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Abstract

Gravitational waveforms for compact binary coalescences (CBCs) have been invalu-
able for detections by the LIGO-Virgo collaboration. They are obtained by a
combination of semi-analytical models and numerical simulations. So far systematic
errors arising from these procedures appear to be less than statistical ones. However,
the significantly enhanced sensitivity of the new detectors that will become operational
in the near future will require waveforms to be much more accurate. This task would be
facilitated if one has a variety of cross-checks to evaluate accuracy, particularly in the
regions of parameter space where numerical simulations are sparse. Currently errors
are estimated by comparing the candidate waveforms with the numerical relativity
(NR) ones, which are taken to be exact. The goal of this paper is to propose a qual-
itatively different tool. We show that full non-linear general relativity (GR) imposes
an infinite number of sharp constraints on the CBC waveforms. These can provide
clear-cut measures to evaluate the accuracy of candidate waveforms against exact
GR, help find systematic errors, and also provide external checks on NR simulations
themselves.
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1 Introduction

Accurate gravitational waveform models for Compact Binary Coalescences (CBCs)
are crucial in Gravitational Wave (GW) data analysis. Matched-filtering used for detec-
tion, as well as procedures for parameters estimation and tests of General Relativity
(GR), all rely on the precise knowledge of GW signals as predicted by GR. Since the
exact two-body problem in GR is not solvable analytically, current available wave-
forms are produced by astute combinations of Numerical Relativity (NR) simulations
(see, e.g., [1]) and analytical approximations (see, e.g., [2—13]), or interpolation meth-
ods (see, e.g., [14—17]). Thanks to the remarkable accuracy reached, one can argue
that the systematic errors are less than statistical ones for current detectors [18,19].
However, since the sensitivity of current detectors is about to increase [20,21], and new
ground [22-25] and space [26-28] based detectors will soon become operational, the
statistical uncertainties will reduce considerably. This in turn requires improvement
in waveform models to match this enhanced accuracy [19,29]. This is particularly
important when observations are used as means of test of GR: departure from GR
may remain hidden, or may be erroneously claimed due to inaccuracy of waveforms
[30]. Considerable ongoing effort is aimed at further reducing systematic errors in the
waveform models, for instance by considering higher modes [31-33], by including
precession more carefully [34-37], or by improving numerical code efficiency and
precision [38].

Improvements of waveforms require reliable procedures to measure and evaluate
their accuracy relative to the predictions of exact GR. However, there is an immediate
obstacle: the exact waveform is not known! The current extensive and successful work
typically estimates errors (see e.g. [18,19,39-42]) by considering NR simulations as
practical substitutes of the exact waveform. The reliability of such procedures strongly
depends on how well one can identify sources of errors in the numerical simulations,
and estimate their magnitude. This task is typically carried out using internal checks,
comparing different simulations that use, e.g., different grid resolutions and extraction
radii for the same physical system. While several modes of NR waveforms have been
shown to pass these convergence tests, this is not yet the case for all modes of interest.

In this paper we propose a qualitatively different tool to test the accuracy of
semi-analytical models that does not rely on NR, and can therefore be used as an
external check on numerical simulations as well. Our strategy is to use asymptotic
symmetries—the Bondi, Metzner, Sachs (BMS) group [43—45]—in conjunction with
the boundary conditions in the distant past and distant future normally assumed in
CBCs. Together, they provide an infinite set of constraints on the CBC waveforms.
Violations of these sharp constraints by any proposed waveform provide a measure of
its deviation from the exact GR prediction, without knowing what that prediction is.
Thus, it is a novel approach that can complement the current NR-based procedures.

The paper is organized as follows. In Sect. 2 we obtain the infinite number of con-
straints on the gravitational waveforms. In this discussion, we have made a special
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effort to communicate the relevant results from mathematical relativity to the wave-
form community. Section 3 summarizes the main results and presents a few examples
of work in progress to illustrate how they could be used to further improve our under-
standing of waveforms. Indeed, these results have already had some applications:

(i) Using gravitational memory as an inferred observable, posterior distributions have
been calculated for LIGO events reported in the first Gravitational Wave Transient
Catalog (GWTC-1), using the Phenomenological (Phenom) and Effective One
Body (EOB) waveforms [46]. It is shown that comparison between these distribu-
tions for various angular modes of total memory can serve as diagnostic tools to
further improve the waveforms.

(i1) The balance laws discussed in Sect. 2.3.3 have been used to correct the strain
waveforms in the SXS catalog to include the (evolution of the) memory that was
missing in the earlier waveforms [47].

(iii) The supertranslation ambiguity in the difference between the initial and the final
total angular momentum in a CBC was quantified and shown to be negligibly small
for the current gravitational wave detectors [48].

In addition, one can use the analogous balance laws for angular momentum. Work is
in progress to calculate the posterior distributions for the spin of the remnant black
hole at the end of a binary merger using the Phenom and EOB waveforms for events
in the GWTC-1 catalog [49]. As in [46], the expectation is that a comparison between
the two sets will serve as indicators of differences in the underlying physics.

Important background material is collected in the “Appendix”. Although it is
well known in the mathematical relativity literature, it is included here to explain
to non-experts why ‘supertranslations’ must be included in the symmetry group of
asymptotically Minkowskian spacetimes, since their presence leads to the supermo-
mentum balance laws [50,51] from which our constraints arise. This material is also
used in the angular momentum considerations, discussed in [48], where the BMS
symmetries and constraints discussed in this paper play a crucial role.

2 Constraints on waveforms

This section is divided into three parts. In the first, we introduce the basic framework
that will be used to specify fields at JT. In the second, we introduce the notion of the
Bondi—Metzner—Sachs (BMS) supermomentum, and the associated balance equations.
In the third, we use these balance laws together with the standard asymptotic conditions
in the CBC literature to arrive at an infinite family of constraints on waveforms.

2.1 Underlying framework

Our conventions are as follows. We work with (—, +, 4, 4) signature and define
curvature tensors via 2V, VyKe = Rupe?Ka; Rae = Rapc” and R = g%’ R,p,. We
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will assume that the physical spacetime (M, g,p) is asymptotically Minkowskian in
the sense spelled out, e.g., in [52]. 1

As explained in the “Appendix”, future null infinity, J%, is the natural home for
all asymptotic fields. It is a null 3-manifold with topology S x R, coordinatized by
retarded time u and angular coordinates (6, ¢). One can think of 37T either as the future
boundary of the conformally completed spacetime (M MUTY, gup = 2%g4p) 2
la Penrose [53], or as the limiting surface ‘r = oo’ obtained by moving away from
sources along u = const null surfaces (of constant retarded time) a la Bondi and
Sachs [43-45]. Since waveforms are generally expressed using fields in the physical
spacetime without making the conformal completion, in this paper we will do the
same.

Since (M, gqp) is asymptotically Minkowskian, following Bondi and Sachs let us
introduce a foliation of the asymptotic region of M by outgoing null hypersurfaces
u = const and denote its geodesic null normal by £¢. Introduce an affine parameter
r of £ such that each null surface u = const is foliated by a family of (space-
like) 2-spheres r = const. Denote the intrinsic (4, +) metric of these 2-spheres by
qaqp and the other null-normal to each of these 2-spheres by n“, normalized so that
gapt?n® = —1. Finally, introduce a null complex vector field m“ and its complex
conjugate m? such that their real and imaginary parts are tangential to these 2-spheres,
and they are normalized such that g,,m®m” = 1. Thus, at each point in the asymptotic
region we have a null tetrad ¢4, n, m“, m“® for which the only non-zero contractions
are £ -n = —1 and m - m = 1. Finally, asymptotic conditions imply that this structure
can be set up in such a way that, as r — oo, we acquire certain smooth fields on Jt,
denoted here by a over-circle:

(1) gap = lim r2 qab 18 an unit, round 2-sphere metric (and thus independent of
r—00
u);
(ii) 7% = lim n® coincides with the null normal 9/9u to J¥;
r—00

(iii) ¢* = lim r>¢% is the other null normal to a family of 2-sphere cross-sections
r—00

u = const of Jt, and

(iv) m?* = lim rm® and m* = lim r m“ are tangential to these cross-sections.
r—00 r—>00

In Penrose’s conformal completion, one can always make the null normal 7% to I+
divergence-free by an appropriate choice of £2, and for each such choice, we acquire a
pair (§qp, 1) of fields defined intrinsically on J™, with g, the (degenerate) metric of
signature (+, +) and 2% the null normal to J*, both induced by the conformal metric
8ap. However, we can further restrict our conformal factor such that gy, is a unit 2-
sphere metric. The restricted pair (gqp, 7%) is said to provide a ‘Bondi (conformal)
frame’. In terms of structures introduced in the last para in physical spacetime, we
have §up = Gap and 1% = 1% at JT. The structure introduced is depicted in Fig. 1.

We will therefore refer to the pair (§qp, #%) as a Bondi-frame at J*. A change
in the initial set up of the last paragraph can lead to a change in the Bondi frame.

! This notion is weaker than Penrose’s original definition of asymptotic simplicity which requires that
every null geodesic in M should have endpoints on 7%, our conditions refer only to properties of spacetime
geometry near infinity.
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1

Fig.1 A depiction of future null infinity, 3 (in light blue) that constitutes the future boundary of space-time
and has topology S? x R. The (yellow) outgoing null surface # = u in the asymptotic region of space-time
intersects J in a 2-sphere cross-section. The null tetrad (£4, n, m®, m) and the metric g, on r = const
2-spheres in the interior have limits £¢, 49, m“, m“ and ¢, respectively on J+. The figure also shows an
artist’s impression of a typical waveform based on [54]

Physically, each Bondi-frame selects an asymptotic Lorentz frame because the vector
field 1% provided by the Bondi-frame is an asymptotic time translation (i.e., limit
to J* of an asymptotic time translation vector field in spacetime). Recall that we
have a 3-parameter family of time-translation Killing fields—or Lorentz frames—in
Minkowski space. Therefore, one would expect that there would be 3-parameter family
of Bondi-frames. This is indeed the case: Bondi-frames are related to one another by
(asymptotic) boosts. If we perform a boost by 3-velocity v, the initial Bondi-frame

(Gap, 1) transforms to (éab, 1) given by
—loa

qsab = wzqaby ’%a =w n with o = ——— e
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where y = (1 — (v/ c)z)’% is the standard Lorentz factor and X the unit radial vector
with components (sin 6 cos ¢, sin 8 sin ¢, cos #). For simplicity we will use the terms
‘Bondi-frame’ and ‘asymptotic Lorentz-frame’ interchangeably.

Recall from special relativity that the Lorentz frame in which the 4-momentum P,
of the system is purely time-like—i.e., in which the 3-momentum P vanishes is referred
to as the rest frame of the system. In most of this paper we will work with the past
rest frame at 3T, i.e., the frame in which the Bondi 3-momentum, defined in Sect. 2.2
below, vanishes in the asymptotic past, as u — —oo. Finally, at one intermediate step
we will also have to use the Bondi-frame in which the Bondi 3-momentum vanishes
in the distant future—i.e., u — oo. In a CBC this is the asymptotic Lorentz frame in
which the final black hole is at rest, and represents the future rest frame.

In terms of the null-tetrads we have: g., = —2€np) +2mgmpy = —2Lnpy+qap
on the physical spacetime M, and ¢,» = 2n°1(an£1b) on JT. Of special interest is the
shear 0 = —m®mP” V, €}, of £ because its asymptotic value o ° is directly related to
the gravitational waveforms. In Minkowski spacetime we can choose the u = const
surfaces to be the light cones emanating from points of a time-like geodesic. Then ¢4
is shear-free. In asymptotically Minkowskian spacetimes, shear o of ¢¢ falls-off as
1/r% and

) 1 o
oW, 0, ¢) = —rlgﬂgoﬂ(m“m”wﬁb) = S +ihS)(u. 6. ¢) 2)

is well-defined on JT, where, in the last step we have expressed o ° in terms of the
commonly used strains

hs = rlglgo rhy and K5 = lim rhy.

(Because of the ‘m®m?’ factor, o-° has spin weight +2, while the more commonly used
combination hS — ih$, = 20° has spin-weight -2.) The shear tensor o, at J%, given
by

00, 0,9) = —(0° mamy + &° gty ) (u, 0, ¢), A3)

is a symmetric, traceless tensor field, transversal to the null normal to JT—i.e. satisfies

o, = 0—and has spin weight zero. It captures the two Transverse-Traceless or

radiative modes of the gravitational field in full, non-linear GR. Its time derivative is
the Bondi news tensor: 2

Nup :=2L400, =20 - 4)
One often introduces a ‘news function’ N via

Nap = 2(Niirgtivy + Nmgmy, ) , )

2 1t has a clear-cut geometric meaning in the conformally completed spacetime: Ny, is the conformally
invariant part of the curvature of the intrinsic connection on 3+ [55].
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so that N = —9,6° = —&° has spin weight -2.

Finally let us introduce the Newman—Penrose components of the Weyl tensor that
also feature prominently in the discussion of gravitational waves produced by CBCs.
Since the stress energy tensor (if any) of the system is of compact spatial support,
curvature in the neighborhood of infinity is fully captured by the Weyl tensor. Because
(M, gqp) is asymptotically Minkowskian, components of the Weyl tensor in the null
tetrad have a specific fall-off, known as ‘peeling properties’ [44,56]. The leading order
components of the Weyl tensor in the null tetrad—which carry a superscript o—can
be regarded as fields on JT:

b d

WP (u,0,9) = lim rCapeanm’nm*;
rF— 00

U (u,0,¢) = lim 12 Capean®mPnced;
F—> 00

2Re W5 (u,0,¢) = lim r*Capeant’nt’;

2Im W5 (u, 0, ¢) = —i lim 73 Copean®@®mm?;
r—>00
W, 0,¢) = lim r*Cupeqt®m®en?;
r—> 00
V.0, 9) = lim 2 Capeal®mPem? . (6)

The spin-weight —2 component ¥, is referred to as the radiation field because:
(i) it is the leading order coefficient of curvature component with asymptotic fall-off
1/r; and, (ii) it is directly related to the waveforms, namely

o __ o __ 2-o0
V) =-0"=-0,0".

By contrast, the real part of the (spin-weight zero) component ¥, encodes the
‘Coulombic’ information contained in the Bondi mass. The angular momentum infor-
mation resides in the spin-weight 1 component ¥ [57,58]. This may seem surprising
at first because one is accustomed to the statement that in Kerr spacetime the only non-
zero component of the Weyl tensor is ¥, . However, that statement refers to components
in principal null directions which do not agree with the pair of null vector fields (7, )
at JT. In terms of the null tetrad at J* in a Kerr spacetime with mass M and angular
momentum J, ¥, is areal constant with value —GM, while ¥} = (3i/2) sint GJ.
Finally, in this paper we will not need the component ¥; it was introduced just for
completeness.

Remark The fall-off in 1/r of curvature components in the physical spacetime
is often referred to as “peeling” and translates to degree of differentiability—or
smoothness—of the conformally rescaled metric g, in the Penrose completion. There
has been considerable debate in the literature on whether these assumptions are physi-
cally reasonable (for a summary, see e.g. [59]). Indeed, using the PN perspective it was
argued in the early days that they may not be appropriate for CBC [60]. However, as
noted in the “Appendix”, the current consensus in the PN literature is that the asymp-
totic form of the PN metric is completely consistent with the Bondi—Sachs—Penrose
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framework [61]. Similarly, the key notions underlying this framework—such as ¥,
N, and o °—and relations between them are heavily used in NR.

2.2 The supermomentum balance law

Much of the previous work on supermomentum is carried out in the conformally com-
pleted spacetime, without introducing auxiliary structures such as the tetrad vectors
£%, m%, m“ that are not canonically defined at J* [50,51,62]. Similarly, one does not
require that the intrinsic metric §,; on J7 is the round, unit 2-sphere metric. This gen-
erality made it manifest that the results have all the required invariance and covariance
properties. However, since the waveforms community does not use conformal com-
pletion, we will now present the material using only those notions that are introduced
in Sect. 2.1 (and in the “Appendix”). On the other hand, to check transformation prop-
erties, e.g., from one Bondi frame to another, it is easiest to use the original invariant
framework.

As explained in the “Appendix”, one of the major surprises to emerge from the
Bondi—Sachs work was that, although spacetimes under consideration are asymptoti-
cally Minkowskian, the asymptotic symmetry group is not the Poincaré group P, but
an infinite dimensional enlargement thereof, the BMS group 8. While B does admit
a canonical 4-dimensional normal subgroup 7 of translations [63], it also contains an
infinite dimensional Abelian subgroup S of supertranslations, which can be thought of
as ‘angle dependent translations’. There is a direct relation between this enlargement
and the presence of gravitational waves: In absence of gravitational radiation the group
naturally reduces back to the Poincaré group [55,62,64]. Intuitively, the enlargement
occurs because the ripples of curvature propagate out all the way to infinity, introduc-
ing an ambiguity in the choice of the ‘background Minkowski metric’ that the physical
metric gqp is approaching as 1/r. In any Bondi-frame at 3T, we have the following
properties:

(1) translations are represented by vector fields S(“a) = af, )% at I, where a is a
(real-valued) linear combination of the first 4 spherical harmonics:

m=1

a(®,9) =Yoo+ Y amYim®.9) )

m=—1

for some constants «q, o, ;

(ii) the vector field & (‘6) = 1 is the time-translation in the chosen Bondi frame and the

vector fields é{‘ = Zﬁill amY1.m (6, @) n® are spatial translations in that frame;

(iii) the more general vector-fields é}(“f) = f(6, ) n® where f is any smooth function
on a 2-sphere are called supertranslations; so translations are just special cases
of supertranslations. If we fix a Bondi-frame—as we will in most of the paper,
taking it to be the rest-frame in the asymptotic past—we can speak of ‘pure’
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supertranslations: These correspond to

00 2
FO.0=>"" frmYem® ). ®)

=2 m=—{

In what follows, we will use the symbol « (6, ¢) to refer to BMS translation and f (0, ¢)
to refer to generic BMS supertranslations. 3

Recall that for fields in Minkowski space, energy-momentum arises as the Hamil-
tonian generating canonical transformations corresponding to spacetime translations.
In the same spirit, in GR one can construct a phase space I Rr,q of radiative modes at
J% [65], show that the action of BMS supertranslations “g‘(”f) on J7 induces canonical
transformations on I rag, and calculate the corresponding Hamiltonians [S51]. They are
given by integrals over J* which have the interpretation of the total fluxes J f) across
J% of the components of supermomentum defined by £ (6, ¢):

Fip = dud®V £, ¢) [NopyN*® +2D,Dp N**(u, 6,
% 32nG/;,-+” O, 9) [NapN® + 2Dy DpN](u, 0, ¢)

=G ) &V 16, ) [I6°]7 - Re(@*6°)](u, 6, ) . ©)

Here, in the first step we have raised the indices of N, using the unit 2-sphere metric
G“" on the u = const 2-spheres, and D, is the derivative operator compatible with ¢y,.
In the second step we have used the Newman—Penrose angular derivative operator 0

whose action on a spin-weight s scalar A, given by

1

7 P9 > (sinf)*A, (10)

30 ' sind dg

yields a scalar with spin-weight s + 1. (In our case, 6° has spin-weight —2, whence
0%5° has spin-weight zero. Please note that in the literature, d often carries the opposite
sign relative to Eq. (10).) The second equality in (9) provides us with supermomentum
fluxes directly in terms of the waveform 20°(u, 0, ¢) = (hS +ihS)(u, 0, @).

One can show that the ) is in fact an integral of an exact 3-form, whence the
integral on JT can be expressed as the difference between two 2-sphere integrals,
performed at i° (i.e. on the ‘u = —oo’ 2-sphere) and i+ (i.e. on the ‘u = oo’ 2-
sphere) [51]:

Fip =, m P lu=u, = Jm Py lu=, (11)

31 we change the Bondi-frame, the vector field 71 is rescaled as in Eq. (1). Since the supertranslation
is given by €9 = fi#% = fii%, the labels f and f in the two frames are related by f = wf. In the
Penrose conformal picture, f is not a scalar but carries a conformal weight 1. It turns out that the notion
of a BMS translation is invariant with respect to this change of the Bondi-frame, but the notion of a ‘pure
supertranslation’ is not.

@ Springer



107  Page 10 of 27 A. Ashtekar et al.

where

d*V £(0, ¢) Re[¥5 +5°5°](0, ¢) (12)

Uo

Plim =525 $_

is the f-component of the supermomentum of the system at the retarded time u = u,.
Equation (11) constitutes an infinite family of balance laws—one for each choice of a
supertranslation, i.e., of smooth f (6, ¢) on a 2-sphere. As we will show in Sect. 2.3,
these laws provide us with an infinite family of constraints on waveforms. Finally, Refs.
[50,51] provide more general expression of supermomentum that hold on any 2-sphere
cross-section of JT (not necessarily # = const) and formula of supermomentum flux
through any patch AJ™ of 3. Equations (9) and (12) are just special cases of those
expressions adapted to the setup introduced in Sect. 2.1.

Since the balance law holds for any supertranslation f (6, ¢)n¢, itholds in particular
for translations «(6, ¢)ii“. In this case P(y) is simply the Bondi—Sachs energy-
momentum of the system at the retarded time u = u,. Since the functions « (0, ¢)
are linear combinations of the first four spherical harmonics, the flux formula sim-
plifies. For, é“bDoha is a conformal Killing field of the 2-sphere metric ¢,p5, Whence
D,Dpa o Ggp. Therefore, integrating the first equation in (9) by parts and using the
fact that N, is trace-free, one obtains:

Fay) = G ). dud®V a0, @) |0°1*(u, 0, ¢) . (13)

In particular, for any time-translation, « (6, ¢) is positive, whence the flux of energy is
necessarily positive. This is the celebrated Bondi—Sachs result. To calculate the final
black hole kick, one computes the 3-momentum flux F(), where the function is a
general linear combination of the three Y7 .

Remark If one accepts (12) as the definition of supermomentum, then the balance
law (11) follows directly from Einstein’s equations and Bianchi identities. However,
without the use of Hamiltonian methods, it is difficult to justify why this expression
should be interpreted as supermomentum. Indeed, in the literature between 1960s
and early 1980s there was considerable confusion about supermomentum because
the flux expressions were not obtained from a physically well-motivated procedure.
For example, expressions of supermomentum given in [66—69] lead to a non-zero flux
between general cross-sections of I in Minkowski space [70-72]! The expression (9)
by contrast vanishes anytime the news tensor vanishes, in particular in any stationary
spacetime (relation between these flux expressions is discussed in [71]). Even when
Hamiltonian considerations were used to provide a physical basis for the derivation,
the flux expression in the early literature was incorrect (see, e.g. second article in [45]
and [73]) because of a subtle fact that the radiative phase space is an affine space,
rather than a vector space (for details, see [51]). These examples serve to bring out the
fact that considerable care is needed to arrive at viable balance laws.
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2.3 Implications for waveforms

We can now apply the balance laws to isolated systems undergoing CBC. Since the
balance laws refer to exact GR, we will not need to make any approximations. However,
we need to incorporate the fact that we are now restricting ourselves to CBC. We will
do so through two physically motivated assumptions in Sect. 2.3.1. The resulting
constraints and their possible applications on the global waveforms are discussed in
Sect. 2.3.2, while Sect. 2.3.3 discusses the constraints on restrictions of waveforms to
finite u intervals.

2.3.1 Assumptions

(1) We assume that the Bondi news tensor Ny, on I+ goes to zero as u — o0 as
1/u'*€ for some € > 0.*

This condition is necessary and sufficient to ensure that the flux of the BMS angular
momentum across J1 is finite [48,51]. For vacuum solutions, the Christodoulou-
Klainnerman results, for example, ensure that this condition holds with ¢ = 1/2.
Waveforms constructed so far satisfy this assumption because the Bondi news goes
to zero rapidly at early and late times; within the approximations made and accuracy
achieved, N,y is in fact indistinguishable from zero outside some finite u-interval. In
terms of the waveform o° = hS + ih$, our assumption reads:

o, 6,9) =010, 9) + ul <06, 9) + O(u7") asu — +oo, (14)

so that o4(6, @) are the limits of o°(u, 6, ¢), and +eol’ (0, ¢) are the limits of
lu|'"T€ N(u, 6, ¢) as u — +oo.

Next, it is expected that the system would settle down to a stationary state after
coalescence. Indeed, in the case of binary black holes, numerical simulations show
that at late times the spacetime metric approaches the Kerr solution. In addition, the
PN calculations assume that the system is stationary in the past, i.e., for timest < —t
[61]. We will need a much weaker assumption to capture the physical behavior of the
compact binary in the asymptotic future and past.

Let us first note a consequence of assumption 2.3.1. Since N, = O(1 /lu|'te)
as u — =oo, Einstein’s equations together with Bianchi identities imply that
WP, 3,W5 and 9, Wy go to zero as u~ 3T, =T and =7 respectively. In
this precise sense these three complex components of the asymptotic curvature become
‘time-independent’ or ‘stationary’ in the limit u — F00. Because N is invariant
under the change of Bondi-frame, this fall-off behavior holds in any Bondi-frame.
Furthermore, ¥, and ¥’ themselves vanish in these limits, and for ¥, we have

WS (u, 0, 9) = i@, 9) + lul 0. 0) + 0(ul ") asu > +oo, (15)

4 Throughout, we assume that if a field F(u, 0, ¢) = O(1/|u|%)—i.e., if |u|* F(u, 0, ¢) admits smooth
limits F (0, @) as u — Foo—then its mth u-derivative, 3" F (u, 6, ¢) is O(1/|u|"T%).
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again in any Bondi-frame, although the limiting values ¥+ (6, ¢) and wj(tl )(9, ©)
depend on the choice of the frame. Note, however, that assumption 2.3.1 does not
imply that ¥ (or W) become stationary as u — +oo. Furthermore, the limiting
values of 9, ¥, depend on the choice of the Bondi-frame and in general the rest-frame
of the final black hole is different from that of the system in the distant past because
of black hole kicks [74,75]. We will now make our second assumption:

(2) 9,¥[ — 0O in the past Bondi-frame as u — —o0, and in the future Bondi-frame
asu — oo.

Recall that the past Bondi-frame is the one in which the Bondi 3-momentum vanishes
in the distant past (i.e., as u — —00), and the future Bondi-frame is the one in which
the Bondi 3-momentum vanishes in the distant future (i.e., as u — 00). Thus, we
are not requiring that the system should become stationary in the past and the future
in the same rest-frame. As we discuss below, that requirement would have been too
restrictive. Ours is quite weak: in the distant past it is much weaker than what is
assumed in PN waveforms, and it is found to hold in the NR simulations in the distant
future, since the solution quickly relaxes to a stationary spacetime [1].

2.3.2 Constraints on global waveforms

The two assumptions lead to a key simplification in the surface terms representing
asymptotic values of supermomentum (12) used in the balance laws (11). First, in
any Bondi-frame, Einstein’s equations and Bianchi identities imply that the following
relations hold on all of J% (see, e.g., [56]):

QW =m D5 +20° W5 = BY5 —20°35°, and, (16)
Im¥y =Im (3%0°+0°N). (17)

They have two important consequences. Let us first consider the past Bondi-frame.
Then,

(1) in the limit u4 — —oo the left side of (16) vanishes by assumption (2), while
the second term on the right hand side vanishes by assumption 2.3.1. Therefore
m®D, ¥, vanishes—i.e., ¥, becomes spherically symmetric—in the limit u —
—00.

(ii) Next, thanks to assumption 2.3.1, Eq. (17) implies lim, , o Im ¥y = % Imo_.
Integrating both sides over a 2-sphere, and using spherical symmetry of Im ¥; we
conclude that Im ¥; = 0 in the limit.

To evaluate the limit of Re ¥, we will use the expression (12) to calculate the past
limit of the Bondi 4-momentum. This limit is purely time-like in the rest-frame at i°,
and the limiting Bondi energy is precisely the initial (or the total) mass M;-. Therefore,
setting f = 1in Eq. (12), and taking the limit u, — —o0 we obtain:

(i) 1im, oo Re Wy = —GMe.

Thus, we conclude:

lim Re¥;(u,0,¢9) = —-GM;>, and lim Im¥;u,0,9)=0. (18)

u——00 u——0oQ
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Now, the asymptotic rest frame of the system at # = oo is generically different
from that in the past. To work out the implication of condition (2) on the behavior of
¥, in the distant future, let us for a moment switch to the future Bondi-frame—in
which the final black hole is at rest—and denote fields in that frame with a prime.
Then the reasoning we used also implies that

lim &' = —GM;+. (19)

u— o0

Since the balance law is formulated in a general but fixed Bondi-frame, and we have
chosen to work in the past Bondi-frame, we need to transform l1/2°/ to that frame.
The two frames are related to each other by a boost defined by the velocity v of the
final black hole (in the past rest-frame), commonly referred to as the kick velocity.
To calculate the components v; = (vy, vy, v;) of v in the past rest frame, we first
note that since initially the Bondi 3-momentum is zero, the 3-momentum P, of the
final black hole in the past rest-frame is just the negative of the Bondi 3-momentum
flux Fq,) carried by gravitational waves, and hence completely determined by the
waveform. From Eq. (13) we obtain

Y M+ vi = P, dud®V a; (0, ¢) lo°(u, 6, )|, (20)

T 4G

where, again y = (1 — v? /02)_% is the standard Lorentz factor and «; (0, ¢) =
(sin @ cos ¢, sin@ sin¢, cosd) = x. In terms of this velocity v, the transformation
property of ¥, under the change of Bondi-frames implies that the future limit of ¥y
in the past Bondi-frame is given by >

v’ GM;+
wel = 2 = — ! ) 1)
A )

Thus, using assumptions 2.3.1 and (2) we have now expressed ¥, in both asymptotic
limits 4 — =00 using the the past Bondi-frame through Egs. (18) and (21).

We can now use the balance law (11) for a general supertranslation f(9, ¢), in
conjunction with with the forms (19) and (21) of ¥, in the asymptotic past and future,
to conclude that the waveform o° = (hS + ih5)/2 must satisfy

2y L OM
y{d V1. 9)(GMe TR )
— 7{&17 £, 9) /oodu [lo°]* — Re(@*5°)](u, 6, ). (22)

5 This transformation property follows from the conformal rescaling of i givenin Eq. (1), the normalization
condition gahlanb = —1 in physical spacetime, the definition of ¥y (u, 6, ¢) given in Eq. (6) and the fact
that the radial coordinate changes via r’ =y (1 — % - X)r + O(1) under a boost.
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Since f (0, ¢) is an arbitrary smooth function, we can peel-off the 2-sphere integral to
obtain

Mo — — M _ / du[[6°[2 — Re(026°)|(u. 6. ¢) = F(6.9).
(23)

F (6, ¢) can be thought of as the ‘total flux of supermomentum in the (6, ¢) direction’.
Since, Eq.(23) holds for each (0, ¢) we have an infinite set of conditions.
Now, every waveform used for data analysis provides us with:

(i) the waveform o°(u, 6, ¢) = %(h‘jr + ih$ ) that completely determines the right
side of (23), as well as the kick velocity v through Eq. (13);
(i1) the total initial mass of the system M;o;
(iii) the mass M;+ of the final black hole.

If the global procedure used to create the waveform is to be consistent with exact GR,
then the outcome must satisfy the infinite set of constraints (23). This is our principal
observation.

To get an intuitive feel for these constraints, let us first consider the special case
where there is no kick, i.e., where the velocity v of the final black hole is zero. Then
the left side of (23) is a constant, while the right side F (6, ¢), constructed from the
waveform, is a function of (0, ¢). The infinite set of constraints now imply that F (6, ¢)
must be a constant. However, zero kick represents a very special CBC. Let us now
consider the general case. Numerical simulations show that typical kick velocities are
a few hundred km/s. For definiteness, let us take it be ~ 300 km/s, so v/c ~ 1072,
One can then Taylor expand the second term in the left side of (23) in v/c,

GM, M _6um
’O _ v N ,; —_— lO
y3(1—Y¥-%)
2
—GM,-+(1+(3ﬁ-£)£—(%—6(ﬁ-£)2)z—2+...> (24)

and keep terms to the desired accuracy (here v is the unit vector in the v direction).
Within this scheme, to test if a given waveform is accurate to ~ 0.3% we only need
to retain the first order term in v/c, namely, (—3 GM;+ 0 - X) v/c. Then the right
side has only linear combinations of £ = 0, 1 spherical harmonics, whence, in the
expansion of F (6, ¢) in terms of spherical harmonics, all coefficients of the flux must
vanish for £ > 2. This means that the waveform must be such that the total flux of
the infinitely many components of pure supermomentum across J* must vanish to
~ 0.3% accuracy. If we are interested in 0.01% accuracy, we would keep terms up to
0(v2/ 62) and should then find that the coefficients of the total flux must vanish for
£ > 2, and so on. To summarize, (24) provides an infinite number of conditions that
any proposed waveform must satisfy if it is to approximate the outcome of the exact
GR calculation to a given desired accuracy. The resulting error-bars are relative to
exact GR rather than NR simulations (which come with their own error bars).
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2.3.3 Constraints on waveforms over finite time intervals

So far we have focused on the ‘global balance law’ (11) thatrefers to all of 3. However,
we also have a ‘quasi-local’ balance law for any portion AJ™ that is bounded by two
cross-sections C1 and C; [50,51]. For waveform considerations it suffices to take C;
and Crtobeu = u1 (0, ¢) and u = uy(0, @) cross-sections in any given Bondi-frame.
Then we have:

Ppylu=uy = Pip)lu=uy = Fip)lyy (25)

where the supermomenta P r)|y; (withi = 1, 2) on the left hand side are again given
by (12),

d*V £(0, ¢) Re[¥5 +5°5°] (0. ¢) (26)

Ui

and the flux on the right side is given by

1 . uy o

Fpld =—= P d®V (0, 9) / du[|o°|* — Re(@*3°)|(u, 0, ¢).  (27)
1 dn G u

One can again ‘peel off” the 2-sphere integral using the fact that £ (0, ¢) is arbitrary

and arrive at the local analog of (23):

Re[¥5 +6°0°](u1, 0, ) — Re[¥5 +5°0°](u2, 6, ¢)

=— /uzdu [lo°]* — Re(@*5°)](u, 6, ¢) (28)

1

The quasi-local constraint (28) has richer content than the the global constraints
(23): since u and u» are arbitrary, it provides dynamical checks on the waveform [76].
However, in order to verify whether it is satisfied, one needs to know ¥y. The SXS
collaboration is expected to release simulations that extract ¥, in the NR regime in
the very near future [77,78], making (28) a potentially powerful tool to estimate errors
in the simulations vis a vis exact GR. In addition, as noted in Sect. 1, the ‘finite time
balance law’ (28) has already been used to improve certain modes of waveforms in
the SXS catalog [47].

We will conclude with a few remarks on Sect. 2 as a whole.

1. Had spacetime been exactly stationary for t < —t, as is generally assumed in
the PN literature [60,61,79,80], then we could have used the multipolar expansion
of the metric that is shown to hold rigorously for stationary spacetimes outside
some spatially compact region [81]. Using this expansion, one can calculate the
asymptotic Weyl tensor and show that ¥y is real and spherically symmetric on
J% in the past Bondi-frame on an infinite interval u < —u, for some u,. (In
this case, the past Bondi-frame is the one in which 7i¢ is the limit to J of the
stationary Killing field.) Since our notion of asymptotic stationary in the past is
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extremely weak in comparison, we can only conclude that ¥, becomes spherically
symmetric in the limit 4 — —oo.

2. All analytical approximations used to construct waveforms—such as EOB—agree
with the PN one in the distant past. Since our weak assumption (2) is inspired by
the PN stationarity condition, it holds in these approaches as well.

3. Since the Lorentz transformation of energy only involves the first power of y (v -
X /¢) in the denominator, the appearance of the cube of this factor in (23) may seem
surprising. The additional factor of (y (v - X/c)) 2 comes from the transformation
property of the 2-sphere area-element: We have ‘peeled-off” a 2-sphere integral in
the passage from (11) to (23).

4. If there is no kick, i.e., if v = 0 identically, then the past and future Bondi frames
coincide. This is of course a very special case realized, e.g., in an equal mass
head-on collision. In this case, Eq. (21) simplifies to ¥5|y=cc = —GM;+. Thus
¥, becomes spherically symmetric in the same Bondi-frame in both asymptotic
limits, u — =oo. Therefore, in the terminology used in the literature, the linear (or,
ordinary) memory vanishes. Recently, this implication of asymptotic stationarity
of the system in the same Bondi frame, as u — 00, was arrived at using detailed
calculations using the physical spacetime metric [82]. Analysis at J* summarized
above brings out the minimal setup needed to obtain this result:

(i) One only needs that the past and future rest frames are the same, and 9, ¥ — 0
as u — oo along J* in this Bondi frame. There is no explicit assumption
on the underlying metric and, at the level of curvature, ¥y does not have to
become stationary;

(i1) In full GR, the result follows in a couple of steps if one uses Eqs. (16) and (17)
at 3T, which are immediate consequences of Bianchi identities and Einstein’s
equations at JT [56].

Finally, note that we do allow kicks in our main analysis; our assumption (2) does
not require that the past and the future rest frame is the same and the ordinary
memory does not vanish.

5. The assumption of ‘past stationarity’ [60,61]—i.e., that the system is stationary
before some time (f = —1)—is extremely strong. Sometimes one models the
behavior of the system in distant past by assuming that it is represented by a
binary in a quasi-circular orbit, rather than by a stationary system. In this case,
velocities of the individual bodies would go to zero asymptotically and our two
assumptions would still be satisfied. In practice, one may want to avoid the limit
u — —oo altogether and simply start at some finite time 1 = u sufficiently in
the past when the binary is well within the PN regime, and use (28) in place of
(23) with up = oo.

3 Discussion
Thanks to the combined technical expertise of the waveform community, the matched

filtering procedure based on currently available waveforms has led to the dramatic dis-
covery of several CBCs [83]. The pace of detection has gone up considerably already
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during the current LIGO-Virgo observation run and, with a global network of gravita-
tional wave observatories, the detection rate could be as high as 1000 binary black holes
coalescences a year, with masses below 100M . The 3G observatories and LISA will
further increase the total rate, have a higher sensitivity and widen the parameter range
significantly. These discoveries will enable us to better understand the astrophysics
of sources assuming GR, and also to carry out more stringent tests of GR itself. Fur-
thermore, some experts emphasize that even with the current LIGO-Virgo detectors,
more accurate waveforms could lead to the discovery of near or (sub)threshold events
and/or events in regions of the parameter space where NR simulations are sparse [29].
Therefore, it would be extremely useful to have external criteria to ensure that the
waveforms used in the analysis do represent predictions of GR to a very high degree
of accuracy. As we remarked in the Introduction, the conceptual difficulty is that we do
not have waveforms from exact GR with which to compare the candidates! Therefore
errors are generally estimated by comparing various analytic waveforms with the NR
ones, which are taken to be the ‘practical substitutes’ for the exact waveforms (see e.g.
[18,19,39—-42]). In Sect. 2 we showed that the supermomentum balance laws provide
an alternate avenue: One can test the accuracy of a proposed waveform vis a vis exact
GR using Eqs. (23) and (28). These equations impose an infinite number of constraints
on the waveform that must be satisfied in full, non-linear GR. Since they refer only
to the asymptotic structure of space-time, they hold not only for the BH-BH binaries,
but also for NS-NS and NS-BH binaries. Violations of these constraints can provide
sharp error-bars on any waveform candidate for all CBCs. Work is in progress to use
the constraints to gain further insights in several directions.

The first concerns sub-dominant modes in the (spin-weighted) spherical harmonic
decomposition of the waveform. Different models already provide us with several
modes beyond the leading (2,2) mode. For example, in the spinning, non-precessing
case, there are EOB waveforms that include the (2,2), (2,1), (3,3), (4,4), and (5,5)
modes [32] while in phenom models precessing waveforms that include all £ < 4
modes are available (PhenomPv3HM [33]). It is natural to ask for the errors one
makes in ignoring other modes [84—-87]. Since the equality (22) assumes that o° on
the right side is the exact GR waveform—which include all modes—it is can be used
to evaluate these errors. Significant violations of this equality could also be used as
signals that certain waveforms need further scrutiny.

In practice it useful to carry out a spherical harmonic decomposition, using
Yo.m (6, @) (for various ¢, m) for f(6, ¢) in (22):

fd%"/ Yeom (GM,.O . L*J
=59
o
— ?éd%"/ Yem(6, (p)/ du[|o°]* — Re(86°) (1, 0, ¢) . (29)
—00

One can use the candidate waveform %(hi + ih3) for o° on the right side of this
equation, and also in the calculation of the velocity v on the left side. Generically,
there will be a mismatch between the right and left sides of (29) which will pro-
vide an estimate of the error in the candidate waveform for each choice of ¢, m. For

@ Springer



107  Page 18 of 27 A. Ashtekar et al.

instance, the m = 0 modes are usually set to zero in non-precessing models, and they
arise in precessing waveforms solely from the time-dependent rotation that takes into
account precession. For non-precessing systems, therefore, the Yy o components of
the constraint (29) are violated, primarily because the second term on the right side is
vanishing by construction. Work in progress shows that for the IMRPhenomD [5] and
SEOBNRV4 [54] models the violation is most significant for Y> o, as one might expect.
Errors in different models are essentially the same because their |o°|? is essentially
indistinguishable and the left hand side negligible, being of order (v/c)?.

However, for other modes the magnitude of the violation of (29) can differ markedly
from one class of models to another. This is in particular the case for precessing sys-
tems. As a specific example, let us compare SEOBNRv3 [11,88] and IMRPhenomPv?2
[6] (whose waveforms includes all £ = 2 modes). Consider then a precessing binary
system of equal mass black holes, each with spin 0.4 in the positive x-direction (mea-
sured at a reference time corresponding to a GW frequency of 0.01 in units of the total
mass). Since these models do not include the (3,2) mode, by fiat the second term on the
right hand side of Eq. (29) is set to zero in the (3,2) part of this constraint. Therefore
again the constraint is violated. However, in this case the orders of magnitude of the
violation are very different: while it is 4 x 10~* for SEOBNRv3, it is of order 1014
for IMRPhenomPv2, both in units of G M;-. Therefore—unlike in the case of the (2,0)
mode discussed above—the discrepancy cannot come solely because the (3,2) mode is
ignored; there is another source of systematic error involved. Of course to determine
whether these inaccuracies are significant in practice, one would have to take into
account the precise sensitivity of the next generation detectors.

As pointed out in Sect. 1, recently these constraints have been used to calculate the
probability distribution functions (PDFs) for the total gravitational memory in various
LIGO events [46]. Recall that the the mass and spin of the final black hole serve as
inferred observables for LIGO events to date, and comparisons of the posterior PDFs of
these observables, obtained from EOB and Phenom waveforms, have generally added
to confidence that the accuracy of these waveforms is adequate. The total memory
is another inferred observable associated with CBCs. It can also be used to probe
systematic errors in given waveforms.

The strategy can be summarized as follows. Let us set £ > 2 and re-express
(29) by: (i) carrying out the u integral in the term that is linear in &° on the
right hand side; (ii) using the fact that Im d>5° vanishes at 1 = =oo because
Imy; vanishes there; (iii) integrating 9% by parts and using the identity 9%Y;,, =
%J (I —DIAd+ 1)U +2) 2Ye,; and, (iv) moving the result to the left side. We then
obtain

1\/(1—1)1(z+1)(1+2)[ lim — lim ]% 42V »Yy  Re(6°)
2 Uo—>00  uo——oold f ’
.Y . S 30)
=GM;+ fdzv —" 4 fdzv Ye,mf du |6°*(u, 0, ).
)/3(1 — % )’5) —00

The left hand side of (30) provides the (£, m) component of the total gravitational
memory. In the framework developed in Sect. 2, 0° = 0 at i°, so the left hand side
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receives contributions only from u — 400, which is generically non-zero because
the past and future Bondi-frames are related by a supertranslation (see, e.g., [52,55,
64,82]). This subtlety is important for hybrid waveforms where it is natural to work
in the past Bondi frame in the PN regime, thereby setting 0° = 0 at i°, and it is also
natural to work with the future Bondi frame in the NR regime, where ° = Q at i +.To
obtain a consistent waveform, one then has to incorporate the supertranslation relating
the two frames [48,89]. However, this term vanishes for all (¢, m) in the currently
available Phenom and EOB waveforms, indicating that they do not incorporate this
supertranslation.

The idea is to use our constraint to extract the correct total memory by evaluating
the right hand side [46,90]. Detailed examination shows that for CBCs that have been
observed so far, the first term on the right side (called the linear (or ordinary) memory)
is dominated by the second term on right hand side (called the non-linear (or null)
memory). The second term, in turn, is dominated by modes (particularly (2,2)) that
are expected to be correctly captured in the available waveforms. Therefore, in various
LIGO events one can use the currently available posterior PDFs from EOB and Phenom
models to infer the PDFs for total memory. Comparison between these pairs of PDFs
for the (2, 1) component of the total memory has signaled [46] a possible source of
systematic error that was not revealed by the PDFs of currently used observables.

While the total gravitational memory can be evaluated using the above procedure,
the calculation of the full (2,0) mode of the waveform as a function of time is more
challenging. In the NR regime, accurate results have been obtained [91] using Cauchy-
Characteristic Extraction (CCE). It can be seen that the (2,0) mode has a monotonic
behavior, superimposed by some oscillations. This form can be understood concep-
tually using our constraints: The monotonic part can be directly traced to the (finite
time version of the) non-linear memory term, and the oscillatory, to the (finite time
version of the) linear memory term in (28). © However, CCE is numerically expensive.
Therefore, analytic considerations suggested by the constraints presented in this paper
are being used [47] to fill a gap in the current SXS catalog.

Next, recall that the mathematical GR literature generally assumes that o° can be
freely specified on 3. On the other hand we found that it is subject to an infinite
number of constraints stemming from the balance laws. How did this come about?
The constraints arose because (i) we are considering gravitational waves emitted in
CBCs, rather than source-free solutions; and, (ii) we assumed that the CBCs become
stationary in a weak sense both in the distant past and future, in the respective asymp-
totic rest frames. Let us therefore reexamine the boundary conditions we imposed in
the limits u — o0 in Sect. 2.3.1. The first has direct physical motivation: We assume
that the Bondi news—the time derivative of the waveform—decays sufficiently rapidly
so that the total flux of supermomentum across J* is well defined. (This is also the
necessary and sufficient condition for the flux of Bondi angular momentum across
J% to be finite. The condition is satisfied in, e.g., the analysis of non-linear stability
of Minkowski space given, e.g., in [92].) This condition guarantees that the system

6 More precisely, we need to work with a finite time analog of (30), obtained by integrating (28) against
Y2 0(0, ¢) and setting ] = —oo. In our setup o vanishes at u = —oo. Therefore, this procedure expresses

fdz\ﬂ/ Y2000, 9)0°u2, 0, ¢) as a sum of the (finite-time) non-linear memory that is monotonic, and a
(finite-time) linear memory term which turns out to be oscillatory.
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becomes asymptotically stationary in the weak sense that time derivatives of the com-
ponents ¥, W7 and ¥, of the asymptotic Weyl curvature go to zero in any Bondi
frame as u — oo (if these conditions hold in one Bondi frame, they hold in all). The
second condition we imposed is a strengthening of this notion of asymptotic stationar-
ity: We require that the time derivative of ¥’ also goes to zero as u — 3=00. But now
the limits depend on the choice of the Bondi-frame, whence the requirement in the past
is imposed only in the Bondi frame in which the system is at rest in distant past, and
similarly the requirement in the future is imposed only in the Bondi frame in which the
system is at rest in distant future. We saw that, had we demanded the time derivative
of ¥ vanishes as u — oo in the same Bondi-frame, the condition would have
been physically too restrictive—in particular it would have ruled out black hole kicks
[74,75]! By contrast, our condition requires asymptotic stationarity in a weak sense.
In particular, in NR simulations space-time geometry approaches the Kerr solution in
the distant future and PN analysis used in the early phase of coalescence assumes a
much stronger notion of stationarity in the distant past.

Finally we would like to clarify a potential confusion about the field ¥ on
J%. Global results by Christodoulou and Klainerman [92] on non-linear stability of
Minkowski space showed that ¥y, ¥3 and ¥, ‘peel’ as 1/r, 1/r> and 1/r respec-
tively, as implied by the Newman—Penrose asymptotic conditions [56]. However, in
that analysis, ¥ is guaranteed to fall-off only as 1/r7/2, rather than as 1 /r*. Therefore,
it follows from Eq. (6) that ¥ need not exist on J% for the class of initial data con-
sidered in Ref. [92]. Note that this is not a statement about limits # — oo along J™
considered in this paper; rather, ¥’ need not exist anywhere on Jt.In particular, this
means that the angular momentum of the system would be ill-defined at any retarded
time u = u, [57,58]. From a physical viewpoint, therefore, this analysis caters to too
broad a class of systems. In CBC, in particular, angular momentum is well-defined
and constitutes an important parameter in the system characterization. Indeed, even in
the vacuum case to which Ref. [92] restricts itself to, Chrusciel and Delay [93] have
shown that there is a non-linear neighborhood of Minkowski initial data that evolves
to a unique global solution in which the Newman—Penrose peeling holds, i.e. ¥{ has a
well-defined C¥ limit to 3. Finally, note that all these global results refer to vacuum
(or electrovac) situations in which there is outgoing as well as incoming gravitational
radiation. Physically we are much more interested in gravitational waves produced
by sources—such as compact binaries—with no incoming radiation on J~. Among
solutions covered by the currently available global existence theorems, the only one
with no incoming radiation is Minkowski space! Therefore, these theorems do not
offer direct guidance for what the appropriate fall-off conditions would be for systems
undergoing compact binary coalescence.

To summarize, our analysis is based on results that have been well-known in the
mathematical relativity community for many years. The new feature is the recognition
that (a weaker form of) the assumption of asymptotic stationarity used in the waveform
community, together with the knowledge of the total mass of the system, leads to an
infinite set of constraints on the CBC waveforms in general relativity. Thus, the analysis
provides a new avenue to evaluate the accuracy of candidate waveforms vis a vis exact
general relativity. This tool has already been used to probe the accuracy of waveforms
and differences in the underlying physics of the currently used waveform models in
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[46], and to improve them in [47]. These examples can be considered as a proof of
principle that the tool will be even more useful as the statistical errors decrease with
new generations of gravitational wave detectors.
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A Null infinity and emergence of supertranslations

In Sect. 2 we used several known facts about the structure of null infinity and properties
of fields thereon. Since some in the PN and NR communities may not be familiar with
them, in this Appendix we present a brief summary, focusing only on those features
that we need.

Eventhough Einstein, Eddington and others explored the properties of gravita-
tional waves in the weak field approximation around Minkowski space soon after
the discovery of general relativity, there was considerable confusion about the reality
of gravitational waves in full, nonlinear GR for several subsequent decades largely
because of the coordinate freedom: What appeared to be a wave-like behavior in one
coordinate system could appear stationary in another. This confusion was resolved
only in the 1960s when Bondi, Sachs and others showed that one can unambiguously
disentangle gravitational waves by moving away from isolated sources in retarded
null directions, i.e., in the usual terminology, by taking the limit r — oo keeping the
retarded time constant # = const. The asymptotic boundary conditions introduced by
Bondi and Sachs [43,44] were geometrized by Penrose [53] through the notion of a
conformal completion of spacetime, i.e., by attaching to spacetime a 3-dimensional
boundary J7, representing ‘future null infinity’.

These frameworks provided a definitive, coordinate invariant characterization of
gravitational radiation in asymptotically flat spacetimes and introduced techniques to
analyze its properties in exact, non-linear general relativity. However, initially there
were concerns as to whether the underlying assumptions are too strong to be satisfied
by realistic isolated systems such as compact binaries (see, e.g., [60]). The current
consensus is that they are not too strong. In particular, the asymptotic form of the PN
metric is completely consistent with the Bondi—Sachs—Penrose framework, as shown
for instance by Theorem 4 in [61]. Similarly, the key notions of this framework—such
as the radiation field ¥, the Bondi news N, and the asymptotic shear o °—and their
properties are heavily used in numerical simulations of waveforms and calculations
of energy and momentum flux in NR. These notions and properties are summarized
in Sect. 2.

The detailed analysis of gravitational radiation at null infinity brought to forefront
an unforeseen result that plays a key role in Sect. 2: Even though spacetimes repre-
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senting isolated gravitating systems are asymptotically Minkowskian, the asymptotic
symmetry group is not the Poincaré group P, but rather an infinite dimensional gener-
alization thereof, the BMS group B. This is a consequence of the fact that gravitational
radiation is on a genuinely different footing—from, say, the electromagnetic one—in
one important respect. It introduces ripples in spacetime curvature that extend all the
way to infinity, i.e., to J*, making it impossible to single out a preferred Poincaré
group P using asymptotic Killing vectors. This difficulty can be seen in concrete terms
as follows. Suppose we have a metric g, that is asymptotically flat in the sense of
Bondi and Sachs; so it approaches a Minkowski metric 145, with g4 = n4p +O(1/r),
as r — oo keeping u = t — r constant. Therefore, Poincaré transformations of 7,
provide us with asymptotic Killing fields for g,,. Now consider a diffeomorphism
t >t =t+ f, ¢), x - x' = x where 1, x are Cartesian coordinates of 1.
This is an angle dependent translation, whence the metric 7, is sent to a distinct flat
metric 7/, 7

One can verify that since g, approaches n,, as 1/r a la Bondi—Sachs, it also
approaches 7/, as 1/r’ a la Bondi-Sachs! Therefore, the Poincaré transformations of
1., are also asymptotic Killing fields of our physical g;. But since the two Minkowski
metrics are distinct, their isometry groups P and P’ are also distinct. The BMS group
can be interpreted as a ‘consistent union’ of Poincaré groups associated with all these
Minkowski metrics, related to one another by ‘angle dependent translations.” These are
known as supertranslations. Detailed examination brought out another subtlety: All
these Poincaré groups define the same translation subgroup asymptotically, whence
the BMS group does admit a canonical, 4-dimensional translation subgroup 7 [63].
However, the Lorentz subgroups £ of various Poincaré groups are different even
asymptotically. Recall that the Poincaré group P admits a 4-parameter family of
Lorentz subgroups—each of which defines rotations and boosts about one specific
origin in Minkowski space—related to one another by a translation. By contrast, the
BMS group B admits an infinite parameter family of Lorenz subgroups that are related
to one another by supertranslations. This gives rise to the well-known ‘supertranslation
ambiguity’ in the notion of angular momentum at null infinity. We discuss this issue
in detail in [48], again in the context of CBC.

In this paper we focused on supertranslations. Just as the translational symme-
tries of the Minkowski metric lead to the notion of energy-momentum for fields in
Minkowskian physics, supertranslation symmetries on J* lead to the notion of super-
momenta. In the case of energy-momentum, we have two different quantities available
at J*. The first is the Bondi 4-momentum—a 2-sphere integral on a cross-section C at
JF, representing the energy momentum of the system, left over at the retarded instant
of time u = ug defined by C. The second is the notion of flux of energy-momentum
carried away by gravitational waves through a ‘patch” AJ™ of 3. As a consequence
we have a balance law: The difference between the Bondi 4-momentum evaluated on
two different cross-sections C and C; of J7 is the flux of energy-momentum across
the patch AJ™ bounded by them. It turns out that the same is true for supermomentum.
Thus we have an infinite number of balance laws—Eqs. (25) (or (28)) in the main

7 We chose a time-translation just for definiteness: the argument continues to hold if the ‘angle dependent
translation’ is generic.
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text—each characterized by a function on a 2-sphere defining the supertranslation. As
we discussed in Sect. 2, these lead to an infinite set of constraints—imposed by full,
non-linear GR—that any waveform must satisfy in a CBC.
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