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Abstract. In this paper, we propose a novel fault-tolerant parallel
matrix multiplication algorithm called 3D Coded SUMMA that achieves
higher failure-tolerance than replication-based schemes for the same
amount of redundancy. This work bridges the gap between recent devel-
opments in coded computing and fault-tolerance in high-performance
computing (HPC). The core idea of coded computing is the same as
algorithm-based fault-tolerance (ABFT), which is weaving redundancy in
the computation using error-correcting codes. In particular, we show that
MatDot codes, an innovative code construction for parallel matrix mul-
tiplications, can be integrated into three-dimensional SUMMA (Scalable
Universal Matrix Multiplication Algorithm [30]) in a communication-
avoiding manner. To tolerate any two node failures, the proposed 3D
Coded SUMMA requires ∼50% less redundancy than replication, while
the overhead in execution time is only about 5–10%.

Keywords: Parallel matrix multiplication · Fault-tolerant
algorithms · Algorithm-based fault tolerance · Coded computing ·
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Upcoming exascale computing systems are expected to bring about new chal-
lenges in building resilience against failures and faults [3,4,15,26]. To see how
the scale affects reliability, let us consider the upcoming exascale supercomputer,
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the Fugaku system that is now being built to be available in 2021. The Fugaku
system will have 150,000 physical nodes with a total of 8 million cores [22]. To
build a system with mean-time-between-failure (MTBF) of 24–48 h, the MTBF
of each node must be 411–822 years. This can create a huge burden on com-
ponent manufacturers and the system vendor as it leaves little-to-no room for
unexpected reliability issues that have been experienced in the past, such as bad
solder, dirty power, unexpected early wear-out, and so on [16].

The most widely used method for fault tolerance in high-performance com-
puting (HPC) is checkpoint-restart, which saves the state of computation at
specific intervals and can recover from detected faults by rolling back to a check-
pointed state. While the checkpoint-restart approach is universal, it generates a
significant amount of I/O overhead and its efficiency decreases with the increas-
ing system size. The deployment of node-local nonvolatile memory, such as solid
state disks, has eased the I/O pressure for checkpoint/restart, but it will not be
sufficient in the long run. Another method considered is replication, where the
application is executed either in parallel or sequentially multiple times such as
triple modular redundancy (TMR) [14,15,23]. Despite the high resource over-
head of replication, it has been shown that process replication strategies can
outperform traditional checkpoint-restart approaches for a certain range of sys-
tem parameters [3].

In this paper, we study a different approach called coded computing [12,21,
33], more widely known as algorithm-based fault-tolerance (ABFT) [10,11] in the
HPC community. This approach reduces the overhead of checkpointing or repli-
cation by sacrificing universality and designing the redundancy tailored to a spe-
cific numerical algorithm. For designing low-overhead redundancy, both ABFT
and coded computing utilize error-correcting codes (in short, coding or codes),
a tool extensively used in communication or storage systems. While ABFT uses
off-the-shelf classical codes and adapts them to practical problems in HPC, coded
computing literature studies devising a new code tailor-made for computation
by assuming a simple theoretical computing model. These endeavors in coded
computing have shown remarkable improvements in the failure tolerance versus
memory/computation trade-off, improving over classical codes designed for com-
munication or storage systems. However, due to the simplified models in coded
computing that can be unrealistic in practical HPC systems, it is unclear if the
new code constructions can be applied in the HPC context. This paper bridges
this gap and demonstrates that the new advances in coded computing can be
mapped to HPC systems with careful integration.

We propose a novel algorithm for robust and communication-efficient
parallel matrix multiplication called 3D Coded SUMMA. In 3D Coded
SUMMA, we incorporate MatDot codes (storage-optimal matrix-multiplication
codes) [12] with 3D SUMMA (communication-efficient matrix multiplication
algorithm) [27]. Applying ABFT to a three-dimensional matrix multiplication
algorithm was studied before [24]. Their goal was to apply ABFT within each
node to detect/correct soft errors locally. On the other hand, our aim is to con-
struct a coding strategy that can be applied across distributed nodes to recover
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from node failures, where we cannot recover any partial result from the failed
node. We show that MatDot codes can be integrated into 3D SUMMA seamlessly
with small communication overhead. The amount of redundancy required in 3D
Coded SUMMA is considerably smaller than replication for cases where more
than one failure, or where node corruptions (nodes affected by soft errors) are
to be tolerated. For instance, to provide resilience against any two node failures,
or against a single corruption, 3D Coded SUMMA requires ∼50% fewer nodes
than the baseline replication strategy. To provide resilience against any two node
corruptions, 3D Coded SUMMA requires ∼100% fewer nodes compared to repli-
cation. Finally, we show through theoretical and experimental analysis that 3D
Coded SUMMA achieves higher failure resilience with small overhead in execu-
tion time: 5–7% more execution time compared to replication on an 8 × 8 × 4
grid of nodes.

2 Background

2.1 3D SUMMA

We introduce a 3-dimensional matrix multiplication algorithm, 3D SUMMA.
Three-dimensional algorithms for matrix multiplication in which nodes are
placed on a 3D grid were proposed [1,25,27] and proved to achieve the optimal
communication time in scaling sense [27] under some constraints. 3D SUMMA
we present here is an adaptation of 2.5D matrix multiplication algorithm [27]:
instead of using Cannon’s algorithm on each layer as in [27], we use 2D SUMMA
on each layer. In this work, for simplicity, we assume that nodes are placed on
layers of square grids, i.e., on a n× n×m grid where m is the number of layers
and n is the layer size. The goal is to compute matrix product:

C = AB. (1)

We assume matrices A,B,C all have dimension N × N .1 We use P (i, j, l) to
denote the node on the (i, j, l)-th coordinate on the 3D grid.

We summarize the algorithm of 3D SUMMA below.

1. Matrix product in (1) is split into outer-products as follows:

A =
[
A1 · · · Am

]
,B =




B1
...

Bm



 ,C = A1B1 + · · ·+AmBm, (2)

where Ai’s and Bi’s (i = 1, . . . ,m) are N ×N/m and N/m×N dimensional
submatrices, respectively.

1 Throughout the paper, we will assume that m and n divide N for simplicity. In
practice, when N is not divisible by m,n, the matrix can be zero-padded to make
N divisible by m and n. Also, the assumption that they are square matrices is only
for simplicity, and the algorithm can be used for rectangular matrices as well.
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2. Initially, all Ai’s and Bi’s are stored at the nodes on the first layer of the 3D
grid. The first layer scatters Ai and Bi to the i-th layer.

3. Each layer performs 2D SUMMA2 to compute Ci = AiBi in parallel.
4. All layers reduce to the first layer and the first layer obtains:

C = C1 + · · ·+Cm.

2.2 MatDot Codes

MatDot codes [12] are one of the latest advances in coded computing and proven
to be optimal in terms of recovery threshold3 for parallel matrix multiplication
under certain constraints [33]. Classical error-correcting codes such as Reed-
Solomon codes encode data through polynomial evaluations where the coeffi-
cients of the polynomial are the raw data. These algorithms use polynomial
interpolation for decoding to recover the polynomial coefficients, i.e., the raw
data, when the number of evaluations that survive after failures is larger than
the degree of the polynomial. The construction of MatDot codes is inspired by
this approach, but the polynomials are carefully constructed so that the matrix
product can be extracted from the polynomial coefficients at the end of com-
putation. A main innovation is the construction of encoding polynomials pA(x)
and pB(x) that exploit the sum of outer-product structure in (2):

pA(x) =
m∑

i=1

Aix
i−1, pB(x) =

m∑

j=1

Bjx
m−j . (3)

Note that the co-efficients are placed in reverse order in pB(x). Then, in 3D
SUMMA, the i-th layer will receive encoded versions of matrices:

Ãi = pA(αi) = A1 + αiA2 + · · ·+ αm−1
i Am,

B̃i = pB(αi) = Bm + αiBm−1 + · · ·+ αm−1
i B1,

and then compute matrix multiplication on the encoded matrices:

C̃i = ÃiB̃i = pA(αi)pB(αi) = pC(αi).

The polynomial pC(x) has degree 2m − 2 and has the following form:

pC(x) =
m∑

i=1

m∑

j=1

AiBjx
m−1+(i−j). (4)

Because of our judicious choice of pA(x) and pB(x), the coefficient of xm−1

in pC(x) is C =
∑m

i=1 AiBi. Since pC(x) is a polynomial of degree 2m − 2, its

2 For more details on 2D SUMMA, please see [30].
3 Recovery threshold is one metric to measure the performance of a code, which is the
minimum number of workers required to recover the computation output.
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coefficients can be recovered as long as we have evaluations of pC(x) at any 2m−1
distinct points. Hence the recovery threshold is K = 2m − 1. In the context of
3D SUMMA, we need m layers for the uncoded strategy. The recovery threshold
K = 2m− 1 implies that when we have M = 2m− 1+ r layers, it is guaranteed
to tolerate any r failed layers. On the other hand, to tolerate any r failures with
replication, we need M = rm layers. This will be further discussed in Sect. 4.1.

Systematic MatDot Codes: A code is called systematic if, for the first m
layers, the output of the r-th layer is the product ArBr. We refer to the first
m layers as systematic layers. Systematic codes are useful because if all the
systematic layers complete their computation successfully, there is no need for
decoding. Systematic MatDot codes are achieved by using Lagrange polynomials
for encoding. Let

pA(x) =
m∑

i=1

AiLi(x), pB(x) =
m∑

i=1

BiLi(x), (5)

where Li(x) is defined as: Li(x) =
∏

j∈{1,...,m}\{i}

x − xj

xi − xj
for i ∈ {1, . . . ,m}.

Using these polynomials, the worst-case recovery threshold remains the same as
non-systematic MatDot codes [12].

2.3 Related Work in ABFT

Algorithm-based fault tolerance (ABFT) was first proposed by Huang and Abra-
ham to detect and correct errors on circuits during linear algebra operations.
Recently, Chen and Dongarra discovered that a similar technique could be used
for parallel matrix algorithms for HPC systems [10]. A follow-up work [6] exper-
imentally showed that the overhead of ABFT is less than 12% with respect to
the fastest failure-free implementation of PDGEMM (Parallel General Matrix
Multiplication). Numerical stability of the ABFT technique was also examined
in [8] and applied to soft error detection [9]. The ABFT technique is extended
to matrix factorization algorithms such as Cholesky factorization [17] and LU
factorization [11,32].

Our work goes beyond existing works in ABFT for HPC as we employ the
novel MatDot codes which go beyond traditional error-correcting codes. MatDot
codes are designed specifically for distributed matrix multiplication where the
matrix product is split into the sum of outer products.

3 3D Coded SUMMA

We propose a failure-resilient and communication-efficient parallel-matrix mul-
tiplication algorithm, 3D Coded SUMMA, by integrating MatDot codes into 3D
SUMMA. Since 3D SUMMA partitions matrix multiplication into outer prod-
ucts across layers, we can weave MatDot codes into the third dimension (the
l-axis) of the algorithm.
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Recall that the recovery threshold of MatDot codes isK = 2m−1. This means
that if we have any K successful (non-failed) nodes, we can recover the matrix
product C, and thus to tolerate one failure, we need K + 1 = 2m nodes. For
failure resilience, we need at least m redundant layers and use a total of M ≥ 2m
layers. This redundancy is the same as replication for a single failure. A thorough
comparison between 3D Coded SUMMA and replication for an arbitrary number
of failures will be provided in the next section. In this section, we focus on the
algorithm design of 3D Coded SUMMA and demonstrate a simple example of
(n = 2,m = 2,M = 4). The full algorithm is given in Algorithm 1.

Example 1 (3D Coded SUMMA for (n = 4,m = 2,M = 4) ).
Initial Data Distribution: The node P (i, j, 1) initially has Ai,j and Bi,j

for i, j = 1 · · · 4 where Ai,j ’S and Bi,j ’s are N/m × N/m sub-blocks as follows:

A =




A1,1 · · · A1,4
...

. . .
...

A4,1 · · · A4,4



 ,B =




B1,1 · · · B1,4
...

. . .
...

B4,1 · · · B4,4



 (6)

Encoding: To encode MatDot codes, we begin with splitting Ai,j into two
equal-sized column blocks and Bi,j into two equal-sized row blocks as follows:

Ai,j =
[
A(1)

i,j A(2)
i,j

]
,Bi,j =

[
B(1)

i,j

B(2)
i,j

]
. (7)

Then, the node P (i, j, 1) locally computes four encoded column-blocks and row-
blocks as follows:

Ãi,j,1 = A(1)
i,j + α1A

(2)
i,j , B̃i,j,1 = α1B

(1)
i,j +B(2)

i,j ,

Ãi,j,2 = A(1)
i,j + α2A

(2)
i,j , B̃i,j,2 = α2B

(1)
i,j +B(2)

i,j ,

Ãi,j,3 = A(1)
i,j + α3A

(2)
i,j , B̃i,j,3 = α3B

(1)
i,j +B(2)

i,j ,

Ãi,j,4 = A(1)
i,j + α4A

(2)
i,j , B̃i,j,4 = α4B

(1)
i,j +B(2)

i,j ,

where α1, · · · ,α4 are four distinct real numbers.4 Then P (i, j, 1) sends Ai,j,k to
P (i, j, k) for k = 2, 3, 4 using MPI Scatter operation.

After MatDot encoding step, the node P (i, j, k) will have Ai,j,k and Bi,j,k

for all i, j, k = 1, . . . , 4.
Computation: Perform 2D SUMMA [30] on each layer in parallel.
Decoding: Any K = 2m− 1 = 3 layers out of M = 4 layers are sufficient to

decode the final output. Instead of performing MPI Reduce on the raw output,
each node will scale their output with the decoding coefficients and then per-
form MPI Reduce. E.g., if P (i, j, 4) fails, P (i, j, 1), P (i, j, 2), P (i, j, 3) will send

4 We can also use systematic MatDot codes where Ai,j,1 = A(1)
i,j and Ai,j,2 = A(2)

i,j

by using the polynomials given in (5). However, for simplicity, we only discuss the
non-systematic formulation.



398 H. Jeong et al.

Algorithm 1. 3D Coded SUMMA
1: Initial Data Distribution: P (i, j, 1) has Ai,j and Bi,j .
2: /* Encoding A, B and Scattering encoded data */
3: for i = 1 to n do
4: for j = 1 to n do
5: for l = 1 to M do
6: P (i, j, 1) computes: /* All P (i, j, 1) in parallel */

Ãi,j,l = A(1)
i,j + αlA

(2)
i,j + · · ·+ αm−1

l A(m)
i,j (8)

B̃i,j,l = αm−1
l B(1)

i,j + αm−2
l B(2)

i,j + · · ·+B(m)
i,j (9)

7: end for
8: P (i, j, 1) scatters Ãi,j,l and B̃i,j,l to P (i, j, l)’s (l = 1, . . . ,M)
9: end for
10: end for
11: /* 2D SUMMA Computation */
12: for l = 1 to m do
13: All l-th layers in parallel, perform 2D SUMMA to compute: Ãcol

l · B̃row
l .

14: end for
15: /* Decoding and Reduce to recover C */
16: for i = 1 to n do
17: for j = 1 to n do
18: for l = 1 to M do
19: /* All i, j, l in parallel */
20: P (i, j, l) knows which nodes failed among P (i, j, k)’s (k = 1, . . . ,M).

21: P (i, j, l) computes dlC̃i,j,l and reduce to P (i, j, 1)
22: end for
23: end for
24: end for

d1C̃i,j,1, d2C̃i,j,2, and d3C̃i,j,3, then the first layer will have the final output
Ci,j = d1C̃i,j,1 + d2C̃i,j,2 + d3C̃i,j,3.5 !

Notice that the encoding of MatDot codes does not require any communi-
cation as encoding computation is performed at each local node. There is no
additional communication required for MatDot decoding either as the decod-
ing process is embedded in the final reduce step. The only communication cost
increase comes from the initial MPI Scatter and the final MPI Reduce with the
bigger size, i.e., scatter/reduce over 4 layers instead of 2.

We want to make a remark that we can apply the ABFT technique [10,18]
(rediscovered as Product codes in [21]) at each layer of 2D SUMMA for fault
tolerance. Although in terms of additional nodes required, ABFT can be more
efficient than MatDot codes, for higher failure tolerance, MatDot codes are a
more communication-efficient solution. In the encoding of the ABFT strategy,

5 The decoding coefficients, d1, . . . , d4 are determined by the choice of α1, . . . ,α4. For
more information on how to compute d1, . . . , d4, see [12].
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Fig. 1. (a) Summary of 3D Coded SUMMA algorithm. (b) Number of redundant nodes
required to be resilient to f failures in the node/layer failure scenario for n = 16,m = 4.

one has to compute linear combinations of the column (row) blocks of A (B),
which requires column (row) shuffling, or multiple reduce operations to parity
nodes. Furthermore, for decoding, for recovering from more than one failure,
nodes have to perform peeling decoding (see [21]) which can potentially require
many rounds of communication. However, depending on which resource (com-
munication delay or the number of compute nodes) is more expensive in the
system, one can choose between ABFT on each layer and MatDot codes across
layers as proposed in the first version of this work [20].

4 Performance Analysis

In this section, we will show how 3D Coded SUMMA can provide higher resilience
for the same number of nodes compared to replication. Then, we analyze the
overhead of the MatDot-coded strategy in terms of communication and computa-
tion time, and prove that the total overhead is negligible whenm = o(n). Finally,
we demonstrate through experimental evaluations that the total execution time
of 3D Coded SUMMA is only about 5–7% more compared to replication.

4.1 Node Overhead vs. Failure Resilience

To analyze the failure resilience, we will consider three different failure scenarios:

1. Node failure: This corresponds to a fail-stop error where a node fails and the
entire data or intermediate result on the failed node is lost.

2. Layer failure: All nodes on one layer fail at once. This can be relevant when
one layer is placed under the same rack and a rack failure occurs.

3. Node corruption: A node is corrupted by a soft error (a bit flip), and an arbi-
trary amount of data is affected beyond the capability of correction/detection
at the local node. This can be due to error propagation during computation.
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We say that a strategy is resilient to f failures in a certain failure scenario if
we can recover the entire output C as long as the number of failures is at most
f . We now compare replication and 3D Coded SUMMA for each failure scenario.
To be resilient to any f failures in the node failure or the layer failure scenario,
the total number of nodes required are the following:

– Replication: p = (f + 1) ·mn2.
– 3D Coded SUMMA: p = (2m − 1 + f) · n2.

To be resilient to any s failures (i.e., corrupted nodes) in the node corruption
scenario, the total number of nodes required are6:

– Replication: p = (2s+ 1) ·mn2.
– 3D Coded SUMMA: p = (2m − 1 + 2s) · n2.

Let us make this more concrete by considering an example of n = 16 and m = 4.
To be resilient to any single failure, both replication and 3D Coded SUMMA
require 2048 nodes, which is twice more than the uncoded algorithm without any
resilience. To be resilient to any two node failures (or any one node corruption),
replication requires 3072 nodes while 3D Coded SUMMA requires 2304 nodes.
To be resilient to any two node corruptions, replication requires 5120 nodes
while 3D Coded SUMMA requires 2816 nodes. Because the recovery threshold
of MatDot codes is K = 2m− 1, there is an upfront cost of 2x node redundancy
in 3D Coded SUMMA. However, increasing resilience from one failure to more
failures only requires incremental overhead compared to the replication strategy
(Fig. 1b).

4.2 Execution Time Analysis

We now analyze the overhead of MatDot coding in terms of its execution time:
communication + computation. For communication time, we use the simple α-β
model [7]:

Tcomm = C1α + C2β, (10)

where C1 is the number of communication rounds and C2 is the number of bytes
communicated on the critical path. The α term is latency cost and the β term
is per-byte bandwidth cost. For computation time, we count number of floating-
point operations (flops). For 3D Coded SUMMA that encodes an n×n×m grid
into an n × n × M grid using MatDot codes and computes a matrix product of
dimension N×N , the communication overhead of MatDot coding is summarized
in the following theorem.

Theorem 1. Suppose we use a MatDot code with a constant rate, i.e., M =
Θ(m). Then, the total communication time of 3D Coded SUMMA is:

T total
comm =

[
αΘ (log n) + βΘ

(
N2/n2)] · n

m
, (11)

6 Using the recently proposed collaborative decoding [28] might further reduce the
number of nodes required for 3D Coded SUMMA, but we use a conservative estimate.
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and the communication time overhead of MatDot encoding and decoding is:

TMatDot
comm = αΘ(log n) + βΘ(N2/n2). (12)

The theorem implies that both the latency and the bandwidth of MatDot encod-
ing/decoding is negligible if m = o(n). Note that this is the same condition for
the 3D SUMMA to outperform the 2D version of SUMMA [27].

Proof (Proof of Theorem 1). We will analyze the time complexity of each step.

Encoding MatDot Codes and Scattering the Encoded Matrices: The
first layer has n × n nodes. Each node has a square matrix of size N2/n2. Each
local square matrix is partitioned intom small blocks and encoded intoM blocks.
The M encoded blocks are scattered to M layers (across the l-axis). Both A and
B need encoding and scattering.

– Local encoding cost: Cenc = 2N2/n2 ·M .
– Communication cost (scatter using recursive-halving [29]): Tscatter =

2α logM + 2β N2

n2 · M
m .

Matrix Multiplication with 2D SUMMA: The data on each layer is gath-
ered into n2/m nodes, i.e., the nodes in each row and column are partitioned
into groups of size m and a local data gathering is carried out. Then, SUMMA
proceeds in n/m rounds. In each round, one node in each row broadcasts data of
size N2

n2m ·m = N2

n2 to the entire row, and similarly for each column. Then, local
computation is carried out, which multiplies two matrices of size N/n × N/n.

– Local gathering using recursive-doubling [29]: Tgather = 2α logm+ 2N2

n2 β.
– Broadcast in SUMMA (scatter using recursive-halving followed by all-gather
using recursive-doubling): Tbcast = (4α log n+ 4N2

n2 β) · (n/m).
– Local matrix-matrix multiplication: CMxM = (N3/n3) · (n/m) = N3

n2m .

Decoding and Reduction: The decoding of MatDot codes only requires a
reduce across layers. The data size at each node in the reduction phase is still
N2/n2, and the number of layers required in the reduce is 2m − 1 (for MatDot
codes).

– Decoding MatDot codes (reduce using recursive-halving followed by tree-
gather [29]): Treduce = 2α log(2m − 1) + (2N2/n2)β.

Note that this communication cost analysis is the worst-case analysis because
if we use systematic codes, we only need to reduce the first m systematic layers.

Putting this altogether, we obtain the total communication time as follows:

T total
comm =Tscatter + Tgather + Tbcast + Treduce

=2α logM + 2β
N2

n2
· M
m

+ 2α logm+
2N2

n2
β

+ (4α log n+
4N2

n2
β) · (n/m) + 2α log(2m − 1) + (2N2/n2)β

(a)
=

[
αΘ (log n) + βΘ

(
N2/n2)] · n

M
,
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where in step (a), we use the fact that M = Θ(m), i.e., the code has a constant
rate. Finally, total communication overhead of using MatDot codes only come
from the increased size of gather and reduce operations:

TMatDot
comm =Tscatter + Treduce

=2α logm+
2N2

n2
β + 2α log(2m − 1) + (2N2/n2)β

=αΘ(logM) + βΘ(N2/n2).

Computation time overhead of MatDot coding is summarized below.

Theorem 2. Suppose we use a MatDot code with a constant rate, i.e., M =
Θ(m). Then,

T total
comp = Θ

(
N3

n2m

)
+ Θ

(
mN2

n2

)
+ Θ

(
m2

)
, (13)

TMatDot
comp = Θ

(
mN2

n2

)
+ Θ

(
m2

)
. (14)

Notice that the computation time overhead of MatDot coding is negligible
when m = o(

√
N), which is often the case since the matrix dimension N is orders

of magnitude bigger than the number of layers m.

Proof (Proof of Theorem 2). The number of flops required at each local node for
each step is given below:

– MatDot encoding: Each node generatesM encoded blocks of dimensionN/n×
N/mn (or N/mn × N/n), each of which is a linear combinations of m small
sub-blocks of the same dimension. Hence,

Tenc = 2M ·m · N2

mn2
= Θ

(
mN2

n2

)
.

– Matrix multiplication: TMxM = Θ
(

N3

n2m

)

– MatDot decoding: Each node has to obtain decoding coefficient depending on
which nodes have failed through polynomial interpolation, which has compu-
tation complexity of at most Θ(m2). Then, it scales its output matrix by the
decoding coefficient. Thus,

Tdec = Θ(m2) + Θ(N2/n2).

'(

4.3 Experimental Evaluation

In this section, we evaluate the performance of 3D Coded SUMMA through
experiments. In our experimental setup, we used a cluster with 40 compute
nodes, each of which has two 12-Core AMD Opteron (tm) Processor 6164 HE,
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64 GB DRAM, and 500 GB hard disk. Nodes are connected through Gigabit
Ethernet under a single switch. We used each core as one MPI process, i.e., one
core was one logical node P (i, j, l). To ensure that there is no MPI communi-
cation within the same compute node, we used cyclic distribution of compute
nodes. We injected a layer failure by artificially ignoring the result from one
layer in the reduce phase. We assumed that the information about the failed
node will be made available at all surviving nodes. We recorded execution time
of: memory allocation, MatDot Encoding (line 6 in Algorithm 1), MPI Scatter
(line 8 in Algorithm 1), 2D SUMMA (line 12–14 in Algorithm 1), and Decoding
+ MPI Reduce (line 16–24 in Algorithm 1).

Table 1. Execution time comparison of (n = 8,m = 2,M = 4) 3D Coded SUMMA
and replication. We used systematic MatDot codes and 8 cores per node.

N Strategy Memory
Allocation
(s)

Encoding
(s)

Scatter
(s)

2D
SUMMA
(s)

Decoding +
Reduce (s)

Total (s)

10000 Replication 0.1 0 1.505 19.583 0.926 22.245

MatDot 0.105 0.124 2.25 18.621 1.384 22.486

20000 Replication 0.369 0 6.574 87.792 3.626 98.681

MatDot 0.362 0.402 9.075 88.371 5.502 103.357

30000 Replication 0.75 0 14.993 214.798 7.859 239.035

MatDot 0.752 0.864 19.773 224.232 12.316 257.883

40000 Replication 1.317 0 25.613 438.356 13.941 480.464

MatDot 1.325 1.418 39.496 440.872 21.853 505.41

Fig. 2. Comparison of the total execution time between uncoded 3D SUMMA (no
resilience), replication, and 3D Coded SUMMA for (n = 8,m = 2,M = 2). We used
16 cores per node.
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Fig. 3. (a) Comparison of decoding+reduce time using Systematic MatDot codes.
When the failed node is a parity node, systematic code is ∼3x faster. (b) Comparison
of total execution time for using non-systematic MatDot codes and systematic Mat-
Dot codes. For systematic failures, non-systematic and systematic codes share similar
performance. For parity failures, systematic codes show a clear advantage.

Since the cluster we used for experiments had total of 960 cores, the most
extensive experiments were run on an 8 × 8 × 4 grid with total of 256 cores.7
We first compare our proposed MatDot-coded approach and replication. Exe-
cution time comparison of the two is summarized in Table 1. First notice that
almost 90% of the total execution time is used in 2D SUMMA operations. Then,
the next significant portion of the execution time is MPI Scatter and Reduce.
Computation time for MatDot encoding and decoding makes up less than 1%
of the total time. When we compare the total execution time, the overhead of
MatDot coding is about 5–7% compared to replication. This is mainly due to
the increased communication cost in the scatter and reduce communication as
predicted in the previous section. We further compare the total execution time of
replication and MatDot against the uncoded counterpart that does not provide
any resilience (See Fig. 2). Compared to the uncoded strategy, the execution time
of replication is 5–9% higher and 3D Coded SUMMA is about 10–18% higher.

Figure 3 shows the difference between using systematic and non-systematic
codes. In Fig. 3a, systematic failure means a node failure in a systematic layer
(the first m layers with the original data) and parity failure means a node failure
in a parity layer (the last m layers with encoded data). The biggest benefit of
using systematic codes is that when there is no failure in systematic nodes,
there is no need for decoding, and the final steps would be no different from
the uncoded strategy. The results in Fig. 3a show that this is indeed true in
experiments and the last reduce step (including decoding) is about 3x times
faster when we have only parity failures, and no systematic failure. Because of
this effect, we can see that using systematic codes is about 3–5% faster than
non-systematic codes when there is no systematic failure in Fig. 3b.
7 Bigger grids with the dimensions of non-power-of-two numbers are not included as
they showed worse performance.
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5 Discussion and Future Work

In this paper, we examined a new fault-tolerant parallel matrix multiplication
algorithm that integrates MatDot codes and 3D SUMMA. In our experiments,
we assumed that failure information would be provided to every node. Although
the current MPI implementation does not provide such functionality, there have
been various research works to incorporate fault mitigation into MPI library [2,5]
which include failure reporting and rearranging MPI communicator after the
failure. Implementing 3D Coded SUMMA on these prototype fault-tolerant MPI
libraries would be interesting future work.

Our work is a first step towards introducing coded computing to HPC appli-
cations and showing the feasibility through experiments. We believe that there is
an abundance of possibilities in developing practical fault-tolerant algorithms by
marrying new developments in coding theory and systems research (see [13] for
the recent review in this direction). For instance, our work focuses only on dense
matrix multiplication. Extending it to sparse matrix multiplication (e.g., sparse
SUMMA) is not a straightforward question since the encoding process would
reduce the sparsity of matrices. For linear system solving or eigendecomposition
problems, one can consider using the substitute decoding technique for sparse
matrices [31].

Acknowledgements and Data Availability Statement. This project was sup-
ported partially by NSF grant CCF 1763657 and supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research, program
managers Robinson Pino and Lucy Nowell. This manuscript has been authored by UT-
Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of
Energy.

The datasets and code generated during and/or analysed during the current study
are available in the Figshare repository: https://doi.org/10.6084/m9.figshare.12560
330 [19].

References

1. Agarwal, R.C., et al.: A three-dimensional approach to parallel matrix multiplica-
tion. IBM J. Res. Dev. 39(5), 575–582 (1995)

2. Ashraf, R.A., Hukerikar, S., Engelmann, C.: Shrink or substitute: handling process
failures in HPC systems using in-situ recovery. In: 2018 26th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-based Processing (PDP),
pp. 178–185. IEEE (2018)
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