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Extending our previous analysis, we study the interior of a Schwarzschild black hole derived from
a partial gauge fixing of the full loop quantum gravity Hilbert space, this time including the inverse
volume and coherent state subleading corrections. Our derived effective Hamiltonian differs crucially
from the ones introduced in the minisuperspace models. This distinction is reflected in the class
of homogeneous bouncing geometries that replace the classical singularity and are labeled by a set
of quantum parameters associated with the structure of coherent states used to derive the effective
Hamiltonian. By fixing these quantum parameters through geometrical considerations, the post-
bounce interior geometry reveals a high sensitivity to the value of the Barbero–Immirzi parameter
γ. Surprisingly, we find that γ ≈ 0.274 results in an asymptotically de Sitter geometry in the
interior region, where now a cosmological constant is generated purely from quantum gravitational
effects. The striking fact is the exact coincidence of this value for γ with the one derived from the
SU(2) black hole entropy calculations in loop quantum gravity. The emergence of this value in two
entirely unrelated theoretical frameworks and computational setups is strongly suggestive of deep
ties between the area gap in loop quantum gravity, black hole physics, and the observable universe.
In connection to the latter, we point out an intriguing relation between the measured value of the
cosmological constant and the observed mass in the universe from a proposal for a spin quantum
number renormalization effect associated to the microscopic dynamics.
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I. INTRODUCTION

It is often stated that black holes are the hydrogen atoms of quantum gravity; just as the classical instability of
hydrogen atom signified the need for a quantum description of the subatomic interactions, the formation of spacetime
singularities as predicted classically in [1, 2] as the final stage of gravitational collapse reflects the need for a UV
completion of general relativity (GR), where quantum properties of geometry are widely expected to circumvent
these pathologies. Similarly, as spectroscopy of the hydrogen atom provided one of the first experimental tests of
the quantum theory, the recent advances in detection of gravitational waves [3] and interferometric imaging [4] are
expected to provide a possible experimental window into the nature of spacetime at the Planck scale by revealing
quantum properties of the near horizon geometry (see, e.g., [5–7]). In fact, this analogy has motivated an “atomistic”
approach to black hole evaporation [8–12], with the Hawking radiation spectrum consisting of discrete emission lines
between different horizon area/energy levels. It is therefore no exaggeration to say that just as the hydrogen atom
represented a system simple enough but at the same time of great physical relevance for testing the predictions
of quantum mechanics, the Schwarzschild black hole provides the perfect arena to apply the formalism of a given
quantum gravity theory and explore its theoretical and possibly observational consequences.

loop quantum gravity (LQG) provides a nonperturbative, background independent quantization of GR as formulated
in the Ashtekar connection variables [13]. As of now, it represents one of the most advanced programs for UV
completion of GR. In particular, its canonical formulation is perfectly tailored to the study of singularity resolution
both in cosmology and black hole physics. However, while the canonical LQG quantum dynamics can be formulated
through the rigorous definition of a Hamiltonian constraint operator [14] (though not in an ambiguity-free scheme),
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the study of its solutions is a formidable task 1. This technical complexity is not surprising though, given that even
classically no general solution of the Einstein equations is known. Nonetheless, concrete calculations can be carried
out when symmetry assumptions are made to simplify the equations.

Implementing a symmetry reduction classically is clear and straightforward. Relevant to our current study is the
spherical symmetry reduction of the phase space which yields a minisuperspace where only a finite number of degrees
of freedom remain and the constraints simplify greatly. After specifying a 3+1 decomposition for the spacetime,
one can write down the evolution equations for the minisupersapce set of conjugate variables. One then solves the
simplified dynamics for a given choice of initial data that serves to fix the independent constants of integration often
by invoking physical considerations for the system under study. We will review the Hamiltonian approach to the
Schwarzschild interior in Section II.

However, this process becomes much more subtle when passing to the quantum theory. In fact, there are several
strategies to perform the symmetry reduction and, in general, these lead to dynamics capturing a different num-
ber/typologies for the degrees of freedom. The main choice to be made is whether to impose symmetry at the
classical or at the quantum level. The first path leads to the minisuperspace models, where one quantizes the reduced
phase space within the event horizon using the techniques developed in loop quantum cosmology (LQC) [18] as this
region is a Kantowski-Sachs cosmological spacetime. This line of investigation was started in [19, 20] and more re-
cently continued in [21]. While these studies provided the first evidence for the Schwarzschild singularity resolution
at the quantum level, they fell short of depicting a robust picture for the post-singularity geometry. Moreover, due
to the inhomogeneity of the Schwarzschild spacetime and the use of point holonomies erasing the graph structure
on the 2-spheres foliating the homogeneous leaves in the interior, issues related to gluing of the interior with the
exterior geometry and any potential link to the full quantum theory remained open. This has motivated an effective
geometry approach where one introduces a modified Hamiltonian constraint on the classical phase space encoding
some quantum geometry effects expected from an LQG treatment. By solving the dynamical flow generated by this
effective Hamiltonian, it was shown in [22] that an antitrapped region emerges to the future of the 3D space-like
transition surface replacing the classical singularity. A proposal for extending this effective analysis to the exterior
region was also presented 2. An alternative approach to effective dynamics within polymer models has been followed
in [24–28]. In this case, the quantum corrections to the Hamiltonian constraint are dictated by the requirement to
preserve (a modified version of) general covariance for the theory, namely to maintain even at the effective level a
deformed but closed off-shell constraint algebra. In this class of polymer models one finds a signature change for the
effective metric from Lorentzian to Euclidean inside the trapped region. The relation to and derivation from the full
LQG theory remain the key open issues in all of these minisuperspace models.

It should be noted that the status of this effective approach to the black hole interior dynamics is even murkier than
in the cosmological case. In the latter, the effective expression for the Hamiltonian constraint initially introduced
to study the resolution of the big bang singularity was eventually derived [29] from the expectation value of the
polymerized quantum Hamiltonian on sharply peaked states. In the black hole case, however, this derivation was not
achieved.

Significant progress has recently been made in an alternative approach to a simplified dynamics. This entails the
technically more involved choice of starting with the quantization of the full phase space of the theory and only later
performing the symmetry reduction at the quantum level 3. This ‘quantum reduced loop gravity’ (QRLG) framework
was originally developed for the cosmological applications [32–36], and later refined and extended to study spherically
symmetric black holes [37, 38]. This approach involves two main steps; the first one consists of the imposition of a
partial gauge fixing of the full kinematical Hilbert space by reducing both the spin network states and the holonomy-
flux algebra operators entering the construction of the constraints—very recently, it has been shown that indeed
this construction is equivalent to the action of the full theory operators on the reduced kinematical Hilbert space in
the limit of large spin quantum numbers [39], further consolidating the technical foundations of the framework—.
This partial gauge fixing is a necessary step for introducing coherent states peaked around a spherically symmetric
classical geometry to be used to compute the expectation value of the Hamiltonian constraint operator. Completion
of this second step yields the sought after effective Hamiltonian defining the quantum corrected dynamics for a
spherically symmetric geometry. This program is reviewed in Section III, where we also supplement the previous
construction in [38] with the inclusion of the first sub-leading terms from the inverse volume corrections, as well as
coherent state corrections in the spread parameters’ expansion. As our analysis does not rely on polymer quantization
techniques, we do not have to restrict to a homogenous foliation from the beginning. In fact, the general form of

1 In addition to the known ambiguities in the scalar Hamiltonian constraint, there is the problem of having no finite generator for the
spatial diffeomorphism constraint in LQG. Presently, the concepts of covariant dynamics and spacetime gauge transformations are not
well understood in this theory. See [15–17] for recent progress in this direction. Nevertheless, we should emphasize that the covariance
issue self-resolves if the spacetime under study is homogeneous, which is the case for the Schwarzschild interior.

2 See [23] for a discussion on some of the deviations from the classical asymptotic properties of the spacetime metric.
3 A different framework for the definition of continuum spherically symmetric quantum geometries within the full theory is provided by
the Group Field Theory reformulation of LQG in a second quantization language [30, 31]. In this case, spherical symmetry is encoded
in the homogeneity properties of the condensate wave-functions used in the construction of a generalized class of coherent states peaked
on some global geometrical observables.
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the effective Hamiltonian that we derive is for a horizon penetrating foliation and it can be used to evolve an initial
data on both the interior and the exterior regions at the same time (barring the complexities caused by lacking the
effective analog of the spatial diffeomorphism constraint). However, solving the lengthy and non-local scalar constraint
equation in this general case is a daunting task that requires advanced numerical techniques. While this is currently
under investigation, here we are mainly concerned with the asymptotic geometry of the post-bounce extension of the
spacetime and we can thus restrict to the interior homogenous foliation to simplify the expression of the effective
Hamiltonian. This is done in Section IV, where we show how the quantum corrected dynamics of the interior black
hole region investigated in [40] can be derived. It is important to keep in mind that the restriction to a homogeneous
foliation is just a simplification used a posteriori, once the full LQG machinery has been deployed. This has crucial
implications, as we explain in what follows.

As in the previous minisuperspace models, the resulting expression for the effective Hamiltonian depends on the
quantum parameters codifying the discrete regularization structure underlying the construction of the kinematical
Hilbert space. However, having included the geometrical data associated to the full graph structure from the beginning,
we are now able to fix the dependence of these quantum parameters on the phase space variables through clear
geometrical considerations, thus considerably reducing the ambiguities affecting the final predictions of the theory.
The second major difference with previous analyses has also its origin in the inclusion of the extended geometrical data
(SU(2) link holonomies instead of point holonomies) on the 2-spheres foliating the leaves. More precisely, integration
over the 2-sphere angular coordinates, which amounts to averaging out fluctuations around spherical symmetry in
the effective theory instead of freezing them out from the get-go as in LQC-like treatments, yields the appearance of
the Struve function (of zeroth order) in the effective Hamiltonian. As shown in [40], it is the different (non-periodic
and decaying) behavior of the Struve function from the sine function used in the polymer models which prevents the
formation of a white hole horizon in the antitrapped region (of the effective spacetime metric) to the future of the
moment of bounce. Going back to the hydrogen atom analogy for a moment, it is suggestive to think of the zeroth
order Struve function as the imaginary counterpart of the Bessel function of the first kind 4, as this is used to describe
the bound states of an electron in a hydrogen-like atom.

Therefore, while the analysis in [40] revealed the importance of equally treating holonomies in all directions in order
to capture the correct essential features of the full theory dynamics, it also exhibited some properties of the effective
metric solution found in [22]. More precisely, it confirmed that at the moment of bounce all curvature invariants have
a mass-independent upper bound and no large quantum effects are present near the classical event horizon (as long
as the black hole’s mass far exceeds the Planck mass). Moreover, the transition surface where the bounce occurs is
located in proximity of the spacetime region where the curvature (and not the radius of 2-spheres) becomes Planckian
(this is an important point that we will elaborate more on in Section VII).

As stressed above, our approach differs substantially from the polymer models in the post-bounce behavior of
the effective metric. As shown in [40], while the fine features depend on the choice of some quantum parameters
entering the construction of the coherent states, the class of solutions obtained from the effective evolution equations
matched the geometry of a homogeneous expanding universe, with no finite distance boundary in the antitrapped
region. However, the rates of expansion for the two metric functions describing the effective spatial geometry depend
on the numerical value of the parameter η := α/β, where α and β are two constants with dimension of length that
depend on two (averaged) quantum spin numbers and the Barbero–Immirzi parameter γ. In Section III we will
improve our construction in [40] by implementing an extra geometrical condition on the coherent states descending
from the covariant formulation of the full theory. This will allow us to reduce the ambiguities in the solution space by
limiting the dependence of η on γ only. In this way, it is the Barbero–Immirzi parameter that uniquely determines
the properties of the leading term (in a near infinity expansion) of the post-bounce asymptotic metric, as explicitly
derived in Section V.

At this point we are ready to ask the main question addressed in this paper: Is there a value of the Barbero–Immirzi
parameter for which the post-bounce geometry becomes asymptotically de Sitter, as defined in [41]?

The answer to this question is carefully worked out in Section VI. We first perform a series expansion of the phase
space variables near the post-bounce asymptotic infinity, where we match the leading terms of the metric functions with
those of the de Sitter metric expressed in a coordinate system adapted to the Schwarzschild interior homogeneous
foliation (this is briefly reviewed in Appendix A). By expanding the evolution equations to the relevant order of
approximation, we derive a set of algebraic equations that are solved by fixing all the free parameters of the theory, up
to a free remaining quantum spin number. We will show how including the spread parameter corrections, representing
the coherent state first sub-leading terms, play a crucial role in guaranteeing that all the correct requirements of an
asymptotically de Sitter geometry are satisfied. Then, going back to the main question, our analysis shows that

4 They represent respectively the imaginary and the real parts of the integral
∫ π

0
eix sin θdθ that appears from some holonomic components

of the Hamiltonian constraint.
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the demand for the formation of an asymptotically de Sitter universe inside a Schwarzschild black hole selects the
following numerical value for the Barbero–Immirzi parameter

γ ≈ 0.274 . (1)

It is an extraordinary fact that this is exactly the same value required by the LQG SU(2) black hole entropy calculation
[42, 43] in order to obtain the famous factor of 1/4 in the Bekenstein–Hawking entropy-area law [44, 45]. As long
as the near horizon geometry is sufficiently classical, this result is robust for the chosen quantum parameters as we
demonstrate by a complementary analysis reported in Appendix B.

To summarize, the dynamical picture is as follows. The metric functions follow the classical dynamical trajectory
until the spacetime curvature becomes Planckian. At this point quantum gravity effects become dominant and they
manifest themselves in the form of a negative energy density and pressure, which violate the dominant energy condition
and catapult the effective dynamical trajectory to a different region of the phase space. At the bounce, all curvature
invariants are bounded from above and the singularity is resolved, as further corroborated by the vanishing of both
the ingoing and outgoing expansions of the two future directed null normals to the 2-spheres foliating the leaves.
After the bounce, a new spacetime antitrapped region opens up, whose geometrical structure is intimately connected
with the presence of an area gap in the LQG description of quantum geometry. More precisely, while the origin of
the bounce can be traced back to a non-zero value for the Barbero–Immirzi parameter in the quantum theory, it is its
exact numerical value that determines the asymptotic properties of the post-bounce effective geometry. The special
value (1) plays two different physical roles in two separate regions. On the one hand, it guarantees the consistency of
the quantum description of macroscopic horizons with the semi-classical results of QFT on a fixed curved background.
On the other hand, it precisely fine tunes the effective trajectory to evolve into an asymptotically de Sitter universe,
revealing the purely quantum gravitational origin of the corresponding positive cosmological constant.

The question of whether this specific value for the area gap and the ensuing implications within the framework just
described can provide an alternative viable “black hole cosmology” scenario with possible experimental tests clearly
depends on the value of the cosmological constant in the quantum de Sitter universe it gives birth to. While we intend
to address this intriguing scenario in a separate work, we point out in Section VII how arguments coming from the
consistency of the semi-classical limits are not very helpful in narrowing down an order-of-magnitude estimate for the
emerging cosmological constant. Rather, a better control over the microscopic dynamics seems necessary. In fact, if
we assume some spin renormalization properties for the quantum geometry evolution, an intriguing estimate for the
value of the cosmological constant can be made.

We conclude with a final discussion in Section VIII.

II. REVIEW OF THE HAMILTONIAN FORMALISM FOR THE SCHWARZSCHILD INTERIOR

Our aim in this paper is to solve the effective Hamilton’s equations for the interior of the Schwarzschild black hole.
Before delving into quantization, the reader likely benefits from a concise discussion of the classical framework. Some
of the issues that are discussed below, such as gauge freedom and symmetries, will be relevant for the subsequent
discussions.

The Schwarzschild metric has four Killing vector fields; one translational vector field that becomes time-like near I,
and three others associated with spherical symmetry. The translational Killing vector field becomes space-like inside
the black hole horizon. Since its integral curves are isometric to R, the interior geometry is naturally equipped with
a spatially homogeneous foliation. The metric in this region can be written as

gabdx
adxb = −N(τ)2dτ2 + Λ(τ)2dx2 +R(τ)2dΩ2, (2)

where N is the lapse function that determines the foliation and dΩ2 = dθ2 + sin2 θ dφ2 is the unit 2-sphere metric.
Note that we have omitted the shift vector ~N = Nx∂x since it can always be eliminated by a coordinate transformation
of the form

τ 7→ τ, x 7→ x−
∫
dτNx(τ). (3)

Given the symmetries, it is easy to check that the spatial diffeomorphism constraint is identically zero, a fact that
bodes well for the self-consistency of the effective covariant dynamics as it relates to the interior geometry.

The Einstein–Hilbert action adapted to metric (2) reduces to

S[N,R,Λ] =
1

G

∫
dx

∫
dτ

ï
NΛ

2
− 1

N

(Λ

2
Ṙ2 +RṘΛ̇

)ò
:=

∫
dτ Lc[N,R,Λ, Ṙ, Λ̇], (4)
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where Lc is the classical Lagrangian, dot denotes differentiation with respect to τ , and we have performed the angular
integrals and ignored the boundary terms 5. In order to have a well-defined action principle, we regulate the x-integral
by requiring x ∈ [−L0,L0]. We define the properly rescaled momenta conjugate to R and Λ by

PR :=
1

2L0

δS

δṘ
= −ΛṘ+ Λ̇R

GN
, PΛ :=

1

2L0

δS

δΛ̇
= −RṘ

GN
. (5)

The classical scalar Hamiltonian Hc is then obtained by performing a Legendre transform on the classical Lagrangian
given in Eq. (4) using the momenta defined above. A straightforward calculation gives

Hc

2L0
= −GPRPΛ

R
+
GΛP 2

Λ

2R2
− Λ

2G
. (6)

It should be clear to the reader by now that the dynamical phase space is parameterized by R, Λ, PR, and PΛ. We
require them to satisfy the following rescaled Poisson brackets relations:

{R,PR} = {Λ, PΛ} =
1

2L0
. (7)

The 1/2L0 factor has been introduced to avoid the divergence in the symplectic structure that arises from the x-
integral. In contrast to what is usually done in the LQC minisuperspace quantization approach, we do not absorb
the L0 factors in the phase space variables. The resulting Hamilton’s evolution equations that appear below are
independent of any fiducial cutoffs, rendering all physical quantities derived in the rest of our analysis invariant under
a rescaling by L0.

If the dynamical equations are integrable, conserved quantities are expected to exist. In a constrained Hamiltonian
system like general relativity, a conserved quantity (or a Dirac observable) f satisfies the following equation:

{f,Hc} ≈ 0. (8)

Here ≈ denotes evaluation on the constraint surface. In general, solving Eq. (8) is challenging since it requires
disentangling a non-linear partial differential equation. Nevertheless, the following two independent solutions can be
found for the classical Hamiltonian (6):

f1 =
P 2

Λ

R
+

R

G2
, f2 = RPR − ΛPΛ. (9)

It turns out that there are no additional Dirac observables except those that can be trivially related to the above
expressions by factors of Hc. Moreover, it can be shown that both f1 and f2 are proportional to the black hole ADM
mass m when evaluated along the dynamical trajectories (see the classical solutions given in Eq. (13) below). For the
choice of lapse function given in Eq. (11) below, they become 2m/G and m respectively. A quick calculation shows
that {f1, f2} = f1/2L0, from which it follows that the ratio f2/f1 is conjugate to f1. These two quantities are now
independent Dirac observables. Unlike f2, f2/f1 does not have a straightforward physical interpretation. We refer
the interested reader to [46] for further discussion.

A. Hamilton’s equations

In order to construct the interior geometry, we first have to select an initial hypersurface Σ in vicinity of the black
hole’s event horizon. This is where an appropriate initial data set has to be specified. In particular, the initial data
set would need to solve the scalar constraint equation that is given by the vanishing of Hc on Σ. By virtue of the
dynamical equations, it is then straightforward to show that Hc vanishes everywhere along the dynamical trajectories.

The Hamilton’s evolution equations are given by

Ṙc = {Rc, Hc[Nc]} , (10a)
Λ̇c = {Λc, Hc[Nc]} , (10b)
ṖRc = {PRc , Hc[Nc]} , (10c)

5 Classical quantities are from now on denoted with subscript c and we work in c = ~ = 1 units.
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ṖΛc
= {PΛc

, Hc[Nc]} , (10d)

where Hc =
∫
dτ NcHc is the smearing of Hc with a lapse function Nc. A choice of Nc corresponds to a rescaling of

the proper time by 1/Nc. It signifies the only gauge freedom in this dynamical system. Note that due to the vanishing
of ~N in this symmetry reduced sector of geometry, the constraint algebra is one-dimensional and hence trivial.

For a black hole of mass m, choosing

Nc = − R2

2G2mPΛ
(11)

yields the following equations:

Ṙc =
Rc

2Gm
, (12a)

Λ̇c = −
Λc(R2

c +G2P 2
Λc

)

4G3mP 2
Λc

, (12b)

ṖRc =
G2PRc

PΛc
+RcΛc

2G3mPΛc

, (12c)

ṖΛc =
−G2P 2

Λc
+R2

c

4G3mPΛc

. (12d)

These can be explicitly integrated to give the following phase space trajectories:

Rc(τ) = 2Gm eτ/2Gm, (13a)

Λc(τ) = ±
√
e−τ/2Gm − 1, (13b)

PRc(τ) =
1

2G

[
2− e−τ/2Gm

]
, (13c)

PΛc(τ) = ∓2m eτ/4Gm
√

1− eτ/2Gm . (13d)

The proper time defined by the lapse function (11) covers the entire black hole interior region for the range −∞ <
τ < 0, where τ = 0 corresponds to the black hole’s event horizon and τ = −∞ corresponds to the classical singularity.
This choice of lapse function is simply motivated by consistency with our previous work [40], as it is the ~→ 0 limit
of a different lapse function that drastically simplified the analysis of the quantum-corrected Hamilton’s equations for
a specific class of coherent states analyzed there.

Finally, it will be useful to have a quantity that can help differentiate between the classical and quantum regimes.
The Kretschmann scalar, which is a gauge invariant measure of the spacetime curvature, can be relied on for this
task. For the Schwarzschild metric expressed in the {τ, x, θ, φ} coordinates, it becomes

Kc := RabcdR
abcd =

3 e−
3τ
Gm

4(Gm)4
. (14)

The transition to the high curvature regime is signaled by crossing the value of time τ ∼ τ? when the Kretschmann
scalar becomes Planckian, namely when Kc ∼ 1/`4P . τ? is easily found to be

τ? ∼
Gm

3
log

ï
3`4P

4G4m4

ò
, (15)

which corresponds to

Rc(τ?) ∼ (Gm)
1
3 (`P )

2
3 . (16)

III. EFFECTIVE HAMILTONIAN FROM QUANTUM REDUCED LOOP GRAVITY

The first derivation of an effective Hamiltonian constraint for a spherically symmetric geometry starting from the full
LQG framework was performed in [38]. There we extended the QRLG approach that was previously developed for the
cosmological case by first implementing a partial gauge fixing of the LQG kinematical Hilbert space compatible with
the construction of coherent states peaked around spherically symmetric geometrical data. By defining the partially
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gauge fixed holonomy-flux algebra operators, we constructed the quantum (gauge) reduced full Hamiltonian constraint,
including both the Euclidean and the Lorentzian terms, and computed its expectation value on the coherent states
implementing the symmetry reduction—as shown in [39], we now know that the expectation value of the quantum
reduced Hamiltonian corresponds to the leading order term (in the basis states’ large spin expansion) of the expectation
value of the full theory Hamiltonian constraint operator on the same coherent states. Descending from the full theory,
the effective Hamiltonian derived in [38] is well motivated and differs drastically from all previously postulated
expressions that are based on the minisuperspace quantization models (we will come back to this comparison at the
end of this section). However, ambiguities plaguing the full theory construction percolate to the quantum reduced
version as well. In particular, the following choices of regularization have been made in the construction of [38]:

- The non-graph-changing version of Thiemann’s regularization [14] was considered, with loop holonomy operators
entering the Euclidean term adapted to the faces of the cuboidal graph used to construct the reduced kinematical
Hilbert space.

- The graph was kept fixed, with no sum over the number of plaquettes.

- The operator was taken in the spin 1/2 fundamental representation.

- The Lorentzian term was quantized by using its expression in terms of the 3D Ricci scalar, which is a function
depending solely on the fluxes and their first and second partial derivatives, and by relying on the diagonal
action of the reduced flux operators to compute its action in a straightforward manner and without ordering
ambiguities.

With these general comments in mind, let us now review how the effective Hamiltonian in [38] was obtained. We will
not go through the construction of the quantum reduced Hilbert space in detail (we refer the interested reader to [38]
for that), but we will focus mainly on the introduction of the coherent states and the derivation of the associated
leading order corrections to the effective Hamiltonian constraint which were neglected in [38] and play an important
role in the analysis of Section VI.

A. Coherent states

For an arbitrary spacetime M ' R × Σ with Σ ' R × S2 and assuming spherical symmetry, we can introduce a
local set of coordinates (t, r, θ, ϕ), with t, r ∈ (−∞,∞), θ ∈ [0, π], ϕ ∈ [0, 2π], and write the spacetime metric as

gabdx
adxb = −Ñ2dt2 + Λ̃2

(
dr + Ñrdt

)2
+ R̃2

(
dθ2 + sin2 θ dϕ2

)
, (17)

with Ñ , Ñr, R̃, Λ̃ being a priori functions of r and t.6 In order to perform the quantum reduction starting from the
full LQG kinematical Hilbert space, a choice of spatial manifold triangulation is introduced selecting a subclass of
cuboidal graphs, where at each vertex two pairs of links are aligned to the angular directions on the 2-sphere and
one pair to the radial direction (see Fig. 1). We denote the coordinate lengths of the links tangential to these three
directions by εθ, εϕ, and εr.

(r, ✓,')
(r, ✓,' + ✏')

(r, ✓ + ✏✓,' + ✏')(r, ✓ + ✏✓,')

(r + ✏r, ✓,')
<latexit sha1_base64="M3BAst+Z4UbfjcLgvVmb19GcN3o="></latexit><latexit sha1_base64="M3BAst+Z4UbfjcLgvVmb19GcN3o="></latexit><latexit sha1_base64="M3BAst+Z4UbfjcLgvVmb19GcN3o="></latexit><latexit sha1_base64="M3BAst+Z4UbfjcLgvVmb19GcN3o="></latexit>

(r + ✏r, ✓ + ✏✓,')
<latexit sha1_base64="L24RQs63LWRg3zdHP4O6rBZWjhw="></latexit><latexit sha1_base64="L24RQs63LWRg3zdHP4O6rBZWjhw="></latexit><latexit sha1_base64="L24RQs63LWRg3zdHP4O6rBZWjhw="></latexit><latexit sha1_base64="L24RQs63LWRg3zdHP4O6rBZWjhw="></latexit>

(r + ✏r, ✓ + ✏✓,' + ✏')
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FIG. 1: Cuboidal graph with links adapted to the local set of coordinates.

6 We use tilde to differentiate between the metric functions for the interior homogenous foliation in (2) and the general foliation for both
the exterior and interior regions in (17), as these are in general different.
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The Ashtekar–Barbero connection and the densitized triad variables for a spherically symmetric geometry can be
written as 7

E = Er(t, r) sin θτ3∂r + E1(t, r)τ1 sin θ∂θ + E1(t, r)τ2∂ϕ , (18)
A = Ar(t, r)τ3dr + [A1(t, r)τ1 +A2(t, r)τ2] dθ + sin θ [A1(t, r)τ2 −A2(t, r)τ1] dϕ+ cos θτ3dϕ . (19)

This represents the classical data around which we want to peak the quantum states in order to implement the
symmetry reduction. More precisely, following the construction of [47], we introduced in [38] the quantum reduced
coherent states in the compact notation

ψδ`G (g`) =
∞∑
j`=0

∑
m̄`,n̄`=±j`

(2j` + 1)(ψδ`G )j`n̄`m̄`
`Dj`
m̄`n̄`(g

−1
` ) , (20)

with the matrix coefficients (ψδG)j`n̄`m̄` explicitly given by

ψδrG (gr) =
∞∑
jr=0

∑
m̄r

(2jr + 1)e−
δr
2 jr(jr+1)e

δrm̄r
∆2
rE

r sin θ

κγ`2
P Djr

n̄rm̄r (e
εrArτ3)Djr

m̄rn̄r (g
−1
r ) , (21a)

ψδθG (gθ) =
∞∑
jθ=0

∑
m̄θ,n̄θ

(2jθ + 1)e−
δθ
2 jθ(jθ+1)e

δθm̄θ
∆2
θ
E1 sin θ

κγ`2
P

xDjθ
n̄θm̄θ

Ä
eεθ(A1τ1+A2τ2)

ä
xDjθ

m̄θn̄θ (g
−1
θ ) , (21b)

ψ
δϕ
G (gϕ) =

∞∑
jϕ=0

∑
m̄ϕ,n̄ϕ

(2jϕ + 1)e−
δϕ
2 jϕ(jϕ+1)e

δϕm̄ϕ
∆2
ϕE

1

κγ`2
P
yD

jϕ
n̄ϕm̄ϕ

Ä
eεϕ((A1τ2−A2τ1) sin θ)

ä
yD

jϕ
m̄ϕn̄ϕ(g−1

ϕ ) , (21c)

where `P is the Planck length, δ` ≥ 0 are dimensionless spread parameters governing the semi-classicality of the
states and δ` → 0 in the classical limit. The notation `Dj`

m̄`n̄`(g`) is used to indicate the Wigner matrix elements in the
j`-spin representation for the SU(2) group element g` corresponding to the holonomy along the link in the `-direction
of the local tangent space, with basis states adapted to the local coordinate system of the metric (17) 8. The magnetic
numbers are such that m̄`, n̄` = ±j`. We can define the normalized quantum reduced coherent states as

ψ̃δ`G (g`) =
ψδ`G (g`)

|ψδ`G (g`)|
. (22)

The coefficients ψδ`G (j`) in the coherent states are Gaussian weights peaked around the semiclassical values j̃` = ∆2
`j

0
` ,

with j0
` given by

j0

r =
Er sin θ

κ`2Pγ
, (23a)

j0

θ =
E1 sin θ

κ`2Pγ
, (23b)

j0

ϕ =
E1

κ`2Pγ
, (23c)

and ∆2
θ = εrεϕ,∆

2
ϕ = εrεθ,∆

2
r = εθεϕ, with κ = 8π. In the limit where j̃` � 1, the expectation value of a function of

the reduced flux operators on the normalized quantum reduced coherent states yields the function evaluated on the
classical data j̃` plus coherent state corrections. The lowest order corrections are given by

〈ψ̃δ` |f(Ê)|ψ̃δ`〉 = f(j̃`) +
∂2
j`
f(j̃`)

2δ`
+O(δ−2

` ) . (24)

Let us analyze the corrections to the effective Hamiltonian induced by the use of coherent states peaked around
the classical data to compute the expectation value of the Hamiltonian constraint. We consider also the inverse

7 The τ i represents an anti-Hermitian basis in the su(2) internal space, with [τi, τj ] = εij
kτk.

8 In [38] the tangent direction r was aligned to the internal direction z, while the tangent angular directions on the 2-sphere (θ, ϕ) and
the internal directions (x, y) had a relative mismatch reflecting a residual U(1) gauge symmetry. Since here we are only interested in
the expectation value of the gauge invariant Hamiltonian constraint, we can set this U(1) angle to zero and consider (θ, ϕ) as aligned to
(x, y) without loss of generality.
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volume corrections, as a priori these two kinds of corrections can be of the same order (although we will later see
that the inverse volume ones are in fact sub-dominant). Both corrections manifest themselves in the flux dependent
piece of the Euclidean term in the Hamiltonian constraint in the connection formulation. A priori, coherent state
corrections would appear also in the Lorentzian term, that was regularized in [38] in terms of the densitized triad
variables and their derivatives via the Ricci scalar expression. However, as it will be shown below, the leading term
of the Lorentzian piece of the effective Hamiltonian is already sub-leading with respect to the Euclidean piece, which
justifies our neglecting of the coherent state corrections from this contribution for the level of approximation we are
considering here. Let us thus explicitly list both the coherent state and inverse volume corrections in the effective
Euclidean Hamiltonian coming from the expectation value of the flux dependent piece, according to (24). Given
the regularization scheme adopted in [38], we need to consider the following three contributions to the Euclidean
constraint per vertex:∑

µ=±1/2

s(µ)
»
jrjϕ(jθ + µ) ≈ j̃r j̃ϕ

2
»
j̃r j̃ϕj̃θ

Ç
1 +

1

32j̃2
θ

− 1

8δr j̃2
r

+
3

8δθ j̃2
θ

− 1

8δϕj̃2
ϕ

å
, (25a)

∑
µ=±1/2

s(µ)
»
jrjθ(jϕ + µ) ≈ j̃r j̃θ

2
»
j̃r j̃ϕj̃θ

Ç
1 +

1

32j̃2
ϕ

− 1

8δr j̃2
r

− 1

8δθ j̃2
θ

+
3

8δϕj̃2
ϕ

å
, (25b)

∑
µ=±1/2

s(µ)
»
jθjϕ(jr + µ) ≈ j̃r j̃θ

2
»
j̃r j̃ϕj̃θ

Ç
1 +

1

32j̃2
r

+
3

8δr j̃2
r

− 1

8δθ j̃2
θ

− 1

8δϕj̃2
ϕ

å
, (25c)

where δr, δθ, δϕ are free dimensionless parameters at this stage.

B. Effective Hamiltonian

In order to simplify the quasi-local expression for the full effective Hamiltonian derived in [38], a sum over the
angular plaquettes can be performed to integrate out the fluctuations around the spherical symmetry of the effective
solution we aim to arrive at. Let us stress that this process of integrating out some degrees of freedom coming from
the full theory structure is crucially different from freezing out these degrees of freedom from the get-go as done in the
reduced quantization models. In fact, even after the sum over the angular plaquettes is performed, an imprint of the
graph structure along any given 2-sphere foliating the spatial leaves remains in the resulting effective Hamiltonian.
This will introduce modifications with respect to the Hamiltonians postulated in minisuperspace models which have
drastic implications for the effective dynamics, as elucidated in [40].

The sum over a given 2-sphere plaquette can be approximated as

lim
εθ,εϕ→0

∑
p∈S2

= lim
εθ,εϕ→0

1

εθεϕ

∫ 2π

0

dϕ

∫ π

0

dθ . (26)

The quasi-local expression for the total effective Hamiltonian constraint at a given vertex was derived in [38]. If
we use the approximation (26) to perform the sum over the angular plaquettes and include both the inverse volume
and the coherent state corrections obtained in the previous section, the final expression for the expectation value of
the total Hamiltonian constraint operator reads (we use the superscripts IV and CS to stress the inclusion of inverse
volume and coherent state corrections with respect to our previous analyses):

−2κγ2

2L0
lim

εθ,εϕ→0

∑
p∈S2

HIV+CS

= lim
εθ,εϕ→0

{Å
1 +

(κ`2Pγ)2

32(εrεϕE1)2

εθεϕ
π2
− (κ`2Pγ)2

8δr(εθεϕEr)2
+

3(κ`2Pγ)2

8δθ(εrεϕE1)2
− (κ`2Pγ)2

8δθ(εrεϕE1)2

ã
×4π2

εϕ

√
Er

[(
h0

[(»
A2

1(r + εr) +A2
2(r + εr) +

»
A2

1(r) +A2
2(r)

) εϕ
2

]
+h0

[(»
A2

1(r + εr) +A2
2(r + εr)−

»
A2

1(r) +A2
2(r)

) εϕ
2

])

×

Ä
sin
î
Ar(r)+Ar(r+εr)

2 εr
ó
A1(r + εr) + cos

î
Ar(r)+Ar(r+εr)

2 εr
ó
A2(r + εr)

ä√
A2

1(r + εr) +A2
2(r + εr)
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−

(
h0

[(»
A2

1(r + εr) +A2
2(r + εr) +

»
A2

1(r) +A2
2(r)

) εϕ
2

]
−h0

[(»
A2

1(r + εr) +A2
2(r + εr)−

»
A2

1(r) +A2
2(r)

) εϕ
2

])

×

Ä
sin
î
Ar(r+εr)−Ar(r)

2 εr
ó
A1(r) + cos

î
Ar(r+εr)−Ar(r)

2 εr
ó
A2(r)

ä√
A2

1(r) +A2
2(r)

]

+

Å
1 +

(κ`2Pγ)2

32(εrεθE1)2

εθεϕ
2π2

− (κ`2Pγ)2

8δr(εθεϕEr)2
− (κ`2Pγ)2

8δθ(εrεϕE1)2
+

3(κ`2Pγ)2

8δϕ(εrεθE1)2

ã
×16π

εθ

√
Er

[
cos

ñ√
A2

1(r) +A2
2(r)

2
εθ

ô
sin

ñ√
A2

1(r + εr) +A2
2(r + εr)

2
εθ

ô
×

Ä
sin
î
Ar(r)+Ar(r+εr)

2 εr
ó
A1(r + εr) + cos

î
Ar(r)+Ar(r+εr)

2 εr
ó
A2(r + εr)

ä√
A2

1(r + εr) +A2
2(r + εr)

− sin

ñ√
A2

1(r) +A2
2(r)

2
εθ

ô
cos

ñ√
A2

1(r + εr) +A2
2(r + εr)

2
εθ

ô
×

Ä
sin
î
Ar(r+εr)−Ar(r)

2 εr
ó
A1(r) + cos

î
Ar(r+εr)−Ar(r)

2 εr
ó
A2(r)

ä√
A2

1(r) +A2
2(r)

]

+

Å
1 +

(κ`2Pγ)2

32(εθεϕEr)2

εθεϕ
π2

+
3(κ`2Pγ)2

8δr(εθεϕEr)2
− (κ`2Pγ)2

8δθ(εrεϕE1)2
− (κ`2Pγ)2

8δϕ(εrεθE1)2

ã
×4π2εr
εθεϕ

E1

√
Er

sin
[»

A2
1(r) +A2

2(r)εθ

]
h0

[»
A2

1(r) +A2
2(r)εϕ

]
+

32πγ2εr
ε2θ

E1(r)√
Er(r)

cos [εθ]
(

sin
[εθ

2

])2

−(1 + γ2)
2π

εr

1√
Er(r)

(
E1(r)

)2
×

[
E1(r)

(
[Er(r + εr)− Er(r)]2 + 4Er(r) [Er(r + 2εr)− 2Er(r + εr) + Er(r)]

)
−4Er(r) [Er(r + εr)− Er(r)]

[
E1(r + εr)− E1(r)

] ]}
, (27)

where we see the appearance of the Struve function of zeroth order h0[x] as mentioned in the introduction section.
We come back to this feature in Section IVB.

IV. EFFECTIVE HAMILTONIAN IN THE INTERIOR REGION

Let us now show how the lengthy expression for the effective Hamiltonian in Eq. (27), valid for both the exterior
and interior regions of the black hole, assumes a much simpler form when adapted to a homogeneous foliation as in
the interior region. To this end, let us set Nr = 0 and replace the coordinates (t, r) with (τ, x) of the interior metric
(2).

A. Choice of coherent state parameters

Our predictions for the black hole interior region are state-dependent. This is not a novel feature of our construc-
tion, rather it is an overall ambiguity that is present in all previous minisuperspace models as well. In the LQC
framework, the full theory graph structure is absent and such state-dependence is interpreted a posteriori as a choice
of regularization scheme (see, e.g., [19, 20, 48–51]). This choice is related to different embeddings of a fiducial discrete
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structure in the effective theory and is aimed at giving a physical interpretation to the polymer parameters introduced
as cut-off. There is a certain level of ambiguity in this prescription which allows for a wide spectrum of regulariza-
tion schemes. The choice can be justified only a posteriori, by verifying that the effective solution satisfies some
desired reasonable physical demands. On the other hand, having the full theory structure to begin with, our choice
of regularization scheme determining the quantum states that we attribute to the black hole interior region can be
guided by clear geometrical considerations. We now explain how our construction of quantum states is related to the
discrete geometrical information associated to our choice of graph structure in a clear-cut way, reducing considerably
the arbitrariness inherent to minisuperspace models.

1. Quantum parameters

To begin, recall that the fundamental building blocks of our graph triangulating the leaves of foliation are cuboidal
cells that are formed by eight six-valent vertices. Each vertex lies on a given 2-sphere, with two links tangent to the
angular directions θ and ϕ and one along the orthogonal x direction. We denote the coordinate length for the 2-sphere
tangent links by εθ = εϕ := ε and the coordinate length for the orthogonal link by εx. We can define these coordinate
lengths as

ε :=
2π

N
, εx :=

L0

Nx
, (28)

where N and Nx are two integers such that N 2/2 is the total number of plaquettes on the 2-sphere9 and Nx is the
total number of plaquettes in the x-direction for a given fiducial length L0. As we will illustrate more in detail below,
in order to approximate an integral over the three spatial directions with a sum over plaquettes (and vice-versa), we
need to consider the limit where ε, εx � 1, or equivalently N ,Nx � 1. In this limit, we can express the area of a
given 2-sphere S in the interior region as

A(R) = 4πR2 = 8πγ`2P
∑
p∈S

j̃px ' 4πγ`2P jxN 2 , (29)

where the sum is over all plaquettes that tessellate the given 2-sphere with radius R, and j̃px is the spin number
associated with the link dual to the given plaquette p in the coherent state. In the limit N � 1, we approximate this
sum with the product of a single (average) spin number jx times the total number of plaquettes on S. Similarly, we
can express the volume of a given spatial hypersurface Σ as (recall that we are using L0 as a regulator for integrals
over the x direction)10

V (Σ) = 8πL0

»
Ex(τ)E1(τ) ' 4(8πγ`2P )3/2j

√
jxNxN 2 , (30)

where we have denoted the average spin number associated with the links dual to the plaquettes in both (θ, x) and
(ϕ, x) planes by j. From Eqs. (29) and (30) we arrive at

ε =
α

R
, α := 2π

√
γjx `P ,

εx =
β

Λ
, β :=

4
√

8πγ j `P√
jx

. (31)

One can see that the two quantum parameters are functions of metric, the Barbero–Immirzi parameter, the Planck
length, and the two spin numbers that enter the definition of our coherent states.

2. Spins

Although our focus in this paper is on the interior geometry, it turns out that we can further constrain the class
of coherent states by extending our geometrical analysis to the black hole exterior region. The transition from the

9 The factor 1/2 comes from the fact that the coordinate lengths for the links along the two angular coordinates θ and ϕ can be written as
εθ = π/Nθ, εϕ = 2π/Nϕ. Requiring εθ = εϕ = ε implies 2Nθ = Nϕ = N , so that the total number of plaquettes covering the 2-sphere
is given by NθNϕ = N 2/2.

10 The spectrum of the volume operator can be easily computed in the quantum reduced loop gravity framework where the reduced flux
operators become diagonal and the contribution at each node is given by the sum of the contributions from all cubes around the given
vertex [38]. The cuboidal graph structure adopted in the quantum reduction yields four times the 3-valent vertex eigenvalue.
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interior to the exterior region is marked by ∂x changing from being space-like to time-like. This implies that, for an
outside observer, the spin number j is associated with a generator of rotations in the time-θ or time-ϕ plane, i.e. to a
boost generator. This signature change for the intrinsic metric on constant τ surfaces is accompanied by a change for
the gauge group of internal rotations from SU(2) to SU(1, 1) in the Ashtekar formulation. Therefore, if we demand
that our spatial manifold triangulation remains consistent on both sides of the horizon, it is consistent to require

j = γjx , (32)

a relation between the two spin numbers jx and j that follows from the imposition of the linear simplicity constraint
[52].

In the context of black hole physics, this interplay between the canonical and covariant formulations of the loop
quantum gravity has proven to be very important in our understanding of thermal properties of the black hole horizon
[53, 54]. As it will shown below, it also has interesting implications for the physical predictions of our model.

3. Spread parameters

Finally, we have to fix the form of the spread parameters δ`. In order for the expansions (25) to be valid, we need
the condition

δ`j̃
2
` � 1 (33)

to be satisfied. We make the following rescaling of the spread parameters

δr =
π2`2PR

2

α4(sin θ)2
δx , (34a)

δθ =
π2`2PR

2

α2β2(sin θ)2
δ , (34b)

δϕ =
π2`2PR

2

α2β2

δ

ν
, (34c)

where δ, ν, δx are the new free dimensionless parameters entering the coherent state corrections. When solving for the
effective dynamics we need to make sure that the consistency condition (33) is respected by the effective solutions.

B. Effective Hamiltonian

In the interior region, the Ashtekar variables (18) are easily related to the interior ADM variables introduced there
via the following relations 11

Ex = R2 , E1 = RΛ ,

Ax = −γG
R

(
PR −

Λ

R
PΛ

)
, A1 = −γG

R
PΛ , A2 = 0 . (35)

It follows that, in light of (31) and with our rescaling (34) of the spread parameters, the total effective Hamiltonian
constraint for the interior homogenous foliation (after dividing by εx as well) is given by

HIV+CS

int =− L0R
2Λ

2γ2Gβα2

×

{
α

Å
1 +

2`4Pγ
2

β2R2
− 8`2Pγ

2

δxR2
+

8(3− ν)`2Pγ
2

δR2

ã
sin

ï
γGβ[PRR− PΛΛ]

R2Λ

ò
πh0

ï
γGαPΛ

R2

ò
+ α

Å
1 +

`4Pγ
2

β2R2
− 8`2Pγ

2

δxR2
+

8(3ν − 1)`2Pγ
2

δR2

ã
sin

ï
γGβ[PRR− PΛΛ]

R2Λ

ò
2 sin

ï
γGαPΛ

R2

ò
11 In both foliations (17) and (2) the connection component A2 does not enter the reduced phase space; in the former case, it is constrained

to be the lapse function by the spatial diffeomorphism in the radial direction, and in the latter it simply vanishes.
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+ β

Å
8γ2 cos

[α
R

]
sin
[ α

2R

]2
+

Å
1 +

2`4Pγ
2

α2R2
+

24`2Pγ
2

δxR2
− 8(1 + ν)`2Pγ

2

δR2

ã
π sin

ï
γGαPΛ

R2

ò
h0

ï
γGαPΛ

R2

òã}
,

(36)

where the subscript “int” stands for “interior”.
It should be noted that HIV+CS

int significantly differs from the effective Hamiltonian constraint of the LQC minisuper-
space quantization models. In fact, the appearance of the Struve function h0[x] in Eq. (36) originates from integrating
over the angular coordinates of holonomies along links tangent to a given 2-sphere of the leaves of foliation and it is
thus associated to degrees of freedom which are non-existent in the LQC approaches due to using point holonomies.
Similarly, the two quantum parameters ε and εx correspond to the coordinate lengths of links of the cubic cells in
the chosen graph which enter the definition of the coherent states (20). They can be thought of as the discretiza-
tion parameters for the graphs that have been adapted to constant τ surfaces. As opposed to the previous polymer
quantization models, the availability of the full theory geometrical setup allows us to determine the expression of
these two crucial parameters in a straightforward and unambiguous manner, as in (31). The second main difference
induced by the inclusion of the 2-sphere degrees of freedom in our analysis is encoded in the term proportional to γ2

in expression (36). This contribution comes from the Lorentzian piece of the scalar Hamiltonian and only the leading
term in its ε-expansion is included in the previous proposals, while the higher order corrections are neglected. We
close this section by pointing out that our effective Hamiltonian for the interior region given in Eq. (36) reduces to
the minisuperspace Hamiltonian of [22] after the following replacements

h0[x] 7→ 2

π
sin [x] , cos [ε] sin

[ ε
2

]2
7→ ε2

4
, (37)

and, of course, neglecting both inverse volume and coherent state corrections.

V. INTERIOR EFFECTIVE DYNAMICS

We now shift gears to discuss the effective Hamilton’s equations. As in the classical system, we first choose a
hypersurface Σ in vicinity of the black hole’s event horizon where initial data is specified 12. First, note that there is
a large amount of freedom in selecting the initial data on Σ. Indeed, should we take the extreme case where Σ tends
to the event horizon, it follows from Eq. (36) that it is sufficient to require Λ

∣∣∣
Σ

= PΛ

∣∣∣
Σ

= 0 and 0 < |R|, |PR| < ∞.
Nevertheless, this level of arbitrariness is significantly reduced if we make use of the classical geometry in setting up
the initial data, which in turn requires that 1�

√
j � m/mp, where mp =

√
~c/G is the Planck mass 13. This would

be a well motivated approach given that we are limiting our analysis to the interior regions of astrophysical black
holes. The latter condition on the black hole’s mass translates to

ε
∣∣∣
Σ
∼ mp

√
j

m
� 1 , εx

∣∣∣
Σ
∼ R

Λ
ε
∣∣∣
Σ
� R

Λ

∣∣∣
Σ
, (38)

which are satisfied for sufficiently massive black holes in vicinity of their event horizons. Not surprisingly, expanding
in powers of ε and εx gives Hc as the lowest order term in HIV+CS

int . Thus, one can reliably adjust the classical data
near the event horizon to incorporate O(ε, εx) corrections. Bear in mind that as Σ tends to the event horizon, the
error in HIV+CS

int (Rc,Λc, PRc
, PΛc

) = 0 becomes vanishingly small.
To solve the dynamical equations, we choose to smear HIV+CS

int given in Eq. (36) with the following lapse function:

N = − γεR

Gm
[

sin
(
γGεPΛ

R

)
+ π

2h0

(
γGεPΛ

R

)] . (39)

This choice of lapse function reduces to (11) in the limit ~ → 0. For m � mp, the black hole’s event horizon is still
located near the time coordinate τ = 0. Unless a second inner Killing horizon is reached, τ can be extended all the
way to −∞.

12 Here we are assuming that a black hole event horizon exists. Note that any analysis that is purely based on the interior geometry does
not imply the existence of the event horizon. The question of whether the black hole event horizon exists will have to be determined by
a more sophisticated analysis that subsumes the entire spacetime.

13 Due to Eq. (32), j and jx are expected to be comparable in magnitude as long as γ ∼ O(1). We will see below how the results of our
asymptotic analysis are consistent with this assumption.
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For later convenience, let us replace τ with the new variable z := exp (−τ/`), where ` is some length scale whose
physical meaning will become clear in the following. Denoting z-derivatives by prime, the evolution equations for R
and PΛ read:

−z
`
R′ =

1

2L0

∂HIV+CS

int [N ]

∂PR

=
R

2Gm
cos

ï
γGβ

Å
PR
RΛ
− PΛ

R2

ãò
×

{Å
1 +

2`4Pγ
2

β2R2
− 8`2Pγ

2

δxR2
+

8(3− ν)`2Pγ
2

δR2

ã πh0

î
γGαPΛ

R2

ó
(2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

ó
)

+

Å
1 +

`4Pγ
2

β2R2
− 8`2Pγ

2

δxR2
+

8(3ν − 1)`2Pγ
2

δR2

ã 2 sin
î
γGαPΛ

R2

ó
(2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

ó
)

}
, (40)

−z
`
P ′Λ = − 1

2L0

∂HIV+CS

int [N ]

∂Λ

=̂
RPR

2GmΛ
cos

ï
γGβ

Å
PR
RΛ
− PΛ

R2

ãò
×

{Å
1 +

2`4Pγ
2

β2R2
− 8`2Pγ

2

δxR2
+

8(3− ν)`2Pγ
2

δR2

ã πh0

î
γGαPΛ

R2

ó
(2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

ó
)

+

Å
1 +

`4Pγ
2

β2R2
− 8`2Pγ

2

δxR2
+

8(3ν − 1)`2Pγ
2

δR2

ã 2 sin
î
γGαPΛ

R2

ó
(2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

ó
)

}
, (41)

where =̂ indicates that the equation has been evaluated on-shell (i.e. HIV+CS

int = 0 is imposed). The above equations
lead to the following equation for PΛ which will be useful in the subsequent sections:

P ′Λ =
R′PR

Λ

=
R′PΛ

R

+
RR′

Gγβ
arccos

[
− 2Gm

z

`

R′

R

×

( Ä
2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

óä(
1 +

2`4
P
γ2

β2R2 −
8`2
P
γ2

δxR2 +
8(3−ν)`2

P
γ2

δR2

)
πh0

î
γGαPΛ

R2

ó
+
(

1 +
`4
P
γ2

β2R2 −
8`2
P
γ2

δxR2 +
8(3ν−1)`2

P
γ2

δR2

)
2 sin

î
γGαPΛ

R2

ó)] .(42)
Finally, the evolution equations for Λ and PR are given by

−2Gm
z

`

Λ′

Λ
=
Gm

L0Λ

∂HIV+CS

int [N ]

∂PΛ

= − cos

ï
γGβ

Å
PR
RΛ
− PΛ

R2

ãò
×

{Å
1 +

2`4Pγ
2

β2R2
− 8`2Pγ

2

δxR2
+

8(3− ν)`2Pγ
2

δR2

ã πh0

î
γGαPΛ

R2

ó
(2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

ó
)

+

Å
1 +

`4Pγ
2

β2R2
− 8`2Pγ

2

δxR2
+

8(3ν − 1)`2Pγ
2

δR2

ã 2 sin
î
γGαPΛ

R2

ó
(2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

ó
)

}

+
πh−1

î
γGαPΛ

R2

ó((
1 +

2`4P γ
2

α2R2 +
24`2P γ

2

δxR2 − 8(1+ν)`2P γ
2

δR2

)
2 sin2

î
γGαPΛ

R2

ó
− 8γ2 cos

[
α
R

]
sin2

[
α

2R

])Ä
2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

óä2
+

cos
î
γGαPΛ

R2

ó((
1 +

2`4P γ
2

α2R2 +
24`2P γ

2

δxR2 − 8(1+ν)`2P γ
2

δR2

)
π2h2

0

î
γGαPΛ

R2

ó
− 16γ2 cos

[
α
R

]
sin2

[
α

2R

])Ä
2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

óä2
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+
2πγ2α`2P
βR2

Å
`2P
β2

+
32(1− ν)

δ

ã
sin

ï
γGβ

Å
PR
RΛ
− PΛ

R2

ãòÄsin îγGαPΛ

R2

ó
h−1

î
γGαPΛ

R2

ó
− cos

î
γGαPΛ

R2

ó
h0

î
γGαPΛ

R2

óäÄ
2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

óä2 ,

(43)

−z
`
P ′R = − 1

2L0

∂HIV+CS

int [N ]

∂R

=̂
(RPR − 2ΛPΛ)

2GmR
cos

ï
γGβ

Å
PR
RΛ
− PΛ

R2

ãò
×

{Å
1 +

2`4Pγ
2

β2R2
− 8`2Pγ

2

δxR2
+

8(3− ν)`2Pγ
2

δR2

ã πh0

î
γGαPΛ

R2

ó
(2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

ó
)

+

Å
1 +

`4Pγ
2

β2R2
− 8`2Pγ

2

δxR2
+

8(3ν − 1)`2Pγ
2

δR2

ã 2 sin
î
γGαPΛ

R2

ó
(2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

ó
)

}

+
πΛPΛ sin

[
αγGPΛ

R2

]
h−1

[
αγGPΛ

R2

]
GmR(2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

ó
)

Å
1 +

2`4Pγ
2

α2R2
+

24`2Pγ
2

δxR2
− 8(ν + 1)`2Pγ

2

δR2

ã
+

πΛh0

î
γGαPΛ

R2

ó
G2mR(2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

ó
)

ß
sin
[γGαPΛ

R2

](2`4Pγ

α3
+

24`2Pγ

αδx
− 8γ`2P (1 + ν)

αδ

)
+ GPΛ cos

[γGαPΛ

R2

](
1 +

2`4Pγ
2

R2α2
+

24`2Pγ
2

R2δx
− 8γ2`2P (1 + ν)

R2δ

)™
+

Λ sin
[
γGβ

(
PR
RΛ −

PΛ

R2

)]
G2mR(2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

ó
)

ß
Gπ

α

β
PΛh−1

ï
γGαPΛ

R2

ò(
1 +

2`4Pγ
2

R2β2
+

8`2Pγ
2(3− ν)

R2δ

− 8`2Pγ
2

R2δx

)
+ 2πh0

ï
γGαPΛ

R2

ò(`4Pγ
β3

+
4`2Pγ(3− ν)

βδ
− 4`2Pγ

βδx

)
+ sin

ï
γGαPΛ

R2

ò(2`4Pγ

β3
+

16`2Pγ(3ν − 1)

βδ
− 16`2Pγ

βδx

)
+

2GPΛα

β
cos

ï
γGαPΛ

R2

ò
×
(

1 +
`4Pγ

2

R2β2
+

8`2Pγ
2(3ν − 1)

R2δ
− 8`2Pγ

2

R2δx

)™
− 2γΛ

G2m

(
sin
[
α
R

]
− sin

[
2α
R

])Ä
2 sin

î
γGαPΛ

R2

ó
+ πh0

î
γGαPΛ

R2

óä . (44)

While solving for the effective dynamics, we replace the evolution equation for PR with the effective Hamiltonian
constraint (36). This choice is justified due to the fact that the phase space is 4-dimensional; thus, any of the four
evolution equations can be replaced with the more manageable constraint equation.

VI. ASYMPTOTICALLY DE SITTER GEOMETRY FOR THE INTERIOR

The Hamiltonian presented in Eq. (36) has several free quantum parameters; β (or α)14, γ, ν, δ, and δx. It is
therefore expected for the corresponding dynamical system to accommodate a large class of solutions. The intriguing
fact particular to this Hamiltonian is that some of these geometries have asymptotic structures of special interest,
and this leads us to the central question we want to address in this work. Indeed, we demonstrate in this section how
a judicious choice of the quantum parameters leads to an asymptotically Schwarzschild–de Sitter interior geometry
as defined in [41]; a positive cosmological constant emerges from the quantum gravitational effects. Somewhat of a
mystery, and a surprise at the same time, is the value for the Barbero–Immirzi parameter, γ, for this geometry which
is shown to coincide with the value from the SU(2) black hole entropy calculations in LQG. We will come back to this
important feature at the end of Section VIA.

14 Recall that we have imposed the simplicity constraint (32) on the quantum spin numbers, which implies α/β =
√

2π/(8γ).
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A. Asymptotic series solution

We aim to show that the scalar constraint equation HIV+CS

int = 0 together with the dynamical Eqs. (40), (42), and
(43) admit a solution set with the following asymptotic property:

lim
z→∞

Λ(z) =
1

2

(
z − 1

z

)
+O(z−2), (45a)

lim
z→∞

R(z) =
N0`

2

(
z +

1

z

)
+O(z−2) (45b)

lim
z→∞

PΛ(z) = L0z
2 + L1z + L2 +O(z−1), (45c)

lim
z→∞

PR(z) = R0z
2 +R1z +R2 +O(z−1) , (45d)

for some to-be-determined constants Li and Ri. The constant ` was defined in the previous section, and N0 =
N0(β, γ,Gm, `) is the asymptotic value of the lapse function (39). In fact, assuming the above estimates, N assumes
the following asymptotic form:

lim
z→∞

N(z) = N0 +
N1

z
+
N2

z2
+O(z−3), (46)

where it is straightforward to show that N1 = L1Ñ1(β, γ,Gm, `) andN2 = L2
1Ñ2(β, γ,Gm, `)+(L2−2L0)N̂2(β, γ,Gm, `).

For later convenience, we choose to parameterize

` :=
2Gm

ξ
, (47)

for some positive dimensionless constant ξ which will be determined below.
With Eqs. (45) and (46) in hand, the metric in the asymptotic limit becomes

lim
z→∞

gabdx
adxb = − `

2

z2

[
N2

0 +
2N0N1

z
+
N2

1 + 2N0N2

z2
+O(z−3)

]
dz2 +

1

4

[
z2 − 2 +O(z−1)

]
dx2

+
N2

0 `
2

4

[
z2 + 2 +O(z−1)

]
dΩ2. (48)

We will show in the subsequent section that with N1 and N2 vanishing, the above metric satisfies the criterion for the
asymptotically Schwarzschild–de Sitter metrics as stipulated in [41] with a cosmological constant term given by (see
Appendix A for more details)

λ =
3

N2
0 `

2
. (49)

Fortunately, the vanishing of N1 is a direct consequence of the requirement that L1 = R1 = 0 which we demonstrate
below. To arrange for the vanishing of N2, it turns out that we must additionally impose L2 = 2L0 as requiring
N̂2 = 0 would be in conflict with Eqs. (52) and (53) below. We shall use this latter relationship between L0 and L2

to simplify the ensuing equations.
Let us turn our attention to solving the scalar constraint and the three selected dynamical equations. Note that we

have a total of four equations, which must be solved in vicinity of z = ∞ for up to three orders in z, in consistency
with the orders kept in Eq. (45). That leaves us with a total of twelve algebraic equations between eleven a priori
free parameters: L0 (or L2), L1, R0, R1, R2, γ, ξ, ν δ, δx, and β. At first glance, this system of equations appears
to be over-determined. We will see, however, that one of these equations is already zero and two other vanish if we
require L1 = 0.

To begin, let us insert R and PΛ in (45) into Eq. (42) and find the following order-by-order algebraic equations:

order z : L0 −
Gm2N2

0 [π − arccos (ξ)]

βγξ2
= 0,

order z0 : 0,

order z−1 : πh0

[√2πβξ2L0

8Gm2N2
0

]ß
− 8`2pβ

2γ2ξ2δ + δx

[
2`2pγ

2
(
− 4[ν − 3]β2 + `2pδ

)
ξ2 + 2G2m2N2

0β
2δ
]™

+2 sin
[√2πβξ2L0

8Gm2N2
0

]ß
− 8`2pβ

2γ2ξ2δ + δx

[
`2pγ

2
(
8[3ν − 1]β2 + `2pδ

)
ξ2 + 2G2m2N2

0β
2δ
]™

= 0. (50)
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The order z equation can be solved for L0. We will see in Appendix B that the vanishing of the order z0 equation
is due to the fact that there is no z0 term in the expansion for R. The last equation, on the other hand, dictates
a relationship between ξ and the five quantum parameters β, γ, δ, δx, and ν. Note that this equation was already
simplified using L2 = 2L0.

With PΛ determined to the desired order, we move on to solving for the constants Ri in PR using Eq. (40), which
results in the following algebraic equations:

order z : ξ + cos
[ βγξ

Gm2N2
0

(2GmR0N0 − L0ξ)
]

= 0,

order z0 :
βγ

mN0
sin
[ βγξ

Gm2N2
0

(2GmR0N0 − L0ξ)
]
(2GmN0R1 − L1ξ) = 0,

order z−1 : −2GmN0 − 2βγGR2 sin
[ βγξ

Gm2N2
0

(2GmR0N0 − L0ξ)
]
−

2`2pγ
2ξ2

GmN0β2δδx

(
2 sin

[√
2πβξ2L0

8Gm2N2
0

]
+ πh0

[√
2πβξ2L0

8Gm2N2
0

])
×
{
πh0

[√2πβξ2L0

8Gm2N2
0

](
− 4β2δ + δx[`2pδ − 4(ν − 3)β2]

)
+ sin

[√2πβξ2L0

8Gm2N2
0

](
− 8β2δ + δx[8β2(3ν − 1) + `2pδ]

)}
= 0, (51)

where the last equation was simplified using the previous two equations. As in (50), we solve these algebraic equations
for R0, R1, and R2. Note that R1 is entirely dependent on L1

15. Also, it is straightforward to confirm that R2 = 0
by virtue of the order z−1 term in Eq. (50).

At this stage, we have a complete set of asymptotic solutions for all phase space variables in terms of Gm, ξ, `p,
and the five quantum parameters β, γ, δ, δx, and ν. The next step is to ensure the consistency of the scalar constraint
equation as well as Eq. (43) to the desired order in z. As we will see shortly, this consistency mandates fine tuning
for most of our quantum parameters. Let us consider the order z0 term in HIV+CS

int /R2Λ = 0:

±
√

2π

8γ

√
1− ξ2

(
2 sin [ι] + πh0[ι]

)
+ π sin [ι]h0[ι] = 0, (52)

where ι :=
√

2π[π− arccos (ξ)]/(8γ) and we used the order z equations in (50) and (51)16. This equation couples ξ to
γ. Another such equation is the order z0 term in the expansion of Eq. (43):

−2ξ −
π
(
2 sin2 [ι]h−1[ι

]
+ π cos [ι]h2

0[ι]
)(

2 sin [ι] + πh0[ι]
)2 = 0. (53)

These two algebraic equations admit two sets of solutions for ξ and γ which we list below.
Moving on to the order z−1 term in HIV+CS

int /R2Λ = 0, we find the following equation after imposing 2GmN0R1 −
L1ξ = 0:

ξL1

{
±
√

2π

8γ

√
1− ξ2

(
2 cos [ι] + πh−1[ι]

)
+ π

(
sin [ι]h−1[ι] + cos [ι]h0[ι]

)}
= 0, (54)

where h−1 is the Struve function of order −1. The expression inside the above parenthesis is not implied by Eqs.
(52) and (53), which necessitates the vanishing of L1. In addition, it follows with no difficulty that the vanishing of
L1 results in the vanishing of R1 as well as the order z−1 term in Eq. (43).

Finally, let us examine the order z−2 term in HIV+CS

int /R2Λ = 0 and Eq. (43). Starting with the former, setting
R1 = L1 = 0, L2 = 2L0, and making use of the order z equations in (50) and (51), we find

2πβ4δδx ± 8
»

2π(1− ξ2)`2pγ sin [ι]
(
− 8β2δ + δx[8(−1 + 3ν)β2 + `2pδ]

)
+ 8γ`2ph0[ι]

(
±
»

2(1− ξ2)π3/2
(
− 4β2δ

+δx[−4(−3 + ν)β2 + `2pδ]
)

+ 32γ sin [ι]
(
3πβ2δ − δx[π(1 + ν)β2 − 8`2pγ

2δ]
))

= 0. (55)

As for Eq. (43), we end up with the following algebraic equation after incorporating the previously mentioned
simplifications together with the last equation in (50):

±4
»

2(1− ξ2)π3/2`2pγδx[32(−1 + ν)β2 − `2pδ]
(

sin [ι]h−1[ι]− cos [ι]h0[ι]
)

+ h−1[ι]
(
π2β4δδx − 256`2pγ

2 sin2 [ι]

15 Requiring sin
[

βγξ

Gm2N2
0

(2GmR0N0 − L0ξ)
]

= 0 in lieu of 2GmN0R1 − L1ξ = 0 leads to inconsistencies in the subsequent algebraic

equations.
16 Note that Eq. (51) does not fix the sign of sin

î
βγξ

Gm2N2
0

(2GmR0N0 − L0ξ)
ó
in Eq. (52), requiring us to account for both signs at this

stage.



19

×
[
3πβ2δ − δx(π(1 + ν)β2 − 8`2pγ

2δ)
])

+ 2π cos [ι]
(
β4δδx − 64`2pγ

2h2
0[ι]
(
3πβ2δ − δx[π(1 + ν)β2 − 8`2pγ

2δ]
))

= 0.

(56)

We solve the above equation for δ, the order z−1 equation in (50) for δx, and Eq. (55) for ν. The results found for ξ
and γ and the coherent state parameters δ, δx, and ν are reported in Table I below.

sin [π − arccos (ξ)] < 0 sin [π − arccos (ξ)] > 0
ξ 0.957 0.974
γ 0.227 0.274
ν 1.802 1.802
δ 2.916/β2 +O(β−6) 1.458/β2 +O(β−6)
δx 0.729/β2 +O(β−6) 0.729/β2 +O(β−6)

TABLE I: These are the values found for the parameters of the model that were tuned to bring about an
asymptotically de Sitter geometry for the black hole interior region. We have considered both signs for
sin
[

βγξ
Gm2N2

0
(2GmR0N0 − L0ξ)

]
whose argument was further simplified to π− arccos (ξ) using the order z

equations in (50) and (51). Also, in the expansions for δ and δx we are mainly after the β � 1 limit.

As a consistency check, we must ensure that the values found above for the coherent state parameters satisfy the
condition given in Eq. (33). Inserting the expressions for δ and δx that are reported in Table I, it is immediate to see
that

δr j̃
2
r ≈ δθ j̃2

θ ≈ δϕj̃2
ϕ ≈

R2

β2
= ε−2 , (57)

which attests to the validity of our series expansion for the coherent state corrections.
To summarize, we have shown that the effective dynamics generated by the Hamiltonian (36) admits a solution in

the interior region that in the limit z →∞ assumes the following form

N = −
√

2πβ

Gm
(
8 sin [ι] + 4πh0[ι]

) +O(z−3),

Λ(z) =
1

2

(
z − 1

z

)
+O(z−2),

R(z) =

√
2πβ

ξ
(
8 sin [ι] + 4πh0[ι]

)(z +
1

z

)
+O(z−2),

PΛ(z) =
πβ(π − arccos [ξ])

8Gγξ2
(
2 sin [ι] + πh0[ι]

)2 (z2 + 2) +O(z−1)

PR(z) = −
√

π
2 (π − arccos [ξ])

2Gγξ
(
2 sin [ι] + πh0[ι]

)z2 +O(z−1), (58)

with parameters ξ and γ (and ι) taking any of the values in Table I. We will show in Sec. VIB that a metric
with the above listed components satisfies the criterion for an asymptotically Schwarzschild–de Sitter metric with a
cosmological constant (49) that is given by

λ =
6ξ2
(
2 sin [ι] + πh0[ι]

)2
πβ2

=
3

256γ2`2P j

Å
2 sin2 [ι]h−1[ι] + π cos [ι]h2

0[ι]

2 sin [ι] + πh0[ι]

ã2

, (59)

where we replaced β and ξ using Eqs. (31) and (53) respectively. It should be noted that λ is inversely proportional
to the quantum spin number j only and it is thus purely of quantum gravitational origin.

A few remarks are in order here. First, the most striking feature of the solution set (58) is the required value of γ.
In fact, our analysis has shown that an asymptotically de Sitter universe extending the black hole interior spacetime
beyond the classical singularity is predicted by LQG for the Barbero–Immirzi parameter corresponding to either one
of the following two numerical values (the superscript dS stands for de Sitter):

γdS

1 ≈ 0.227 , γdS

2 ≈ 0.274 . (60)
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In the context of black hole physics, this is not the first time that two different numerical values for γ have been derived.
Indeed, it is well known that the black hole entropy calculations in LQG require fine tuning the Barbero–Immirzi
parameter in order to recover the numerical factor 1/4 in the Bekesntein–Hawking entropy-area formula [44, 45]. The
LQG calculation relies on the notion of isolated horizons [55]. The original derivation was done in the U(1) framework
and developed in [56–59], where a partial gauge fixing of the horizon geometrical structure was performed. Later on,
this symmetry reduction was replaced with a full SU(2)-invariant analysis of spherically symmetric isolated horizons,
with the resultant entropy calculations reported in [42, 60–62]. Previous insights from [63, 64] were incorporated in the
latter set of papers (see [65] for a review of both frameworks). The two formulations lead to different numerical values
for the Barbero–Immirzi parameter. These two values were precisely derived in [43] where the authors performed a
detailed analysis relying on number theoretic and combinatorial methods. These values were found to be

γE

1 ≈ 0.237 , γE

2 ≈ 0.274, (61)

for U(1) and SU(2) respectively (the superscript E denotes entropy). We see that the value γdS
1 corresponding to the

case sin [π − arccos (ξ)] < 0 listed in Table I is surprisingly close to the value γE
1 obtained from the U(1) black hole

entropy counting in LQG. Even more remarkable is the exact matching of γdS
2 for the sin [π − arccos (ξ)] > 0 case and

the SU(2) counting value γE
2 .

While our construction of a quantum black hole geometry in [40] is compatible with the quantum isolated horizon
framework and the standard LQG entropy counting (a priori both in the U(1) and the SU(2) formulations), none of
those ingredients have been used in our derivation. What we have presented here is a genuinely independent derivation
of two numerical values for γ that are surprisingly close to what was previously found in a very different context. Most
importantly, however, is the fact that this derivation emerged from searching for metrics with distinctive asymptotic
characters that would not have existed in this context if it were not for the strong quantum gravitational effects in
which the Barbero–Immirzi parameter is known to play a pivotal role. In fact, the reason as to why fixing γ in the
black hole entropy calculation has been a controversial topic in the previous literature (see, e.g., [31, 54, 66–74]) is due
to the fact that the introduction of γ has no implications for the bulk classical dynamics and thus is not expected to
play a role in recovering the Bekenstein–Hawking entropy formula 17; the numerical coefficient there is derived from
the black hole Hawking temperature [45], which is a result of QFT on a classical curved background. In other words,
no quantum gravity ingredient is required to derive the factor 1/4 in the black hole entropy-area relation. Thus, it
remains mysterious as to why the Barbero–Immirzi parameter needs to be fixed in the first place. On the other hand,
the emergence of an asymptotically de Sitter universe replacing the Schwarzschild black hole singularity is a result
that has no semi-classical analog and it is purely quantum gravitational in origin. In this sense, our result represents
a striking coincidence and, at the same time, a long sought-after confirmation of the special physical meaning for the
numbers (60). We should mention here, however, that our numerical investigations indicate that we always end up
with the positive sine function in Table I should we integrate the dynamical system starting with an initial data set
that is close to that of a Schwarzschild black hole in vicinity of its event horizon. Hence, while γds1 is a possibility not
excluded by the dynamics, it is γds2 that is relevant for black hole physics.

Second, we want to stress that including the coherent state corrections in (25) is necessary for recovering all of
the terms for the metric variables given in Eq. (45). Terms of order 1/z in R and Λ are of crucial importance for
otherwise the corresponding metric would fail to meet all the criteria introduced in [41] for an asymptotically de Sitter
spacetime. In particular, while the order z terms in R and Λ are enough for the curvature invariants to resemble
those of a de Sitter metric, the subleading terms play a key role in satisfying the proper fall-off conditions for the
effective stress-energy tensor T eff

ab defined by the solution (48) with λ given in (49) (see next subsection for more
details on the asymptotic geometry). This shows how, in this specific case studied here, the geometrical properties of
an asymptotically de Sitter metric fixes all the ambiguities left in the definition of the coherent states (20), with the
only free parameter left being the spin number j entering the definition of β in (31).

B. Geometry at I+
int

Having found the metric (48) as a solution to the effective Hamiltonian system, it is now simple to show that the
black hole interior satisfies the criterion for asymptotically Schwarzschild–de Sitter spacetimes. To begin, let us define
the conformal factor ω := 1/z and re-scale the metric (48) with N1 = N2 = 0 by ω2 to find 18

17 However, the Barbero–Immirzi parameter plays an important role in the analysis of the boundary symmetry algebra of gravity at the
classical level, as revealed by the edge modes formalism [75–77], and this can indeed indicate direct implications for black hole physics
in the semi-classical regime already.

18 Though not shown in this paper, it is straightforward to see that powers of z in the asymptotic expansions for the phase space variables
are separated by 2. Therefore, the corrections in square parenthesis are in fact O(ω4). This fact has no bearing on our discussion in
this section.
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g̃abdx
adxb := ω2gabdx

adxb = −N2
0 `

2
[
1 +O(ω3)

]
dω2 +

1

4

[
1− 2ω2 +O(ω3)

]
dx2

+
N2

0 `
2

4

[
1 + 2ω2 +O(ω3)

]
dΩ2, (62)

where N0 is the leading order term for the lapse function and is given in Eq. (58) and ` = 2Gm/ξ with the value of ξ
listed in Table I. It is clear that the conformally rescaled metric g̃ab is smooth everywhere, including at the conformal
boundary given by ω = 0. We call this boundary the interior scri plus and denote it by I+

int. Note that dω is no-where
vanishing along I+

int. The intrinsic metric on this space-like hypersurface is that of a Euclidean cylinder,

h̃abdx
adxb =

1

4
dx2 +

N2
0 `

2

4
dΩ2. (63)

Evidently, I+
int is geodesically complete with respect to h̃ab.

It remains to see how the components of the effective stress-energy tensor,

T eff
ab :=

1

8πG

[
Gab + λgab

]
, (64)

behave as ω → 0. Here Gab = Rab − (R/2)gab is the Einstein tensor and λ is the emergent cosmological constant
which is explicitly given in Eq. (59). A quick calculation reveals

lim
ω→0

T eff
ωω = O(ω), lim

ω→0
T eff
xx = O(ω2), lim

ω→0
T eff
θθ =

1

sin2 (θ)
lim
ω→0

T eff
φφ = O(ω2). (65)

Since the components of the effective stress-energy tensor vanish at least as fast as ω as ω → 0, and due to I+
int being

homeomorphic to R× S2, the interior spacetime is asymptotically Schwarzschild–de Sitter per the criteria stipulated
in [41]. The Penrose diagram for the Schwarzschild spacetime is now replaced by the one given in Fig. 2.

asym dS

bounce

FIG. 2: This is our proposed Penrose diagram for the Schwarzschild spacetime based on our interior
quantum gravity model. The grey fading into blue shaded region is the interior of the black hole; it is
causally bounded by the future event horizon to its past and the space-like conformal boundary I+

int to
its future. The Schwarzschild singularity is replaced by a transition surface, denoted by the red curve, in
proximity of the region where the classical curvature becomes Planckian. The resultant physical metric
gab is smooth everywhere. Asymptotically, the effective interior spacetime metric approaches the de Sitter

metric (A5).

We end this subsection with a few remarks. First, it is an intriguing fact that the energy stored in the gravitational
field as perceived by external observers is rarefied by the quantum effects in the interior region. More precisely, even
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though a non-zero Bondi mass can be computed at any S2 cross section of Iext, there is no non-zero gravitational
mass in the interior region. In fact, gravitational charges for asymptotically de Sitter spacetimes with conformally
flat intrinsic metrics at scri can be unambiguously defined using 19∮

C
EabKax̂bd2V (66)

for any S2 cross section C of scri. Here Ka is a Killing vector field of gab, x̂a is the unit normal to C, and Eab is the
electric part of the rescaled Weyl tensor that is defined as Cacbdncnd/ω with na being the unit normal vector to the
constant ω surfaces. A quick calculation shows that Eab vanishes at I+

int.
Second, as the interior region becomes nearly isometric to the de Sitter space in vicinity of I+

int, one might expect
that local asymptotic observers see a high degree of homogeneity and isotropy in their observable universe. However,
as in the case of the de Sitter space in static coordinate patch (see Figure 3), the global topology of I+

int prevents the
existence of all finite symmetry transformations except those generated by the four Killing vector fields that we had
started with (even in an approximate sense). In other words, the symmetry Lie group of the interior region remains
isomorphic to Ro SO(3), just as that of the exterior region.

VII. EMERGENT COSMOLOGICAL CONSTANT

The emergence of a non-vanishing cosmological constant in the asymptotic post-bounce region from quantum
gravitational effects is the most striking feature of this model. What is even more fascinating is that this is achieved
by selecting a specific value for the Barbero–Immirzi parameter which exactly coincides with the one derived from
the SU(2) black hole entropy calculation 20. The emergent cosmological constant (59) is a function of the average
spin number j associated to the links of the cuboidal graph that we introduced in order to construct the quantum
reduced Hilbert space [38]. After inserting the numerical values for γ and ξ listed in the second column of Table. I,
it becomes

λ =
0.06

`2P j
. (67)

At first sight, λ appears to be unconstrained since j is a priori a free parameter that enters the effective solution
(58). Regarding j, all that we have demanded in our analysis so far is the restriction that 1 �

√
j � Gm/`P on Σ

where we set the initial conditions, which can be taken to be arbitrarily close to the event horizon. Meanwhile, the
lower bound condition j � 1 comes from the requirement (33) to guarantee sufficient peakedness for the coherent
states (20). We do not need to require j to be large. In fact, the coherent states that we used to derive the effective
Hamiltonian (36) are sufficiently peaked for j of order ∼ 100 (see, e.g., [78]). On the other hand, the upper bound
condition

√
j � Gm/`P comes from the requirement ε � 1 on Σ near the event horizon, where quantum gravity

effects are expected to be negligible. It can be checked that small variations of the Schwarzschild initial data satisfy
the scalar constraint equation HIV+CS

int = 0 with small error for spins as high as j ∼ Gm/`P . We warn the reader,
however, that instead of considering the average spin in Eqs. (28)-(30), one could consider a coarse grained spin jcg
for a number of cells N cg < N without any change in our equations, except that in this case jcg can be this large. In
fact, while individually and on each link small values of the spins jp may be more likely, the coarse grained value jcg
can be large for large horizon area. In fact, an expectation value for j (in the rest of the paper we will just refer to
a collective j that can be either the averaged or the coarse grained one) scaling with the black hole mass was derived
in [69] where the authors considered fermionic statistics for a gas of punctures within the quantum isolated horizons
framework. Moreover, it has been argued in [79] that such mesoscopic scale should correspond to the regime where
the continuum and classical limits coincide. Therefore, for astrophysical black holes, it would seem that there is a
wide range of collective spin numbers that one can use without risking the emergence of large quantum effects in
vicinity of the event horizon.

That being said, a more stringent upper bound on j can be set by demanding that quantum effects remain sub-
dominant up until the moment when the spacetime curvature becomes Planckian. This can be quantified by requiring
that the bounce occurs where the Kretschmann scalar (14) of the Schwarzschild metric becomes Planckian, namely
by demanding

Kc(Rb) ∼
1

`4P
, (68)

19 See [41] for the derivation and discussions.
20 As pointed out at the end of Section VIA, only γdS

2 is relevant to the Schwarzschild black hole.
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where Rb is the minimum value reached by the metric function R at the instant of bounce. Our numerical analysis
points to the following dependence of Rb on the classical black hole mass and the collective spin number:

Rb(m, j) ∼ (Gm)
1
3 (`2P j)

1
3 . (69)

If one wants to strictly confine quantum effects to within the Planckian curvature region, then this relation could be
used to argue for an upper bound on j of order ∼ 106 or so for large enough black holes. These considerations should
serve as a reminder to the reader that the effective theory framework leaves j, and thereby λ, largely unconstrained.

What complicates the matter even further is the interpretation of the effective continuum dynamics from the point
of view of the fundamentally discrete structure of the quantum theory. In fact, tensions appear when trying to
understand the pre-bounce contraction and the post-bounce expansion of the metric function R from the point of
view of the fixed graph structure used to derive the effective dynamics. In particular, the use of a non-graph-changing
Hamiltonian in the definition of the microscopic dynamics would seem consistent with such contraction and expansion
of space only if the quantum spin numbers associated to the links of the graph change at each step of the Hamiltonian
constraint action. This strongly suggests that the collective spin j should then undergo a renormalization flow, with
its value possibly changing from what it is at Σ where z → 1 to an asymptotic one as z → ∞. At the same time,
this quantum number is an input from the full theory kinematical Hilbert space structure that is “invisible” to our
semi-classical effective dynamics description. More precisely, the collective spin j and the number of plaquettes N
(not necessarily the total one in the case of a coarse grained j) cannot be represented separately as classical phase
space functions; it is only the combination `2P jN 2 = R2 that can be evolved by our effective dynamics.

In other words, from the point of view of the microscopic theory, the effective time evolution of the metric function
R(z) can be understood as the action of the Hamiltonian constraint changing, at each step, the quantum numbers
of the spin network states. However, from the point of view of our effective description, we cannot discern whether
it is j that is changing, or N , or any combination of the two: all we have access to is the metric function R. This
ambiguity can only be resolved by having a better control over the microscopic dynamics and the coarse-graining
properties of the quantum physical states, for instance by following an approach similar to the one advocated in [80]
for the construction of physical states through iterative coarse graining methods. Unfortunately, we are quite far from
achieving this.

Nevertheless, in light of this discussion, one could contemplate a mechanism where, as a result of microscopic
quantum dynamics evolution, the initial value ji of the collective spin entering the construction of the coherent states
(through the spatial geometry regularization structure as `2P jiN 2

i = R2
i ) gets renormalized by the initial number of

cells N 2
i , namely

j̄ ∼ jiN 2
i ∼ G2m2/`2P , (70)

where we are using the initial condition Ri ∼ Gm. In the resulting extended spacetime, the asymptotic region after
the bounce is then described by a near de Sitter metric (58) with a renormalized positive cosmological constant (we
restore the speed of light c here)

λ̄ ∼ c4

G2m2
. (71)

Let us now sketch a simple argument in favor of the rescaling proposed in Eq. (70) for the collective spin. The
macroscopic universe is expected to behave classically once again in the post-bounce region and in vicinity of I+int.
However, all curvature scalars in this territory eventually become proportional to λ as z → ∞ and thus divergent
in the classical limit ~ → 0. The only possibility to remove the explicit ~ dependence in the curvature scalars of
the emergent quasi-de Sitter universe is to have it canceled by a non-analytic ~ dependence in the collective spin.
However, as j̄ is dimensionless, it ought to be given by the square of the ratio of some length scale over the Planck
length. Given, that the only other length scale in this theory is Gm, we are left with no natural option but to rely on
the rescaling behavior (70) in order to wind up with a classical macroscopic post-bounce universe.

If the expression (71) for the renormalized cosmological constant can indeed be obtained in a renormalization-like
process, then it is truly fascinating due to the following observation: Inserting the value for the observed mass (i.e.
non-relativistic matter) in the universe in place of m results in λ̄ being on the same order of magnitude as the measured
value of the cosmological constant of our universe, that is λobs ' 1.1× 10−52 m−2. More precisely, since m in (71) has
the interpretation of the black hole’s gravitational mass as measured by a stationary observer near Iext, if our universe
hides behind a black hole event horizon, then this quantity as perceived by an observer in the mother universe should
correspond to the mass of the matter content of our observable baby universe. If we insert in (71) the value of the
mass of baryonic matter 21 as obtained from the cosmological parameters measured by the Planck Mission in 2018

21 A contribution from dark matter to λ̄ cannot be ruled out at this stage since we are neglecting constant factors of O(1) in the proposal
(71), even though we limit our considerations to baryonic matter for the sake of the arguments presented here.
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[81], namely by setting m ' 1.46× 1053 kg, then we obtain λ̄ ' 0.85× 10−52 m−2!
Before leaving this intriguing observation as a starting point for future investigations about possible observables

effects of our model, let us propose a more precise framework in which a relation like (71) could be obtained. To this
end, the basic observation is that even though a priori all values of ji and Ni are allowed as long as their product gives
Ri, one would still need to introduce an initial distribution ρ(N ) on the number of plaquettes. Is it possible to evolve
this ρ(N ) in absence of a graph changing Hamiltonian? The answer is indeed in the affirmative if one considered the
system (N , j) as an open quantum system and treated the quantum degree of freedom j as diffusing in a stochastic
bath of N . In this way, we could replace the pure state used to derive our equations with an ensemble of quantum
systems that, instead of satisfying the deterministic evolution equations derived from the Hamiltonian constraint for
the pure state (20), satisfy a stochastic differential equation for their associated pure states with a density operator
ρ(N , j) obeying a deterministic master equation of the Lindblad type [82]. By having such a description, the evolved
distribution would then depend on the initial parameters ji and Ni. Then, statistical analysis involving, for example,
a fluctuation-dissipation theorem for quantum systems could allow for an exploration of the asymptotic regime and
uncover the effective rescaling for j̄. We leave the details of this proposal for future work.

VIII. DISCUSSION AND CONCLUDING REMARKS

The notion that our observable universe could have emerged from within the interior of a black hole has its origin
in the early seventies [83]. A more concrete proposal for this scenario appeared a decade later in [84, 85], where the
hypothesis about the existence of a limiting curvature was used to glue the interior Schwarzschild region to a portion
of de Sitter by matching the two geometries at some space-like surface where the curvature reaches this Planckian
upper bound. A specific example of this “limiting curvature construction” in 1+1 dimension was presented in [86].
Further motivation for pursuing this concept was provided in [87], mainly in relation to the classical problems of big
bang cosmology (see also [88] for an implementation of this black hole cosmology scenario in the presence of spacetime
torsion).

The Penrose diagram proposed in [85] constitutes an example of a wider category of effective metrics delineating
regular solutions of the Einstein equations endowed with an event horizon, or for short “regular black holes” (see [89]
and references therein). Included among these are the metrics describing black hole–white hole transition which have
lately gained traction [90–93] and are derived in polymer models [22, 49, 94]. A distinguished characteristic for this
class of geometries is the existence of an inner Cauchy horizon. While for the Schwarzschild–de Sitter model of [84]
a stability argument was provided in [95], the black hole–white hole model is affected by the well-known instability
problem of the inner horizon known as the “mass inflation” [96, 97] (see [98] for a review on different aspects of this
mechanism) as well as the issue of an infinite evaporation time that was more recently pointed out in [99].

The analysis presented in this paper leads to the Penrose diagram shown in Fig. 2 which differs from those that
appear in the above proposals. In particular, no inner horizon is present in the effective spacetime region replacing
the classical singularity and hence no white hole instability problem arises. Moreover, in the construction of [84] both
de Sitter horizons are included and the Schwarzschild collapse is followed by a deflationary phase of the de Sitter
spacetime before transitioning to an inflationary phase. On the other hand, the numerical solutions of the effective
dynamical equations derived in Section V show that the inflationary phase starts immediately after the bounce and
it is asymptotically described by the top patch of the de Sitter spacetime shown in Fig. 3, with no cosmological
horizon appearing. In fact, the metric derived in Section VI belongs to yet another kind of a regular spherically
symmetric black holes that contains an expanding Kantowski–Sachs universe inside its event horizon and a spacelike
scri in place of its singularity. These particular spacetimes had previously emerged in the literature and were dubbed
“regular phantom black holes” in [100] and “black universes” in [101]. They were obtained as solutions to the Einstein
equations sourced by spherically symmetric distributions of a scalar field called phantom matter. However, though
the resulting Penrose diagrams are identical (see Figure 1.4b in [101]), our analysis does not require any exotic form of
matter modeling the dark energy component of the universe. Instead, we provided a concrete realization of black hole
singularity resolution with an emerging de Sitter universe by considering the quantum gravitational effects encoded in
a set of effective equations derived from a quantum gauge fixed version of the full LQG framework. Such an explicit
derivation from a given quantum gravity approach had been missing till now. The fact that dark energy is an emergent
property of our effective spacetime and not an input, together with the long sought after consistency check for the
physical relevance of the numerical value (1) of the Barbero–Immirzi parameter are the most striking consequences
of our program thus far.

To gain a more profound physical intuition for the origin of the cosmological constant that appears in our effective
geometry, it would be beneficial to contemplate on possible connections with the proposal of [102, 103]. The authors in
those papers proposed a mechanism for the emergence of an effective dark energy from potential spacetime discreteness
in quantum gravity. More precisely, noting that within the framework of unimodular gravity an energy-violation
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current can mimic a cosmological constant term in the Einstein’s equations, a source of energy dissipation was
modeled by friction-like forces acting on massive fields propagating on a granular spacetime. This effective description
was aimed at capturing the interaction of matter degrees of freedom with the quantum discrete structure of geometry
at the Planck scale. It resulted in a correct order of magnitude estimate for the cosmological constant that we
currently observe. As our analysis so far does not account for any coupling with ordinary matter 22, it is not clear
how one can draw a comparison between this effective description and our quantum corrected dynamics. At the same
time, it is suggestive that in both cases the discrete nature of quantum gravity degrees of freedom play a crucial
role in the emergence of a cosmological constant term. In our case, the apparent culprit is the Struve function in
the effective Hamiltonian (36) that is related to the graph structure on the 2-spheres foliating the spatial leaves in
the interior region. This function acts as a dissipative dynamical term that breaks the time reversal symmetry of
the interior effective geometry that would otherwise be present in the LQC models. It would be very interesting to
investigate possible connections between the previously mentioned concept of “friction” and dark energy by studying
the gravitational collapse of a massive shell in the QRLG framework. We leave this exploration to future works.

We conclude by pointing out that our derivation lends credence to the concept of “cosmological natural selection”
proposed in [104] which aims to explain the value of the dimensionless parameters that appear in particle physics and
cosmology.
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Appendix A: de Sitter metric in {τ, x} coordinates

The reader may benefit from a brief review of the de Sitter metric in two different coordinate systems. First, recall
that the de Sitter metric in the co-called “static coordinates” r, t can be written as

gabdx
adxb = −

(
1− r2

ˆ̀2

)
dt2 +

dr2

1− r2

ˆ̀2

+ r2dΩ2. (A1)

Here ˆ̀ is the cosmological length-scale associated with the cosmological constant that is given by λ = 3/ˆ̀2. In regions
I and III where r < ˆ̀ and ∂t is time-like, the metric (A1) is static. The cosmological horizons are located at r = ˆ̀.
The static coordinates can be continued beyond these two horizons into regions II and IV where r > ˆ̀ (see Fig. 3).
Here ∂t becomes space-like and it is convenient to introduce a new coordinate system:

x = t ,

∫
N(τ) dτ =

∫
dr»
r2

ˆ̀2 − 1
= ˆ̀log

[r
ˆ̀

+

 
r2

ˆ̀2
− 1
]
. (A2)

Here N is an arbitrary function of τ . The equation in the right-hand side can be inverted to give

r =
ˆ̀

2

(
e
∫
N(τ)dτ/ˆ̀

+ e
−
∫
N(τ)dτ/ˆ̀

)
= ˆ̀cosh

Ç∫
N(τ)dτ

ˆ̀

å
. (A3)

The metric (A1) in {τ, x, θ, φ} coordinates becomes

gabdx
adxb = −N(τ)2dτ2 + sinh2

Ç∫
N(τ)dτ

ˆ̀

å
dx2 + ˆ̀2 cosh2

Ç∫
N(τ)dτ

ˆ̀

å
dΩ2 . (A4)

22 The components of the effective stress-energy tensor defined in (65) can, however, be understood as describing the couplings to a form
of emergent dark energy that is purely of quantum gravitational origin.
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In the particular case where N is a constant, we introduce the rescaled length-scale ` = ˆ̀/N and the metric becomes

gabdx
adxb = −N2dτ2 + sinh2

(τ
`

)
dx2 +N2`2 cosh2

(τ
`

)
dΩ2 , (A5)

with the cosmological constant λ given by

λ =
3

N2`2
. (A6)

For our analysis, it is region IV of the Penrose diagram in Figure 3 that is relevant, as the effective metric we derive
in Section VI approaches the metric (A5) in the limit τ → −∞.

FIG. 3: de Sitter spacetime in static coordinates. The coordinates r, t cover the static regions I and III,
where r < ˆ̀ and they are singular at the cosmological horizons where r = ˆ̀. In regions II and IV, the
spacetime is no longer static and we can introduce the proper time τ defined in (A2). In these two regions

the metric takes the form (A5).

Appendix B: Deriving the asymptotic series solution

We showed in Section VIA that an asymptotically Schwarzschild–de Sitter metric can be found by tuning most of
the quantum parameters. Here we show that the converse is also true: assuming that ξ, γ, δ, δx, and ν are given as
the solutions to Eqs. (50), (52), (53), (55), and (56), then the resultant metric is asymptotically Schwarzschild-de
Sitter. Note that we are not assuming that the previously mentioned equations are derived from a certain order
approximation of the dynamical equations.

Our working assumption is that the phase space variables assume the following asymptotic forms:

lim
z→∞

Λ(z) = λ0z + λ1 +
λ2

z
+O(z−2),

lim
z→∞

R(z) = ρ0z + ρ1 +
ρ2

z
+O(z−2),

lim
z→∞

PΛ(z) = L0z
2 + L1z + L2 +O(z−1),

lim
z→∞

PR(z) = R0z
2 +R1z +R2 +O(z−1). (B1)

While more complicated solutions are certainly possible, the leading pieces of the above expansions are borne out by
detailed numerical investigations 23. Thus, we only consider the case where all four leading constants are non-zero.

Before delving into the equations, let us exploit a remaining gauge freedom to cast (B1) into a simpler form by
fixing the coefficient of z−1 in R. Sending z 7→

√
ρ2/ρ0z, we rewrite (B1) as

lim
z→∞

Λ(z) = λ̃0z
[
1 +

λ̃1

z
+
λ̃2

z2
+O(z−2)

]
,

23 We arrived at the same leading order behavior for R, Λ, PR, and PΛ after imposing Eqs. (52) and (53) in [40]. Our new Hamiltonian
converges to the one used in [40] as R→∞.
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lim
z→∞

R(z) = ρ̃0z
[
1 +

ρ̃1

z
+

1

z2
+O(z−2)

]
,

lim
z→∞

PΛ(z) = L̃0z
2 + L̃1z + L̃2 +O(z−1),

lim
z→∞

PR(z) = R̃0z
2 + R̃1z + R̃2 +O(z−1). (B2)

We emphasize that we are not assuming any a priori relation among the above constants. We shall drop tilde from
these to simplify notation.

The order z terms in Eqs. (40) and (42) become

ξ + cos
[Gβγ(L0λ0 −R0ρ0)

λ0ρ2
0

]
= 0,

L0

ρ2
0

− π − arccos [ξ]

Gβγ
= 0. (B3)

Solving for ξ and L0/ρ
2
0, we find that the order z0 terms in the scalar constraint equation and Eq. (43) coincide with

Eqs. (52) and (53) respectively, which are satisfied by our original assumption.
Moving on to the order z0 term in Eq. (40), we find

ρ1

ï
L0 +

ρ2
0

(
− π + ξ√

1−ξ2
+ arccos [ξ]

)
Gβγ

ò
= 0. (B4)

Since by assumption ρ0 6= 0, Eq. (B3) implies that the square bracket cannot vanish unless ξ = 0, which is forbidden
by the requirement that ` < ∞. Therefore, this equation is satisfied if and only if ρ1 = 0. Requiring this, the order
z0 term in Eq. (42) reduces to

Gβγ

λ0ρ0

(
L1λ0 −R1ρ0 +R0λ1ρ0

)
sin
[Gβγ(L0λ0 −R0ρ0)

λ0ρ2
0

]
= 0. (B5)

Let us for now ignore the possibility that the sine function can vanish. This way, we must require

L1λ0 −R1ρ0 +R0λ1ρ0 = 0. (B6)

Taking the above, Eq. (B3), and the vanishing of ρ1 into account, the z0 term in the scalar constraint equation
requires the following

L1

ï
±
√

2π

8γ

√
1− ξ2

(
2 cos [ι] + πh−1[ι]

)
+ π

(
sin [ι]h−1[ι] + cos [ι]h0[ι]

)ò
= 0, (B7)

where ι := GL0αγ/ρ
2
0 =
√

2π(π− arccos [ξ])/(8γ). Since ι and ξ are fixed by Eqs. (52) and (53) and the above square
bracket is not implied by these two equations, we must require

L1 = R1 −R0λ1 = 0. (B8)

Considering the above derivations, the order z0 term in Eq. (43) simplifies to λ1 = 0, which then implies that R1 = 0.
In sum, by requiring Eqs. (52) and (53) we were able to deduce with no difficulty that ρ1 = λ1 = L1 = R1 = 0.

Before proceeding to the subsequent order, let us discuss the case where the sine function in Eq. (B5) vanishes.
This implies that ξ = 1. It follows from Eq. (52) that

sin [ι]h0[ι] = 0. (B9)

Hence, either sin [ι] or h0[ι] must vanish, but not both as that is only possible if ξ = −1. If sin [ι] = 0, then Eq.
(53) requires −2 − cos [ι] = 0 which cannot be. On the other hand, if h0[ι] = 0, then the same equation requires
−2−πh−1[ι]/2 = 0 which also cannot be satisfied for any value of ι. Therefore, we must have sin

[
Gβγ(L0λ0−R0ρ0)

λ0ρ2
0

]
6= 0.

Moving on to the order z−1 term in Eq. (42) and setting ρ1 = λ1 = L1 = R1 = 0, we find

2L0 − L2 +
2ξ

Gβ3γδδx
√

1− ξ2
(
2 sin [ι] + πh0[ι]

)ïπh0[ι]
(
− 4`2pβ

2γ2δ + δx

[
`2pγ

2
(
− 4(−3 + ν)β2 + `2pδ

)
+ β2δρ2

0

])
+ sin [ι]

(
− 8`2pβ

2γ2δ + δx

[
`2pγ

2
(
8(−1 + 3ν)β2 + `2pδ

)
+ 2β2δρ2

0

])
= 0. (B10)
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Solving the above for 2L0 − L2 and assuming that sin
[
Gβγ(−L0λ0+R0ρ0)

λ0ρ2
0

]
> 0 24, the order z−1 term in Eq. (40)

reduces to the following simple equation:

R0(1 + λ2)−R2 = 0. (B11)

Now let us use this last equation to simplify the order z−2 term in the scalar constraint equation. If we impose Eq.
(55), we end up with

(2L0 − L2)

ï
−
√

2π(1− ξ2)

8γ

(
2 cos [ι] + πh−1[ι]

)
− ξ
(
2 sin[ι] + πh0[ι]

)
− π

(
sin [ι]h−1[ι] + cos [ι]h0[ι]

)ò
= 0. (B12)

As the above square bracket is not implied by Eqs. (52) and (53), we must require 2L0 = L2. Inserting this in Eq.
(B10) and subtracting off the last equation in (50) we find that ρ0 = ±GmN0/ξ.

Finally, taking the above simplifications into account, the order z−2 term in Eq. (43) becomes

32β2δδxλ2G
2m2N2

0

(
2 sin [ι] + πh0[ι]

)2
+ 4π

»
2π(1− ξ2)`2pγξδx[32β2(−1 + ν)− `2pδ]

(
sin [ι]h−1[ι]

− cos [ι]h0[ι]
)
− ξh−1[ι]

(
768π`2pβ

2γ2δ sin2 [ι]− δx
[
128π`2pβ

2γ2(1 + ν) + π2β4δ − 1024`4pγ
4δ − 128`2pγ

2

×[π(1 + ν)β2 − 8`2pγ
2δ] cos [ι]

])
− 32`2pγ

2ξ2
(
2 sin [ι] + πh0[ι]

)(
πh0[ι]

(
− 4β2δ + δx[−4(−3 + ν)β2 + `2pδ]

)
+ sin [ι]

(
− 8β2δ + δx[8β2(−1 + 3ν) + `2pδ]

))
+ 2πξ cos [ι]

(
β4δδx − 64`2pγ

2h2
0[ι]
[
3πβ2δ − δx

(
π(1 + ν)β2

−8`2pγ
2δ
)])

= 0. (B13)

Using the asymptotic value for N0 and imposing Eqs. (50) (the last one) and (56), we find λ2 = −1. Eq. (B11) then
gives R2 = 0.

As expected, we have ended up with a 2-parameter family of solutions labeled by λ0 and R0. We started with four
constants of integration, one for each first order ODE. That number was reduced to three due to the Hamiltonian
constraint and then to two due to the remnant gauge freedom in rescaling the time coordinate τ .

Let us summarize what we have demonstrated here: if we tune ξ, γ, δ, δx and ν using Eqs. (50), (52), (53), (55),
and (56), then as long as the phase space variables are described asymptotically by the Laurent series expansions in
z−1 given in Eq. (B2), the interior metric is necessarily asymptotically Schwarzschild-de Sitter. The significance of
this result is in the fact that the details of the initial data that we impose on Σ are largely irrelevant so long as Eq.
(B2) is valid. Our numerical investigations in [40] suggest that this is indeed the case for small variations around the
Schwarzschild data 25. While we do not explicitly show, this solution is most likely an attractor for the Hamiltonian
system under study.
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