THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 250:12 (39pp), 2020 September

© 2020. The American Astronomical Society. All rights reserved.

Xingzhuo Chen'*?, Lei Hu®, and Lifan Wang

TAMU, College Station, TX 77843, USA; lifan@tamu.edu
College of Physical Science and Technology, Sichuan University, Chengdu, 610064, People’s Republic of China
3 Purple Mountain Observatory, Nanjing 210008, People’s Republic of China
Received 2019 November 13; revised 2020 June 3; accepted 2020 June 5; published 2020 September 3

Abstract

We generate ~100,000 model spectra of Type 1a supernovae (SNe Ia) to form a spectral library for the purpose of
building an artificial intelligence—assisted inversion (AIAI) algorithm for theoretical models. As a first attempt, we
restrict our studies to the time around B-band maximum and compute theoretical spectra with a broad spectral
wavelength coverage from 2000 to 10000 A using the code TARDIS. Based on the library of theoretically
calculated spectra, we construct the AIAI algorithm with a multiresidual convolutional neural network to retrieve
the contributions of different ionic species to the heavily blended spectral profiles of the theoretical spectra.
The AIAI is found to be very powerful in distinguishing spectral patterns due to coupled atomic transitions and has
the capacity to quantitatively measure the contributions from different ionic species. By applying the AIAI
algorithm to a set of well-observed SN Ia spectra, we demonstrate that the model can yield powerful constraints on
the chemical structures of these SNe Ia. Using the chemical structures deduced from AIAIL, we successfully
reconstructed the observed data, thus conﬁrmin% the validity of the method. We show that the light-curve decline
rate of SNe Ia is correlated with the amount of *°Ni above the photosphere in the ejecta. We detect a clear decrease
of *°Ni mass with time that can be attributed to its radioactive decay. Our code and model spectra are available on
the website https://github.com/GeronimoChen/AIAI-Supernova.
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1. Introduction

Type la supernovae (SNe Ia) have been used as standard
candles for cosmological probes (Riess et al. 1998; Perlmutter
et al. 1999; Wang et al. 2003, 2006b; Rubin et al. 2013). The
tremendous success is built upon empirical methods (Pskovskii
1977; Phillips 1993; Riess et al. 1996; Perlmutter et al. 1999).
In contrast to such success, theoretical models of SNe Ia have
not yet produced satisfactory fits with a precision matching that
of observational data. In particular, it has been extremely
difficult to establish a quantitative approach to reliably model
the spectral features of SNe Ia and determine their luminosities
based on physical models.

The root of these difficulties resides in the complexity of
radiation transfer through SN Ia ejecta. The process involves
quantitative models of the chemical and kinematic structures of
SN ejecta and detailed radiative transfer calculations. The
spectral features of SNe Ia are normally broadened to about
10,000kms ™" by ejecta motion. The atomic lines are heavily
blended such that it is hard or impossible to separate spectral
features arising from different atomic transitions based on
conventional spectral feature measurement. A large number of
input parameters and physical uncertainties affect the spectral
feature formation of theoretical models. It is difficult to explore
the relevant parameter space in great detail to search for the
models that provide the best fits to observations. This is true
even for the simple code SYNOW (Branch et al. 2009). For
example, if we want to optimize over 10 free parameters with
each parameter modeled in 10 different parameter values, a grid
search for the optimal model would require 10 billion models
to be calculated. This is formidably difficult.

Further complications arise from the unclear explosion
physics of SNe Ia. The origin of SNe Ia is believed to involve
one or two white dwarfs in a binary system, either the merger

of two white dwarf stars (double-degenerate scenario) or the
accretion of a white dwarf from a nondegenerate companion
star (single-degenerate scenario). For some SNe Ia, the double-
detonation scenario seems to provide excellent fits to observa-
tions (Shen et al. 2018). It is possible that the progenitors of
SNe Ia form a diverse class of objects, and we do not yet know
how to relate different physical systems to observations.

The SN Ia explosion occurs when the temperature and
density inside the progenitor white dwarf become appropriate
for carbon ignition. At least for some spectroscopically normal
SNe Ia (Branch et al. 2009), the explosion is likely to involve
an early deflagration phase followed by a phase of detonation
(the delayed-detonation (DDT) model; Khokhlov 1991a). The
physics of the transition from deflagration to detonation is still
not clear. Recently, a general theory of a turbulence-induced
deflagration-to-detonation transition (tDDT) in unconfined
systems was published by Poludnenko et al. (2011, 2019).
The tDDT has the potential of generating a class of models
based on first-principle explosion mechanisms, but its applica-
tion to SN Ia modeling has not yet been explored. A variety of
chemical elements are synthesized during the explosions. The
decay of radioactive material serves as the energy source to
power the radiation of the SNe.

Nonetheless, first-principle calculations based on parameter-
ized explosion models and detailed radiative transfer may
prove to be useful (Khokhlov 1991b; Hoeflich et al.
1996a, 2017), although the density at which the transition to
detonation occurs is set as a free parameter in these models.
Such models usually take days to weeks to calculate, even with
today’s fastest computer. This makes a thorough exploration of
model parameter space impossible. For example, the progenitor
metallicity, especially the C/O ratio, plays an important role in
the production of radioactive material (Timmes et al. 2003), as
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well as the density at the time of detonation and the mass of the
progenitor. Departure from spherical symmetry may also make
the models viewing angle—dependent (Wang et al. 1996; Wang
& Wheeler 2008; Cikota et al. 2019; Yang et al. 2019). For
these reasons, it is difficult to perform thorough parameter
space searches to optimize the model fits to observational data.
Currently, the best fits to observations are usually derived from
only a small number of model trials, and there is ample room
for further improvement.

As an example, W7 (Nomoto et al. 1984) is an early model
of SNe Ia that is still widely used in SN Ia spectral syntheses.
In W7 and other deflagration models (e.g., WS15, WS30;
Iwamoto et al. 1999), the flame speed of the deflagration is
0.01-0.3 of the acoustic speed in the exploding white dwarf
(Iwamoto et al. 1999). The DDT models were introduced to
produce enough intermediate-mass elements (IMEs) and
radioactive material and have been validated by radiative
transfer modeling (Hoeflich et al. 1996a; Blondin et al. 2013)
and comparisons to observational data. These models have now
been extended to 2D and 3D hydrodynamic simulations (e.g.,
Gamezo et al. 2003). Several variations of the DDT model,
such as the gravitationally confined detonation (GCD) model
(Plewa et al. 2004), are proposed to address the diversity and
asymmetry of the spectral behavior of SNe la (Kasen &
Plewa 2005). The complexities intrinsic to these physical
processes explain the difficulties in identifying exactly identical
spectral twins despite the fact that the broadband photometries
of the majority of all SNela can be precisely modeled
empirically with a one- or two-parameter light-curve family.

In this study, we want to focus on spectral fitting around
optical maximum. Around this phase, the ejecta of SNe Ia can
be assumed to be expanding homologously (e.g., Hoeflich et al.
1996a; Kasen et al. 2002). For 1D ejecta structure, the SN is
spherically symmetric, and the radiative process can be
modeled by Monte Carlo algorithms (Lucy 1971, 1999; Abbott
& Lucy 1985; Mazzali & Lucy 1993). Other codes with
varying levels of physical detail and complexity that have been
applied to SNe la include Hydra (Hoeflich et al. 1996a),
SYNAPPS (Thomas et al. 2011), PHOENIX (Baron &
Hauschildt 1998), and CMFGEN (Hillier & Miller 1998).
Many spectral models have been computed for some well-
observed SNe Ia, e.g., SN 1990N (Mazzali et al. 1993), SN
1992A (Mazzali 2000), SN 1991bg (Mazzali et al. 1993), SN
2005bl (Hachinger et al. 2009), SN 1984A (Lentz et al. 2001),
SN 1999by (Blondin et al. 2017), and, more recently,
SN 2011fe (Mazzali et al. 2014). Sometimes both deflagration
and detonation models are explored. Within the context of
these models, the abundance stratification can be studied as the
photosphere recedes in mass coordinates while the ejecta
expand and become progressively optically thin (Stehle et al.
2005). This “abundance tomography” was applied to some
well-observed SNe Ia, such as SN 2011fe (Mazzali et al. 2014),
SN 2002bo (Stehle et al. 2005), and SN 2011ay (Barna et al.
2017). Also, 3D time-dependent radiation transfer programs
such as SEDONA (Kasen et al. 2006) and ARTIS (Kromer &
Sim 2009) have been constructed, which also enable calcula-
tions of polarization spectra (Hoeflich et al. 1996b; Wang &
Wheeler 2008; Bulla et al. 2015).

Recent advancement in computer sciences, especially in
artificial intelligence (AI), opens a new possibility for
theoretical modeling of SN spectra. In general, a large number
of parameters are needed to properly describe an SN Ia. These
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parameters need to cover critical ejecta properties, such as the
density structure, chemical abundances at different layers,
expansion velocity, radioactive heating, geometric symmetry,
and temperature structure of the ejecta. We present in this paper
an attempt to construct an artificial intelligence—assisted
inversion (AIAI) model to study a library of theoretical spectra
of SNe Ia around optical maximum. The AIAI trains a deep-
learning neural network to inverse the modeling procedure and
deduce the correlations between the resulting spectra and input
model parameters.

The spectral lines of SNe Ia are usually blended and form
“pseudocontinua” that make it very difficult to isolate
contributions from individual ions for even the most isolated
spectral features. Most spectral lines have contributions from
multiple ionic species and atomic transitions; their profiles are
strongly affected by the density and kinematic structures of the
ejecta. The variations of spectral features are governed by
fundamental physics, although it is difficult to establish a one-
to-one match between a given atomic transition and the
associated spectral line. The spectral features and their variation
with time can be studied by voluminous realization of the
atomic processes in numerous theoretical models under
different physical conditions. A statistical study of the
theoretical model realizations may very well unveil the hidden
correlations between the atomic processes and the heavily
blended observable spectral features. A neural network is by
design remarkably suitable for such a study.

In the study, we find that a multiresidual neural network
(MRNN; Abdi & Nahavandi 2016) can be trained to provide
the best correlation between spectral features and input physical
parameters. This MRNN is further tested with a different set of
theoretical models to verify model stability and reliability. We
then apply the MRNN to a set of observed spectra of SNe Ia to
derive the model parameters for the observational data.

By calculating a large number of simulated spectra and using
them as input to train the deep-learning neural network, we
demonstrate that AIAI can indeed reveal the underlying
chemical structures of SN Ia ejecta. Many of the radiative
transfer codes for SN atmospheres are technically expensive,
which prohibits a large amount of models from being
calculated. For our purpose, and as a first attempt at AIAI
we choose the code Temperature And Radiation Diffuse In
Supernovae, also known as TARDIS (Kerzendorf &
Sim 2014), to generate the theoretical models. TARDIS is a
1D radiation transfer code using a Monte Carlo algorithm. In
previous studies, TARDIS has been applied to the modeling of
normal SNe Ia (Ashall et al. 2018), SNe Iax (Barna et al.
2017, 2018), SNe II (Vogl et al. 2019), and kilonovae (Smartt
et al. 2017). The agreements to observations in these models
have been moderately successful considering the simplicity of
TARDIS and the limited coverage of the model parameter
space.

We restrict our studies to SNe Ia with UV coverage. The UV
is important, as it is very sensitive to the density and chemical
structure of the SNe. Optical data alone may provide tight
constraints on some IMEs but are less efficient in constraining
iron group elements.

For a further test and application of AIAI, we apply the
MRNN-trained models to a set of observational data. We
generate neural network-matched spectral models for six
SNe Ia (SN 2011fe, SN 2011iv, SN 2015F, SN 2011by, SN
2013dy, and ASASSN-14lp) with well-observed UV and
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optical (2000-10000 A) spectra_and 15 SNe la with wave-
length coverage of 3000-5200 A around their B-band max-
imum luminosity. Moreover, we applied MRNN to predict the
B-band absolute luminosities of these SNe Ia based on the
ejecta structure deduced from their spectral profiles. Such
predictions are still rough, due largely to approximations inherit
to TARDIS, but future refinement may prove to be useful if
these approximations are systematic and can be calibrated by
other models with more complete treatment of radiative transfer
physics.

The paper is structured as follows. The TARDIS configura-
tion and model SN spectral library are introduced in Section 2.
The neural network structure and its performance on synthetic
spectra are discussed in Section 3. In Section 4, we apply the
results of the neural network and present the resulting
abundance and ejecta structure of a sample of SNe Ia near
B-band maximum luminosity. In Section 5 we present further
applications of AIAI and show the correlations between the
ejecta structure and the luminosity of the SNe Ia with UV/
optical coverage, the spectral evolution of SN 2011fe and
SN 2013dy near maximum, and the predicted luminosities of
all selected SNe in comparison with the absolute luminosities
derived from well-calibrated optical light curves. Section 6
gives the conclusions and discussions.

2. The Generation of the Model Spectral Library
2.1. TARDIS Spectral Syntheses

Our study needs a library of SN spectra. This library of
spectra should capture the radiative processes involved in
SNe Ia as much as possible and cover a broad range of the
physical properties of the ejecta. The parameter space is large,
and the number of models to be calculated can be huge. Codes
that are very CPU-demanding are apparently inappropriate for
this study, at least for the current attempt, which is still an
exploratory first step. For the determination of chemical
structures, the primary requirement is that the code should be
approximately correct in producing physical models to the
spectral profiles of the most important observable ionic species.
Luckily, there are several codes that fit this criterion. For
example, the code SYNOW (Branch et al. 2009; Parrent et al.
2010; Thomas 2013) can run at very high speed and generate
spectral libraries of a broad range of ejecta parameters.
However, the code only allows a very crude description of
the ejecta geometry. The input parameters are given in terms of
the optical depth of some reference lines of certain ionic
species. Quantitative constraints to parameters related to ejecta
structure and SN luminosity are difficult using the available
versions of SYNOW.

With the computing power available to us, the Monte Carlo
code TARDIS (Kerzendorf & Sim 2014) is a good compromise
that matches the requirement of our study. The input
parameters for TARDIS include the elemental abundances
and density structures of the ejecta, which can be flexibly
modified. A spectrum can be calculated for any given day
during the photospheric phase, once the location of the
photosphere and the luminosity at that day are provided.
TARDIS calculates the electron density, level population of
ions and atoms, and temperature of different velocity layers.
The code offers several options for photon transfer through the
ejecta. In this study, we use dilute local thermodynamic
equilibrium, dilute-1lte, to calculate the atomic level
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population and nebular local thermodynamic equilibrium,
nebular, to calculate the ionization fraction; both equilibria
are part of TARDIS (Kerzendorf & Sim 2014). The program
then evaluates the transition probabilities of atomic energy
levels. TARDIS generates energy packets (an ensemble of
photons with the same energy) at an inner boundary that
propagate through the SN ejecta, calculate the electron optical
depth by path-integrating the electron density on the trajectory,
and simulate the photon—atom interaction optical depth by
randomly sampling the atomic transition probabilities. When
the optical depth of an energy packet reaches 1 during the
electron scattering process, its energy and direction are
reassigned following the Compton scattering process. When
the optical depth of an energy packet reaches 1 during line
interaction, its energy and direction are reassigned following
the transition probabilities of atomic lines. By collecting the
emitted energy packets, the code then compares the resulting
luminosity to the input luminosity and updates the photospheric
temperature and the temperature throughout the ejecta.
There are two line-interaction strategies, downbranch
and macroatom, available in TARDIS. In downbranch
(Lucy 1999), photoexcited atoms are allowed to reemit photons
with the same excited energy or other de-excitation transition
energies, and the de-excitation channel is selected according to
transition probabilities. Based on downbranch, macroatom
(Lucy 2002) is a more sophisticated line-interaction strategy
that allows upward and downward internal transitions with
different probabilities for a photoexcited particle. Considering
macroatom is closer to the physical reality while the
computational time differences between two line-interaction
strategies are not large, we choose macroatom for all of our
calculations.

2.2. The Initial Guess Model

Our goal is to generate a large number of models that cover
the parameter space of observed SNe as much as possible. For
this purpose, we need a fiducial ejecta model, and we will
perturb the parameters of that model to account for ejecta
diversity.

We restricted our studies to models at 16-23 days after
explosion, which corresponds to the time around optical
maximum. We used the DDT model 5p02z22d20_20_27g
(Khokhlov 1991b; Hoeflich et al. 1996a) and the W7 model
(Nomoto et al. 1984) as the ejecta density profiles to derive an
initial guess model (IGM) for the ejecta structure (see
Figure 1). These initial models were chosen for their success
in providing reasonable fits to a number of SNe in previous
studies (e.g., Hoeflich et al. 1996a). The exact details of these
models are not important, as they only serve as a starting point
for the ejecta structures and will be heavily modified later to
generate the spectral library for further analyses.

The IGM was derived by comparing model spectral shapes
with the data of two well-observed SNe: SN 2011fe and
SN 2005cf. The spectrum of SN 2011fe was acquired at UT
2011 September 10 09:22:00 (0.39 day after B-band maximum
luminosity) by the Hubble Space Telescope (HST) Space
Telescope Imaging Spectrograph (STIS; Mazzali et al. 2014).
The SN 2005cf spectrum was acquired at UT 2005 June 12
00:00:00 (the B-band maximum luminosity) from the SSO
2.3m DBS (Garavini et al. 2007). The original chemical profile
of (DDT) model 5p0z22d20_20_27g is not optimized for
SN 201 1fe and SN 2005cf. The density and chemical structure
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Figure 1. Upper left: temperature in each shell of the DDT model 5p0z22d20_20_27g and the IGM calculated with TARDIS. Upper right: density profile of the
DDT model, IGM, W7 model, and TARDIS’s default seven-order approximated W7 model (p = 3 x 102 x v’ x (t/0.000231481)’3 g cm 3, with 7 in days and v
in kms"). All of the densities are normal SNe Ia at 19 days after explosion. Middle left: elemental abundances of the DDT model. Middle right: elemental
abundances of the IGM. The elemental abundance ratios are normalized to 1 in each shell. Lower panel: TARDIS synthesized spectra of the DDT model and the IGM
and the observed SN 2011fe/SN 2005cf spectra.
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Table 1
Photospheric Velocity and Explosion Date
Days after Explosion 16 17 18 19 20 21 22 23
Photosphere velocity (km s~ ') 8090 7850 7430 7100 6650 6290 6050 5690

of model 5p0z22d20_20_27g was adjusted manually to
match the strongest observed spectral features of SN 2011fe
and SN 2005cf. Major changes to the elemental abundances
were introduced when the profiles of strong lines such as
Sill 6355 A were examined closely. Increasing the iron group
elements of DDT 5p0z22d20_20_27g significantly improves
the spectral match in the UV of these two SNe.

The observed spectra were found to be well fitted by a model
with a photospheric velocity of vy, = 7300 km s~' and the
integrated luminosity between 6500 and 7500 A being 10°2
times solar luminosity. Note that to ensure the convergence of
the temperature structure, the temperature profiles were
calculated with 40 iterations using the default temperature
convergence parameters (type:damped. damping_con-
stant:1. threshold:0.05. fraction:0.8. hol-
d_iterations:3. t_inner_damping_constant:1.).
The default iteration in TARDIS is 20, which is usually
sufficient to reach temperature convergence.

The temperature and density profiles of the IGM model that
fits the major spectral features of SN 201 lef and SN 2005cf are
shown in the upper left and right panels of Figure 1, respectively.
The chemical profiles of DDT 5p0z22d20_20_27g and the
IGM are shown in the middle left and right panels of
Figure 1, respectively. The simulated spectra of the IGM are
shown in Figure 1 (middle right), where we also show the
spectra computed using DDT 5p0z22d20_20_27g for
comparison. Note that in Figure 1 (middle right), the flux levels
of the models and data were arbitrarily scaled to match the
spectral features. The fits to the observed spectra of SN 201 1fe
and SN 2005cf across most spectral lines and UV continua are
apparently better for the IGM model than for the original DDT
5p0222d20_20_27g model. Note that we did not attempt to
construct a quantitative model of the elemental structure at this
stage. This manual step only modified the masses of a limited
number of elements (listed in Section 3) with prominent spectral
features to achieve a crude fit to the data.

2.3. The Model Spectral Library

For our deep-learning neural network, the IGM was used as a
baseline model that was perturbed to generate the library of
model spectra. It is impossible to build a complete model grid
with varying elemental abundances at all velocity layers
considering the large number of chemical elements involved,
so we simplified the model into a limited number of velocity
zones and used random sampling of parameter space to cover a
broad range of physical possibilities. For the structure of the
ejecta, we divided the ejecta into four distinct zones defined by
different velocity boundaries; the velocity ranges of zones 1, 2,
3, and 4are 5690-10,000, 10,000-13,200, 13,200-17,000,
and 17,000-24,000 km s}, respectively. The ejecta structure
includes all 23 elements with atomic numbers from 6 to 28.
With four velocity zones, this leads to 92 free parameters on the
masses of the chemical elements in each zone. The other
parameters to run TARDIS that are not included in MRNN
training are the luminosity, date of explosion, and photospheric

velocity. The total number of parameter space dimensions is
95. It is impossible to construct a grid of models in such a vast
dimension. The total number of models would reach a
staggering value of 2°° ~ 4 x 10?® even if only two grid
values were sampled for each dimension.

The chemical compositions and densities were allowed to
fluctuate independently within each velocity zone, but inside
each zone, the velocity dependence of the density of each
element is scaled to that of the same element of the IGM.
For elements other than iron group, we used the following
equation:

=Py % 3Us, M

where i denotes each different chemical element; k denotes the
four different zones, where k = 1, 2, 3, and 4 stand for the
velocity shells in the ranges 5690-10,000, 10,000-13,200,
13,200-17,000, and 17,000-24,000 km s_l, respectively; and
U, is a random number drawn from a [0, 1) uniform
distribution. The locations of the velocity boundaries were
chosen to approximately match the major chemical layers in the
IGM, and p;GM is the density profile of element i in the IGM of
shell i. The total density including all elements is calculated
from the sum over all elements. With Equation (1), the masses
of the elements in the four zones were artificially scaled from
0% to 300% relative to their respective values in the IGM.

Because zone 1 contains mostly Fe, Co, and Ni and is
partially inside the location of the photosphere, we choose the
variation of Fe, Co, and Ni in zone 1 to obey

pu= N x 3070, @

where Uy is again a random number drawn from a uniform
distribution between zero and 1. Equation (2) samples the
chemical structures around p?GM more frequently than large
deviations from it. Hereafter, the elemental mass ratios between
the library models and the IGM are delineated as “multi-
plication factors.”

Another input parameter of TARDIS is the time after
explosion. For the current study, we restricted the models to the
time around optical maximum. This parameter was drawn from
a uniform distribution between 16 and 23. The location of the
photosphere was defined by interpolating the values given in
Table 1, with an additional random number from a uniform
distribution between —120 and 120 kms~' to sample the range
of possible variations of the location of the photosphere. The
ranges of the location of the photosphere in Table 1 were
derived using the IGM as input to TARDIS for which the
corresponding photospheric velocities provide reasonable
matches to the observed spectra of SN 2011fe between
day 16 and day 23 after explosion. In this process, we found
that the photosphere recesses approximately 300 kms™' day ™",
which is consistent with the results of previous model fits by
others (e.g., Mazzali et al. 2014).
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TARDIS also requires the luminosity of the SN as an input
parameter. For the spectral library, the luminosities in the range
of 6500-7500 A of the different models observe a uniform
distribution in log space between 10°®* and 10%7 solar
luminosity.

TARDIS assumes a predefined sharp inner boundary and
does not calculate the gamma-ray transport in the ejecta. The
radial temperature profile is only approximately correct, and
in some regions may be severely incorrect. This caveat makes
it difficult to constrain the physical quantities derived from
TARDIS based on first-principle physics. The models are
calculated independently at each epoch. This may introduce
error when comparing the models with observed luminosities.
However, we expect the spectral profiles to be governed
by fundamental physics, and the model spectra bear the
imprints of the atomic processes. We rely on AIAI to extract
the fingerprints of these atomic processes through analyses of
a large set of spectral models. Furthermore, some of the
problems indigenous to TARDIS may be coped with by
comparing a subset of TARDIS-generated models with
more sophisticated radiative transfer codes such as PHOE-
NIX (Baron & Hauschildt 1998), CMFGEN (Hillier &
Miller 1998), and HYDRA (Hoeflich et al. 1996a) to identify
systematic differences among these models. These systematic
comparisons may lead to a large library of SN models with
more physical processes being taken into account, although
the calculations of a large library of PHOENIX, CMFGEN,
or HYDRA models are too computationally expensive to be
practical. We leave a comparative study of different models
to future studies.

We used TARDIS’s default temperature convergence
strategy in calculating these models but with 15 temperature
iterations (i.e., type:damped. damping_constant:1.
threshold:0.05. fraction:0.8. hold _itera-
tions:3. t_inner_damping_constant:1.). Addi-
tionally, in order to generate spectra with different signal-to-
noise ratios, we set the number of Monte Carlo packets to vary
from 1.5 x 10° to 2 x 10°. The wavelength coverage of the
model spectra was set to 2000-10000 A.

2.4. Model Spectra Computation

The calculation of a single spectrum of the spectral library
with about 107 energy packets takes approximately 0.5-2 CPU
hr on our workstation, which is mounted with two Intel Xeon
ES5-2650 v4 CPUs. After about 1 month’s calculation utilizing
80 cores (two chips of Intel Xeon E5-2650 v4 and one chip of
Intel Xeon ES5-2650 vl), a total of 99,510 spectra were
generated with varying elemental abundances, photospheric
velocities, explosion dates, and luminosities, as prescribed in
the previous section.

2.5. Response of Spectral Profiles to the Variations of Input
Abundances

The working hypothesis of this study is that the spectral
profiles are sensitive to the input parameters and there is
predictive power in the TARDIS models, albeit the spectral
profiles may respond to the variations of chemical elements in a
very complicated way. We demonstrate in Figure 2 that this is
indeed the case. To show the effect of varying chemical
elements, a single element at a given layer was artificially
altered while all other parameters remained the same as in the
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reference model. Here the reference model was chosen from the
spectral library that best matches SN 2011fe at day 0.4 (see
Section 4). Figure 2 shows the results of artificially altering Fe
and Ni by 0, 0.8, 1.5, and 3 times with respect to a reference
spectrum.

We see that the spectral patterns of Fe and Co are very
different. The spectra vary strongly with the UV wavelength
and create spectral “wiggles” that are characteristic of the input
chemical elements. The features generated by elements in
different velocity zones are also distinctively different.

3. The Multiresidual Connected CNN Model

In this section, we apply the MRNN (Abdi & Nahavandi
2016) to the spectral library synthesized through the procedures
outlined in Section 2 and train deep-learning models to infer the
ejecta structure from the synthesized spectral library.

3.1. Model Data Preprocessing

The spectra generated by TARDIS are in units of
ergs ~1A™!, which represents the luminosities of the SNe.
They have a typical value of ~10** around optical maximum.
This study explores the models in relative flux scale, as
TARDIS is more reliable in modeling spectral features than
absolute luminosity. The flux of each spectrum is normalized
by dividing its average flux between 6500 and 7500 A. Only
the overall spectral shapes are of importance here. The absolute
level of the flux is ignored throughout the neural network
analyses. A discussion of the correlation between spectral
features and luminosity will be given after the establishment of
the neural network (see Section 5.3).

Moreover, to account for the problems related to TARDIS
Monte Carlo noise when comparing to observational data, we
further employed two methods for data augmentation: Gaussian
noisification and Savitzky—Golay filtering (Savitzky &
Golay 1964). Gaussian noisification is done by applying
Gaussian noise for each wavelength bin following the formula
E\) = FEO) x (1 4+ MO, E(\)/F/?(5500)/S), where
MO, E,) is a normal distribution with g = 0 and o® = F,, §
is a measure of the signal-to-noise ratio at the reference
wavelength 5500 A for the spectra with noise added, and F,
and F, are the flux of the noise-added flux and the original
TARDIS model flux, respectively. Savitzky—Golay filtering is
achieved with smoothing windows randomly selected from (7,
9,11, 13,15, 17, 19, 21, 23, 25) and the order randomly chosen
from (2, 3, 4, 5, 6). With this data augmentation strategy, we
generated a new data set that is eight times larger than the
original spectral library.

3.2. The Neural Network Structure

Deep-learning techniques have been developed for stellar
spectroscopy (Fabbro et al. 2017; Bialek et al. 2019). For stellar
spectroscopy, most of the spectral features are narrow and well
separated, and the required network depth is minimal. Fabbro
et al. (2017) applied a convolutional neural network (CNN)
with two convolution layers and two fully connected layers to
the infrared spectral data of the APOGEE (Nidever et al. 2015)
sky survey program and, later, the Gaia-ESO database (Bialek
et al. 2019). Liu et al. (2019) applied a CNN with eight
convolution layers and two fully connected layers to mineral
Raman spectrum classifications. Bu et al. (2019) utilized a
five-layered CNN (combined with a support vector machine
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Figure 2. Effect on spectral profiles by only varying Fe in zone 2 (upper left), Fe in zone 3 (upper right), Ni in zone 2 (lower left), and Ni in zone 3 (lower right). The
spectra were normalized by a reference spectrum that provides a good fit to the observed spectrum of SN 2011fe at day 0.4. Note that the solid blue lines with a scaling
factor of zero are the model equivalent of removing that component from the ejecta. The dashed—dotted orange lines, dashed green lines, and dotted red lines are for

models with that component enhanced by a factor of 0.8, 1.5, and 3, respectively.

(SVM)) to detect hot subdwarf stars from LAMOST DR4
spectra. In all of the above studies, the spectral features are much
less blended than in the case of SNe. The SN spectra we aim to
model are characterized by broad spectral lines due to the high
velocity of the ejecta and the blending of atomic multiplets;
models of SNe Ia require a more complicated neural network
architecture to reach sufficient accuracy and sensitivity.

Between the input and output, a typical CNN contains
stacked convolutional layers above one or two fully connected
layers incorporated with pooling and activation layers.
Starting from the input layer, the data propagate through the
convolutional layers via convolution with convolution cores
and pass through the activation layer with nonlinear functions
(i.e., recitified linear activation f(x) = 0 when x < 0; x when
x > 0). In the pooling layer, the dimensions of the data are
reduced by binning adjacent data while preserving the
maximum (MaxPooling method) or average (AveragePooling
method) value. The fully connected layer shares the same
structure as normal neural networks, which calculates linear
combinations using the weights and biases between every
neuron in the adjacent layers.

The trainable parameters (mainly the weights and biases in
the fully connected layer and the convolution cores in the
convolution layers) are randomly assigned at the outset and
updated in the training process through forward and backward
propagation. Forward propagation calculates the output using
the current neural network parameters and input, then compares

the network output (predictions) with the target values (the real
values) under a loss function (i.e., mean squared error (MSE):
Loss = Mean(Mscaled — Mpredict)z). As all of the calculations in
the neural network are analytical, the gradients of all trainable
parameters can be deduced. In the back-propagation process,
the trainable parameters are updated by multiplying a
predefined learning rate by their gradients (for a review, see
LeCun et al. 2015). Limited by computational efficiency, every
forward-backward-propagation iteration only avails a subset of
the training data set (batch), so a full review of the training data
set consists of several batches.

It has been stated (Montifar et al. 2014) and experimentally
demonstrated (i.e., AlexNet, Krizhevsky et al. 2012; VGG16,
Simonyan & Zisserman 2014) that additional layers endow the
neural network with an exponential increase in agility.
Nonetheless, a deeper network (a network with more layers)
suffers from “gradient explosion” or “gradient diminish”
problems: during the forward-propagation calculations, an
input signal may be consecutively multiplied with <1 or >1
numbers, which results in the signal turn to zero or infinity in
machine accuracy and affects the calculation on gradients. As a
consequence, loffe & Szegedy (2015) introduced batch
normalization layers, which normalize the input batch in every
dimension to be average zero and standard derivative 1.
Additionally, He et al. (2015) suggested adding the output from
the previous convolution layers onto the current layer output
and using this two-convolutional-layered structure as the
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next layer, as is marked by the red arrows. For the DNN, the “adding” processes are replaced with “concatenate” processes, so the data size of the intermediate,

processed, and first fully connected layers is doubled.

building block for CNN structure. Such residual neural network
(ResNet) structure shows great accuracy and is easy to optimize
even in the 152-layer scenario (He et al. 2015). Based on
ResNet, Huang et al. (2016) proposed a densely connected
neural network (DNN) with another signal shortcut method:
directly concatenate the output of all of the previous layers as
the input of the current layer and insert low-dimension layers
serving as “bottlenecks” to break the cumulative dimension
increase caused by the consecutive concatenations.
Consequently, we adopt the MRNN structure (Abdi &
Nahavandi 2016) for our studies. The structure of MRNN is
relatively simple. Compared to ResNet, which allows a signal
shortcut in two layers, MRNN introduces a signal shortcut in
multiple layers by adding all of the previous layers’ (or blocks’)
outputs together to be the next layer’s input. Such an
architecture is much simpler than DNN and requires less
computation time to find a suitable network structure. Second,
MRNN balances the training demands and accuracy. Accord-
ing to the test on the CIFAR-10 and CIFAR-100 image
classification data sets (Krizhevsky 2009), MRNN shows an
equivalent performance compared to a much deeper ResNet
structure (Abdi & Nahavandi 2016) and better than all plain
CNN structure available at that time. However, we notice that
our CNN and MRNN with similar depth consume a
comparable amount of CPU time to finish one epoch of

training. After these preliminary assessments of the perfor-
mance of CNN, ResNet, MRNN, and DNN, we chose MRNN
to probe the best performance element prediction.

All of the models were trained using keras® nttps://
keras.io with tensorflow (Abadi et al. 2016) as a back end.
In the training step to build up the initial neural network
structure, we selected the iron abundance in zone 3 and the
TARDIS synthesized spectra in the wavelength range
2000-10000 A. We chose MSE as the loss function and “adam”
(Kingma & Ba 2014) as the optimizer. We adopted a two-step
training scheme in order to achieve convergence while avoiding
overfitting (the model performs exceptionally well on the
training data set but fails on the testing data set). In the first
step, the learning rate is 3 x 10> and decays 10™® per time
step, the batch size is 4000, and the training session jumps to the
second step when there is no progress in the loss function of the
testing data set after 10 epochs. In the second step, the learning
rate is 3 x 10~ and decays 10~® per time step, the batch size is
10,000, and the training session stops when there is no progress
in the loss function of the testing data set after five epochs.

The network architecture is shown in Figure 3. The neural
network structure for the absolute luminosities is similar but
with a different training schedule; the details are discussed in
Section 5.3. We also tried to train the neural network to predict
the photospheric velocities and the date of maximum; however,
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Figure 4. The MSE of Fe in zone 3 on the testing data set of the MRNN model. In this trial, 20,000 spectra were used in the training set, and 2666 spectra were used
for testing. Left panel: MSE from the MRNN trained on 2000-10000 A spectra (WR-Full). The MRNN with seven cells performs best, which shows a 0.0061 MSE.
Right panel: MSE from the MRNN trained on 3000-5200 A spectra (WR-Blue). The MRNN with seven cells performs best, with a 0.0128 MSE.

we failed to use these two predictions to refit the observed
spectra. For the spectral fits in Section 5, we adopted the
explosion date from the light curves and used a grid search to
find the best photospheric velocities instead.

We trained the neural network using spectral data with two
different wavelength ranges. One set used the entire spectral
wavelength range from 2000 to 10000 A (hereafter WR-Full),
and the other only used the wavelength range from 3000 to
5200 A (hereafter WR-Blue). These two sets of data are useful
for applications to observational data with different spectral
coverage.

In the next step, we chose the number of “cells” to be 1, 3, 5,
7,9, 11, and 13 and explore the performances of MRNN. We
randomly selected 20,000 spectra for training and reserved
2666 spectra for testing. We found that MRNN with seven cells
performs the best among all models, as is shown in Figure 4.
Increasing the number of cells actually deteriorates the fits.

We thus adopted the MRNN for the training on the chemical
elements from 6 to 28 and the B-band absolute magnitudes.
The chemical elements in the four different zones (plus the
luminosity) were trained separately. In principle, the para-
meters can be trained jointly. However, the size of such a
neural network could be too large for our computational
capability, so we opted to choose a fast and robust neural
network structure and applied it to all prediction tasks.

We have also tried the DNN (Huang et al. 2016) on the
2000-10000 A models by simply changing the “adding”
process in the MRNN by “concatenation.” The MSE when
using three cells for calculation is 0.0080, which is higher than
MRNN with similar depth. However, due to our limited RAM
capacity and the complexity in modifying DNN’s cell
structures, “bottleneck” (Huang et al. 2016) positions, and
other hyperparameters, we did not explore more of this network
structure.

3.3. Target Parameters for Machine Learning

Our goal is to find the ejecta structures that best fit the
observed spectral features of an SN Ia at around optical
maximum. We choose the “multiplication factor” (as men-
tioned in Section 2) in the zone of our concern as the neural
network output. The “multiplication factor” was restricted to

have a range from zero to 3. Our experiments with the models
and data indicate that this range is sufficient to ensure coverage
of a broad range of SNe Ia. Then, we applied the following
normalization strategy in order to constrain the output of the
neural network into (0, 1):

Mscaled = tanh(M)/Z + 0.5, 3)
o(m)

where I\;Iscaled is the scaled elemental abundances of the neural
network output, and p and o are the average and standard
derivative of the multiplication factor i, respectively. This
nonlinear normalization strategy allows the trained model to
predict values outside the parameter space (extrapolation)
within a small parameter range but suppresses erratic values
derived by the neural network; elemental abundances less than
zero or approaching infinity are remapped to values close to
zero and 1, respectively.

3.4. Training Results

Not all the elements in the IGM are significantly influencing
the spectra. As a first trial, we adopted a subset of model
spectra and a simplistic neural network structure to probe the
effect of various chemical elements. In this trial, 10,000 spectra
were selected as the training set and 1829 spectra as the testing
set, and we chose the MRNN with one cell structure. All
elements from atomic number 6 (carbon) to 28 (nickel) in the
four velocity zones are trained on the training set and verified
on the testing set. By comparing the MSEs from the testing set,
as well as the correlation between the neural network—predicted
scaled elemental abundance (Equation (3)) and the corresp-
onding value of the TARDIS input (Figures 5 and 6), we found
models with MSEs larger than 0.1 to be poorly trained with
little predictive power on elemental abundances. Consequently,
we chose only the elements in zones with MSEs less than 0.1
for further training. There are 34 and 31 trainable chemical
constituents located in the four velocity zones for training sets
WR-Full and WR-Blue, respectively. The MSEs of these
chemical constituents are shown in Tables 2 and 3 for training
sets WR-Full and WR-Blue, respectively. In the tables, we also
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Figure 5. Correlation between the scaled elemental abundances of MRNN predictions and TARDIS inputs. The X-axis is the prediction from the MRNN model, and
the Y-axis is the input into TARDIS for spectral calculations. In both panels, the diagonal red lines indicate the ideal model predictions, and the blue dots were derived
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zone 1. The MSE is 0.1153. This model was trained on 10,000 spectra and tested on 1829 spectra. The predicted values are close to 0.5, which violates the “real” value
for spectral synthesis, indicating the poor performance of the neural network on this element zone. Right panel: plot showing the correlation of the scaled elemental
abundances of Co in zone 3, with an MSE value of 0.042. This model is trained on 89,559 spectra and tested on 9951 spectra.
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Figure 6. Same as Figure 5 but for Fe in zone 3. Left panel: correlation between scaled elemental abundances of MRNN predictions and TARDIS inputs for the neural
network trained for the wavelength range 3000-5200 A. The MSE is 0.0107. Right panel: same plot for the wavelength range 2000-10000 A. The MSE is 0.0050.

show the correlation coefficients for each trainable element that
can be used to gauge the reliability of the results.

As discussed in Section 3.2, we adopted the MRNN with
seven cells for elemental abundance estimation. The training
data set contains 89,559 spectra (90% of the total), and the
testing data set contains 9951 spectra (10% of the total). For a
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typical neural network, it takes approximately 1 hr to finish 200
training epochs on two Tesla P100 GPUs.

In Tables 2 and 3, we list the MSE on the testing data set of
the 34 and 31 selected elements and zones for two sets of
neural networks built for WR-Full and WR-Blue, respectively.
As an example, the scaled elemental abundances of the MRNN
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Table 2
MSE and Correlation for Selected Elements and Zones of WR-Full (Wavelength Range 2000-10000 A)
Element Zone Number MSE Corr. Element Zone Number MSE Corr.
(6] 4 0.071 0.610 Mg 2 0.010 0.957
Mg 3 0.075 0.585 Mg 4 0.040 0.809
Si 1 0.051 0.747 Si 2 0.013 0.942
Si 3 0.019 0.915 S 2 0.067 0.641
Ar 2 0.092 0.425 Ca 1 0.054 0.726
Ca 2 0.018 0.920 Ca 3 0.048 0.762
Ca 4 0.019 0.913 Sc 4 0.058 0.698
Ti 1 0.086 0.498 Ti 2 0.055 0.718
Ti 3 0.046 0.772 Ti 4 0.044 0.787
v 1 0.050 0.748 A\ 2 0.019 0.909
Mn 1 0.026 0.875 Mn 2 0.017 0.926
Fe 1 0.004 0.984 Fe 2 0.005 0.981
Fe 3 0.050 0.978 Fe 4 0.025 0.885
Co 1 0.088 0.958 Co 2 0.029 0.864
Co 3 0.042 0.796 Co 4 0.078 0.567
Ni 1 0.009 0.960 Ni 2 0.028 0.869
Ni 3 0.050 0.754 Ni 4 0.075 0.586
Note. Neural networks are trained on the 89,559 spectra training set, and all MSEs are calculated on the 9951 spectra testing data set.
Table 3
MSE and Correlation for Selected Elements and Zones of WR-Blue (Wavelength Range 3000-5200 A)

Element Zone Number MSE Corr. Element Zone Number MSE Corr.
Mg 2 0.070 0.627 Mg 3 0.086 0.487
Mg 4 0.051 0.747 Si 1 0.085 0.511
Si 2 0.058 0.701 Si 3 0.053 0.728
S 2 0.071 0.607 Ar 2 0.093 0.420
Ca 1 0.062 0.480 Ca 2 0.072 0.605
Ca 3 0.073 0.605 Ca 4 0.052 0.739
Sc 4 0.062 0.680 Ti 2 0.066 0.653
Ti 3 0.061 0.685 Ti 4 0.046 0.773
\% 1 0.087 0.499 \Y 2 0.046 0.773
Mn 1 0.069 0.640 Mn 2 0.058 0.702
Fe 1 0.037 0.808 Fe 2 0.024 0.893
Fe 3 0.011 0.952 Fe 4 0.036 0.829
Co 1 0.030 0.845 Co 2 0.045 0.783
Co 3 0.046 0.776 Ni 1 0.039 0.793
Ni 2 0.056 0.714 Ni 3 0.051 0.747
Ni 4 0.080 0.543

Note. Neural networks are trained on the 89,559 spectra training set, and all MSEs are calculated on the 9951 spectra testing data set.

prediction and those of the TARDIS input of Fe in zone 3 are
shown in Figure 6. The neural network—predicted chemical
abundances clearly correlate with the values used to generate
the model spectra. The neural network using the full
2000-10000 A wavelength coverage outperforms the ones
with partial coverage from 3000 to 5200 A. The fact that the
relation between MRNN prediction and the original TARDIS
input elemental mass is approximately given by M = 7 in all
cases suggests that the training data set yields results that are
consistent with the testing data set. This ensures that overfitting
is not severely affecting the MRNN we have constructed.
However, overfitting does appear to be an issue for elements
that have weak spectral lines and where the correlation between
the MRNN predicted and the original TARDIS input values are
weak. This can be seen from Figure 5, where the predicted
mass of Sc is biased toward the mean value of the true values of
the TARDIS input (~0.5). For Co in zone 3, the correlation can
be detected, but the predicted values are biased toward values
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higher and lower than the true TARDIS inputs for input values
close to zero and 1, respectively. Such bias is much weaker
when the correlations are strong, as shown in Figure 6 for Fe in
zone 3. This bias can, in principle, be corrected by using the
median values of the scaled TARDIS input M to estimate the
original model input.

In the current study, we did not correct this bias. Instead, we
used the original MRNN predictions directly as the estimates of
the mass of the input chemical elements but set the confidence
levels of the estimates according to the correlations that can be
derived from the test data set. We did not attempt to estimate
the confidence intervals using Bayesian statistics based on a
Markov Chain Monte Carlo algorithm (for example, see
Foreman-Mackey et al. 2013), due primarily to the limited
processing power of our computers. Instead, we estimated the
1 — o error by using the testing set itself. For each input model
abundance, shown as examples in the Y-axes of Figure 6, we
derive the 1 — o confidence levels based on the dispersion of
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Table 4

Extinction and Stretch of SNe Ia with 2000-10000 A Spectra
SN Name Redshift MW EB —-V) Host E(B — V) Stretch References
SN 2011fe 0.000804 0 0 1.062 + 0.005 Graur et al. (2018b), Munari et al. (2013)
SN 201 1by 0.002843 0.013 0.039 0.93 + 0.02 Maguire et al. (2012), Graham et al. (2015), Foley et al. (2018)
SN 2013dy 0.00389 0.135 0.206 1.098 + 0.008 Zhai et al. (2016), Pan et al. (2015)
SN 2015F 0.0049 0.175 0.035 0.912 + 0.005 Graur et al. (2018b)
SN 2011iv 0.006494 0 0 0.830 £ 0.007 Foley et al. (2012)
ASASSN-141p 0.0051 0.33 0.021 1.101 £ 0.004 Shappee et al. (2016), Graur et al. (2018a)

the predicted values (the horizontal axis). To be more specific,
we collected all of the data in the test data set that agree with
the MRNN predictions to within the [—0.02, +0.02] range to
build a histogram of the scaled TARDIS input mass and
adopted the position of 15.8%, 50% (median), and 84.1% of
the histogram as 1 — o error, median value, and 84.1%
estimates. The 1 — o errors of Fe in zone 3 are overplotted in
Figure 6 as an example. The errors for other elements in
various zones are available in the online material.

Assuming that the TARDIS model spectra capture major
spectral features of observed SNe Ia, we may apply the neural
network trained by theoretical models straightforwardly to
observational data. When an observed spectra is inserted into
the well-trained MRNN, a set of chemical abundances and their
associated uncertainties can be derived. Unfortunately, we do
not have a large enough library of observed spectra to train the
link between observational data and theoretical models. The
consistency and reliability of the derived abundances can only
be evaluated by comparing the results for different SNe and
their spectral time sequences.

Alternatively, we may consider the chemical elements
determined by feeding the observed spectra to the MRNN as
empirical parameters that yield optimal TARDIS fits to the
observed spectra. These parameters do not necessarily serve as
true estimates of the elemental abundances of the SNe, but
nonetheless, they can be used as model-based empirical
parameters to analyze the properties of SNe Ia.

Note that the neural network approach is different from a
simple observation-to-theory spectral match. The neural net-
work model aims to match spectral features that are associated
with differential chemical structure variations. Each chemical
element in a certain zone is trained separately, and the neural
networks thus trained are most sensitive to the changes of the
spectral features related to this particular chemical element
throughout the spectral range under study. Even though the
spectral features of various elements are highly blended, the
differential changes of spectral features due to varying
chemical abundances are still detectable by the neural network
we have constructed. Furthermore, the theoretical models may
have intrinsic shortcomings and do not include all of the
essential physics. The assumption of a sharp photosphere, for
example, cannot be correct in a stricter sense. The lack of time
dependence of the radiative transfer may also limit the
precision of the theoretical models. However, our approach
to elemental abundance may be less sensitive to these problems
by construction, although the current study cannot establish a
quantitative assessment of the uncertainties caused by approx-
imations intrinsic to TARDIS models.

Moreover, the neural network allows for theoretical
luminosity to be derived based on the theoretical model once
the chemical structure of the ejecta is fully constrained. From

12

the MRNN, the latter can be determined by spectral features
without the need of knowing the absolute level of the spectral
fluxes. When the global spectral profiles between observations
and models are matched, the luminosity (or the temperature of
the photosphere) is then completely constrained theoretically.
This provides a theoretical luminosity of the SN understudy
that is independent of the flux calibration of the spectra.

4. Applications of the Neural Network to
Observational Data

Assuming the AIAI method constructed using MRNN in
Section 3 to be correct, we may apply it to observed spectra as
a sanity check of the method. We stress again that this step is
detached from the deep-learning neural network and is not a
validation of the MRNN.

The parameter space describing the ejecta structure is so
large that our spectral library covers it only sparsely. The
chance of having a perfect fit to any specific observation with
spectra already in the library is low. The model spectra are thus
recalculated using TARDIS with the ejecta structures deter-
mined from the MRNN. To derive the optimal TARDIS
models, we also allowed the photospheric positions and the
luminosities of the SNe to vary.

4.1. Applications to SNe with Wavelength Coverage
2000-10000 A

There are six well-observed SNe with wavelength coverage
from 2000 to 10000 A. They are shown in Table 4. The UV
data are all acquired by the HST. These data are rebinned to
1 A pixel™" and normalized by dividing their respective average
flux between 6500 and 7500 A, similar to what was done for
TARDIS model spectra during neural network training.

4.1.1. SN 201 Ife

On 2011 August 24, SN 201 1fe was detected at the M101
galaxy at a distance of approximately 6.4 Mpc (Nugent et al.
2011). Its luminosity decline in the B band within 15 days after
the B-band maximum is AMp 5 = 1.12 £ 0.05 mag (Munari
et al. 2013). Based on optical and radio observations,
SN 201 1fe is not heavily affected by any interstellar (ISM)/
circumstellar material (CSM) or Galactic dust extinction
(Chomiuk et al. 2012; Patat et al. 2013). Consequently, we
did not introduce any host galaxy extinction correction for
SN 2011fe spectra.

We chose the HST spectra at —2.6, 0.4, and 3.7 days relative
to the B-band maximum date for the elemental abundance
calculations and spectral fittings. The results are shown in
Figure 7.
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—2.6 (left panel), 0.4 (middle panel), and 3.7 (right panel) days. These elemental

abundances and the densities in Figure 9 were used for the synthetic spectra shown in Figure 7.

The temperature profiles of the TARDIS models of
SN 2011fe in the three spectroscopically observed phases are
shown in Figure 9. The three SN structures shown in Figure 8
are predicted by the neural network individually for each
epoch, and the density structures may not strictly observe
homologous expansion. However, it is encouraging to see that
the density structures in Figure 9 (first panel) show adequate
similarity with each other, and the corrections compared to the
DDT model appear to be consistent at different velocity layers;
this cross-validates the prediction of the neural networks.

4.1.2. SN 2011iv

The transitional SN (between Type Ia normal and Type Ia
91bg-like) SN 2011iv is located at NGC 1404 with a B-band
decline rate AMp;s = 1.69 £ 0.05 (Gall et al. 2018).
According to Foley et al. (2012), this SN has a negligible dust
extinction effect in the line of sight, so we did not apply extra
extinction corrections to it (see Table 4).

In the elemental prediction and spectral fitting process,
we adopted the combined spectra of HST and the Magellan



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 250:12 (39pp), 2020 September

10-12

10-13

10714

Density g/cm?

10-15

10716

—— DD Model
—=—=- -2.6 Days
----- 0.4 Days
—-— 3.7 Days

10000 15000 20000

Velocity km/s

18000

16000

14000

12000

Temperature K

10000

8000

—— |G Model
~== SN2011fe -2.6d

1
|
!
1

10000 15000 20000 25000

Velocity km/s

20000

18000

16000

14000

12000

Temperature K

10000

8000

—— 1G Model
~==- SN2011fe 0.4d

10000 15000 20000 25000

Velocity km/s

18000

16000

14000

12000

Temperature K

10000

8000

Chen, Hu, & Wang

—— 1IG Model
~== SN2011fe 3.7d

5000 10000 15000 20000 25000

Velocity km/s

Figure 9. First panel: density structures of SN 201 1fe at —2.6 (orange line), 0.4 (cyan line), and 3.7 (red line) days as predicted by the neural networks. The DDT model is
shown with a blue line for comparison. Second panel: temperature structure for SN 2011fe at —2.6 days. Third panel: temperature structure for SN 201 1fe at 0.4 day. Fourth
panel: temperature structure for SN 2011fe at 3.7 days. Note that for convenience of comparison, we have converted all density profiles to 19 days after explosion, assuming
homogeneous expansion, using the relation p o< . The temperature profiles for the IGM are shown as blue lines for comparison, and MRNN fits are shown as orange lines.

10°

=
o
L

1072

Abundance (ratio)

._.
1S)
4

Relative Flux A.U.

10!

100,

107 \'\

—— SN2011iv 0.6d
—— TARDIS Synthesized

2000 3000

4000 5000

Element Abundance of SN2011iv

1074
7500 100001250015000175002000022500

Velocity km/s

6000

Wavelength A

7000 8000

lo—u

10713

10-1

Density g/cm3

H

S
L
w

10—16

—— DD Model
—== SN2011liv 0.6 Days

18000

16000

14000

12000

Temperature K

10000

8000

10000

15000

20000

Velocity km/s

9000 10000

— |G Model

—- SN2011iv 0.6d

TN -ma=

10000

15000 20000 25000

Velocity km/s

Figure 10. Upper panel: observed spectrum (blue line) and TARDIS synthetic spectrum (orange line) of SN 2011iv at 0.6 day after B maximum. Lower
left: elemental abundances of SN 2011iv predicted from neural networks. Lower middle: density structure of SN 2011iv predicted from neural networks (orange line)
and the DDT model density structure for comparison (blue line). Both densities are converted to that of day 19 using the p o< 1~ relation. Lower right: temperature
structure for SN2011iv spectral fitting (orange line) and the IGM temperature structure for comparison (blue line).

telescope at 0.6 day after the B-band maximum date (Foley

et al. 2012). The results are shown in Figure 10.

The model spectrum agrees reasonably well with the

observed spectrum across major spectral features in the optical.

The disagreement across the O I 7300 A line is obvious. This is
likely due to an insufficient amount of oxygen, and the feature
is not well fit even when the oxygen abundance is enhanced to
three times that of the IGM. A similar problem may also be

14
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seen in Figure 7 for SN 2011fe. We see also that the spectral
features below 3000 A are poorly fit, suggesting again that the
elemental structure may not have appropriately covered this
transition SN Ia. We will improve these fits in future studies
with the construction of a larger spectral library.

4.1.3. SN 2011by

The SN 2011by in NGC 3972 has a luminosity decline rate
AMp,s = 1.14 £ 0.03 (Silverman et al. 2013). It has
remarkably similar optical spectra and light curves to those
of SN 2011fe, and these two SNe are identified as optical
“twins” (Graham et al. 2015). The only prominent difference is
that SN 2011fe is significantly more luminous in the UV
(1600 A < A < 2500 A) than SN 2011by before and around
peak brightness (Foley et al. 2020). However, based on the
distance deduced from Cepheid variables in NGC 3972,
SN 2011by is about 0.335 £ 0.069 mag dimmer than
SN 2011fe (Foley et al. 2020). This apparent magnitude
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difference can be a concern for SN cosmology, as its origins
are unknown and thus difficult to correct.

As in Foley et al. (2020), we adopted the Fitzpatrick (1999)
extinction model with R, = 3.1 and E(B — V) = 0.039 to
correct the host galaxy extinction and Milky Way extinction
models of Gordon et al. (2009) with E(B — V) = 0.013 to
correct for Milky Way extinction. The HST spectrum of
SN 2011by at 0.4 day before the B-band maximum is
employed to derive the elemental abundances using MRNN.
The extinction-corrected observed spectrum and the corresp-
onding synthetic spectrum are shown in Figure 11.

It is worth noticing that the absolute luminosity of
SN 2011by found by the MRNN process is slightly more
luminous than that of SN 2011fe. Our MRNN spectral fits thus
do not provide a theoretical explanation of the apparent
luminosity difference of the two SNe. This may be caused by
model uncertainties and the fact that we adopted an extinction
correction without further iterations to improve the overall
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model fits in the UV (see Figure 11). Indeed, the model
spectrum is too bright in the wavelength range shorter than
2800 A, which may again suggest that there is room for
improvement by enlarging the ranges of the elemental
abundances for the spectral library to better sample the physical
conditions of the observed spectrum.

4.1.4. SN 2015F

The SN 2015F in NGC 2442 is a slightly subluminous SN
with a decline rate AMp;s = 1.35 + 0.03 (Cartier et al.
2016). We employed the HST spectrum at —2.3 days relative
to B-band maximum for elemental abundance predictions and
spectral fitting. The host galaxy extinction was corrected
using the model from Cardelli et al. (1989) with R, = 3.1
and E(B — V) = 0.035mag. The Milky Way extinction
was corrected with the Gordon et al. (2009) model with
E(B — V) = 0.175 (Graur et al. 2018b). The fitting results are
shown in Figure 12. Notice the absence of high-velocity Call

and OT and the apparent lower density of the ejecta, as is
obvious from the lower middle panel of Figure 12.

4.1.5. ASASSN-14Ip

Located in NGC 4666, ASASSN-141p is a bright SN Ia. Its
luminosity decline is AMp 5 = 0.80 £ 0.05 (Shappee et al.
2016). In order to correct the host galaxy extinction, we
adopted the Cardelli et al. (1989) extinction relation with
R, = 3.1 and E(B — V) = 0.33 mag (Shappee et al. 2016). For
Milky Way extinction, we adopted the Gordon et al. (2009)
extinction model with E(B — V) = 0.021 mag.

We used the HST spectrum at —4.4 days from B-band
maximum for both the elemental abundance prediction and
spectral fitting. The results are shown in Figure 13.

The ejecta show enhanced density at a velocity above
17,500kms™'. The Call H and K and IR triplet are clearly
detected and highly blueshifted. The temperature profile shown
in the lower right panel of Figure 13 is higher than that of the

16
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IGM throughout the ejecta. This is consistent with what is
typically expected for SNe with slow decline rates.

4.1.6. SN 2013dy

The SN 2013dy is located in NGC 7250 with a luminosity
decline rate of AMp ;5 = 0.90 £ 0.03 (Zhai et al. 2016). Like
ASASSN-141p, SN 2013dy is of the group with slow decline
rates. We adopted the extinction model of Cardelli et al. (1989)
with R, = 3.1 and E(B — V) = 0.206 mag to correct the host
galaxy extinction and the Gordon et al. (2009) model with E
(B — V) =0.135mag for Milky Way reddening correction.
The extinction parameters E(B — V) were taken from Vinké
et al. (2018).

The HST spectra at —3.1, —1.1, 0.9, and 3.9 days were used
for spectral modeling. The fitting spectra and the observed
spectra are shown in Figure 14, and the ejecta structures and
temperature profiles are shown in Figure 15.

17

The four ejecta structures for SN 2013dy show consistently
higher densities at velocities above 17,500 km s~ ' and a higher
temperature before optical maximum than that of the IGM. The
OT1 feature at 7500 A is again poorly fit. It implies that the
oxygen abundances are too low for the spectra in the spectral
library.

4.2. Application to SNe with Wavelength Coverage
3000-5200 A

4.2.1. HST Spectra of 15 PTF Targets

Maguire et al. (2012) presented 32 low-redshift (0.001 <
7z < 0.08) SN Ia spectra; the UV spectra were obtained with
the HST using the STIS. The spectral wavelength coverage of
these data is 3000-5200 A. Meanwhile, the photometric data
are obtained in the Palomar Transient Factory (PTF; Law
et al. 2009; Rau et al. 2009). There are no published light
curves on these targets yet. As our models are built only for
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data close to optical maximum, we selected only spectra taken
between —3 and 4 days relative to the date of B-band
maximum.

4.2.2. Dust Extinction Correction

To model the observed SN luminosity, we need to properly
treat the dust reddening by the Milky Way and the host
galaxies.

The extinction data of the 15 HST spectra in Maguire et al.
(2012) are not available. In order to correct the reddening
effect, we developed an iterative algorithm by searching for the
best match of theoretical models and observations with
reddening as one of the x? minimization parameters, as is
shown in the flowchart in Figure 16. The procedure starts with
an initial guess of reddening index E(B — V), which is applied
to the observed spectrum; it then calculates the rms of the
difference between the observed spectrum and all of the model
spectra in the spectral library to find the best-match spectral
model, a new reddening index E(B — V)jewer 18 calculated
assuming the best-match spectral model is the true unreddened
spectrum, the reddening index is updated using the formula
EB—-V)=01XxEB—V)+ EB — V)pewer X 0.9, and the

18

procedure repeats for 20 iterations to ensure convergence of the
algorithm.

The algorithm was found to be sensitive to the initial value,
so we set the initial E(B — V) to be 0, 0.2, 0.4, and 0.6,
respectively. With different extinction values and the resulting
best-fit spectra, we compare the spectral fitting fidelity and
adopt the E(B — V') value and spectral model with the least rms
of the difference between the observed and model spectra
reddened by the E(B — V) value.

We also tested our extinction-correction algorithm on the 11
SN spectra with wavelength coverage of 2000-10000 A and
compared the derived extinction values with the extinction values
in published literature. The results are shown in Table 5. We
found that our algorithm can reproduce low and intermediate
extinctions, while for the high-extinction case E(B — V) ~ 0.3,
the algorithm seems to underestimate the extinction intensity. As it
is difficult to assess the precision of the flux calibration of
the observed spectra, we consider the values shown in Table 5 to
be broadly in agreement.

In Table 6, we list the extinction values derived from this
procedure for the 15 SNe under study.

The AIAI results, showing the spectral profiles, density
structures, chemical structures, and temperature profiles, are
shown in Appendix C.
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Figure 15. Top left, top center, top right, and middle left: elemental abundance structure of SN 2013dy predicted by neural networks from the spectra at —3.1, —1.1,
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—3.1, —1.1, 0.9, and 3.9, respectively.

5. Discussions and Conclusions
5.1. Elemental Abundances and the Light-curve Stretch

The stretch values are known to be correlated to the SN
luminosity (Phillips 1993; Perlmutter et al. 1999). To compare
the elemental abundance derived from the best-match
TARDIS spectra with light-curve stretch parameters, we
employed the SiFTO (Conley et al. 2008) program to
calculate the stretch factors. The resulting stretch values are
listed in Table 4.

19

We may consider the theoretical models as a toolbox to
construct empirical parameters to improve the precision of
SNe Ia as standard candles, in a way similar to the light-curve
shape parameters. This would be particularly interesting for
projects based on spectrophotometry, such as has been planned
for WFIRST. A few more clarifications of the uncertainties of
the derived chemical abundances are necessary before carrying
out such a study. Based on the testing data set discussed in
Section 3, we can estimate the 1 — o limits of the elemental
abundances. Not all of the predictions from the neural network
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Figure 16. Illustrative flowchart of the algorithm for dust reddening estimates (see Section 4.2.2 for details).

Table 5
The Extinction Comparison

Phase EB — V) from E(B — V) from
SN Name (days) Papers Algorithm
SN 2011fe 0.4 0.000 0.021
SN 2011fe —2.6 0.000 0.000
SN 2011fe 3.7 0.000 0.000
SN 2013dy -3.1 0.341 0.222
SN 2013dy —1.1 0.341 0.253
SN 2013dy 0.9 0.341 0.231
SN 2013dy 39 0.341 0.253
SN 2011iv 0.6 0.000 0.092
SN 2015F -23 0.210 0.129
ASASSN-141p —4.4 0.351 0.281
SN 2011by —-0.4 0.052 0.018

Table 6
The HST-observed SNe Ia from Maguire et al. (2012)

SN Name Phase (days) Redshift* Stretch EB —V)
PTF 09dlc 2.8 0.068 1.05 + 0.03 0.21
PTF 09dnl 1.3 0.019 1.05 £+ 0.02 0.04
PTF 09fox 2.6 0.0718 0.92 + 0.04 0.08
PTF 09foz 2.8 0.05 0.87 + 0.06 0.15
PTF 10bjs 1.9 0.0296 1.08 + 0.02 0.02
PTF 10hdv 33 0.054 1.05 £+ 0.07 0.16
PTF 10hmv 2.5 0.032 1.09 £+ 0.01 0.02
PTF 10icb 0.8 0.086 0.99 + 0.03 0.13
PTF 10mwb -04 0.03 0.94 + 0.03 0.02
PTF 10pdf 2.2 0.0757 1.23 £ 0.03 0.23
PTF 10qjq 3.5 0.0289 0.96 + 0.02 0.14
PTF 10tce 3.5 0.041 1.07 + 0.02 0.23
PTF 10ufj 2.7 0.07 0.95 + 0.02 0.15
PTF 10xyt 32 0.049 1.07 £+ 0.04 0.24
SN 20091e 0.3 0.017786 1.08 £+ 0.01 0.17
Note.

 In Maguire et al. (2012), only cosmological redshifts are given; the collected
redshift data here are adopted from WISeREP.

are reliable due to the sparsity of our parameter space coverage
in generating the data set and the limitations of the sensitivity
of the neural network. For example, some of the predictions of
Co in zone 3 are not in the region where the testing data set has
sufficient coverage, as is shown in the right panel of Figure 5.
When this situation occurs, we replace the predictions that go
above or below the relevant 1 — o region with an upper or
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lower limit, respectively. Also, for simplicity, we have set the
lower limits of the ejecta structure to be 7100 kms~' when
calculating the abundances of zone 1 to avoid the effect
introduced by a varying photospheric velocity.

Taking the elemental masses derived from AIAI at their face
values, we show in Figure 17 the correlations between the stretch
parameters and Fe, Co, and Ni masses all corrected to the values
at 19 days after explosion. The correlations for the remaining 22
elements in various zones are presented in Appendix B.

Although we intend to leave a thorough analysis of these
correlations to an upcoming paper, we identify immediately
from Figure 17 that the Fe, Co, and Ni masses in zone 4 are
more strongly correlated with the stretch parameter than other
parameters. The lower panel of Figure 17 also shows that the
masses of Ni in zones 2, 3, and 4 are all correlated with
the stretch parameter. The mass derived from zone 1 may not
be reliable, as the photosphere is located in zone 1. The
correlations that can be identified for Fe and Co in zone 4 and
Ni in zones 2, 3, and 4 are suggestive of the presence of
radioactive materials at the surface of the SN ejecta and are
likely critical measures of the luminosities of SNe Ia.

It is noteworthy that the Ni mass in zones 2, 3, and 4 varies by
more than 1 order of magnitude. The masses of Fe and Co do not
appear to share such a behavior. No strong correlation is found
between the mass of Fe and Co and the stretch factor either. This
may be explained if a fraction of Fe and Co are nonradioactive
and a dominant fraction of Ni in these zones is radioactive.
Indeed, 1D models of thermonuclear explosions predict the
existence of a high-density electron-capture burning region
during the deflagration phase (Hoeflich et al. 1996a; Gerardy
et al. 2007), which can lead to the production of a significant
amount of nonradioactive Ni and Fe but little Co. These early
deflagration products can be mixed out to higher-velocity layers,
such as shown in some 3D models (e.g., Gamezo et al. 2004;
Plewa et al. 2004; Ropke et al. 2006; Jordan et al. 2008); they
are likely to distort and weaken the correlation between masses
of Co and Fe and the light-curve shapes of the SNe.

5.2. Time Evolution of Elemental Abundances in SN 201 Ife
and SN 2013dy

Among all six SNe with spectroscopic observations near B
maximum and wavelength coverage over 2000—10000 A, there
are three spectra of SN 2011fe and four spectra of SN 2013dy
that are compatible with our neural network setups. In this
section, we investigate the time evolution of the elemental
abundances of these two SNe. The time evolution of the masses
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Figure 17. Correlation between the stretch parameter and the mass of various chemical elements. The lower and upper limits are marked with triangles, the median
values are the crosses, and the predicted values are the circles. For simplicity, we choose the lower limit of the ejecta structures to be 7100 km s ' when calculating the
element masses. Upper left: correlation between the stretch parameter and Fe mass in zones 1, 2, 3, and 4. Upper right: correlation between the stretch parameter and
Co mass in zones 1, 2, 3, and 4. Lower panel: correlation between stretch and Ni mass in zones 1, 2, 3, and 4. For the neural network WR-Blue (wavelength range
3000-5200 A), the Co mass in zone 4 cannot be determined, so we did not predict the Co mass in zone 4 for the 15 spectra with such wavelength coverage. Notice that
the Ni mass is corrected by its radioactive decay, and the predictions are for the Ni mass at the B-band maximum rather than the date of observations. We fitted the Ni
mass in zones 2 and 3 with My;, = 7.511 x 107¢3933SUth qpq pre o = 4.934 x 10770843>Suwetch pr - respectively.

of radioactive materials can serve as an important check on the
fidelity of the elemental abundances we deduce from the neural
network whose performance is very difficult to track precisely
from first-principle mathematical models.

In Figure 18 (top row), we notice a general agreement
between the time evolution of the Ni mass in zones 2, 3, and 4
and the radioactive decay rate of *°Ni. This agreement suggests
that most of the *°Ni is newly synthesized after the explosion.
Here SN 2013dy shows a significantly larger nickel mass than
SN 2011fe. A significant difference in Ni mass is found for
the two SNe in zones 2, 3, and 4 or at a velocity above
10,000 kms~'. If this difference is true, it may provide an
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explanation of the difference in the luminosity of the two SNe
(Zhai et al. 2016).

Figure 18 (middle row) shows the mass of Co in zones 2, 3, and
4. Again, SN 2013by is more abundant in Co in zones 3 and 4
than SN 201 1fe. Notice that the mass of Co peaks at around 20
days past explosion if its time variation is related to the radioactive
decays of “°Ni; Figure 18 (left and middle panels of middle row) is
in agreement with this. Likewise, more iron is found at the highest
velocity (zone 4) in SN 2013by than in SN 2011fe. Iron seems to
be less abundant in SN 2013by than in SN 2011fe in zone 3.

Moreover, the predicted Ni masses from the spectra 3—4 days
past maximum are significantly lower than earlier epochs. We
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Figure 18. Time evolution of Ni mass in different zones of SN 201 1fe and SN 2013dy near B-band maximum dates. Upper panels, from left to right: Ni mass in zones
2, 3, and 4. The decay rate of Nisg is plotted with black lines for comparison. Middle panels, from left to right: Co mass in zones 2, 3, and 4. Lower panels, from left to

right: Fe mass in zones 2, 3, and 4.

surmise that such an anomaly could be due to a temperature
change that strongly affects the UV spectral features. When Fe
group elements are in low-temperature regions, like zones 3 or 4,
the relevant atomic levels are less activated, which results in
weaker or absent spectral lines in the TARDIS model spectra due
to Monte Carlo noise, which may misguide the neural network.

Curiously enough, the nebular spectra of SN 2013by show a
smaller Nill A7378/Fell A7155 flux ratio than that of SN
2011fe (Pan et al. 2015), which may suggest that SN 2013dy
produced a lower mass ratio of stable to radioactive iron group
elements than SN 2011fe. The decay of *°Ni leads to a
comparative overabundance of Fe in SN 2013by as compared
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to that in SN 2011fe. This is in agreement with what we found
in zones 2, 3, and 4, although the nebular lines measure ejecta
at much lower velocities. The primary difference between
SN 2011fe and SN 2013by that affects their early UV spectra
and likely also their luminosities is the amount of radioactive
Ni at velocities above ~10,000km s,

Zhai et al. (2016) noticed that SN 2013dy is dimmer in the near-
IR than SN 2011fe. This could also be suggestive of a difference
in the chemical structures of the two. It may be related to the
excessive amount of radioactive material at the outer layers of
SN 2013dy. The difference in Fe abundance at the highest velocity
may also be an indication of a genuine difference of the chemical



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 250:12 (39pp), 2020 September

Chen, Hu, & Wang

Table 7
B-band Absolute Luminosity Comparisons
SN Name Phase Obs. Mag. EB—-V) o MRNN Mag. Abs. Mag. Difference
SN 2011fe -2.6 10.034 0 29.13 —19.9670:13 -19.10 0.86
SN 201 1fe 0.4 9.976 0 29.13 —20.00%5} —19.15 0.85
SN 2011fe 37 10.070 0 29.13 —19.967011 —18.96 0.90
SN 2013dy -3.1 13.353 0.341 31.50 —20.06159% —19.54 0.52
SN 2013dy —1.1 13.294 0.341 31.50 —20.087549 —19.60 0.48
SN 2013dy 0.9 13.291 0.341 31.50 —20.025049 —~19.61 0.41
SN 2013dy 39 13.366 0.341 31.50 —19.997011 —~19.53 0.46
SN 2011by —0.4 12.933 0.052 31.59 —20.03753% —18.87 1.16
SN 2011iv 0.6 12.484 0 31.26 —19.87548 —18.82 1.05
SN 2015F -23 13.590 0.210 31.89 —19.89701) —~19.16 0.73
ASASSN-14Ip —4.4 12.496 0.351 30.84 —20.0470:9 —19.74 0.30

Note. The column names are as follows. SN Name: name of the SN. Phase: days relative to B-band maximum time. Obs. Mag.: observed magnitude, interpolated from
the photometry using SNooPy. E(B — V): total extinction parameters, including both Milky Way and host galaxy extinction. x: distance modulus. Data sources are
listed in Table 4. MRNN Mag.: absolute magnitude predicted by our MRNN. We adopt the median values and 1 — o intervals in the testing data set. Abs. Mag.:
absolute magnitude calculated from the observational magnitude. Difference: difference between MRNN predicted absolute magnitude and the absolute magnitude

deduced from observed light curves.

Table 8
B-band Absolute Luminosity Comparisons of 15 SNe from Maguire et al.
(2012)
SN Name Phase Stretch MRNN Luminosity
PTF 09dlc 2.8 1.05 + 0.03 —19.8040:2
PTF 09dnl 1.3 1.05 £ 0.02 —19.9154!
PTF 09fox 2.6 0.92 + 0.04 —19.94+0:11
PTF 09foz 2.8 0.87 + 0.06 —19.7840:43
PTF 10bjs 1.9 1.08 & 0.02 —19.891011
PTF 10hdv 3.3 1.05 £ 0.07 —19.8550%,
PTF 10hmy 2.5 1.09 + 0.01 —19.805043
PTF 10icb 0.8 0.99 + 0.03 —19.93+:12
PTF 10mwb —04 0.94 + 0.03 —19.87+0:44
PTF 10pdf 22 1.23 £ 0.03 —19.73708
PTF 10gjq 35 0.96 + 0.02 —19.9210:11
PTF 10tce 3.5 1.07 £ 0.02 —19.674043
PTF 10ufj 2.7 0.95 + 0.02 —19.7570:34
PTF 10xyt 32 1.07 + 0.04 —19.8370:44
SN 20091e 0.3 1.08 & 0.01 —19.84754,

Note. The observed luminosities of these SNe are not available due to the lack
of published photometric data.

abundance of the progenitors of the two SNe if they are primordial
to the progenitor. Alternatively, they may also suggest different
explosion mechanisms if they are produced during the explosion.
Note further that SN 2013dy was discovered to show very strong
unburned C 1I lines before maximum, in contrast to the weak C II
features of SN 2011fe. It sits on the border of the ‘“normal
velocity” SNe Ia and 91T/99aa-like events (Zhai et al. 2016),
while SN 2011fe is no normal SN Ia of normal velocity (Wang
et al. 2009, 2013). Mechanisms such as double detonation may
enrich the high-velocity ejecta with Fe (Wang & Han 2012).

In Appendix D, we show the time evolution of other
chemical elements derived from the MRNN.

5.3. The Absolute Luminosity

The neural network with the same structure as in Section 3
may be constructed to retrieve the luminosity assumed in the
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synthetic spectral models. This opens the possibility of
predicting the absolute luminosity of an SN Ia based on its
spectral shapes. This can be achieved by training the AIAI with
predicting power on the absolute magnitude of any filter bands,
here chosen to be the Bessel B band.

Unlike elemental abundance predictors, the training on B-
band luminosities is prone to systematic errors due to TARDIS
model limitations. The luminosity is sensitive to both the
location of and the temperature at the photosphere. In reality, the
location of the photosphere is sensitive to wavelength, whereas
TARDIS treats the photosphere as wavelength-independent. The
temperature is sensitive to the UV fluxes, and the location of the
photosphere is sensitive to the absorption minimum of weak
lines. At around optical maximum, the photosphere has receded
into the iron-rich layers for normal SNe Ia, and the absorption
minima of IMEs are no longer good indicators of the location of
the photosphere. Such insensitivity may introduce degeneracy in
the dependence of luminosity and spectral profiles. The
luminosity of two SNe may be very different, whereas the
spectral profiles in the optical may appear to be very similar.

Nonetheless, one may try to study the relations between the
luminosities and spectral shapes in a similar way to what has
been done for elemental abundances. However, when the neural
networks are trained with multiple iterations, the MSE on the
training set decreases while the MSE on the testing set increases.
This indicates that the neural network overfits features in the
training set, and the results cannot be used for model predictions.
Consequently, we curtailed the performance tolerance to one
iteration only and adopted a smaller learning rate, which is one-
tenth of the value used for training the elemental abundances
(3 x 107% in the first stage and 3 x 10® in the second stage).

Having done the training and testing, we insert the observed
spectra into the trained neural network. The luminosities of the
11 spectra of the six SNe with HST spectra were predicted by
the neural network; the results are listed in Table 7. We also use
the neural network to predict the absolute magnitude of the
other 15 SNe that are from Magurie et al. (2012); the results are
listed in Table 8.

We have also estimated the B-band maximum luminosities
of the six SNe using their light curves with SNooPy
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(Burns et al. 2010). They are converted to absolute magnitude
as shown in Table 7.

The B-band magnitudes from the neural network are
systematically more luminous than the values deduced from
well-calibrated light curves. This difference is perhaps the
result of the simplified assumption of a sharp photosphere, as
mentioned above. Despite this limitation, the neural network
prediction is largely a measurement of the spectral properties
and may be used as an empirical indicator of luminosity, which
can still be useful in exploring the diversity of SN Ia luminosity
based on spectroscopic data.

6. Discussion and Summary

We have developed an AIAI method using the MRNN for
the reconstruction of the chemical and density structures of
SN Ia models generated using the code TARDIS. With this
MRNN architecture, we successfully trained and tested the
predictive power of the neural network.

The relevance of this study to real observations is explored
with the limited amount of observational data. With the
elemental abundances predicted from the neural network, we
successfully derived model fits to the spectra of SN 201 1fe, SN
2011iv, SN 2015F, SN 2011by, SN 2013dy, ASASSN-14Ip,
and 15 other SNe Ia near their B-band maximum. The AIAI
allows derivations of the chemical structures of these SNe.

From the AIAl-deduced elements, we found that SNe la
with higher stretch factors contain larger Ni masses at velocities
above 10,000 km s7! (in zones 2, 3, and 4). We also observed
the decline of the mass of *°Ni due to radioactive decay in
some well-observed SNe.

We attempted to predict the B-band luminosity from the
spectral shapes using the AIAI network. The predicted B-band
absolute magnitude is systematically higher than the luminosity
derived from light-curve fits by 0.47-1.26 mag. We surmise
that the discrepancy is due to approximations of physical
processes made in TARDIS.

Despite these successes, we must stress that the present study
is only a preliminary exploration of an exciting approach to SN
modeling. The study proves that the combination of deep-
learning techniques with physical models of complicated
spectroscopic data may yield unique insights into the physical
processes in SNe Ia. However, there are a few caveats that need
to be kept in mind, and in a way, these caveats also point in the
direction of further improvements.

1. In TARDIS, some major assumptions need to be kept in
mind. The temperature profiles are calculated based on
the assumption that the photospheric spectra follow that
of blackbody radiation. There is radioactive material very
close to or above the photosphere, so the energy
deposition is significantly more complicated than the
TARDIS assumptions.

2. The current implementation of the code only applies to
data around optical maximum.

3. We subdivided the ejecta into some artificial grids. This
introduces unphysical boundaries that are inconsistent
with the physics of nuclear burning in the ejecta.

4. The dependence on the adopted baseline model has not
been explored yet. Models with different density and
chemical profiles need to be studied and built into the
spectral library.
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5. The spectral models are drawn from a uniform distribu-
tion of parameters around the baseline model, which
serves as a plain Bayesian prior for the uncertainty
estimation discussed in Section 3.4. Different Bayesian
priors need to be explored.

6. The highest ejecta velocity explored in this study is
25,000 kms~!, which may be too low for some high-
velocity SNe, such as SN 2004dt (Wang et al. 2000a,
2009).

. The size of the spectral library is still tiny.

. Our MRNN architecture is constructed to be most
sensitive to heavily blended spectral features produced
by iron group elements. Other neural network architec-
ture, such as LSTM (Hochreiter & Schmidhuber 1997),
may be explored that can improve less blended features.

o0

On a positive note, the current study is sensitive to spectral
variations by construction, and the performance of the AIAI
network confirms that. We expect the physical approximations
made in TARDIS to have only a weak effect on the derivation
of chemical elemental abundances.

In summary, we have developed a deep-learning technique
to extract physical quantities of SN spectra. Preliminary
application of the methods to a set of observational data
proves the method to be powerful. More studies are needed to
fully realize the potential of the techniques presented in this
study.
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(Burns et al. 2010).

Appendix A
The MSE for Elements and Zones

In this section, we present two sets of MSEs in Tables Al and
A2. Table 2 is for the neural networks on 2000—10000 A spectra,
which contain 34 trainable element—zone combinations. Table 3
is for the neural networks on 3000-5200 A spectra, which
contain 31 trainable element—zone combinations.
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Table Al
MSE for Elements 6 (C) to 28 (Ni) in Four Zones
Element Zone 1 Zone 2 Zone 3 Zone 4
C 0.1144 0.1155 0.1171 0.1106
N 0.1159 0.1137 0.1165 0.1147
(0] 0.1147 0.1146 0.1155 0.0822
F 0.1128 0.1166 0.1159 0.1158
Ne 0.1147 0.1131 0.1174 0.1154
Na 0.1134 0.1127 0.1125 0.1121
Mg 0.1120 0.0135 0.0886 0.0509
Al 0.1143 0.1146 0.1149 0.1156
Si 0.0686 0.0177 0.0265 0.1173
P 0.1161 0.1142 0.1147 0.1145
S 0.1162 0.0678 0.1174 0.1134
Cl 0.1109 0.1136 0.1159 0.1153
Ar 0.1147 0.0964 0.1121 0.1127
K 0.1114 0.1122 0.1153 0.1155
Ca 0.0672 0.0285 0.0615 0.0248
Sc 0.1152 0.1145 0.1135 0.0670
Ti 0.0974 0.0673 0.0587 0.0546
v 0.0624 0.0286 0.1096 0.1149
Cr 0.1150 0.1119 0.1164 0.1164
Mn 0.0416 0.0241 0.1105 0.1081
Fe 0.0052 0.0078 0.0090 0.0347
Co 0.0136 0.0409 0.0567 0.0931
Ni 0.0143 0.0434 0.0585 0.0813

Note. All 23 x 4 neural networks involved in this table are trained on 10,000 spectra. The MSEs are
tested on a 1829 spectra testing data set. Wavelengths between 2000 and 10000 A are used as input.

Table A2
MSE for Elements 6 to 28 in Four Zones
Element Zone 1 Zone 2 Zone 3 Zone 4
C 0.1158 0.1149 0.1160 0.1130
N 0.1156 0.1162 0.1146 0.1129
(0] 0.1158 0.1150 0.1147 0.1022
F 0.1137 0.1137 0.1153 0.1145
Ne 0.1135 0.1164 0.1154 0.1132
Na 0.1146 0.1144 0.1124 0.1160
Mg 0.1148 0.0733 0.0989 0.0602
Al 0.1148 0.1152 0.1147 0.1134
Si 0.0901 0.0652 0.0593 0.1140
P 0.1148 0.1151 0.1138 0.1152
S 0.1166 0.0750 0.1144 0.1146
Cl 0.1150 0.1145 0.1144 0.1164
Ar 0.1146 0.0992 0.1143 0.1152
K 0.1150 0.1157 0.1149 0.1136
Ca 0.0959 0.0775 0.0788 0.0600
Sc 0.1149 0.1151 0.1157 0.0677
Ti 0.1046 0.0738 0.0676 0.0521
\'% 0.0925 0.0524 0.1145 0.1150
Cr 0.1137 0.1154 0.1144 0.1123
Mn 0.0757 0.0644 0.1089 0.1153
Fe 0.0473 0.0311 0.0136 0.0465
Co 0.0372 0.0507 0.0568 0.1055
Ni 0.0462 0.0657 0.0583 0.0876

Note. All 23 x 4 neural networks involved in this table are trained on 10,000 spectra. The MSEs are
tested on a 1829 spectra testing data set. Wavelengths between 3000 and 5200 A are used as input.
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Appendix B

The Relations between Stretch and Elemental Abundance

The relations between the stretch parameter and the chemical
abundance are shown in Figure B1 for IMEs. No obvious
correlation is identified.
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Appendix C
15 HST Spectral Fitting Results

In this section, we present the spectral fitting results of the 15
HST UV spectra, including the synthetic spectra, elemental
abundances, density, and temperature profiles (Figures C1-C4).
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Figure C2. Same as Figure C1 but for PTF 10bjs, PTF 10hdv, PTF 10hmv, and PTF 10icb.

28

10000 15000 20000 25000
Velocity km/s

—— MDD Model
—— PTF10hmv

10000 15000 20000 25000
Velocity km/s

—— MDD Model
—— PTF10icb

10000 15000 20000 25000
Velocity km/s



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 250:12 (39pp), 2020 September

2.00
1.75
1.50

3

2125

21.00

©

3 0.75

o
0.50
0.25
0.00

2.00
1.75
1.50

3

2125

21.00

©

3 0.75

o
0.50
0.25
0.00

2.00
1.75
1.50

3

2125

21.00

®

3 0.75

o
0.50
0.25
0.00

2.00
1.75
1.50

E

2125

21.00

®

3 0.75

o
0.50
0.25
0.00

—— PTF10mwb, E(B-V)=0.02
—— TARDIS Synthesized

3000 4000 5000

Wavelength A

—— PTF10pdf, E(B-V)=0.23
—— TARDIS Synthesized

3000

4000 5000
Wavelength A

—— PTF10qjq, E(B-V)=0.14
—— TARDIS Synthesized

3000 4000 5000

Wavelength A

—— PTF10tce, E(B-V)=0.23
—— TARDIS Synthesized

3000 4000

Wavelength A

5000

10-12

10-13

10714

1015

Density g/cm?3

7

10-16

10-12

10°13

10—14

10-15

Density g/cm?3

/

1071®

10-12

1071

107

10-15

Density g/cm?3

/

10716

10-12

10°13

10714

10-15

Density g/cm?3

7/

10-16

—— DD Model
—— PTF10mwb

10000 15000 20000

Velocity km/s

—— DD Model
—— PTF10pdf

10000 15000 20000

Velocity km/s

—— DD Model
—— PTF10qjq

10000 15000 20000

Velocity km/s

—— DD Model
~—— PTF10tce

10000 15000 20000

Velocity km/s

100

Mass Ratio
= =
o o
S L

._.
15)
b

._.
9
L

100

1

._.
<

2

Mass Ratio
=
b

._.
o
b

H
9
L

10°

Mass Ratio
= =
o o
N L

._.
o
b

H
9
L

10°

HH
o o
1

Mass Ratio

._.
15}
&

-4

I

AN
10000 15000 20000
Velocity km/s

i

10000 15000 20000
Velocity km/s

]
PEEC SN

10000 15000 20000
Velocity km/s

77

10000 15000 20000
Velocity km/s

18000

v 16000

re

2 14000

12000

Temperat

10000

8000

18000

v 16000

re

2 14000

12000

Temperat

10000

8000

18000

K
i
o
o
S
o

14000

Temperature
=
N
=}
o
S

10000

8000

18000

K
-
o
o
S
)

14000

12000

Temperature

10000

8000

Figure C3. Same as Figure C1 but for PTF 10mwb, PTF 10pdf, and PTF 10qjq.
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Appendix D
The Time Evolution of Elements

Here we show (Figures D1-D4) the time evolution of the
masses of IMEs.
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Figure D1. Masses of elements in different zones predicted by the neural network and their evolution with the time after explosion. Red lines are for SN 201 1fe, and
blue lines are for SN 2013dy. Transparent circles are the predictions from the neural network, crosses with error bars are the median values from the testing data set,
error bars indicate the 1 — o limits, and upper and lower limits are marked with triangles. The elements and zones are labeled in the title of every panel.

31



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 250:12 (39pp), 2020 September

Solar Mass

Solar Mass

Solar Mass

Cain Zonel

1072

10°3

-@- SN2011lfe
—k— SN2013dy

Solar Mass

1074

107

107

-3 -2 -1 0 1 2 3 4

B-band Phase (days)

Cain Zone 4

-@- SN2011lfe
—k— SN2013dy
H
&
8
-3 2 -1 0 1 2 3 4
B-band Phase (days)
Tiin Zone 3
2
§
-@- SN2011fe
—k— SN2013dy
3 2 O 0 1 2 3 4
B-band Phase (days)
Figure D2.

Chen, Hu, & Wang

Cain Zone 2 Cain Zone 3
| @)~ SN2011lfe
—k— SN2013dy A A
g
=
10-2 % 2x107
"
-@- SN201l1fe
—k— SN2013dy
-3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 4
B-band Phase (days) B-band Phase (days)
Scin Zone 4 Tiin Zone 2
- -@- SN201l1fe 104 €@~ SN201l1fe
—k— SN2013dy —k— SN2013dy
S
5
8 %1075
1078
3 2 1 0 1 2 4 3 2 1 o 1 2 a
B-band Phase (days) B-band Phase (days)
Tiin Zone 4 Vin Zone 1
- -@- SN2011fe -@- SN2011fe
—k— SN2013dy —k— SN2013dy
10°° é
;,g 104
-3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4
B-band Phase (days) B-band Phase (days)
Same as Figure D1 but for different elements and zones.

32



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 250:12 (39pp), 2020 September

Solar Mass

Solar Mass

Solar Mass

Vin Zone 2

-
=)
1

-@- SN2011fe
—k— SN2013dy

-3 -2 -1 0 1 2 3 4
B-band Phase (days)

Fe in Zone 1

-@- SN201lfe
—k— SN2013dy

-3 -2 -1 0 1 2
B-band Phase (days)

Fe in Zone 4

-@- SN201lfe
—k— SN2013dy

-3 -2 -1 0 1 2 3 4
B-band Phase (days)

Solar Mass

Solar Mass

Solar Mass

€@~ SN201l1fe
we ~F— SN2013dy
g
10-2 2 3x10
o
8
-3 -2 -1 0 1 2 4
B-band Phase (days)
Fe in Zone 2
o -@- SN2011fe
—k— SN2013dy
2
& 1073
8
1072
-3 -2 -1 0 1 2 4
B-band Phase (days)
Coin Zone 1
-@- SN20llfe
- —k— SN2013dy
§
-3 -2 -1 0 1 2 3 4

Mn in Zone 1

Chen, Hu, & Wang

Mn in Zone 2

B-band Phase (days)

Figure D3. Same as Figure D1 but for different elements and zones.
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Figure D4. Same as Figure D1 but for different elements and zones.

Appendix E
The Fidelity of 1o from the Testing Set

There are two caveats for our neural network. First, the
MRNN using MSE as a loss function is not designed to mimic
the input parameter distributions. Second, the parameter space
used in Section 2.3 is a priori and not necessarily similar to the
real SN elemental mass-zone distribution. Therefore, the results
from the median value on the testing set may be biased, and we
directly adopt the predictions from the neural network to
calculate the spectra in Section 4. However, the 1 — o errors
from the testing set can be indicative of the sensitivity of

34

MRNNS s on different elements and zones and allow us to assess
the fitting fidelity.

We calculated the spectra using the median values as the
mass estimates, as shown in Figure E1. Moreover, we modified
the abundances of Fe in zone 2, Ni in zone 2, and Ni in zone 3
mass by +1o based on neural network predictions of the 11
spectra with a wavelength range of 2000—-10000 A to evaluate
their effect on the spectral profiles; these are shown in
Figures E2, E3 and E4, respectively. These calculations prove
that the results from both the median and direct estimates of
TARDIS model parameters reproduce the observations well.
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Figure E1. Top: observed spectrum of SN 2011fe at day 0.4 (black) compared with the TARDIS spectrum calculated using the MRNN predicted ejecta structure

(orange) and the median values as the estimates of the ejecta structure (blue). This demonstrates that the predicted spectrum is robust to the methods of ejecta structure
estimation. Bottom: same as the top panel but for SN 2011iv at 0.6 day.
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Figure E2. Top: SN 2011fe on day 0.4. The observed spectrum (black line) is compared with the TARIDS spectra calculated using the MRNN estimated chemical
structure (green line) and the Fe abundance in zone 3 enhanced by 1o (blue line) and reduced by 1o (orange line). Bottom: same as the top panel but for SN2011iv at

0.6 day.
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Figure E3. Same as Figure E2 but with Ni in zone 2 enhanced or reduced by 1.
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Figure E4. Same as Figure E2 but with Ni in zone 3 enhanced or reduced by lo.
References Bu, Y., Zeng, J., & Lei, Z. 2019, Apl, 886, 128

Abadi, M., Barham, P., Chen, J., et al. 2016, in 12th USENIX Symp. on Operating
Systems Design and Implementation, OSDI 16 (Berkeley, CA: USENIX), 265

Abbott, D. C., & Lucy, L. B. 1985, ApJ, 288, 679

Abdi, M., & Nahavandi, S. 2016, arXiv:1609.05672

Ashall, C., Mazzali, P. A., Stritzinger, M. D., et al. 2018, MNRAS, 477, 153

Barna, B., Szalai, T., Kerzendorf, W. E., et al. 2018, MNRAS, 480, 3609

Barna, B., Szalai, T., Kromer, M., et al. 2017, MNRAS, 471, 4865

Baron, E., & Hauschildt, P. H. 1998, ApJ, 495, 370

Bialek, S., Fabbro, S., Venn, K. A., et al. 2019, arXiv:1911.02602

Blondin, S., Dessart, L., & Hillier, D. J. 2017, MNRAS, 474, 3931

Blondin, S., Dessart, L., Hillier, D. J., & Khokhlov, A. M. 2013, MNRAS,
429, 2127

Branch, D., Dang, L. C., & Baron, E. 2009, PASP, 121, 238

38

Bulla, M., Sim, S. A., & Kromer, M. 2015, MNRAS, 450, 967

Burns, C. R., Stritzinger, M., Phillips, M. M., et al. 2010, AJ, 141, 19

Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245

Cartier, R., Sullivan, M., Firth, R. E., et al. 2016, MNRAS, 464, 4476

Chomiuk, L., Soderberg, A. M., Moe, M., et al. 2012, ApJ, 750, 164

Cikota, A., Patat, F., Wang, L., et al. 2019, MNRAS, 490, 578

Conley, A., Sullivan, M., Hsiao, E. Y., et al. 2008, ApJ, 681, 482

Fabbro, S., Bialek, S., O’Briain, T., et al. 2017, MNRAS, 475, 2978

Fitzpatrick, E. L. 1999, PASP, 111, 63

Foley, R. J., Hoffmann, S. L., Macri, L. M., et al. 2020, MNRAS, 491, 5991

Foley, R. J., Kromer, M., Howie Marion, G., et al. 2012, ApJL, 753, L5

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP,
125, 306

Gall, C., Stritzinger, M. D., Ashall, C., et al. 2018, A&A, 611, A58


https://doi.org/10.1086/162834
https://ui.adsabs.harvard.edu/abs/1985ApJ...288..679A/abstract
http://arxiv.org/abs/1609.05672
https://doi.org/10.1093/mnras/sty632
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477..153A/abstract
https://doi.org/10.1093/mnras/sty2065
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.3609B/abstract
https://doi.org/10.1093/mnras/stx1894
https://ui.adsabs.harvard.edu/abs/2017MNRAS.471.4865B/abstract
https://doi.org/10.1086/305287
https://ui.adsabs.harvard.edu/abs/1998ApJ...495..370B/abstract
http://arxiv.org/abs/1911.02602
https://doi.org/10.1093/mnras/stx3058
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.3931B/abstract
https://doi.org/10.1093/mnras/sts484
https://ui.adsabs.harvard.edu/abs/2013MNRAS.429.2127B/abstract
https://ui.adsabs.harvard.edu/abs/2013MNRAS.429.2127B/abstract
https://doi.org/10.1086/597788
https://ui.adsabs.harvard.edu/abs/2009PASP..121..238B/abstract
https://doi.org/10.3847/1538-4357/ab4c47
https://ui.adsabs.harvard.edu/abs/2019ApJ...886..128B/abstract
https://doi.org/10.1093/mnras/stv657
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450..967B/abstract
https://doi.org/10.1088/0004-6256/141/1/19
https://ui.adsabs.harvard.edu/abs/2011AJ....141...19B/abstract
https://doi.org/10.1086/167900
https://ui.adsabs.harvard.edu/abs/1989ApJ...345..245C/abstract
https://doi.org/10.1093/mnras/stw2678
https://ui.adsabs.harvard.edu/abs/2017MNRAS.464.4476C/abstract
https://doi.org/10.1088/0004-637X/750/2/164
https://ui.adsabs.harvard.edu/abs/2012ApJ...750..164C/abstract
https://doi.org/10.1093/mnras/stz2322
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490..578C/abstract
https://doi.org/10.1086/588518
https://ui.adsabs.harvard.edu/abs/2008ApJ...681..482C/abstract
https://doi.org/10.1093/mnras/stx3298
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.2978F/abstract
https://doi.org/10.1086/316293
https://ui.adsabs.harvard.edu/abs/1999PASP..111...63F/abstract
https://doi.org/10.1093/mnras/stz3324
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.5991F/abstract
https://doi.org/10.1088/2041-8205/753/1/L5
https://ui.adsabs.harvard.edu/abs/2012ApJ...753L...5F/abstract
https://doi.org/10.1086/670067
https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F/abstract
https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F/abstract
https://doi.org/10.1051/0004-6361/201730886
https://ui.adsabs.harvard.edu/abs/2018A&A...611A..58G/abstract

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 250:12 (39pp), 2020 September

Gamezo, V. N., Khokhlov, A. M., & Oran, E. S. 2004, PhRvL, 92, 211102

Gamezo, V. N., Khokhlov, A. M., Oran, E. S., Chtchelkanova, A. Y., &
Rosenberg, R. O. 2003, Sci, 299, 77

Garavini, G., Nobili, S., Taubenberger, S., et al. 2007, A&A, 471, 527

Gerardy, C. L., Meikle, W. P. S., Kotak, R., et al. 2007, ApJ, 661, 995

Gordon, K. D., Cartledge, S., & Clayton, G. C. 2009, ApJ, 705, 1320

Graham, M. L., Foley, R. J., Zheng, W., et al. 2015, MNRAS, 446, 2073

Graur, O., Zurek, D. R., Cara, M., et al. 2018a, ApJ, 866, 10

Graur, O., Zurek, D. R., Rest, A, et al. 2018b, ApJ, 859, 79

Hachinger, S., Mazzali, P. A., Taubenberger, S., Pakmor, R., & Hillebrandt, W.
2009, MNRAS, 399, 1238

He, K., Zhang, X., Ren, S., & Sun, J. 2015, arXiv:1512.03385

Hillier, D. J., & Miller, D. L. 1998, ApJ, 496, 407

Hochreiter, S., & Schmidhuber, J. 1997, Neural Computation, 9, 1735

Hoeflich, P., Hsiao, E. Y., Ashall, C., et al. 2017, ApJ, 846, 58

Hoeflich, P., Khokhlov, A., Wheeler, J. C., et al. 1996a, ApJL, 472, L81

Hoeflich, P., Wheeler, J. C., Hines, D. C., & Trammell, S. R. 1996b, AplJ,
459, 307

Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. 2016,
arXiv:1608.06993

Ioffe, S., & Szegedy, C. 2015, arXiv:1502.03167

Iwamoto, K., Brachwitz, F., Nomoto, K., et al. 1999, ApJS, 125, 439

Jordan, G. C. L, Fisher, R. T., Townsley, D. M., et al. 2008, ApJ, 681, 1448

Kasen, D., Branch, D., Baron, E., & Jeffery, D. 2002, ApJ, 565, 380

Kasen, D., & Plewa, T. 2005, ApJL, 622, L41

Kasen, D., Thomas, R. C., & Nugent, P. 2006, ApJ, 651, 366

Kerzendorf, W., Nobauer, U., Sim, S., et al. 2019, tardis-sn/tardis: TARDIS
v3.0 alpha2, Zenodo, doi:10.5281/zenodo.2590539

Kerzendorf, W. E., & Sim, S. A. 2014, MNRAS, 440, 387

Khokhlov, A. M. 1991a, A&A, 246, 383

Khokhlov, A. M. 1991b, A&A, 245, 114

Kingma, D. P., & Ba, J. 2014, arXiv:1412.6980

Krizhevsky, A. 2009, The CIFAR-10 Dataset (Toronto: Univ. Toronto),
https: //www.cs.toronto.edu/ ~kriz/cifar.html

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. 2012, Adv. Neural Info. Process.
Systems, 25, 1097, https://papers.nips.cc/paper/4824-imagenet-classifica
tion-with-deep-convolutional-neural-networks

Kromer, M., & Sim, S. A. 2009, MNRAS, 398, 1809

Law, N. M., Kulkarni, S. R., Dekany, R. G., et al. 2009, PASP, 121, 1395

LeCun, Y., Bengio, Y., & Hinton, G. 2015, Natur, 521, 436

Lentz, E. J., Baron, E., Branch, D., & Hauschildt, P. H. 2001, ApJ, 547, 402

Liu, J., Gibson, S. J., Mills, J., & Osadchy, M. 2019, Chemometrics and
Intelligent Laboratory Systems, 184, 175

Lucy, L. B. 1971, ApJ, 163, 95

Lucy, L. B. 1999, A&A, 345, 211

Lucy, L. B. 2002, A&A, 384, 725

Maguire, K., Sullivan, M., Ellis, R. S., et al. 2012, MNRAS, 426, 2359

Mazzali, P. A. 2000, A&A, 363, 705

Mazzali, P. A., & Lucy, L. B. 1993, A&A, 279, 447

Mazzali, P. A., Lucy, L. B., Danziger, L. J., et al. 1993, A&A, 269, 423

Mazzali, P. A., Sullivan, M., Hachinger, S., et al. 2014, MNRAS, 439, 1959

39

Chen, Hu, & Wang

Montiifar, G., Pascanu, R., Cho, K., & Bengio, Y. 2014, arXiv:1402.1869

Munari, U., Henden, A., Belligoli, R., et al. 2013, NewA, 20, 30

Nidever, D. L., Holtzman, J. A., Prieto, C. A., et al. 2015, AJ, 150, 173

Nomoto, K., Thielemann, F.-K., & Yokoi, K. 1984, ApJ, 286, 644

Nugent, P. E., Sullivan, M., Cenko, S. B., et al. 2011, Natur, 480, 344

Pan, Y.-C., Foley, R. J., Kromer, M., et al. 2015, MNRAS, 452, 4307

Parrent, J., Branch, D., & Jeffery, D. 2010, SYNOW: A Highly Parameterized
Spectrum Synthesis Code for Direct Analysis of SN Spectra, Astrophysics
Source Code Library, ascl:1010.055

Patat, F., Cordiner, M. A., Cox, N. L. I, et al. 2013, A&A, 549, A62

Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565

Phillips, M. M. 1993, ApJL, 413, L105

Plewa, T., Calder, A. C., & Lamb, D. Q. 2004, ApJL, 612, L37

Poludnenko, A. Y., Chambers, J., Ahmed, K., Gamezo, V. N., & Taylor, B. D.
2019, Sci, 366, aau7365

Poludnenko, A. Y., Gardiner, T. A., & Oran, E. S. 2011, PhRvL, 107, 054501

Pskovskii, I. P. 1977, SvA, 21, 675

Rau, A., Kulkarni, S. R., Law, N. M., et al. 2009, PASP, 121, 1334

Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009

Riess, A. G., Press, W. H., & Kirshner, R. P. 1996, ApJ, 473, 88

Ropke, F. K., Gieseler, M., Reinecke, M., Travaglio, C., & Hillebrandt, W.
2006, A&A, 453, 203

Rubin, D., Knop, R. A., Rykoff, E., et al. 2013, ApJ, 763, 35

Savitzky, A., & Golay, M. J. E. 1964, AnaCh, 36, 1627

Shappee, B. J., Piro, A. L., Holoien, T. W.-S,, et al. 2016, ApJ, 826, 144

Shen, K. J., Boubert, D., Ginsicke, B. T., et al. 2018, ApJ, 865, 15

Silverman, J. M., Ganeshalingam, M., & Filippenko, A. V. 2013, MNRAS,
430, 1030

Simonyan, K., & Zisserman, A. 2014, arXiv:1409.1556

Smartt, S. J., Chen, T.-W., Jerkstrand, A., et al. 2017, Natur, 551, 75

Stehle, M., Mazzali, P. A., Benetti, S., & Hillebrandt, W. 2005, MNRAS,
360, 1231

Thomas, R. C. 2013, SYN++: Standalone SN Spectrum Synthesis,
Astrophysics Source Code Library, ascl:1308.008

Thomas, R. C., Nugent, P. E., & Meza, J. 2011, PASP, 123, 237

Timmes, F. X., Brown, E. F., & Truran, J. W. 2003, ApJL, 590, L83

Vinkd, J., Ordasi, A., Szalai, T., et al. 2018, PASP, 130, 064101

Vogl, C., Sim, S. A., Noebauer, U. M., Kerzendorf, W. E., & Hillebrandt, W.
2019, A&A, 621, A29

Wang, B., & Han, Z. 2012, NewAR, 56, 122

Wang, L., Baade, D., Hoflich, P., et al. 2006a, ApJ, 653, 490

Wang, L., Goldhaber, G., Aldering, G., & Perlmutter, S. 2003, ApJ, 590,
944

Wang, L., Strovink, M., Conley, A., et al. 2006b, ApJ, 641, 50

Wang, L., & Wheeler, J. C. 2008, ARA&A, 46, 433

Wang, L., Wheeler, J. C., Li, Z., & Clocchiatti, A. 1996, ApJ, 467, 435

Wang, X., Filippenko, A. V., Ganeshalingam, M., et al. 2009, ApJL, 699, L139

Wang, X., Wang, L., Filippenko, A. V., Zhang, T., & Zhao, X. 2013, Sci,
340, 170

Yang, Y., Hoeflich, P. A., Baade, D., et al. 2019, arXiv:1903.10820

Zhai, Q., Zhang, J.-J., Wang, X.-F,, et al. 2016, AJ, 151, 125


https://doi.org/10.1103/PhysRevLett.92.211102
https://ui.adsabs.harvard.edu/abs/2004PhRvL..92u1102G/abstract
https://doi.org/10.1126/science.1078129
https://ui.adsabs.harvard.edu/abs/2003Sci...299...77G/abstract
https://doi.org/10.1051/0004-6361:20066971
https://ui.adsabs.harvard.edu/abs/2007A&A...471..527G/abstract
https://doi.org/10.1086/516728
https://ui.adsabs.harvard.edu/abs/2007ApJ...661..995G/abstract
https://doi.org/10.1088/0004-637X/705/2/1320
https://ui.adsabs.harvard.edu/abs/2009ApJ...705.1320G/abstract
https://doi.org/10.1093/mnras/stu2221
https://ui.adsabs.harvard.edu/abs/2015MNRAS.446.2073G/abstract
https://doi.org/10.3847/1538-4357/aadd96
https://ui.adsabs.harvard.edu/abs/2018ApJ...866...10G/abstract
https://doi.org/10.3847/1538-4357/aabe25
https://ui.adsabs.harvard.edu/abs/2018ApJ...859...79G/abstract
https://doi.org/10.1111/j.1365-2966.2009.15403.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.399.1238H/abstract
http://arxiv.org/abs/1512.03385
https://doi.org/10.1086/305350
https://ui.adsabs.harvard.edu/abs/1998ApJ...496..407H/abstract
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3847/1538-4357/aa84b2
https://ui.adsabs.harvard.edu/abs/2017ApJ...846...58H/abstract
https://doi.org/10.1086/310363
https://ui.adsabs.harvard.edu/abs/1996ApJ...472L..81H/abstract
https://doi.org/10.1086/176894
https://ui.adsabs.harvard.edu/abs/1996ApJ...459..307H/abstract
https://ui.adsabs.harvard.edu/abs/1996ApJ...459..307H/abstract
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1502.03167
https://doi.org/10.1086/313278
https://ui.adsabs.harvard.edu/abs/1999ApJS..125..439I/abstract
https://doi.org/10.1086/588269
https://ui.adsabs.harvard.edu/abs/2008ApJ...681.1448J/abstract
https://doi.org/10.1086/324136
https://ui.adsabs.harvard.edu/abs/2002ApJ...565..380K/abstract
https://doi.org/10.1086/429375
https://ui.adsabs.harvard.edu/abs/2005ApJ...622L..41K/abstract
https://doi.org/10.1086/506190
https://ui.adsabs.harvard.edu/abs/2006ApJ...651..366K/abstract
https://doi.org/10.5281/zenodo.2590539
https://doi.org/10.1093/mnras/stu055
https://ui.adsabs.harvard.edu/abs/2014MNRAS.440..387K/abstract
https://ui.adsabs.harvard.edu/abs/1991A&A...246..383K/abstract
https://ui.adsabs.harvard.edu/abs/1991A&A...245..114K/abstract
https://arxiv.org/abs/1412.6980
https://www.cs.toronto.edu/~kriz/cifar.html
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://doi.org/10.1111/j.1365-2966.2009.15256.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.398.1809K/abstract
https://doi.org/10.1086/648598
https://ui.adsabs.harvard.edu/abs/2009PASP..121.1395L/abstract
https://doi.org/10.1038/nature14539
https://ui.adsabs.harvard.edu/abs/2015Natur.521..436L/abstract
https://doi.org/10.1086/318374
https://ui.adsabs.harvard.edu/abs/2001ApJ...547..402L/abstract
https://doi.org/10.1016/j.chemolab.2018.12.005
https://doi.org/10.1016/j.chemolab.2018.12.005
https://doi.org/10.1086/150748
https://ui.adsabs.harvard.edu/abs/1971ApJ...163...95L/abstract
https://ui.adsabs.harvard.edu/abs/1999A&A...345..211L/abstract
https://doi.org/10.1051/0004-6361:20011756
https://ui.adsabs.harvard.edu/abs/2002A&A...384..725L /abstract
https://doi.org/10.1111/j.1365-2966.2012.21909.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.426.2359M/abstract
https://ui.adsabs.harvard.edu/abs/2000A&A...363..705M/abstract
https://ui.adsabs.harvard.edu/abs/1993A&A...279..447M/abstract
https://ui.adsabs.harvard.edu/abs/1993A&A...269..423M/abstract
https://doi.org/10.1093/mnras/stu077
https://ui.adsabs.harvard.edu/abs/2014MNRAS.439.1959M/abstract
http://arxiv.org/abs/1402.1869
https://doi.org/10.1016/j.newast.2012.09.003
https://ui.adsabs.harvard.edu/abs/2013NewA...20...30M/abstract
https://doi.org/10.1088/0004-6256/150/6/173
https://ui.adsabs.harvard.edu/abs/2015AJ....150..173N/abstract
https://doi.org/10.1086/162639
https://ui.adsabs.harvard.edu/abs/1984ApJ...286..644N/abstract
https://doi.org/10.1038/nature10644
https://ui.adsabs.harvard.edu/abs/2011Natur.480..344N/abstract
https://doi.org/10.1093/mnras/stv1605
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452.4307P/abstract
http://www.ascl.net/1010.055
https://doi.org/10.1051/0004-6361/201118556
https://ui.adsabs.harvard.edu/abs/2013A&A...549A..62P/abstract
https://doi.org/10.1086/307221
https://ui.adsabs.harvard.edu/abs/1999ApJ...517..565P/abstract
https://doi.org/10.1086/186970
https://ui.adsabs.harvard.edu/abs/1993ApJ...413L.105P/abstract
https://doi.org/10.1086/424036
https://ui.adsabs.harvard.edu/abs/2004ApJ...612L..37P/abstract
https://doi.org/10.1126/science.aau7365
https://ui.adsabs.harvard.edu/abs/2019Sci...366.7365P/abstract
https://doi.org/10.1103/PhysRevLett.107.054501
https://ui.adsabs.harvard.edu/abs/2011PhRvL.107e4501P/abstract
https://ui.adsabs.harvard.edu/abs/1977SvA....21..675P/abstract
https://doi.org/10.1086/605911
https://ui.adsabs.harvard.edu/abs/2009PASP..121.1334R/abstract
https://doi.org/10.1086/300499
https://ui.adsabs.harvard.edu/abs/1998AJ....116.1009R/abstract
https://doi.org/10.1086/178129
https://ui.adsabs.harvard.edu/abs/1996ApJ...473...88R/abstract
https://doi.org/10.1051/0004-6361:20053430
https://ui.adsabs.harvard.edu/abs/2006A&A...453..203R/abstract
https://doi.org/10.1088/0004-637X/763/1/35
https://ui.adsabs.harvard.edu/abs/2013ApJ...763...35R/abstract
https://doi.org/10.1021/ac60214a047
https://ui.adsabs.harvard.edu/abs/1964AnaCh..36.1627S/abstract
https://doi.org/10.3847/0004-637X/826/2/144
https://ui.adsabs.harvard.edu/abs/2016ApJ...826..144S/abstract
https://doi.org/10.3847/1538-4357/aad55b
https://ui.adsabs.harvard.edu/abs/2018ApJ...865...15S/abstract
https://doi.org/10.1093/mnras/sts674
https://ui.adsabs.harvard.edu/abs/2013MNRAS.430.1030S/abstract
https://ui.adsabs.harvard.edu/abs/2013MNRAS.430.1030S/abstract
http://arxiv.org/abs/1409.1556
https://doi.org/10.1038/nature24303
https://ui.adsabs.harvard.edu/abs/2017Natur.551...75S/abstract
https://doi.org/10.1111/j.1365-2966.2005.09116.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.360.1231S/abstract
https://ui.adsabs.harvard.edu/abs/2005MNRAS.360.1231S/abstract
http://www.ascl.net/1308.008
https://doi.org/10.1086/658673
https://ui.adsabs.harvard.edu/abs/2011PASP..123..237T/abstract
https://doi.org/10.1086/376721
https://ui.adsabs.harvard.edu/abs/2003ApJ...590L..83T/abstract
https://doi.org/10.1088/1538-3873/aab258
https://ui.adsabs.harvard.edu/abs/2018PASP..130f4101V/abstract
https://doi.org/10.1051/0004-6361/201833701
https://ui.adsabs.harvard.edu/abs/2019A&A...621A..29V/abstract
https://doi.org/10.1016/j.newar.2012.04.001
https://ui.adsabs.harvard.edu/abs/2012NewAR..56..122W/abstract
https://doi.org/10.1086/508250
https://ui.adsabs.harvard.edu/abs/2006ApJ...653..490W/abstract
https://doi.org/10.1086/375020
https://ui.adsabs.harvard.edu/abs/2003ApJ...590..944W/abstract
https://ui.adsabs.harvard.edu/abs/2003ApJ...590..944W/abstract
https://doi.org/10.1086/500422
https://ui.adsabs.harvard.edu/abs/2006ApJ...641...50W/abstract
https://doi.org/10.1146/annurev.astro.46.060407.145139
https://ui.adsabs.harvard.edu/abs/2008ARA&A..46..433W/abstract
https://doi.org/10.1086/177617
https://ui.adsabs.harvard.edu/abs/1996ApJ...467..435W/abstract
https://doi.org/10.1088/0004-637X/699/2/L139
https://ui.adsabs.harvard.edu/abs/2009ApJ...699L.139W/abstract
https://doi.org/10.1126/science.1231502
https://ui.adsabs.harvard.edu/abs/2013Sci...340..170W/abstract
https://ui.adsabs.harvard.edu/abs/2013Sci...340..170W/abstract
http://arxiv.org/abs/1903.10820
https://doi.org/10.3847/0004-6256/151/5/125
https://ui.adsabs.harvard.edu/abs/2016AJ....151..125Z/abstract

	1. Introduction
	2. The Generation of the Model Spectral Library
	2.1. TARDIS Spectral Syntheses
	2.2. The Initial Guess Model
	2.3. The Model Spectral Library
	2.4. Model Spectra Computation
	2.5. Response of Spectral Profiles to the Variations of Input Abundances

	3. The Multiresidual Connected CNN Model
	3.1. Model Data Preprocessing
	3.2. The Neural Network Structure
	3.3. Target Parameters for Machine Learning
	3.4. Training Results

	4. Applications of the Neural Network to Observational Data
	4.1. Applications to SNe with Wavelength Coverage 2000–10000 Å
	4.1.1. SN 2011fe
	4.1.2. SN 2011iv
	4.1.3. SN 2011by
	4.1.4. SN 2015F
	4.1.5. ASASSN-14lp
	4.1.6. SN 2013dy

	4.2. Application to SNe with Wavelength Coverage 3000–5200 Å
	4.2.1. HST Spectra of 15 PTF Targets
	4.2.2. Dust Extinction Correction


	5. Discussions and Conclusions
	5.1. Elemental Abundances and the Light-curve Stretch
	5.2. Time Evolution of Elemental Abundances in SN 2011fe and SN 2013dy
	5.3. The Absolute Luminosity

	6. Discussion and Summary
	Appendix AThe MSE for Elements and Zones
	Appendix BThe Relations between Stretch and Elemental Abundance
	Appendix C15 HST Spectral Fitting Results
	Appendix DThe Time Evolution of Elements
	Appendix EThe Fidelity of 1σ from the Testing Set
	References



