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Abstract

Algorithmic decision making based on computer vision
and machine learning technologies continue to permeate
our lives. But issues related to biases of these models and
the extent to which they treat certain segments of the pop-
ulation unfairly, have led to concern in the general public.
It is now accepted that because of biases in the datasets we
present to the models, a fairness-oblivious training will lead
to unfair models. An interesting topic is the study of mecha-
nisms via which the de novo design or training of the model
can be informed by fairness measures. Here, we study
mechanisms that impose fairness concurrently while train-
ing the model. While existing fairness based approaches in
vision have largely relied on training adversarial modules
together with the primary classification/regression task, in
an effort to remove the influence of the protected attribute
or variable, we show how ideas based on well-known opti-
mization concepts can provide a simpler alternative. In our
proposed scheme, imposing fairness just requires specifying
the protected attribute and utilizing our optimization rou-
tine. We provide a detailed technical analysis and present
experiments demonstrating that various fairness measures
from the literature can be reliably imposed on a number of
training tasks in vision in a manner that is interpretable. A
project page is available on //GitHub.

1. Introduction
Fairness and non-discrimination is a core tenet of mod-

ern society. Driven by advances in vision and machine
learning systems, algorithmic decision making continues to
permeate our lives in important ways. Consequently, ensur-
ing that the decisions taken by an algorithm do not exhibit
serious biases is no longer a hypothetical topic, rather a key
concern that has started informing legislation [22] (e.g., Al-
gorithmic Accountability act). On one extreme, some types
of biases can be bothersome – a biometric access system

Figure 1: The heat maps of an unconstrained model and a fair model
are depicted in this figure. The models are trained to predict the target la-
bel Microwaving ( indicated by a (+)). The fair model attempts to make
unbiased predictions with respect to sensitive attribute gender. In this ex-
ample, it is observed that the heat maps of an unconstrained model are
concentrated around gender revealing attributes such as the face of per-
son. Alternatively, the heat maps of the fair model are concentrated around
non-gender revealing attributes, such as utensils and microwave, which
also happen to be more aligned to the target label.

could be more error-prone for faces of persons from certain
skin tones [9] or a search for homemaker or programmer
may return gender-stereotyped images [8]. But there are se-
rious ramifications as well – an individual may get pulled
aside for an intrusive check while traveling [47] or a model
may decide to pass on an individual for a job interview after
digesting his/her social media content[13, 24]. Biases in au-
tomated systems in estimating recidivism within the crim-
inal judiciary have been reported [35]. There is a growing
realization that these problems need to be identified and di-
agnosed, and then promptly addressed. In the worst case, if
no solutions are forthcoming, we must step back and recon-
sider the trade-off between the benefits versus the harm of
deploying such systems, on a case by case basis.

What leads to unfair learning models? One finds that
learning methods in general tend to amplify biases that exist
in the training dataset [43]. While this creates an incentive
for the organization training the model to curate datasets
that are “balanced” in some sense, from a practical stand-
point, it is often difficult to collect data that is balanced
along multiple predictor variables that are “protected”, e.g.,
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gender, race and age. If a protected feature is correlated
with the response variable, a learning model can cheat and
find representations from other features that are collinear or
a good surrogate for the protected variable. A thrust in cur-
rent research is devoted to devising ways to mitigate such
shortcuts. If one does not have access to the underlying al-
gorithm, a recent result [23] shows the feasibility of finding
thresholds that can impose certain fairness criteria. Such
a threshold search can be post-hoc applied to any learned
model. But in various cases, because of the characteris-
tics of the dataset, a fairness-oblivious training will lead to
biased models. An interesting topic is the study of mecha-
nisms via which the de novo design or training of the model
can be informed by fairness measures.

Some general strategies for Fair Learning. Motivated
by the foregoing issues, recent work which may broadly fall
under the topic of algorithmic fairness has suggested sev-
eral concepts or measures of fairness that can be incorpo-
rated within the learning model. While we will discuss the
details shortly, these include demographic parity [37], equal
odds and equal opportunities [23], and disparate treatment
[39]. In general, existing work can be categorized into a
few distinct categories. The first category of methods at-
tempts to modify the representations of the data to ensure
fairness. While different methods approach this question
in different ways, the general workflow involves imposing
fairness before a subsequent use of standard machine learn-
ing methods [10, 26]. The second group of methods ad-
justs the decision boundary of an already trained classifier
towards making it fair as a post-processing step while try-
ing to incur as little deterioration in overall performance as
possible [21, 20, 36]. While this procedure is convenient
and fast, it is not always guaranteed to lead to a fair model
without sacrificing accuracy. Part of the reason is that the
search space for a fair solution in the post-hoc tuning is
limited. Of course, we may impose fairness during train-
ing directly as adopted in the third category of papers such
as [40, 4], and the approach we take here. Indeed, if we
are training the model from scratch and have knowledge of
the protected variables, there is little reason not to incor-
porate this information directly during model training. In
principle, this strategy provides the maximum control over
the model. From the formulation standpoint, it is slightly
more involved because it requires satisfying a fairness con-
straint derived from one or more fairness measure(s) in the
literature, while concurrently learning the model parame-
ters. The difficulty varies depending both on the primary
task (shallow versus deep model) as well as the specific fair-
ness criteria. For instance, if one were using a deep network
for classification, we would need to devise ways to enforce
constraints on the output of the network, efficiently.

Scope of this paper and contributions. Many stud-
ies on fairness in learning and vision are somewhat recent

and were partly motivated in response to more than a few
controversial reports in the news media. As a result, the
literature on mathematically sound and practically sensi-
ble fairness measures that can still be incorporated while
training a model is still in a nascent stage. In vision, cur-
rent approaches have largely relied on training adversarial
modules in conjunction with the primary classification or
regression task, to remove the influence of the protected at-
tribute. In contrast, the contribution of our work is to pro-
vide a simpler alternative. We show that a number of fair-
ness measures in the literature can be incorporated by view-
ing them as constraints on the output of the learning model.
This view allows adapting ideas from constrained optimiza-
tion, to devise ways in which training can be efficiently per-
formed in a way that at termination, the model parameters
correspond to a fair model. For a practitioner, this means
that no changes in the architecture or model are needed:
imposing fairness only requires specifying the protected at-
tribute, and utilizing our proposed optimization routine.

2. A Primer on Fairness Functions
In this section, we introduce basic notations and briefly

review several fairness measures described in the literature.
Basic notations. We denote classifiers using h : x 7→ y
where x and y are random variables that represent the fea-
tures and labels respectively. A protected attribute is a ran-
dom variable s on the same probability space as x and y –
for example, s may be gender, age, or race. Collectively, a
training example would be z := (x, y, s). So, our goal is
to learn h (predict y given x) while imposing fairness-type
constraints over s. We will use H = {h1, h2, . . . , hN} to
denote a set/family of possible classifiers and ∆N to denote
the probability simplex in RN , i.e., ∆ := {q :

∑N
i=1 qi =

1, qi ≥ 0} where qi is the i-th coordinate of q.
Throughout the paper, we will assume that the distri-

bution of s has finite support. Unless explicitly specified,
we will assume that y ∈ {0, 1} in the main paper. For
each h ∈ H, we will use eh to denote the misclassifica-
tion rate of h and eH ∈ RN to be the vector containing
all misclassification rates. We will use superscript to de-
note conditional expectations. That is, if µh corresponds to
expectation of some function µ (that depends on h ∈ H),
then the conditional expectation/moment of µh with respect
to s will be denoted by µsh. With a slight abuse of nota-
tion, we will use µs0h to denote the elementary conditional
expectation µh|(s = s0) whenever it is clear from the
context. We will use dh to denote the difference between
the conditional expectation of the two groups of s, that is,
dh := µs0h −µ

s1
h . For example, let s be the random variable

representing gender, that is, s0 and s1 may correspond to
male and female. Then, esih corresponds to the misclassifi-
cation rate of h on group si, and dh = es0h − e

s1
h . Finally,

µ
si,tj
h := µh|(s = si, t = tj) denotes the elementary con-
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ditional expectation with respect to two random variables
s, t.

2.1. Fairness through the lens of Confusion Matrix

Recall that a fairness constraint corresponds to a perfor-
mance requirement of a classifier h on subgroups of features
x induced by a protected attribute s. For instance, say that
h predicts the credit-worthiness y of an individual x. Then,
we may require that eh be “approximately” the same across
individuals for different races given by s. Does it follow
that functions/metrics that are used to evaluate fairness may
be written in terms of the error of a classifier eh conditioned
on the protected variable s (or in other words esh)? Indeed,
it does turn out to be the case! In fact, many widely used
functions in practice can be viewed as imposing constraints
on the confusion matrix as our intuition suggests. We will
now discuss few common fairness metrics to illustrate this
idea.

(a) Demographic Parity (DP) [37]. A classifier h is said
to satisfy Demographic Parity (DP) if h(x) is independent
of the protected attribute s. Equivalently, h satisfies DP if
dh = 0 where we set µsih = esih (using notations introduced
above). DP can be seen as equating the total false positives
and false negatives between the confusion matrices of the
two groups. We denote DDP by the difference of the demo-
graphic parity between the two groups.

(b) Equality of Opportunity (EO) [23]. A classifier h
is said to satisfy EO if h(x) is independent of the protected
attribute s for y ∈ {0, 1}. Equivalently, h satisfies EO if
dyh = 0 where we set µsih = esih |(y ∈ {0, 1}) =: e

si,yj
h

conditioning on both s and y. Depending on the choice of
y in µsih , we get two different metrics: (i) y = 0 corre-
sponds to h with equal False Positive Rate (FPR) across si
[14], whereas (ii) y = 1 corresponds to h with equal False
Negative Rate (FNR) across si [14]. Moreover, h satisfies
Equality of Odds if d0

h + d1
h = 0, i.e., h equalizes both TPR

and FPR across s [23]. We denote the difference in EO by
DEO.

(c) Predictive Parity (PP) [11]. A classifier h satisfies
PP if the likelihood of making a misclassification among the
positive predictions of the classifier is independent of the
protected variable s. Equivalently, h satisfies PP if dŷh = 0
where we set µsihi

= esih |(ŷ = 1). It corresponds to match-
ing the False Discovery Rate between the confusion matri-
ces of the two groups.

3. How to learn fair models?
At a high level, the optimization problem that we seek to

solve is written as,

min
h∈H

Ez:(x,y,s)∼DL(h; (x, y)) subject to h ∈ Fdh , (1)

where L denotes the loss function that measures the accu-
racy of h in predicting y from x, and Fdh denotes the set

of fair classifiers. Our approach to solve (1) provably ef-
ficiently involves two main steps: (i) first, we reformulate
problem (1) to compute a posterior distribution q over H;
(ii) second, we incorporate fairness as soft constraints on
the output of q using the augmented Lagrangian of Problem
(1). We assume that we have access to sufficient number of
samples to approximate D and solve the empirical version
of Problem (1).

3.1. From Fair Classifiers to Fair Posteriors

The starting point of our development is based on the
following simple result that follows directly from the defi-
nitions of fairness metrics in Section 2:

Observation 1. Fairness metrics such as DP/EO are linear
functions of h, whereas PP takes a linear fractional form
due to the conditioning on ŷ, see [11].

Observation 1 immediately implies that Fdh can be rep-
resented using linear (fractional) equations in h. To simplify
the discussion, we will focus on the case when Fdh is given
by the DP metric. Hence, we can reformulate (1) as,

min
q∈∆

∑
i

qiehi
s.t. qi(µs0hi

− µs1hi
) = 0 ∀i ∈ [N ], (2)

where q represents a distribution overH.

3.2. Imposing Fairness via Soft Constraints

In general, there are two ways of treating the N con-
straints qidhi

= 0 in Problem (2) viz., (i) as hard con-
straints; or (ii) as soft constraints. Algorithms that can han-
dle explicit constraints efficiently require access to an effi-
cient oracle that can minimize a linear or quadratic function
over the feasible set in each iteration. Consequently, algo-
rithms that incorporate hard constraints come with high per-
iteration computational cost since the number of constraints
is (at least) linear in N , and is not applicable in large scale
settings. Hence, we propose to use algorithms that incor-
porate fairness as soft constraints. With these two minor
modifications, we will now describe our approach to solve
problem (2).

4. Fair Posterior from Proximal Dual
Following the reductions approach in [1], we first write

the Lagrangian dual problem of DP constrained risk mini-
mization problem (2) using dual variables λ as,

max
λ∈RN

min
q∈∆

L(q, λ) := 〈q, eh〉+ λ〈q, µs0h − µ
s1
h 〉 (3)

Interpreting the Lagrangian. Problem 3 can be under-
stood as a game between two players a q-player and a λ-
player [16]. We recall an important fact regarding the dual
problem (3):
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Algorithm 1 FairALM: Linear Classifier

1: Notations: Dual step size η
ht ∈ {h1, h2, . . . , hN}.

2: Input: Error Vector eH,
Conditional mean vector µsH

3: Initializations: λ0 = 0
4: for t = 0, 1, 2, ..., T do
5: (Primal) ht ← argmini(ehi + λt(µ

s0
hi
− µs1hi

))
6: (Dual) λt+1 ← λt + η(µs0ht

− µs1ht
)/t

7: end for
8: Output: hT

Fact 2. The objective function of the dual problem (3) is
always nonsmooth with respect to λ because of the inner
minimization problem in q.

Technically, there are two main reasons why optimizing
nonsmooth functions can be challenging [18]: (i) finding
a descent direction in high dimensions N can be challeng-
ing; and (ii) subgradient methods can be slow to converge in
practice. Due to these difficulties arising from Fact 2, using
a first order algorithm such as gradient descent to solve the
dual problem in (3) directly can be problematic, and may be
suboptimal.

Accelerated optimization using Dual Proximal Func-
tions. To overcome the difficulties due to the nonsmooth-
ness of the dual problem, we propose to augment the La-
grangian with a proximal term. Specifically, for some λT ,
the augmented Lagrangian function can be written as,

LT (q, λ) = 〈q, eh〉+ λ〈q, µs0h − µ
s1
h 〉 −

1
2η (λ− λT )2 (4)

Note that, as per our simplified notation, LT ≡ LλT
. The

following lemma relates the standard Lagrangian in (3) with
its proximal counterpart in (4).

Lemma 3. At the optimal solution (q∗, λ∗) to L, we have
maxλ minq∈∆ L = maxλ minq∈∆ Lλ∗ .

This is a standard property of proximal objective func-
tions, where λ∗ forms a fixed point of minq∈∆ Lλ∗(q, λ∗)
(section 2.3 of [30]). Intuitively, Lemma 3 states that L and
LT are not at all different for optimization purposes.

Remark 4. While the augmented Lagrangian LT still may
be nonsmooth, the proximal (quadratic) term can be ex-
ploited to design provably faster optimization algorithms as
we will see shortly.

5. Our Algorithm – FairALM
It is common [1, 16, 27] to consider the minimax prob-

lem in (4) as a zero sum game between the λ-player and
the q-player. The Lagrangian(s) LT (or L) specify the

cost which the q-player pays to the λ-player after the lat-
ter makes its choice. An iterative procedure leads to a re-
gret minimizing strategy for the λ-player [34] and a best
response strategy for the q-player [1]. While the q-player’s
move relies on the availability of an efficient oracle to solve
the minimization problem, LT (q, λ), being a linear program
in q makes it less challenging. We describe our algorithm in
Alg. 1 and call it FairALM: Linear Classifier.

5.1. Convergence Analysis

As the game with respect to λ is a maximization prob-
lem, we get a reverse regret bound as shown in the following
Lemma. Due to space, proofs appear in the Appendix.

Lemma 5. Let rt denote the reward at each round of the
game. The reward function ft(λ) is defined as ft(λ) =
λrt− 1

2η (λ−λt)2. We choose λ in round T +1 to maximize

the cumulative reward: λT+1 = argmaxλ
∑T
t=1 ft(λ).

Define L = maxt |rt|. The following bound on the cumula-
tive reward holds, for any λ

∑T
t=1

(
λrt − 1

2η (λ− λt)2

)
≤
∑T
t=1 λtrt + η

2L
2O(log T ) (5)

The above lemma indicates that the cumulative reward
grows in time as O(log T ). The proximal term in the aug-
mented Lagrangian gives us a better bound than an `2 or an
entropic regularizer (which provides a

√
T bound [34]).

Next, we evaluate the cost function LT (q, λ) after T
rounds of the game. We observe that the average play of
both the players converges to a saddle point with respect to
LT (q, λ). We formalize this in the following theorem,

Theorem 6. Recall that dh represents the difference of con-
ditional means. Assume that ||dh||∞ ≤ L and consider
T rounds of the game described above. Let the average
plays of the q-player be q̄ = 1

T

∑T
t=1 qt and the λ-player be

λ̄ = 1
T

∑T
t=1 λt. Then under the following conditions on q,

λ and η, we have LT (q̄, λ̄) ≤ LT (q, λ̄)+ν and LT (q̄, λ̄) ≥
LT (q̄, λ)− ν
• If η = O(

√
B2T

L2(log T+1) ), ν = O(
√

B2L2(log T+1)
T );

∀|λ| ≤ B, ∀q ∈ ∆

• If η = 1
T , ν = O(L

2(log T+1)2

T ); ∀λ ∈ R, ∀q ∈ ∆

The above theorem indicates that the average play of the
q-player and the λ-player reaches a ν-approximate saddle
point. Our bounds for ν = 1

T and λ ∈ R are strictly better
than [1].

5.2. Can we train Fair Deep Neural Networks by
adapting Alg. 1?

The key difficulty from the analysis standpoint we face
in extending these results to the deep networks setting is
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Algorithm 2 FairALM: DeepNet Classifier
1: Notations: Dual step size η, Primal step size τ
2: Input: Training Set D
3: Initializations: λ0 = 0, w0

4: for t = 0, 1, 2, ..., T do
5: Sample z ∼ D
6: Pick vt ∈ ∂

(
êhw (z)+(λt+η)µ̂

s0
hw

(z)−(λt−η)µ̂s1
hw

(z)
)

7: (Primal) wt ← wt−1 − τvt
8: (Dual) λt+1 ← λt + η(µ̂s0

hwt
(z)− µ̂s1

hwt
(z))

9: end for
10: Output: wT

that the number of classifiers |H| may be exponential in
number of nodes/layers. This creates a potential problem
in computing Step 5 of Algorithm 1 – if viewed mech-
anistically, is not practical since an epsilon net over the
family H (representable by a neural network) is exponen-
tial in size. Interestingly, notice that we often use over-
parameterized networks for learning. This is a useful fact
here because it means that there exists a solution where
argmini(ehi + λtdhi) is 0. While iterating through all his
will be intractable, we may still able to obtain a solution
via standard stochastic gradient descent (SGD) procedures
[42]. The only unresolved question then is if we can do
posterior inference and obtain classifiers that are “fair”. It
turns out that the above procedure provides us an approxi-
mation if we leverage two facts: first, SGD can find the min-
imum ofL(h, λ) with respect to h and second, recent results
show that SGD, in fact, performs variational inference, im-
plying that the optimization provides an approximate pos-
terior [12]. Having discussed the issue of the exponential
sized |H| – for which we settle for an approximate poste-
rior – we make three additional adjustments to the algorithm
to make it suitable for training deep networks. First, the
non-differentiable indicator function 1[·] is replaced with a
smooth surrogate function (such as a logistic function). Sec-
ond, as it is hard to evaluate eh/µsh due to unavailability of
the true data distribution, we instead calculate their empir-
ical estimates z = (x; y; s), and denote it by êh(z)/µ̂sh(z).
Third, by exchanging the “max” and “min” in (3), we ob-
tain an objective that upper-bounds our current objective
in (3). This provides us with a closed-form solution to λ
thus reducing the minmax objective to a single simpler min-
imization problem. We present the algorithm for deep neu-
ral network training in Alg. 2 and call it FairALM: DeepNet
Classifier.

6. Experiments

A central theme in our experiments is to assess whether
our proposed algorithm, FairALM, can indeed obtain
meaningful fairness measure scores without compromising

the test set performance. We evaluate FairALM on a
number of problems where the dataset reflects certain
inherent societal/stereotypical biases. Our evaluations are
also designed with a few additional goals in mind.

Overview. Our first experiment on the CelebA dataset
seeks to predict the value of a label for a face image while
controlling for certain protected attributes (gender, age).
We discuss how prediction of some labels is unfair in an
unconstrained model and contrast with our FairALM. Next,
we focus on the label where predictions are the most unfair
and present comparisons against methods available in the
literature. For our second experiment, we use the ImSitu
dataset where images correspond to a situation (activities,
verb). Expectedly, some activities such as driving or
cooking are more strongly associated with a specific
gender. We inspect if an unconstrained model is unfair
when we ask it to learn to predict two gender correlated
activities/verbs. Comparisons with baseline methods will
help measure FairALM’s strengths/weaknesses. We can
use heat map visualizations to qualitatively interpret the
value of adding fairness constraints. We threshold the
heat-maps to get an understanding of a general behavior of
the models. Our third experiment addresses an important
problem in medical/scientific studies. Small sample sizes
necessitate pooling data from multiple sites or scanners
[46], but introduce a site or scanner specific nuisance
variable which must be controlled for – else a deep (also,
shallow) model may cheat and use site specific (rather than
disease-specific) artifacts in the images for prediction even
when the cohorts are age or gender matched [19]. We study
one simple setting here: we use FairALM to mitigate site
(hospital) specific differences in predicting “tuberculosis”
from X-ray images acquired at two hospitals, Shenzhen and
Montgomery (and recently made publicly available [25]).

In all the experiments, we impose Equality of Oppor-
tunity (EO) constraint (defined in Section 2.1). We adopt
NVP (novel validation procedure) used in [17] to evaluate
FairALM. It is a two-step procedure: first, we search for the
hyper-parameters that achieve the best accuracy, and then,
we report the minimum fairness measure (DEO) for accu-
racies within 90% of the highest accuracy. This offers some
robustness of the reported numbers to hyper-parameter
selection. We describe these experiments one by one.

Remark from authors. Certain attributes such as
attractiveness, obtained via crowd-sourcing, may have
socio-cultural ramifications. Similarly, the gender attribute
in the dataset is binary (male versus female) which may
be insensitive to some readers. We clarify that our goal
is to present evidence showing that our algorithm can
impose fairness in a sensible way on datasets used in the
literature rather than the higher level question of whether

5



Protected: GENDER Protected: YOUNG

Label U F Label U F

Attractive 28 3 Attractive 8 1

Bangs 4 2 Heavy Makeup 11 1

High Cheekbones 18 0 High Cheekbones 7 0

Mouth Slightly open 11 3 Male 6 0

Smiling 10 0 Wearing Lipstick 12 4

Table 1: Identifying Unfair Labels in CelebA dataset. We report the
DEO measure for the Unconstrained model (U) and FairALM model (F).
Using a 3-layers ReLU network, we determine the labels in CelebA dataset
that are biased with respect to gender (left) and the attribute young (right).
Labels with a precision of at least 70% and a DEO of at least 4% on the
unconstrained model are reported here.

our community needs to invest in culturally sensitive
datasets with more societally relevant themes.

6.1. CelebA dataset

Data and Setup. CelebA [28] consists of 200K celebrity
face images from the internet annotated by a group of paid
adult participants [7]. There are up to 40 labels available in
the dataset, each of which is binary-valued.

Quantitative results. We begin our analysis by predict-
ing each of the 40 labels with a 3-layer ReLU network. The
protected variable, s, are the binary attributes like Male and
Young representing gender and age respectively. We train
the SGD algorithm for 5-epochs and select the labels pre-
dicted with at least at 70% precision and with a DEO of at
least 4% across the protected variables. The biased set of
labels thus estimated are shown in Table 1. These labels are
consistent with other reported results [32]. It is important
to bear in mind that the bias in the labels should not be at-
tributed to its relatedness to a specific protected attributed
alone. The cause of bias could also be due to the skew in
the label distributions. When training a 3-layer ReLU net
with FairALM, the precision of the model remained almost
the same (±5% ) while the DEO measure reduced signifi-
cantly as indicated in the Table 1. Next, choosing the most
unfair label in Table 1 (i.e., attractive), we train a ResNet18
for a longer duration of about 100 epochs and contrast the

Figure 2: Comparison to `2 penalty . FairALM has a stable training
profile in comparison to naive `2 penalty. The target label is attractiveness
and protected attribute is gender.

Gender Unconstrained FairALM Gender Unconstrained FairALM

Gender Unconstrained FairALM Gender Unconstrained FairALM

Figure 3: Interpretable Models for CelebA. Unconstrained/FairALM
predict label attractiveness while controlling gender. The heatmaps of Un-
constrained model overlaps with gender classification task indicating gen-
der leak. FairALM consistently picks non-gender revealing features of the
face. Interestingly, these regions are on the left side in accord with psycho-
logical studies that the Face’s left side is more attractive [6].

performance with a simple `2-penalty baseline. The train-
ing profile is observed to be more stable for FairALM as
indicated in Fig. 2. This finding is consistent with the sem-
inal works such as [5, 29] that discuss the ill-conditioned
landscape of non-convex penalties. Comparisons to more
recent works such as [33, 31] is provided in Table 2. Here,
we present a new state-of-the-art result for the DEO mea-
sure with the label attractive and protected attribute gender.

Qualitatively assessing Interpretability. While the
DEO measure obtained by FairALM is lower, we can ask
an interesting question: when we impose the fairness con-
straint, precisely which aspects of the image are no longer
“legal” for the neural network to utilize? This issue can
be approached via visualizing activation maps from models
such as CAM [45]. As a representative example, our analy-
sis suggests that in general, an unconstrained model uses the
entire face image (including the gender-revealing parts). We
find some consistency between the activation maps for at-
tractiveness and activation maps of an unconstrained model
trained to predict gender! In contrast, when we impose the
fairness constraint, the corresponding activation maps turn
out to be clustered around specific regions of the face which
are not gender revealing. In particular, a surprising finding
was that the left regions in the face were far more prominent
which turns out to be consistent with studies in psychology
[6].

Fairness
GAN[33]

Quadrianto
etal[31] FairALM

ERR 26.6 24.1 24.5
DEO 22.5 12.4 10.4

FNR Female 21.2 12.8 6.6
FNR Male 43.7 25.2 17.0

Table 2: Quantitative Results on CelebA. FairALM attains a lower
DEO measure and improves the testset errors (ERR). The target label is
attractiveness and protected attribute is gender.

6



Figure 4: Interpretability in ImSitu. The activation maps indicate that FairALM conceals gender revealing attributes in an image. Moreover, the
attributes are more aligned with label of interest. The target class predicted is indicated by a +. The activation maps in the examples shown in this figure
are representative of the general behavior on this dataset. More examples can be found in the Appendix.

Summary. FairALM minimized the DEO measure with-
out compromising the test error. It has a more stable train-
ing profile than an `2 penalty and is competitive with re-
cent fairness methods in vision. The activation maps in
FairALM concentrate on non-gender revealing features of
the face when controlled for gender.

6.2. Imsitu Dataset

Data and Setup. ImSitu [38] is a situation recognition
dataset consisting of ∼ 100K color images taken from the
web. The annotations for the image is provided as a sum-
mary of the activity in the image and includes a verb de-
scribing it, the interacting agents and their roles. The pro-
tected variable in this experiment is gender. Our objective
is to classify a pair of verbs associated with an image. The
pair is chosen such that if one of the verbs is biased towards
males then the other would be biased towards females. The
authors in [44] report the list of labels in the ImSitu dataset
that are gender biased: we choose our verb pairs from this
list. In particular, we consider the verbs Cooking vs Driv-
ing, Shaving vs Moisturizing, Washing vs Saluting and As-
sembling vs Hanging. We compare our results against mul-
tiple baselines such as (1) Unconstrained (2) `2-penalty,

the penalty applied on the DEO measure (3) Re-weighting,
a weighted loss functions where the weights account for
the dataset skew (4) Adversarial [41] (5) Lagrangian [44]
(6) Proxy-Lagrangian [15]. The supplement includes more
details of the baseline methods.

Quantitative results. From Fig. 5, it can be seen that
FairALM reaches a zero DEO measure very early in train-
ing and attains better test errors than an unconstrained
model. Within the family of Lagrangian methods such as
[44, 15], FairALM performs better on verb pair ‘Shaving vs
Moisturizing’ in both test error and DEO measure as in-
dicated in Table 3 . While the results on the other verb
pairs are comparable, FairALM was observed to be more
stable to different hyper-parameter choices. This finding is
in accord with recent studies by [2] who prove that proximal
function models are robust to step-size selection. Detailed
analysis is provided in the supplement. Turning now to an
adversarial method such as [44], results in Table 3 show
that the DEO measure is not controlled as competently as
FairALM. Moreover, complicated training routines and un-
reliable convergence [3] makes model-training harder.

Interpretable Models. We used CAM [45] to inspect
the image regions used by the model for target prediction.
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(a) Cooking (+) Driving (-) (b) Assembling (+) Hanging (-)

Figure 5: Training Profiles. FairALM achieves minimum DEO early in training and remains competitive on testset errors. More plots in appendix.

Cooking(+)

Driving(-)

Shaving(+)

Moisturize(-)

Washing(+)

Saluting(-)

Assembling(+)

Hanging(-)

ERR DEO ERR DEO ERR DEO ERR DEO
Unconstrained 17.9 7.1 23.6 4.2 12.8 25.9 7.5 15.0
`2 Penalty 14.3 14.0 23.6 1.3 10.9 0.0 5.0 21.6
Reweight 11.9 3.5 19.0 5.3 10.9 0.0 4.9 9.0

Adversarial 4.8 0.0 13.5 11.9 14.6 25.9 6.2 18.3
Lagrangian 2.4 3.5 12.4 12.0 3.7 0.0 5.0 5.8

Proxy-lagragn. 2.4 3.5 12.4 12.0 3.7 0.0 14.9 26.0
FairALM 3.6 0.0 20.0 0.0 7.3 0.0 2.5 0.0

Table 3: Quantitative Results on ImSitu. Test errors (ERR) and DEO
measure are reported in %. The target class that is to be predicted in is
indicated by a +. FairALM always achieves a zero DEO while remaining
competitive in ERR with the best method for a given verb-pair.

We observe that the unconstrained model ends up picking
features from locations that may not be relevant for the task
description but merely co-occur with the verbs in this par-
ticular dataset (and are gender-biased). Fig. 4 highlights
this observation for the selected classification tasks. Over-
all, we observe that the semantic regions used by the con-
strained model are more aligned with the action verb present
in the image, and this adds to the qualitative advantages of
the model trained using FairALM in terms of interpretabil-
ity.

Limitations. We also note that there are cases where
both the unconstrained model and FairALM look at incor-
rect image regions for prediction, owing to the small dataset
sizes. However, the number of such cases are far fewer for
FairALM than the unconstrained setup.

Summary. FairALM successfully minimizes the fair-
ness measure while classifying verb/action pairs associated
with an image. FairALM uses regions in an image that are
more relevant to the target class and less gender revealing.

6.3. Chest X-Ray datasets

Data and Setup. The datasets we examine here are pub-
licly available from the U.S. National Library of Medicine
[25]. The images come from two sites/sources. Images
for the first site are collected from patients in Montgomery
county, USA and includes 138 x-rays. The second set of
images includes 662 images collected at a hospital in Shen-
zhen, China. Our task is to predict pulmonary tuberculosis
(TB) from the x-ray images. The images are collected from
different x-ray machines with different characteristics, and

have site-specific markings or artifacts, see Fig 6. 25% of
the samples from the pooked dataset are set aside for test-
ing.

Quantitative Results. We treat the site information,
Montgomery or Shenzhen, as a nuisance/protected variable
and seek to decorrelate it from the TB labels. We train
a ResNet18 network and compare an unconstrained model
with FairALM model. Our datasets of choice are small in
size, and so deep models easily overfit to site-specific biases
present in the training data. Our results corroborate this
conjecture, the training accuracies reach 100% very early
and the test set accuracies for the unconstrained model has a
large variance over multiple experimental runs. Conversely,
as depicted in Fig. 7, a FairALM model not only maintains
a lower variance in the test set errors and DEO measure
but also attains improved performance on these measures.
What stands out in this experiment is that the number of

Figure 6: FairALM for dataset pooling. Data is pooled from two
sites/hospitals, Shenzhen s0 and Montgomery s1.

Figure 7: Better Generalization with FairALM. We compare Uncon-
strained mode (U) and FairALM (F) Box-plots indicate a lower variance
in testset error and the DEO measure for FairALM. Moreover, FairALM
reaches 20% testset error in fewer epochs.
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epochs to reach a certain test set error is lower for FairALM
indicating that the model generalizes faster compared to an
unconstrained model.

Summary. FairALM is effective at learning from
datasets from two different sites/sources, minimizes site-
specific biases and accelerates generalization.

7. Conclusion
We introduced FairALM, an augmented Lagrangian

framework to impose constraints on fairness measures stud-
ied in the literature. On the theoretical side, we provide

strictly better bounds – O
(

log2 T
T

)
versus O

(
1√
T

)
, for

reaching a saddle point. On the application side, we pro-
vide extensive evidence (qualitative and quantitative) on im-
age datasets commonly used in vision to show the potential
benefits of our proposal. Finally, we use FairALM to mit-
igate site specific differences when performing analysis of
pooled medical image datasets. In applying deep learning
to scientific/biomedical problems, this is an important issue
since sample sizes at individual sites/institutions are often
smaller. The overall procedure is simple which we believe
will lead to broader adoption and follow-up work on this
socially relevant topic.
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8. Appendix

8.1. Experiments on FairALM: Linear Classifier

Data. We consider four standard datasets, Adult, COMPAS, German and Law Schools [17, 1]. The Adult dataset
is comprised of demographic characteristics where the task is to predict if a person has an income higher (or lower) than
$50K per year. The protected attribute here is gender. In COMPAS dataset, the task is to predict the recidivism of individuals
based on features such as age, gender, race, prior offenses and charge degree. The protected attribute here is race, specifically,
whether the individual is white or black. The German dataset classifies people as good or bad credit risks with the person
being a foreigner or not as the protected attribute. The features available in this dataset are credit history, saving accounts,
bonds, etc. Finally, the Law Schools dataset, which comprises of ∼ 20K examples, seeks to predict a person’s passage of
the bar exam. Here, a binary attribute race is considered as the protected attribute.

Setup. We use Alg. 1 in the paper for experiments in this section. Recall from § 3 of the paper that Alg. 1 requires the
specification of H. We use the space of logistic regression classifiers as H. At the start of the algorithm we have an empty
set of classifiers. In each iteration, we add a newly trained classifier h ∈ H to the set of classifiers only if h has a smaller
Lagrangian objective value among all the classifiers already in the set.

Quantitative Results. For the Adult dataset, FairALM attains a smaller test error and smaller DEO compared to
the baselines considered in Table 4. We see big improvements on the DEO measure in COMPAS dataset and test error in
German dataset using FairALM. While the performance of FairALM on Law Schools is comparable to other methods,
it obtains a better false-positive rate than [1] which is a better metric as this dataset is skewed towards it’s target class.

Summary. We train Alg. 1 on standard datasets specified in [17, 1]. We observe that FairALM is competitive with the
popular methods in the fairness literature.

Adult COMPAS German Law Schools
ERR DEO ERR DEO ERR DEO ERR DEO

Zafar et al. [39] 22.0 5.0 31.0 10.0 38.0 13.0 − −
Hardt et al. [23] 18.0 11.0 29.0 8.0 29.0 11.0 4.5 0.0

Donini et al. [17] 19.0 1.0 27.0 5.0 27.0 5.0 − −
Agarwal et al. [1] 17.0 1.0 31.0 3.0 − − 4.5 1.0

FairALM 15.8± 1 0.7± 0.6 34.7± 1 0.1± 0.1 24.3± 2.7 10.8± 4.5 4.8± 0.1 0.4± 0.2

Table 4: Standard Datasets. We report test error (ERR) and DEO fairness measure in %. FairALM attains minimal DEO measure among the baseline
methods while maintaining a similar test error.

8.2. Proofs for theoretical claims in the paper

Prior to proving the convergence of primal and dual variables of our algorithm with respect to the augmented lagrangian
LT (q, λ), we prove a regret bound on the function ft(λ) which is defined in the following lemma. As ft(λ) is a strongly
concave function (which we shall see shortly), we obtain a bound on the negative regret.

Lemma 7. Let rt denote the reward at each round of the game. The reward function ft(λ) is defined as ft(λ) = λrt −
1
2η (λ−λt)2. We choose λ in the round T + 1 to maximize the cumulative reward, i.e., λT+1 = argmaxλ

∑T
t=1 ft(λ). Define

L = maxt | rt |. We obtain the following bound on the cumulative reward, for any λ,

T∑
t=1

(
λrt −

1

2η
(λ− λt)2

)
≤

T∑
t=1

λtrt + ηL2O(log T ) (6)

Proof. As we are maximizing the cumulative reward function, in the (t + 1)th iteration λt+1 is updated as λt+1 =
argmaxλ

∑t
i=1 fi(λ). This learning rule is also called the Follow-The-Leader (FTL) principle which is discussed in Section

2.2 of [34]. Emulating the proof of Lemma 2.1 in [34], a bound on the negative regret of FTL, for any λ ∈ R, can be derived
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due to the concavity of ft(λ),

T∑
t=1

ft(λ)−
T∑
t=1

ft(λt) ≤
T∑
t=1

ft(λt+1)−
T∑
t=1

ft(λt) (7)

Our objective, now, is to obtain a bound on RHS of (7). Solving argmaxλ
∑t
i=1 fi(λ) for λ will show us how λt and λt+1

are related,

λt+1 =
η

t

t∑
i=1

ri +
1

t

t∑
i=1

λi =⇒ λt+1 − λt =
η

t
rt (8)

Using (8), we obtain a bound on ft(λt+1)− ft(λt), we have,

ft(λt+1)− ft(λt) ≤
η

t
r2
t

With L = maxt |rt| and using the fact that
∑T
i=1

1
i ≤ (log T + 1),

T∑
t=1

(
ft(λt+1)− ft(λt)

)
≤ ηL2(log T + 1) (9)

Let us denote ξT = ηL2(log T + 1), we bound (7) with (9),

∀λ ∈ R
T∑
t=1

(
λrt −

1

2η
(λ− λt)2

)
≤
( T∑
t=1

λtrt

)
+ ξT

Cumulative Reward Bound

(10)

Next, using the Cumulative Reward Bound (10), we prove the theorem stated in the paper. The theorem gives us the
number of iterations required by Alg. 1 (in the paper) to reach a ν−approximate saddle point. Our bounds for η = 1

T and
λ ∈ R are strictly better than [1]. We re-state the theorem here,

Theorem 8. Recall that dh represents the difference of conditional means. Assume that ||dh||∞ ≤ L and consider T rounds
of Alg 1 (in the paper). Let q̄ := 1

T

∑T
t=1 qt and λ̄ := 1

T

∑T
t=1 λt be the average plays of the q-player and the λ-player

respectively. Then, we have LT (q̄, λ̄) ≤ LT (q, λ̄) + ν and LT (q̄, λ̄) ≥ LT (q̄, λ)− ν, under the following conditions,

• If η = O(
√

B2T
L2(log T+1) ), ν = O(

√
B2L2(log T+1)

T ); ∀|λ| ≤ B, ∀q ∈ ∆

• If η = 1
T , ν = O(L

2(log T+1)2

T ); ∀λ ∈ R, ∀q ∈ ∆

Proof. Recall the definition of LT (q, λ) from the paper,

LT (q, λ) =
(∑

i

qiehi

)
+ λ
(∑

i

qidhi

)
− 1

2η

(
λ− λT

)2
(11)

For the sake of this proof, let us define ζT in the following way,

ζT (λ) =
1

2η

T∑
t=1

(
(λ− λt)2 − (λ− λT )2 + (λt − λT )2

)
(12)

Recollect from (10) that ξT = ηL2(log T + 1). We outline the proof as follows,
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1. First, we compute an upper bound on LT (q̄, λ̄),

LT (q̄, λ̄) ≤ LT (q, λ̄) +
ζT (λ̄)

T
+
ξT
T

∀q ∈ ∆

Also, LT (q̄, λ) ≤ LT (q, λ̄) +
ζT (λ)

T
+
ξT
T

∀λ ∈ R,∀q ∈ ∆

Average Play Upper Bound

(13)

(14)

2. Next, we determine an lower bound on LT (q̄, λ̄),

LT (q̄, λ̄) ≥ LT (q̄, λ)− ζT (λ)

T
− ξT
T

∀λ ∈ R

Average Play Lower Bound

(15)

3. We bound ζT (λ)
T + ξT

T for the case |λ| ≤ B and show that a ν−approximate saddle point is attained.

4. We bound ζT (λ)
T + ξT

T for the case λ ∈ R and, again, show that ν−approximate saddle point is attained.

We write the proofs of the above fours parts one-by-one. Steps 1,2 in the above outline are intermediary results used to prove
our main results in Steps 3,4. Reader can directly move to Steps 3,4 to see the main proof.

1. Proof for the result on Average play Upper Bound

LT (q, λ̄) =
∑
iqiehi +

(∑
tλt
T

)(∑
iqidhi

)
− 1

2η

(∑
tλt
T
− λT

)2

(16)

Exploiting convexity of 1
2η

(∑
t
λt

T − λT
)2

via Jenson’s Inequality,

≥ 1

T

∑
t

(∑
iqiehi

+ λt
∑
iqidhi

− 1

2η
(λt − λT )2

)
(17)

As ht = argminqLT (q, λt), we have LT (q, λt) ≥ LT (ht, λt), hence,

≥ 1

T

∑
t

(
eht + λtdht −

1

2η
(λt − λT )2

)
(18)

Using the Cumulative Reward Bound (10),

≥
∑
teht

T
+
λ
∑
tdht

T
− 1

T

∑
t

( (λ− λt)2

2η
+

(λt − λT )2

2η

)
− ξT
T

(19)

Add and subtract 1
T

∑T
t=1

1
2η (λ− λT )2, use ζT from (12) and regroup the terms,

= (
∑
iq̄iehi) + (λ

∑
iq̄idhi)−

1

2η
(λ− λT )2 − ζT (λ)

T
− ξT
T

(20)

= LT (q̄, λ)− ζT (λ)

T
− ξT
T

(21)

2. Proof for the result on Average play Lower Bound Proof is similar to Step 1 so we skip the details. The proof involves
finding a lower bound for LT (q̄, λ) using the Cumulative Reward Bound (10). With simple algebraic manipulations and
exploiting the convexity of LT (q̄, λ) via the Jenson’s inequality, we obtain the bound that we state.
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3. Proof for the case |λ| ≤ B
For the case |λ| ≤ B, we have ζT (λ) ≤ B2T

η , which gives,

ζT (λ)

T
+
ξT
T
≤ B2

η
+
ηL2(log T + 1)

T
(22)

Minimizing R.H.S in (22) over η gives us a ν− approximate saddle point,

LT (q̄, λ̄) ≤ LT (q, λ̄) + ν and LT (q̄, λ̄) ≥ LT (q̄, λ)− ν

where ν = 2

√
B2L2(log T + 1)

T
and η =

√
B2T

L2(log T + 1)

ν− approximate saddle point for |λ| ≤ B

(23)

(24)

4. Proof for the case λ ∈ R
We begin the proof by bounding ζT (λ)

T + ξT
T . Let λ∗ = argmaxλLT (q̄, λ). We have a closed form for λ∗ given by

λ∗ = λT + η
∑
iq̄idhi

. Substituting λ∗ in ζT gives,

ζT (λ∗)

T
+
ξT
T

=
1

2η

1

T

∑
t

(
2(λt − λT )2 + 2η(λT − λt)(

∑
iq̄idhi

)
)

+
ξT
T

(25)

Recollect that λt+1−λt = η
t dht

(from (8)). Using telescopic sum on λt, we get (λT−λt) ≤ ηL(log T+1) and (λT−λt)2 ≤
η2L2(log T + 1)2. We substitute these in the previous equation (25),

ζT (λ∗)

T
+
ξT
T
≤ ηL2(log T + 1)2 + ηL2(log T + 1) +

ηL2(log T + 1)

T
(26)

Setting η = 1
T , we get

ζT (λ∗)

T
+
ξT
T
≤ O(

L2(log T + 1)2

T
) := ν (27)

Using (27), we prove the convergence of λ in the following way,

LT (q̄, λ) ≤ LT (q̄, λ∗)
(

as λ∗ is the maximizer of LT (q̄, λ)
)

(28)

≤ LT (q̄, λ̄) +
ζT (λ∗)

T
+
ξT
T

(
Average Play Lower Bound

)
(29)

≤ LT (q̄, λ̄) + ν
(

from (27)
)

(30)

We prove the convergence of q in the following way. For any λ ∈ R,

LT (q, λ̄) ≥ LT (q̄, λ∗)−
ζT (λ∗)

T
− ξT
T

(
Average Play Upper Bound (21)

)
(31)

≥ LT (q̄, λ∗)− ν
(

from (27)
)

(32)

≥ LT (q̄, λ̄)− ν
(

as λ∗ is the maximizer of LT (q̄, λ)
)

(33)

Therefore,

LT (q̄, λ̄) ≤ LT (q, λ) + ν and LT (q̄, λ̄) ≥ LT (q̄, λ)− ν

where ν = O
(
L2(log T + 1)2

T

)
and η =

1

T

ν− approximate saddle point for λ ∈ R

(34)

(35)
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8.3. More details on FairALM: DeepNet Classifier

Recall that in § 5.2 in the paper, we identified a key difficulty when extending our algorithm to deep networks. The main
issue is that the set of classifiers |H| is not a finite set. We argued that leveraging stochastic gradient descent (SGD) on an
over-parameterized network eliminates this issue. When using SGD, few additional modifications of Alg 1 (in the paper)
are helpful, such as replacing the non-differentiable indicator function 1[·] with a smooth surrogate function and computing
the empirical estimates of the errors and conditional means denoted by êh(z)/µ̂sh(z) respectively. These changes modify our
objective to a form that is not a zero-sum game,

max
λ

min
w

(
êhw

+ λ(µ̂s0hw
− µ̂s1hw

)− 1

2η
(λ− λt)2

)
(36)

We use DP constraint in (36), other fairness metrics discussed in the paper are valid as well. A closed-form solution for λ
can be achieved by solving an upper bound to (36) obtained by exchanging the “max”/“min” operations.

max
λ

min
w

(
êhw + λ(µ̂s0hw

− µ̂s1hw
)− 1

2η
(λ− λt)2

)
(37)

≤ min
w

max
λ

(
êhw

+ λ(µ̂s0hw
− µ̂s1hw

)− 1

2η
(λ− λt)2

)
(38)

Substituting the closed form solution λ = λt + η(µ̂s0hw
− µ̂s1hw

) in (38),

≤ min
w

(
êhw

+ +λt(µ̂
s0
hw
− µ̂s1hw

) +
η

2
(µ̂s0hw

− µ̂s1hw
)2
)

(39)

Note that the surrogate function defined within µ̂shw
is convex and non-negative, hence, we can exploit Jenson’s inequality to

eliminate the power 2 in (39) to give us a convenient upper bound,

≤ min
w

(
êhw + (λt + η)µ̂s0hw

− (λt − η)µ̂s1hw

)
(40)

In order to obtain a good minima in (40), it may be essential to run the SGD on (40) a few times: for ImSitu experiments,
SGD was run on (40) for 5 times. We also gradually increase the parameter η with time as ηt = ηt−1(1 + ηβ) for a small
non-negative value for ηβ , e.g., ηβ ≈ 0.01. This is a common practice in augmented Lagrangian methods, see [5] (page 104).
The overall algorithm is available in the paper as Alg. 2. The key primal and dual steps can be seen in the following section.
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8.4. Algorithm for baselines

We provide the primal and dual steps used for the baseline algorithms for the ImSitu experiments from the paper. The
basic framework for all the baselines remains the same as Alg. 2 in the paper. For Proxy-Lagrangian, only the key ideas in
[15] were adopted for implementation.

PRIMAL: vt ∈ ∂êhw

DUAL: None

Unconstrained

PRIMAL: vt ∈ ∂
(
êhw

+ η(µ̂s0hw
− µ̂s1hw

)2
)

DUAL: None
Parameters: Penalty Parameter η

`2 Penalty

PRIMAL: vt ∈ ∂
(
êhw

+ η0µ̂
s0
hw

+ η1µ̂
s1
hw

)
DUAL: None

Parameters: ηi ∝ 1/(# samples in si)

Reweight

PRIMAL: vt ∈ ∂
(
êhw

+ λ
0\1
t (µ̂s0hw

− µ̂s1hw
− ε) + λ

1\0
t (µ̂s1hw

− µ̂s0hw
− ε)

)
DUAL: λ

i\j
t+1 ← max

(
0, λ

i\j
t + ηi\j(µ̂

si
hw
− µ̂sjhw

− ε)
)

Parameters: Dual step sizes η0\1, η1\0 Tol. ε ≈ 0.05. i\j ∈ {0\1, 1\0}

Lagrangian [44]

PRIMAL: vt ∈ ∂
(
êhw + λ

0\1
t (µ̂s0hw

− µ̂s1hw
− ε) + λ

1\0
t (µ̂s1hw

− µ̂s0hw
− ε)

)
DUAL: θ

i\j
t+1 ← θ

i\j
t + ηi\j(µ̂

si
hw
− µ̂sjhw

− ε)

λ
i\j
t+1 ← B

exp θ
i\j
t+1

1 + exp θ
i\j
t+1 + exp θ

j\i
t+1

Parameters: Dual step sizes η0\1/η1\0. Tol. ε ≈ 0.05, Hyperparam. B
No surrogates in DUAL for µ̂s0hw

/µ̂s1hw
. i\j ∈ {0\1, 1\0}

Proxy-Lagrangian [15]

PRIMAL: vt ∈ ∂
(
êhw

(z) + (λt + η)µ̂s0hw
(z)− (λt − η)µ̂s1hw

(z)
)

DUAL: λt+1 ← λt + η
(
µ̂s0hw
− µ̂s1hw

)
Parameters: Dual Step Size η

FairALM
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8.5. Supplementary Results on CelebA

Additional Results. The dual step size η is a key parameter in FairALM training. Analogous to the dual step size η we
have the penalty parameter in `2 penalty training, also denoted by η. It can be seen from Figure 8 and Figure 9 that FairALM
is more robust to different choices of η than `2 penalty. The target class in this section is attractiveness and protected attribute
is gender.

(η = 20) (η = 40)

(η = 60) (η = 80)

Figure 8: FairALM Ablation on CelebA. For a given η, the left image represents the test error and the right image shows the DEO measure. We study
the effect of varying the dual step size η on FairALM. We observe that the performance of FairALM is consistent over a wide range of η values.

(η = 0.001) (η = 0.01)

(η = 0.1) (η = 1)

Figure 9: `2 Penalty Ablation on CelebA For each η value, the left image represents the test set errors and the right image shows the fairness measure
(DEO). We investigate a popular baseline to impose fairness constraint which is the `2 penalty. We study the effect of varying the penalty parameter η in
this figure. We observe that training with `2 penalty is quite unstable. For η > 1, the algorithm doesn’t converge and raises numerical errors.
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More Interpretability Results. We present the activation maps obtained when running the FairALM algorithm, uncon-
strained algorithm and the gender classification task. We show our results in Figure 10. The target class is attractiveness
and protected attribute is gender. We threshold the maps to show only the most significant colors. The maps from gender
classification task look at gender-revealing attributes such as presence of long-hair. The unconstrained model looks mostly
at the entire image. FairALM looks at only a specific region of the face which is not gender revealing.

Gender Unconstrained FairALM Gender Unconstrained FairALM

Gender Unconstrained FairALM Gender Unconstrained FairALM

Gender Unconstrained FairALM Gender Unconstrained FairALM

Gender Unconstrained FairALM Gender Unconstrained FairALM

Gender Unconstrained FairALM Gender Unconstrained FairALM

Figure 10: Interpretability in CelebA. We find that an unconstrained model picks up a lot of gender revealing attributes however FairALM doesn’t.
The image labelled Gender denotes the map of a gender classification task. We observe overlap between the maps of gender classification task and the
unconstrained model. The activation maps are regulated to show colors above a fixed threshold to highlight the most significant regions used by a model.
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8.6. Supplementary Results on ImSitu

Detailed Setup. We use the standard ResNet-18 architecture for the base model. We initialize the weights of the conv
layers weights from ResNet-18 trained on ImageNet (ILSVRC). We train the model using SGD optimizer and a batch size
of 256. For first few epochs (≈ 20) only the linear layer is trained with a learning rate of 0.01/0.005. Thereafter, the entire
model is trained end to end with a lower learning rate of 0.001/0.0005 till the accuracy plateaus.

Meaning of Target class (+). Target class (+) is something that a classifier tries to predict from an image. Recall
the basic notations § 2 from the paper, µsi,tjh := µh|(s = si, t = tj) denotes the elementary conditional expectation of
some function µh with respect to two random variables s, t. When we say we are imposing DEO for a target class tj we
refer to imposing constraint on the difference in conditional expectation of the two groups of s for the class tj , that is,
dh = µ

s0,tj
h − µs1,tjh . For example, for Cooking (+) vs Driving (−) problem when we say Cooking (+) is regarded as the

target class we mean that tj = cooking and hence the DEO constraint is of the form dh = µs0,cookingh − µs1,cookingh .
Supplementary Training Profiles. We plot the test set errors and the DEO measure during the course of training for the

verb pair classifications reported in the paper. We compare against the baselines discussed in Table 1 of the paper. The plots
in Fig. 11 below supplement Fig. 5 in the paper.

Cooking (+) Driving (−)

Shaving (+) Moisturizing (−)

Washing (+) Saluting (−)

Assembling (+) Hanging (−)

Figure 11: Supplementary Training Profiles. FairALM consistently achieves minimum DEO across different verb pair classifications.

Additional qualitative results We show the activation maps in Fig. 12 to illustrate that the features used by FairALM
model are more aligned with the action/verb present in the image and are not gender leaking. The verb pairs have been chosen
randomly from the list provided in [44]. In all the cases Gender is considered as the protected attribute. The activation maps
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are regulated to show colors above a fixed threshold in order to highlight the most significant regions used by a model to
make a prediction.

Figure 12: Additional qualitative Results in ImSitu dataset. Models predict the target class (+). FairALM consistently avoids gender revealing
features and uses features that are more relevant to the target class. Due to the small dataset sizes, a limitation of this experiment is shown in the last row
where both FairALM and Unconstrained model look at incorrect regions. The number of such cases in FairALM is far less than those in the unconstrained
model.
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