, Nicholson SE, Klotter D (2009) Mesoscale convective systems over western equatorial
554 Africa and their relationship to large-scale circulation. *Mon Weather Rev* 137:1272–1294

555 James, RP, Markowski PM (2010) A numerical investigation of the effects of dry air aloft on deep
556 convection. *Mon Wea Rev* 138:140–161

557 Jayakrishnan PR, Babu CA (2014) Assessment of convective activity using stability indices as
558 inferred from radiosonde and MODIS data. *Atmos Clim Sci* 4:122–130

559 Jiang Y, Zhou L, Tucker CJ, Raghavendra A, Hua W, Liu Y, Joiner J (2019) Widespread increase
560 of boreal summer dry season length over the Congo rainforest. *Nat Climate Change* 9:617–622

561 Knapp KR (2008) Scientific data stewardship of International Satellite Cloud Climatology Project
562 B1 global geostationary observations. *J Appl Remote Sens* 2:023548

563 Knapp KR et al. (2011) Globally gridded satellite observations for climate studies. *Bull Am Me-
564 teorol Soc* 92:893–907

565 Knapp KR (2012) Intersatellite bias of the high-resolution infrared radiation sounder water vapor
566 channel determined using ISCCP B1 data. *J Appl Remote Sens* 6:063523

567 Knapp KR (2016) Gridded Satellite B1 FCDR - Monthly Means.
[https://ncics.org/ncics/pdfs/obs4MIPs/GriddedSatelliteB1FCDR-MonthlyMeans_technical-
568 note_final.pdf](https://ncics.org/ncics/pdfs/obs4MIPs/GriddedSatelliteB1FCDR-MonthlyMeans_technical-note_final.pdf) Accessed 18 May 2020

569 Lee DE, Biasutti M (2014) Climatology and variability of precipitation in the Twentieth Century
570 Reanalysis. *J Climate* 27:5964–5981

571 Marion GR, Trapp RJ (2019) The dynamical coupling of convective updrafts, downdrafts, and
572 cold pools in simulated supercell thunderstorms. *J Geophys Res Atmos* 124:664–683

573 Miller PW, Mote TL, Ramseyer CA (2019) An Empirical Study of the Relationship between Sea-
574 sonal Precipitation and Thermodynamic Environment in Puerto Rico. *Bull Am Meteorol Soc*
575 34:277–288

576 Munzimi YA, Hansen MC, Adusei B, Senay GB (2015) Characterizing Congo basin rainfall and
577 climate using Tropical Rainfall Measuring Mission (TRMM) satellite data and limited rain
578 gauge ground observations. *J Appl Meteor Climatol* 54:541–555

579 Musau J, Patil S, Sheffield J, Marshall M (2018) Vegetation dynamics and responses to climate
580 anomalies in East Africa. *Earth Syst Dyn Discuss* 1–27.

581 National Research Council (NRC 2004) Climate Data Records from Environmental Satellites. Na-
582 tional Academies Press, 102 pp.

583 Nicholson SE (2018) The ITCZ and the seasonal cycle over equatorial Africa. *Bull Am Meteorol
584 Soc* 30:337–348

586 Perez R, Kivalov S, Schlemmer J, Hemker K Jr, Renné D, Hoff TE (2010) Validation of short and
587 medium term operation solar radiation forecasts in the US. *Sol Energy* 84:2161–2172

588 Pokam WM, Djiotang LAT, Mkankam FK (2012) Atmospheric water vapor transport and recy-
589 cling in Equatorial Central Africa through NCEP/NCAR reanalysis data. *Clim Dyn* 38:1715–
590 1729

591 Prein AF, Heymsfield AJ (2020) Increased melting level height impacts surface precipitation phase
592 and intensity. *Nat Climate Change* 10:771–776

593 Raghavendra A, Xia G, Zhou L et al (2020a) Dynamic Aspects of Orographic Enhancement of
594 Rainfall Over the Congo Basin. *Geophys Res Lett* (*in review*)

595 Raghavendra A, Zhou L, Roundy PE et al. (2020b) The MJO's impact on rainfall trends over the
596 Congo rainforest. *Clim Dyn* 54:2683–2695

597 Raghavendra A, PE Roundy, Zhou L (2019) Trends in tropical wave activity from 1980s–2016. *J
598 Climate* 32:1661–1676

599 Raghavendra A, Milrad SM (2019) A new metric to diagnose precipitation distribution in transi-
600 tioning tropical cyclones. *J Operational Meteor* 7: 61–77

601 Raghavendra A, Zhou L, Jiang Y, Hua W (2018) Increasing extent and intensity of thunderstorms
602 observed over the Congo Basin from 1982 to 2016. *Atmos Res* 213:17–26

603 Robe FR, Emanuel KA (2001) The effect of vertical wind shear on radiative–convective equilib-
604 rium states. *J Atmos Sci* 58:1427–1445.

605 Schlueter A, Fink AH, Knippertz P, Vogel P (2019a) A systematic comparison of tropical waves
606 over Northern Africa. Part I: influence on rainfall. *J Climate* 32:1501–1523

607 Schlueter A, Fink AH, Knippertz P (2019b) A systematic comparison of tropical waves over north-
608 ern Africa. Part II: dynamics and thermodynamics. *J Climate* 32:2605–2625

609 Sinclair Z, Lenouo A, Tchawoua C, Janicot S (2015) Synoptic Kelvin type perturbation waves
610 over Congo basin over the period 1979–2010. *J Atmos Sol Terr Phys* 130–131:43–46

611 Soden BJ, Fu R (1995) A satellite analysis of deep convection, upper tropospheric humidity, and
612 the greenhouse effect. *J Climate* 8:2333–2351

613 Soden BJ, Jackson DL, Ramaswamy V, Schwarzkopf D, Huang X (2005) The radiative signature
614 of upper tropospheric moistening. *Science* 310:841–844

615 Stratton RA, et al. (2018) A Pan-African Convection-Permitting Regional Climate Simulation with
616 the Met Office Unified Model: CP4-Africa. *J Clim* 31:3485–3508

617 Su H, Read WG, Jiang JH, Waters JW, Wu DL, Fetzer EJ (2006) Enhanced positive water vapor
618 feedback associated with tropical deep convection: New evidence from Aura MLS. *Geophys
619 Res Lett* 33:L05709

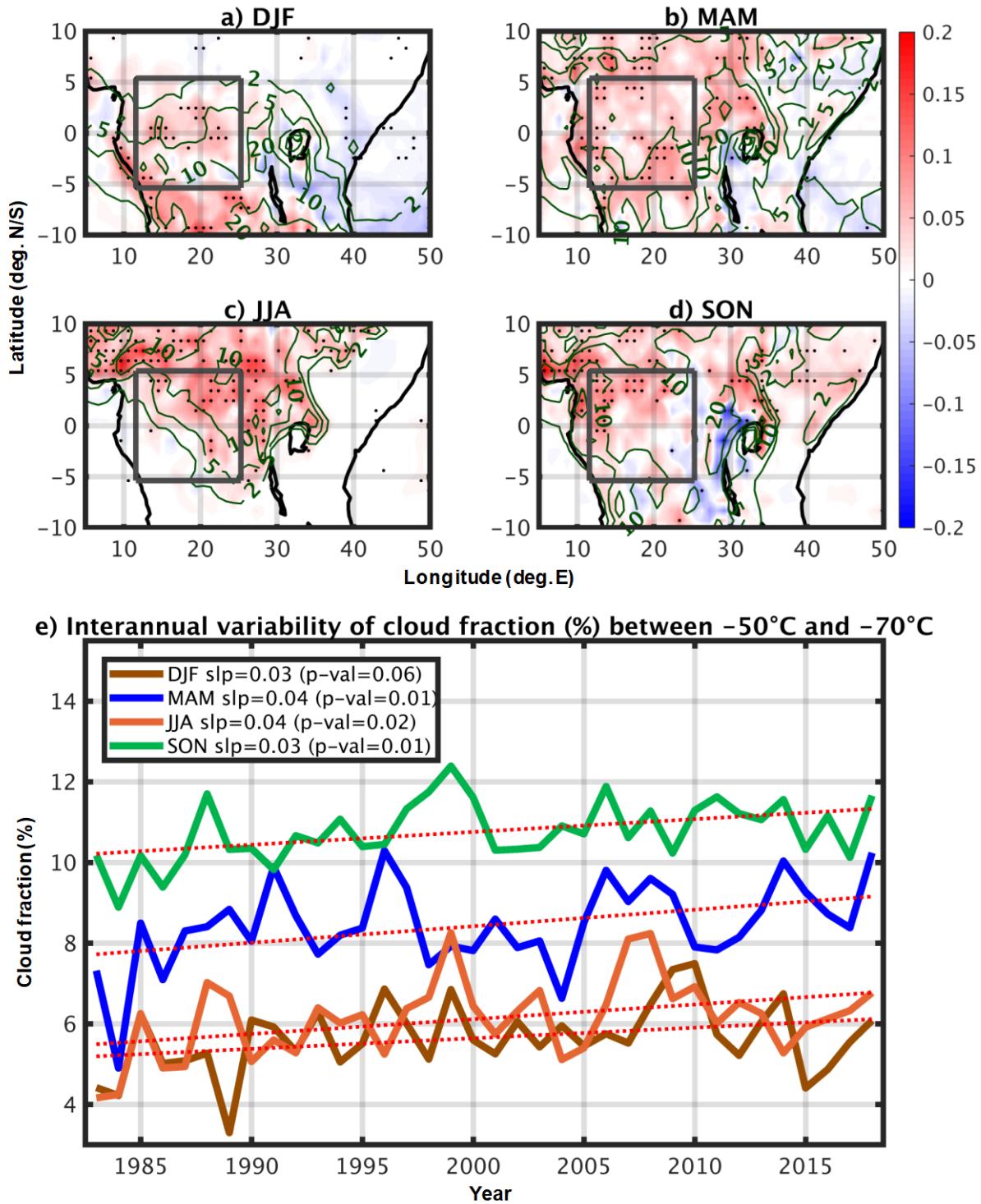
620 Tamoffo AT, Moufouma-Okia W, Dosio A, et al. (2019) Process-oriented assessment of RCA4
621 regional climate model projections over the Congo Basin under 1.5°C and 2°C global warming
622 levels: influence of regional moisture fluxes. *Clim Dyn* 53:1911–1935

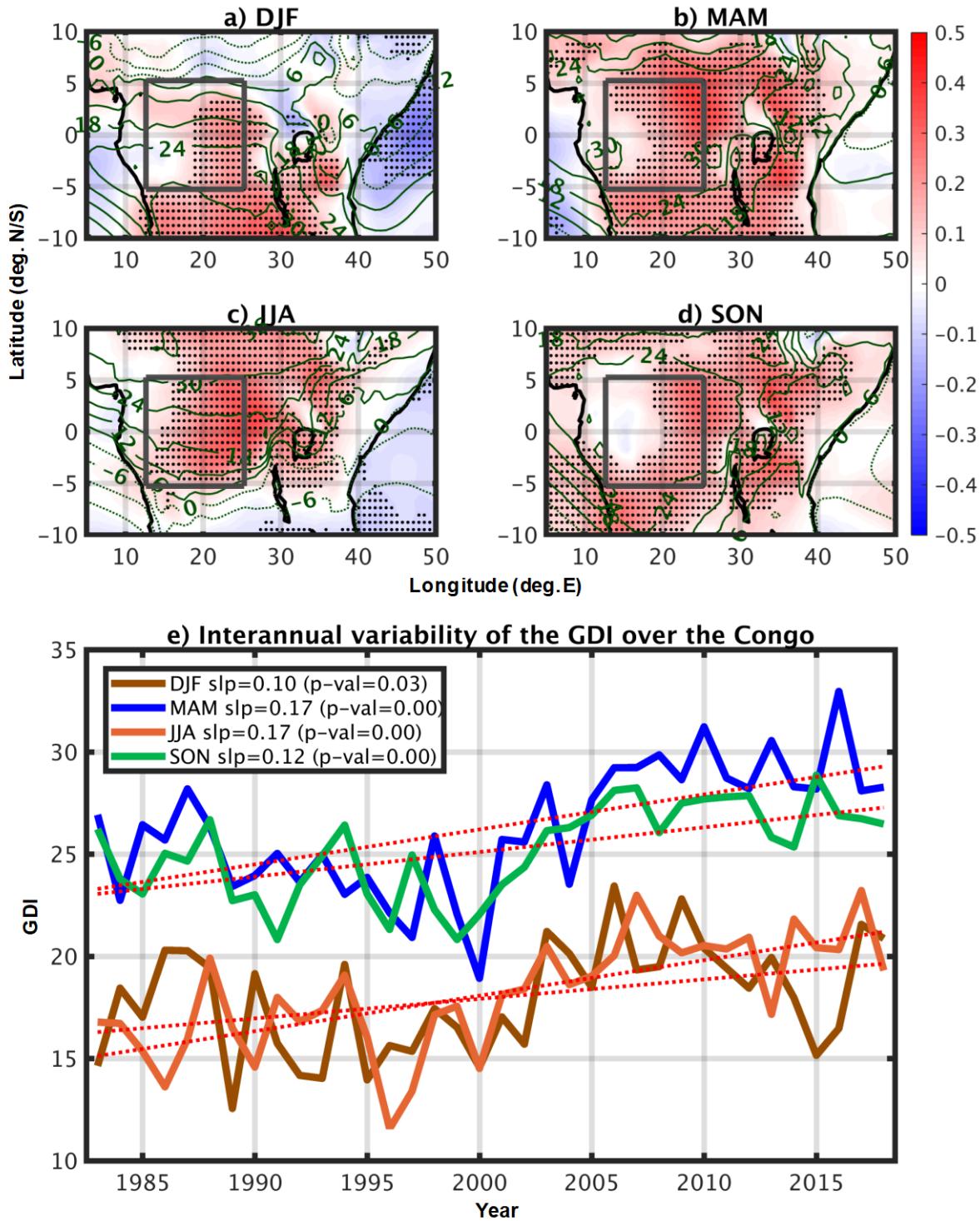
623 Taylor CM et al (2018) Earlier seasonal onset of intense Mesoscale Convective Systems in the
624 Congo Basin since 1999. *Geophys Res Lett* 45:13458–13467

625 Uma KN, Das SK (2019) Do the stability indices indicate the formation of deep convection? *Me-
626 teorol Atmos Phys* 131:1–10

627 Washington R, James R, Pearce H, Pokam WM, Moufouma-Okia W (2013) Congo Basin rainfall
628 climatology: can we believe the climate models? *Philos Trans R Soc B* 368:20120296

629 Wedam, GB, McMurdie LA, Mass CF (2009) Comparisons of model forecast skill over the east
630 and west coasts of the United States. *Wea Forecasting* 24:843–854

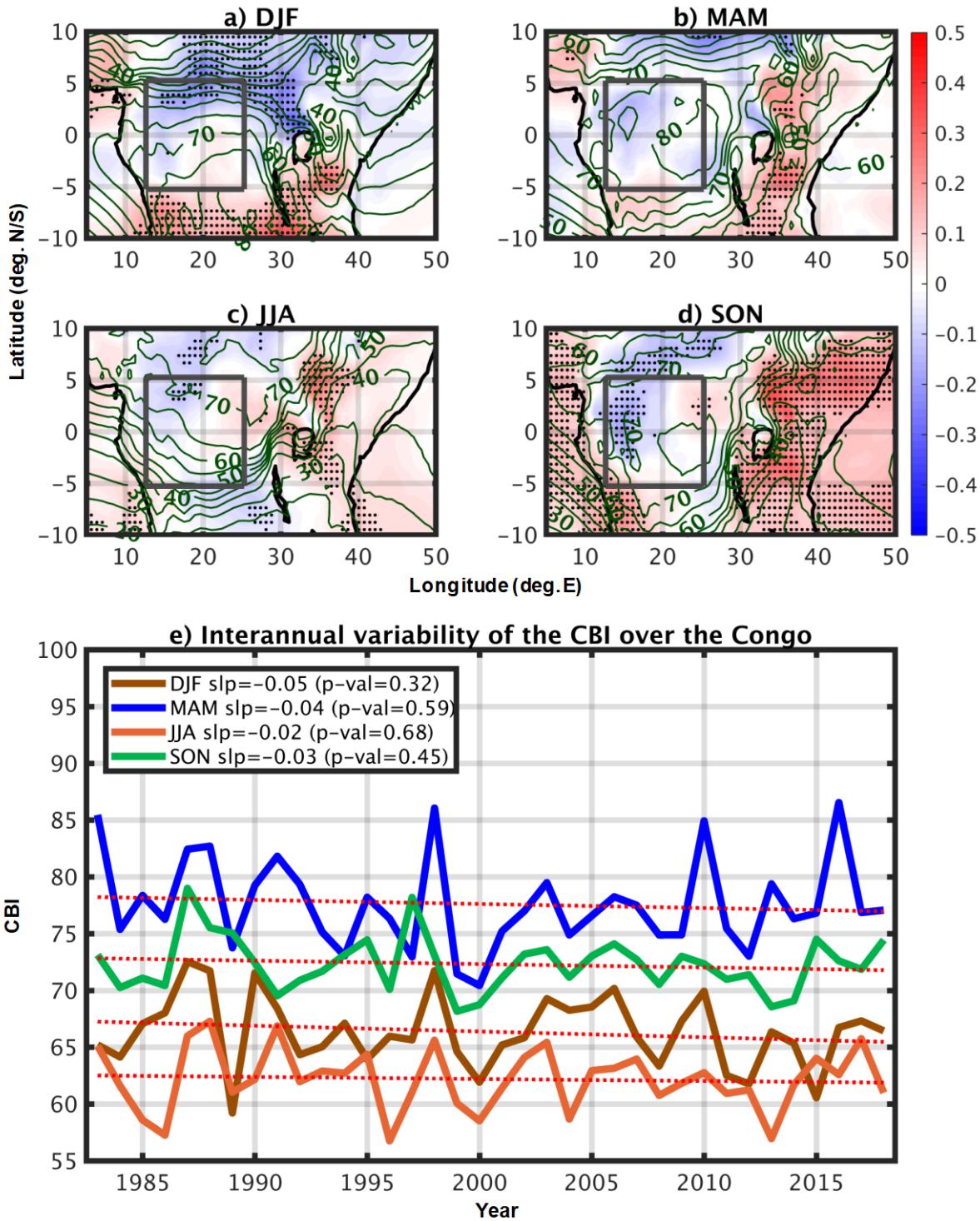

631 Yang GY, Slingo J (2001) The diurnal cycle in the Tropics. *Mon Wea Rev* 129:784–801


632 Zelinka, MD, Hartmann DL (2009) Response of humidity and clouds to tropical deep convection.
633 J Climate 22:2389– 2404.

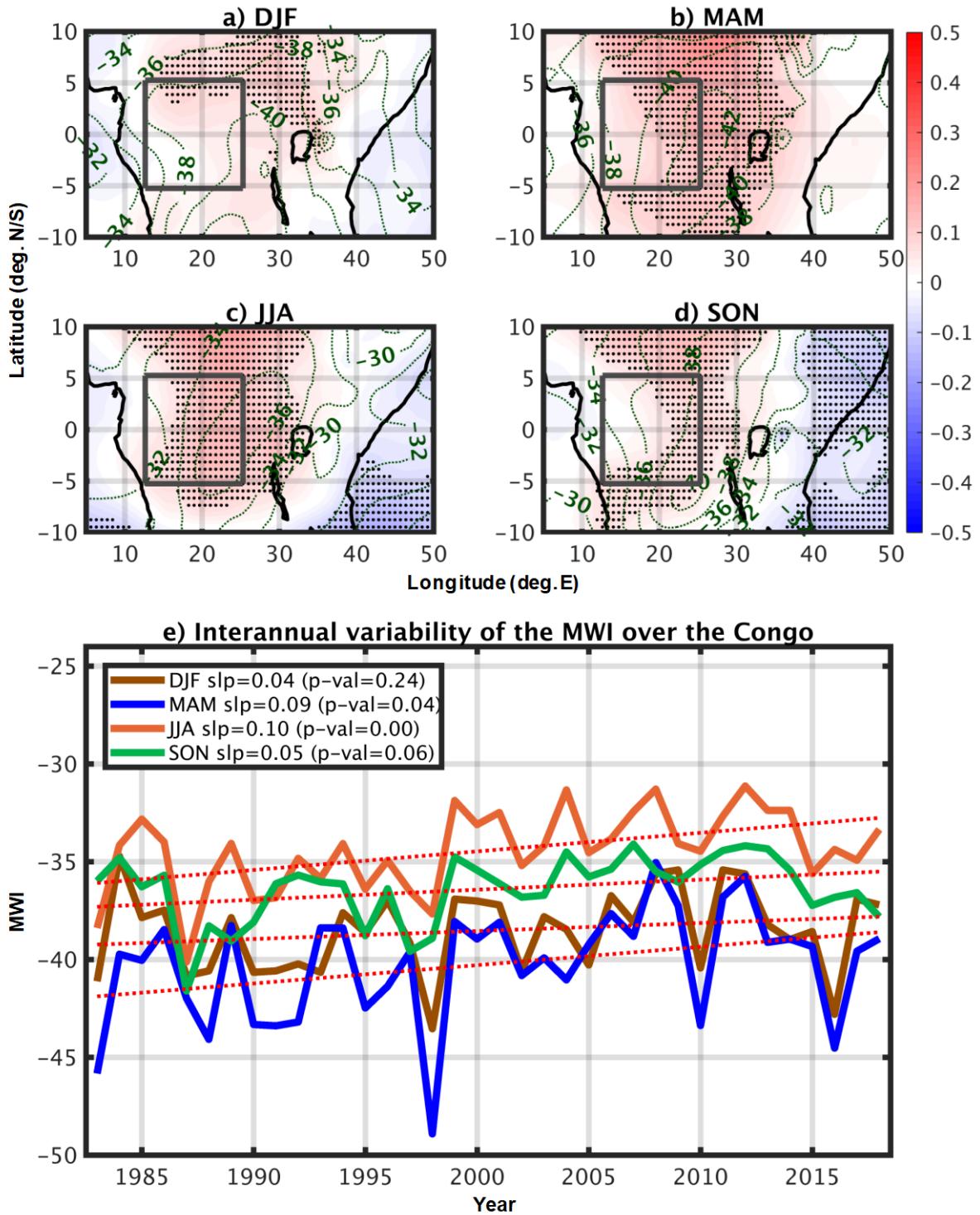
634 Zhao L, Dai A, Dong B (2018) Changes in global vegetation activity and its driving factors during
635 1982–2013. Agric For Meteorol 249:198-209

636 Zhou L et al (2014) Widespread decline of Congo rainforest greenness in the past decade. Nature
637 509:86–90

638 Zipser E, Liu C, Cecil D, Nesbitt S, Yorty D (2006) Where are the most intense thunderstorms on
639 Earth? Bull Am Meteorol Soc 87:1057–107



647
648
649
650
651


2Figure 2: (a)-(d) Seasonal trends in GDI (GDI yr^{-1}) at 12:00 UTC from 1983–2018. Gray boxes (5°N–5°S and 12°E–25°E) represent the Congo basin. Trends significant at $p < 0.05$ are shown using a black dot. The green lines show the climatological values of the GDI from 1983–2018. (e) Interannual variability of the GDI at 12:00 UTC from 1983–2018 over the Congo basin.

652

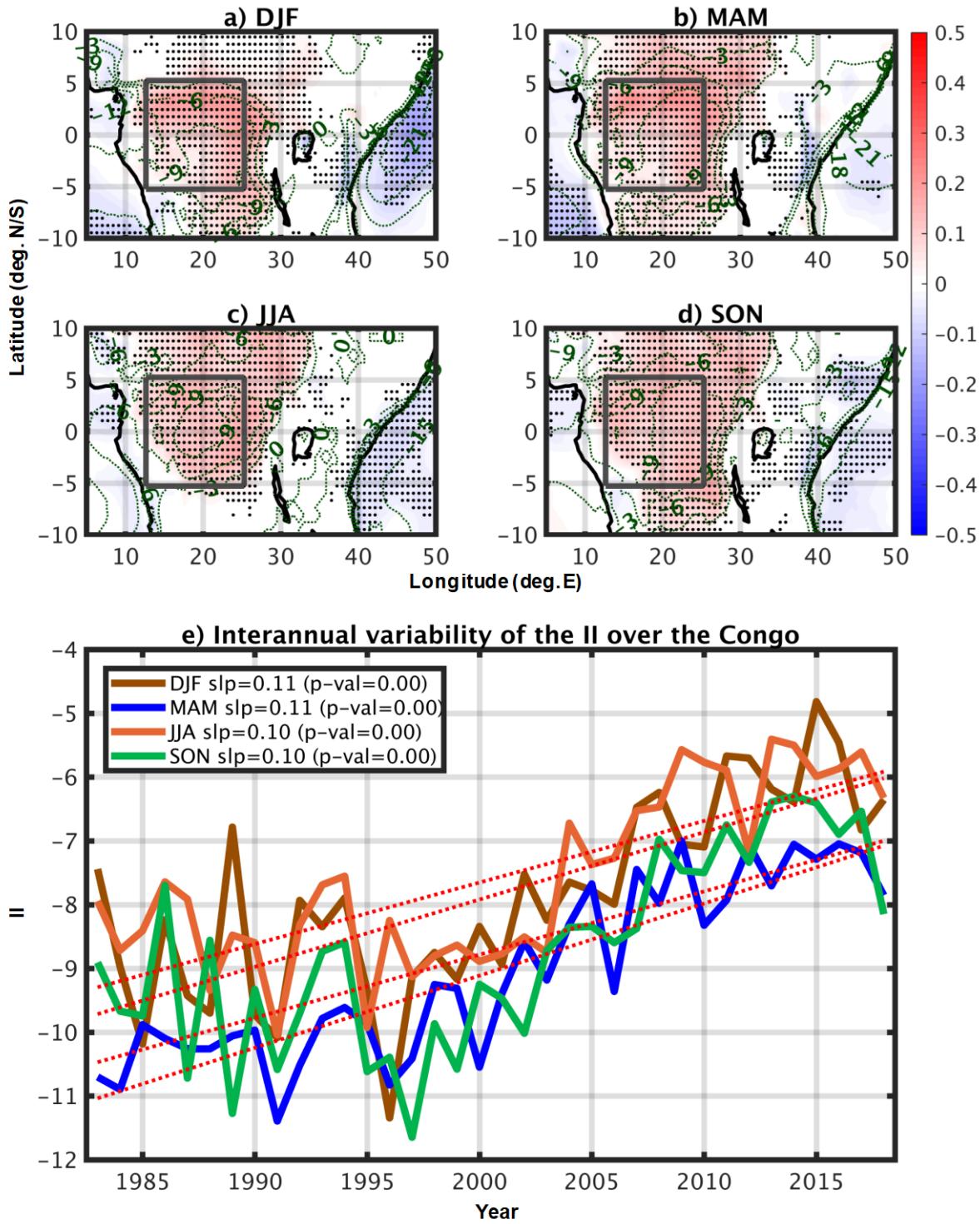

653
654
655
656
657

Figure 3: (a)-(d) Seasonal trends in CBI (CBI yr^{-1}) at 12:00 UTC from 1983–2018. Gray boxes (5°N – 5°S and 12°E – 25°E) represent the Congo basin. Trends significant at $p < 0.05$ are shown using a black dot. The green lines show the climatological values of the CBI from 1983–2018. (e) Interannual variability of the CBI at 12:00 UTC from 1983–2018 over the Congo basin.

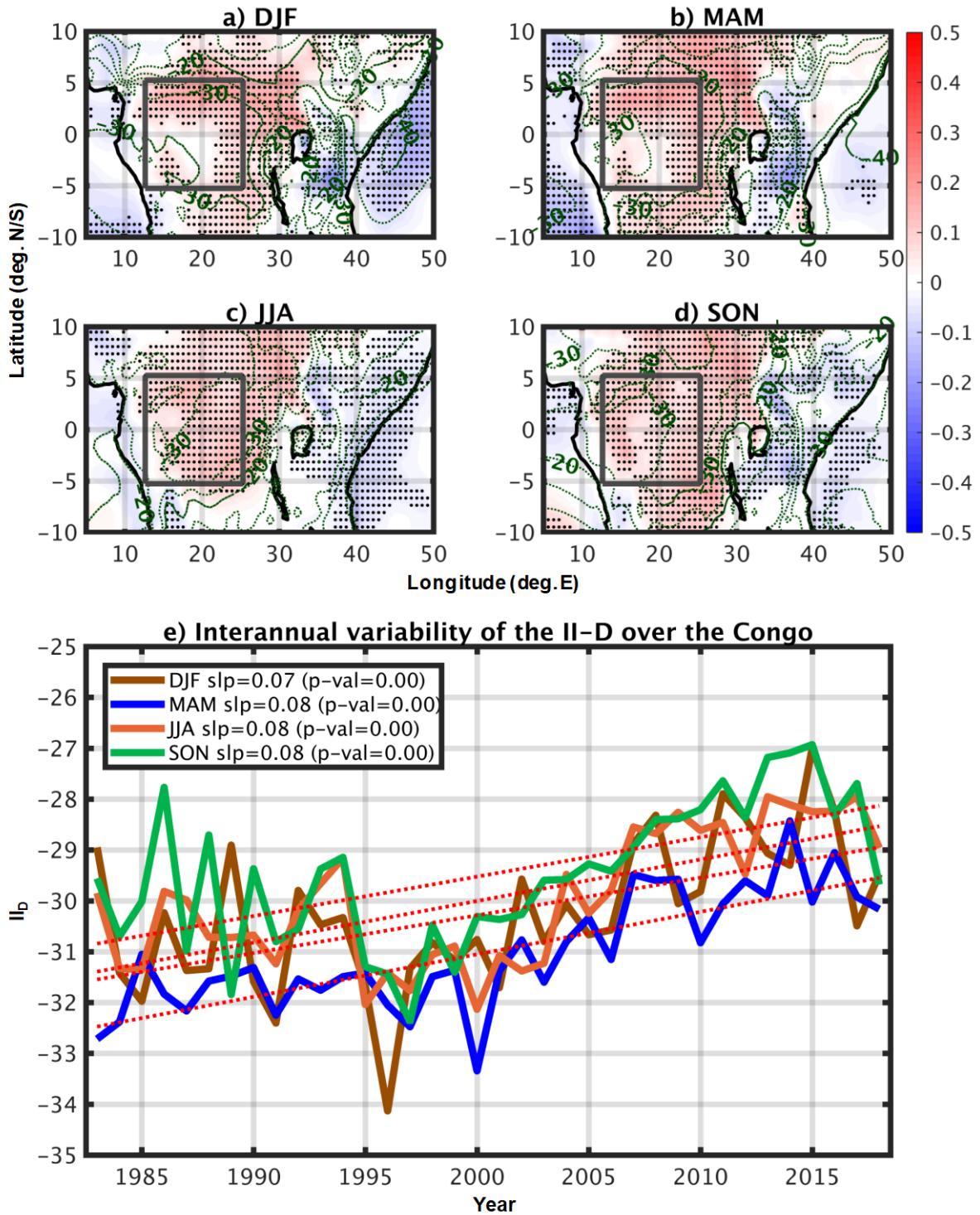
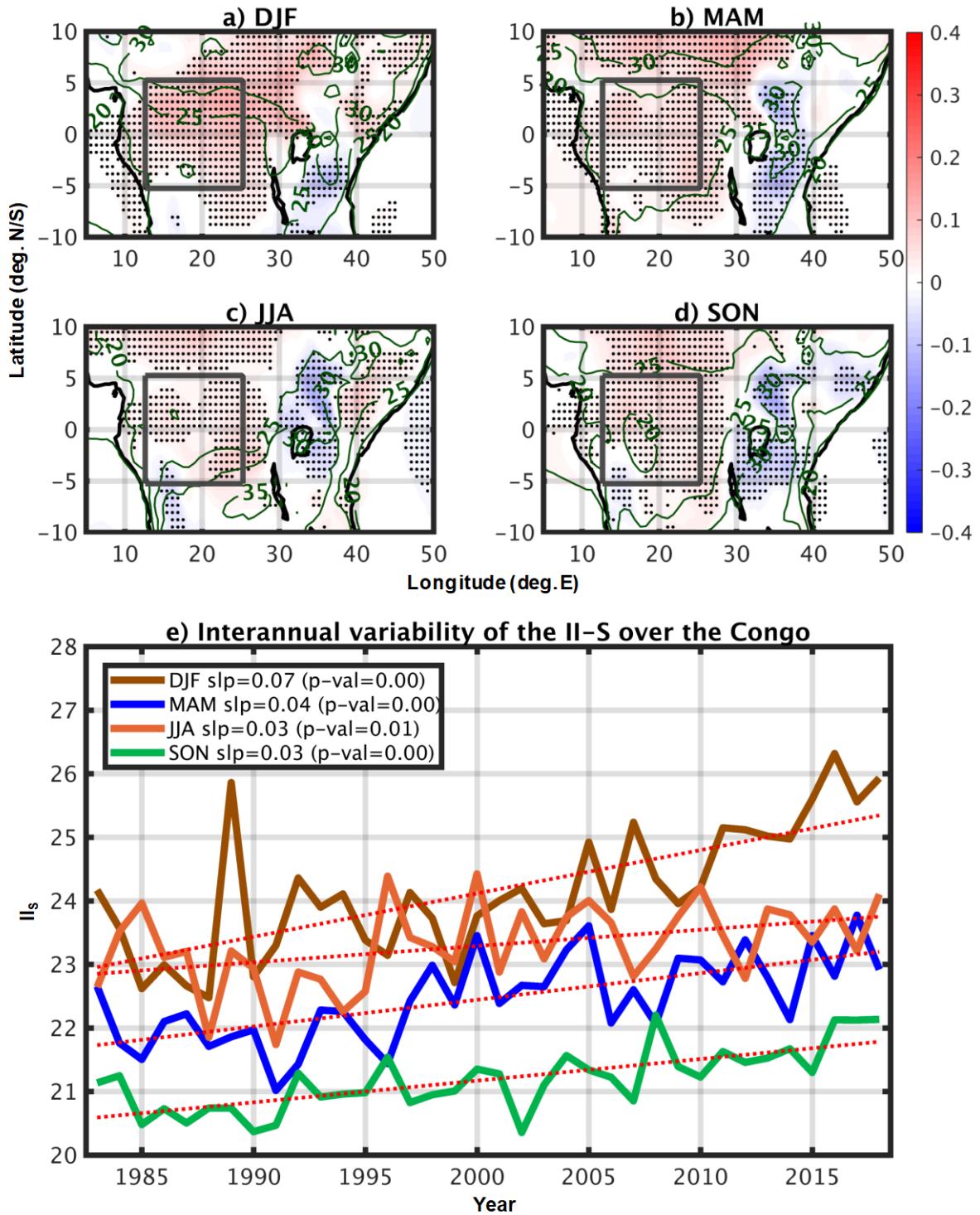
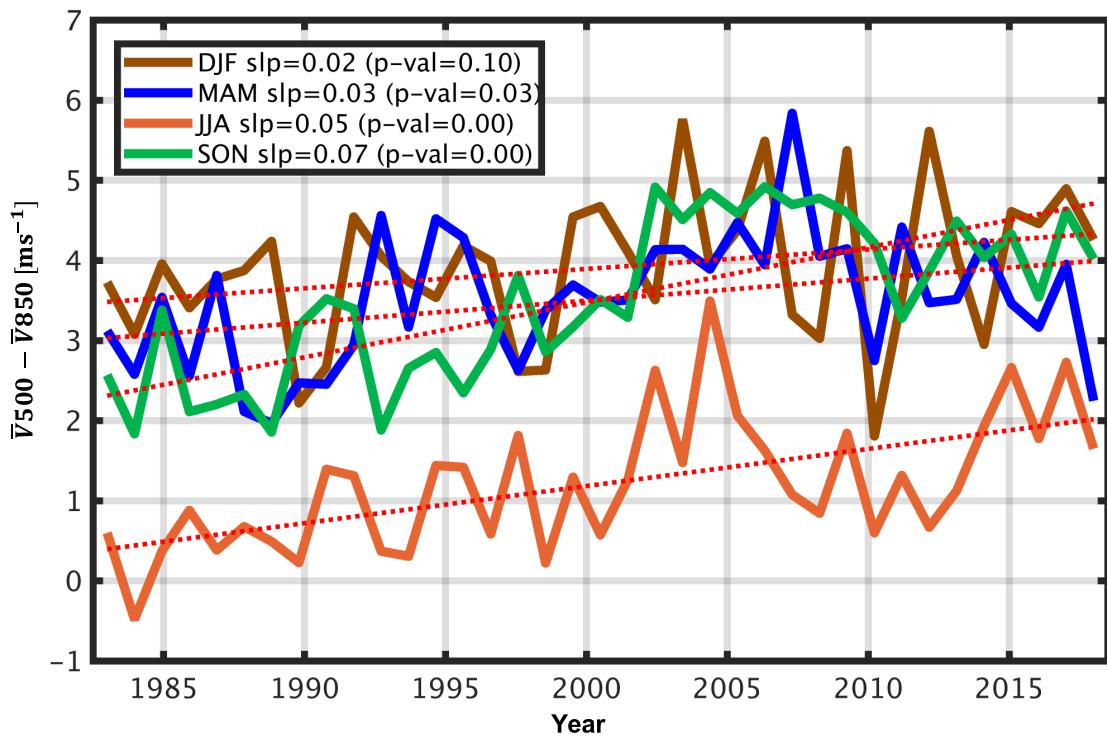

658
659
660
661
662

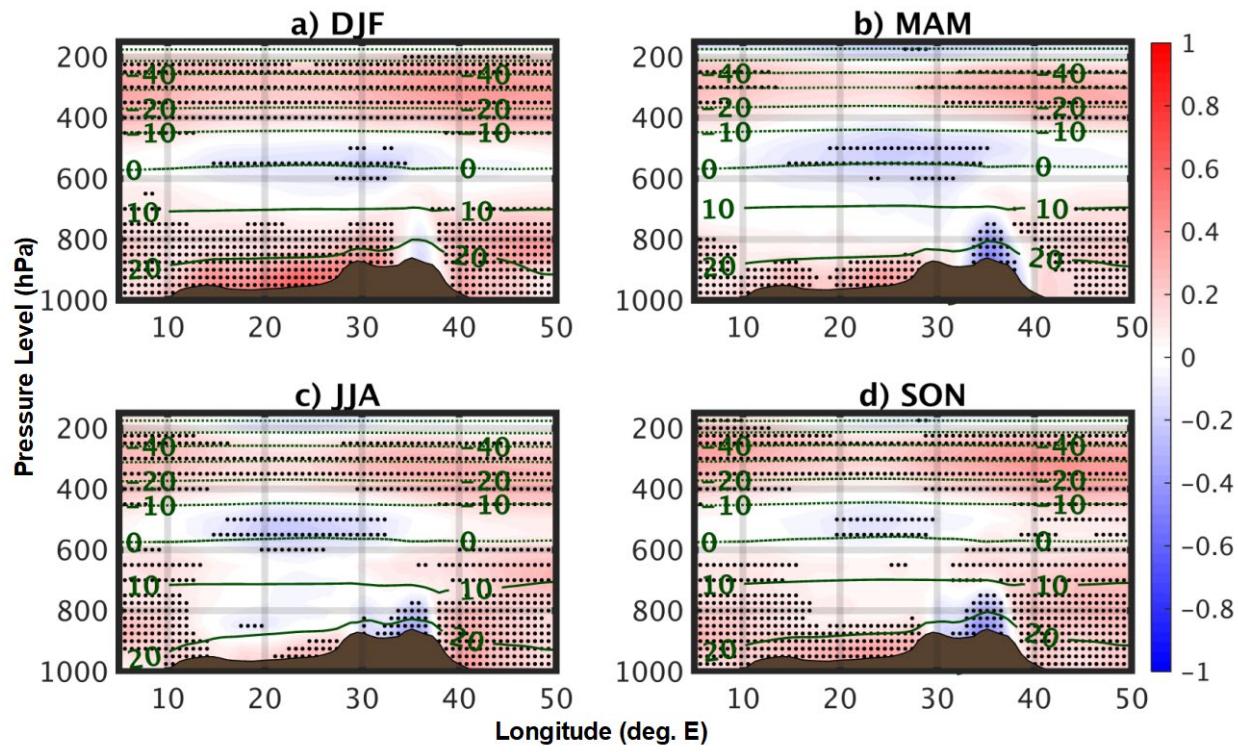
Figure 4: (a)-(d) Seasonal trends in MWI (MWI yr^{-1}) at 12:00 UTC from 1983–2018. Gray boxes (5°N - 5°S and 12°E - 25°E) represent the Congo basin. Trends significant at $p < 0.05$ are shown using a black dot. The green lines show the climatological values of the MWI from 1983–2018. (e) Interannual variability of the MWI at 12:00 UTC from 1983–2018 over the Congo basin.


663
664
665
666
667

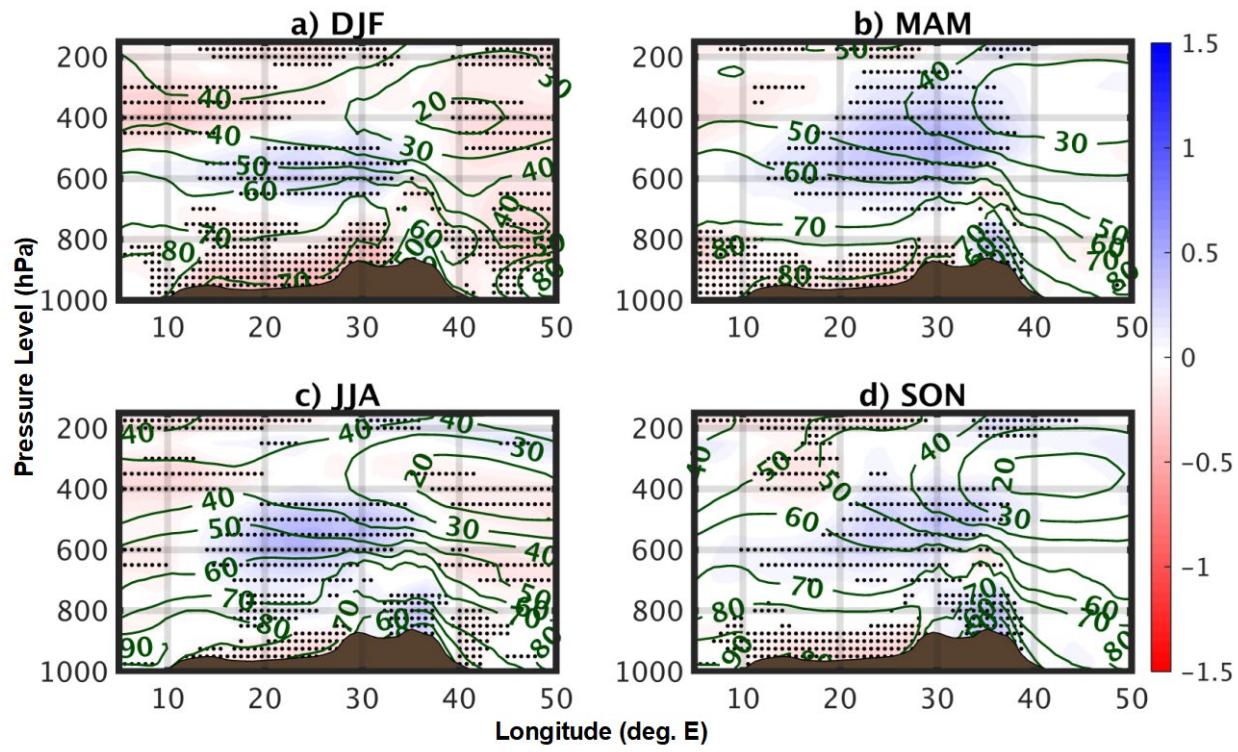

Figure 5: (a)-(d) Seasonal trends in II (II yr^{-1}) at 12:00 UTC from 1983–2018. Gray boxes (5°N–5°S and 12°E–25°E) represent the Congo basin. Trends significant at $p < 0.05$ are shown using a black dot. The green lines show the climatological values of the II from 1983–2018. (e) Interannual variability of the II at 12:00 UTC from 1983–2018 over the Congo basin.

668
669
670
671
672

Figure 6: (a)-(d) Seasonal trends in II_D (II_D yr⁻¹) at 12:00 UTC from 1983–2018. Gray boxes (5°N–5°S and 12°E–25°E) represent the Congo basin. Trends significant at $p < 0.05$ are shown using a black dot. The green lines show the climatological values of the II_D from 1983–2018. (e) Interannual variability of the II_D at 12:00 UTC from 1983–2018 over the Congo basin.

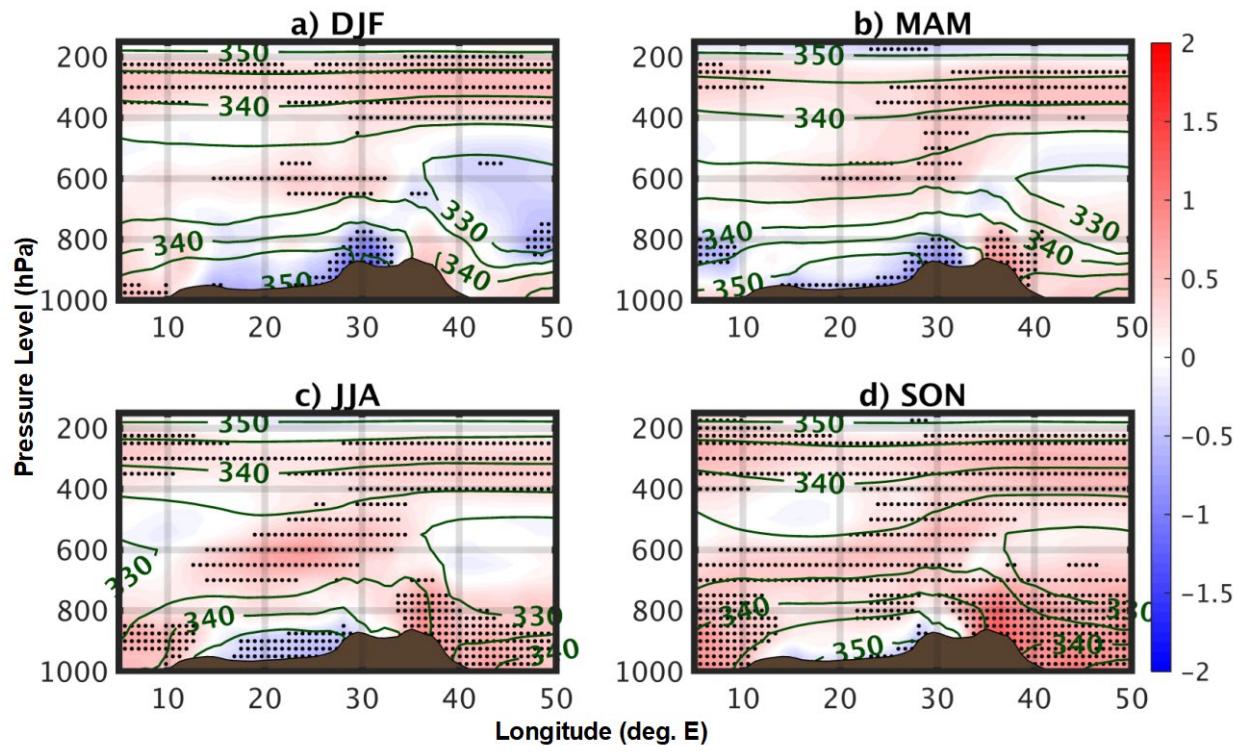


678
679
680


Figure 8: Interannual variability in wind shear between 500hPa and 850hPa (m/s yr^{-1}) at 12:00 UTC from 1983–2018 over the Congo basin.

681
682

683
684
685
686


Figure 9: Seasonal trends in temperature ($10^{-1} \times {}^{\circ}\text{C yr}^{-1}$) at 12:00 UTC from 1983–2018. Trends significant at $p < 0.05$ are shown using a black dot. The green lines show the climatological values ($^{\circ}\text{C}$) from 1983–2018.

687
688
689
690

Figure 10: Seasonal trends in relative humidity ($\% \text{ yr}^{-1}$) at 12:00 UTC from 1983–2018. Trends significant at $p < 0.05$ are shown using a black dot. The green lines show the climatological values from 1983–2018.

691

692
693
694
695

Figure 11: Seasonal trends in θ_e ($10^{-1} \times K \text{ yr}^{-1}$) at 12:00 UTC from 1983–2018. Trends significant at $p < 0.05$ are shown using a black dot. The green lines show the climatological values (K) from 1983–2018.

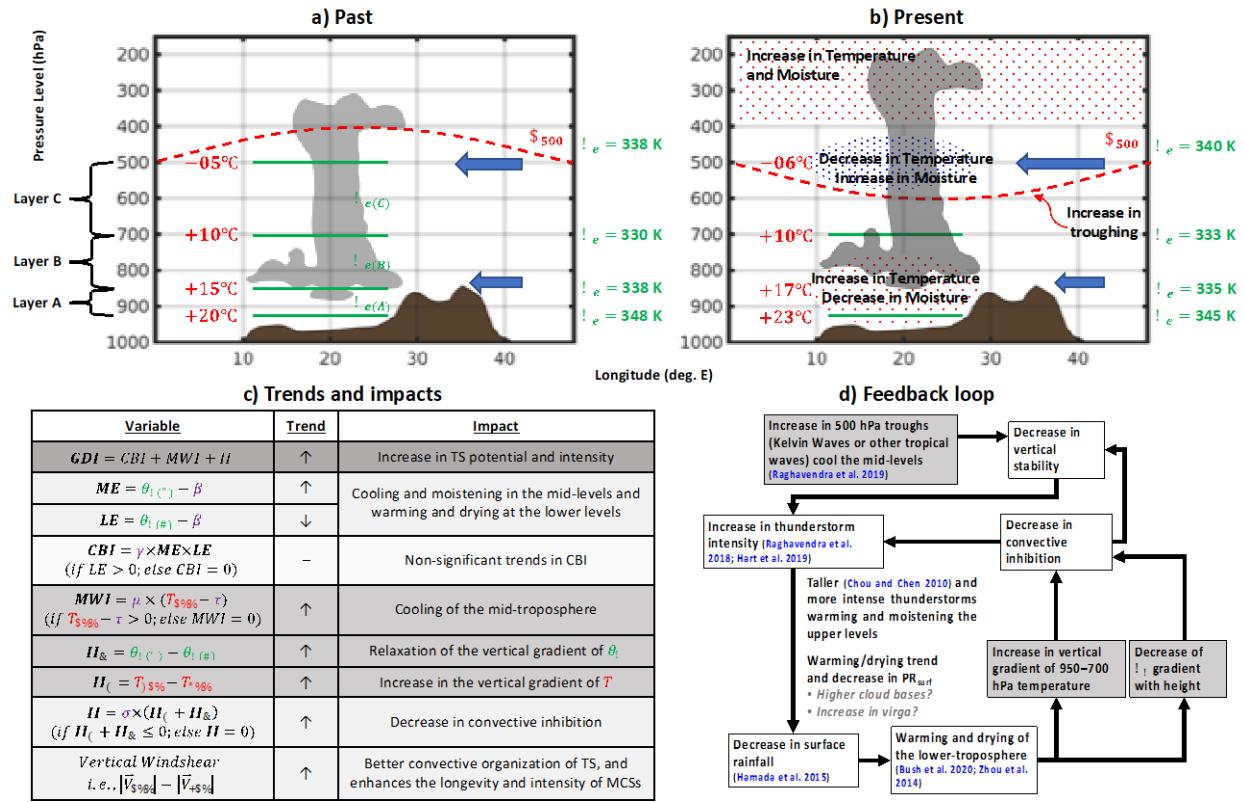


Figure 12: (a–b) Schematic of changes in temperature and moisture (diagnosed using the GDI) and wind shear from 1983–2018 leading to the observed increase in thunderstorm activity. (c) Diagnosed trends of the GDI and its sub-indices and their impacts on atmospheric temperature, moisture and stability. (d) Feedback loop of proposed factors leading to taller and more intense thunderstorms, in turn impacting atmospheric conditions and further enhancing deep convection.