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Abstract

Algorithmic decision making is becoming more prevalent, increasingly impacting people’s daily lives. Recently, discussions
have been emerging about the fairness of decisions made by machines. Researchers have proposed different approaches for
improving the fairness of these algorithms. While these approaches can help machines make fairer decisions, they have been
developed and validated on fairly clean data sets. Unfortunately, most real-world data have complexities that make them more
dirty. This work considers two of these complexities by analyzing the impact of two real-world data issues on fairness—
missing values and selection bias—for categorical data. After formulating this problem and showing its existence, we propose
fixing algorithms for data sets containing missing values and/or selection bias that use different forms of reweighting and
resampling based upon the missing value generation process. We conduct an extensive empirical evaluation on both real-
world and synthetic data using various fairness metrics, and demonstrate how different missing values generated from different

mechanisms and selection bias impact prediction fairness, even when prediction accuracy remains fairly constant.

Keywords Machine learning fairness - Missing data - Data bias - Selection bias

1 Introduction

In today’s big data world, algorithmic decision making is
becoming more pervasive in areas that impact our everyday
lives, including hiring, credit approval, and criminal justice.
For example, in the USA, machine learning models are being
used throughout the judicial system, e.g., at bail hearings to
predict whether a defendant will flee, prior to trials to deter-
mine the likelihood of the defendant committing additional
crimes, and at sentencing to predict the length of sentenc-
ing [27,37]. As more applications use algorithmic decision
making, there are growing concerns about their transparency,
accountability, and fairness [7,16,49].

In the USA, the Civil Rights Act of 1964 prohibits dis-
crimination of people based on race, color, religion, sex, or
national origin. These demographic traits are examples of
sensitive/protected attributes or attributes that should not be
dominant features used by machine learning algorithms to
make predictions. Sensitive attributes are identified based
on the task being conducted and the established legal frame-
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work. For example, age is a sensitive attribute under the Equal
Credit Opportunity Act (ECOA), but not the Fair Housing Act
(FHA). For the purposes of this paper, we consider a sensi-
tive attribute to be a demographic feature that is considered
protected by specific legislation, i.e., by the Civil Rights Act.

Much literature has focused on algorithms for fixing bias,
where the algorithms are validated on fairly “clean” data sets
[12], including the COMPAS recidivism data, the German
credit data, and the adult income data [20,31]. These data
sets either do not contain missing values or contain a very
small fraction of missing values for the categorical features.
Previous work has focused on data sets that have few missing
values and consider selection bias of continuous variables
as opposed to categorical ones. While this previous work is
an important first step to building fundamental theoretical
frameworks, real-world data sets containing these additional
complexities need to be understood in the context of fairness.

Toward that end, this paper investigates the impact of two
different data issues on fairness. We focus on understand-
ing fairness in the context of a sensitive binary attribute and
non-sensitive categorical attributes in the presence of miss-
ing values and/or selection bias. We show examples of these
forms of problematic data using both real-world and syn-
thetic data and evaluate the impact of missing values and
selection bias using existing fairness measures. Finally, we
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propose data fixing approaches that use different reweighting
and resampling techniques to improve fairness and evaluate
the effectiveness of our proposed methods. We show that our
approach can improve fairness while maintaining levels of
predictive accuracy similar to those that lead to unfair clas-
sifiers.

Our main contributions can be summarized as follows. (1)
Because real-world data sets contain categorical data with
missing values and selection bias, we formulate the problem
of missing values and selection bias on prediction fairness for
categorical data. (2) We propose data fixing approaches that
employ reweighting and resampling techniques to improve
fairness in data sets containing missing values and/or selec-
tion bias in categorical data. (3) We conduct an extensive
empirical evaluation on real-world and synthetic data using
two established measures of fairness to understand the types
of scores that should be expected under different data distri-
butions. (4) We demonstrate the effectiveness of our proposed
fixing algorithms on data sets containing different distribu-
tions and proportions of missing values and different amounts
of selection bias. (5) We release our code and our synthetic
data set so other researchers can continue to make progress
on this problem .

The remainder of this paper is organized as follows.
Related literature is presented in Sect. 2. In Sect. 3, we present
our notation and some common real-world data issues. We
then propose three fixing algorithms to mitigate the negative
effects of these data issues in Sect. 4. In Sect. 5, we illustrate
negative effects of data issues using synthetic data examples.
We describe our data sets and evaluation method (Sect. 6) and
empirically evaluate them in Sect. 7. Finally, Sect. 8 presents
our conclusions and future work.

2 Related literature

In the statistical community, there exists a broad literature on
missing values and selection bias. There is research describ-
ing different types of missing values [19,47], common causes
of missing values [2,26,46] and problems that arise because
of missing values [22,36,42]. While a number of negative
impacts of missing values have been shown, the primary ones
involve inference and interpretation issues with the models
that are built [44,50]. There is also much work discussing data
bias and selection bias, including the different causes and the
negative effects of data bias [4,24,43,52]. Olteanu et al. con-
sider this in the context of social media data and bias against
race, gender, and age [43]. Baeza—Yates explores biases in
digital content on the web, focusing on biases in news recom-
mendation systems and tagging systems [4]. Wang and Wang

! The code and the synthetic data can be found at https:/github.com/
GU-DataLab/fairness-and-missing-values.
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discuss social influence bias in Amazon product reviews [52],
while Kamishima and colleagues describe different types of
computer system bias and how these biases arise as a result
of historic selection bias [24]. In Sect.3.3 and 3.4, we will
revisit the causes of some data issues and their impact.

Two main families of fairness definitions have been pro-
posed by researchers: the statistical or group-based notions
of fairness and the individual-based notions of fairness [18].
The statistical notion of fairness focuses on demographic par-
ity and equalized odds [13,23,34]. The individual notion of
fairness parallels the statistical notion in that we want similar
individuals to be treated similarly [21]. We discuss the statis-
tical notions of fairness in more detail in Sect. 3.2, where we
formalize the definitions and measurements of fairness that
we use.

Finally, a number of correcting algorithms have been
proposed. These corrections can take place during pre-
processing, in-processing, or post-processing. Pre-processing
fixes attempt to modify the input data to make it less biased.
Feldman et al. [23] propose methods to fix continuous data
bias by changing the training data to remove dependencies
between predictive features and sensitive attributes. Zemel
and colleagues [54] and Calmon and colleagues [14] fix
categorical data bias by changing conditional probability dis-
tributions of features based on the sensitive attribute and the
outcome variable. In prediction tasks using external libraries
such as pretrained embeddings in natural language process-
ing (NLP), Bolukbasi and colleagues [8] find that word
embeddings trained on Google News articles exhibit gen-
der bias and they propose an algorithm that identifies words
having a gender bias and then adjusts the word vectors to mit-
igate the bias. Brown and colleagues [10] find racial, gender
and religious bias in their GPT-3 model trained on a dataset
containing approximately one trillion words. The goal of
in-processing fixes involves changing the constraints of the
classifier to include fairness constraints. For example, some
recent work modifies traditional classifiers, e.g., logistical
regression and decision trees, to include a learning objective
containing fairness constraints [33,35,53]. Post-processing
algorithms change predicted labels after a classifier has been
trained [28,45]. In other words, they do not change the input
data or the constraints of the classifier. Instead, they modify
the results of a learned classifier (the model) to guarantee fair
prediction results on different groups. In this work, we pro-
pose corrections that will take place during pre-processing.

We also want to build connections across the work done
in the statistics community and in the machine learning fair-
ness community by mapping the existing fairness work to a
more realistic data scenario. We frame fairness in the con-
text of missing values and develop correction/fixing option
to improve fairness while maintaining classifier accuracy.
We focus on input data and pre-processing fixes. Current
pre-processing fixing algorithms do not consider missing
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values and/or selection bias. Our work fills this gap. Our
approach is the first to characterize and quantify the impact
of missing values on different data sets. We then extend
the pre-processing fixing algorithm proposed by Calmon
and colleagues [14] to handle both missing observations
(selection bias) and missing values generated using different
mechanisms. The original fixing algorithm learns probabilis-
tic transformations to modify feature values and improve
fairness. It was built and validated on data sets without
missing values. We extend the algorithm by making miss-
ing values a new feature value in each non-sensitive feature,
incorporating a new weighting scheme, and adjusting the
selection process.

3 Preliminaries

This section begins with definitions and notation. We then
present two real-world data issues: missing values and selec-
tion bias, explaining how they arise and defining them using
our notation.

3.1 Definitions and notation

Let R = {ry,rp,...,r,} be the training set containing n
individual observations and r; represents the ith observation
inthe sample. Each observation contains one binary outcome,
one categorical sensitive attribute and multiple categorical
non-sensitive features. Let X = {xl, x2, ..., x”} be the set of
p non-sensitive categorical features such as education level
and state of residence that are used as features for prediction,
and let x/ = {x{ , xé ...x;} be a set of categorical feature
values for the jth non-sensitive feature in X. It can be the case
that X contains missing values. We define missing values as
an additional feature value, where xij = () if the feature
value for the jth non-sensitive feature at the ith observation
is missing. Let M = {m', m?, ..., m”} be a set of binary
mlssmg value indicators for the non-sensitive features X and
m’/ {m1 , mé mn} be the set of binary missing value
1nd1cat0rs for the jth non- sensmve feature i 1n X. We say that
m! = 1if x is missing, and m = 0if xi is not missing

i
for observatlons ie{l,2,..., n} and non-sensitive features

jef{l,2,..., p}

Let S ={s1, 52, ..., s, } be a binary sensitive attribute that
is constructed from either a binary variable, e.g., gender,
or a categorical variable, e.g., race, where s; is the sensi-
tive attribute value for the ith observation and S ¢ X. If the
sensitive attribute is categorical, it is converted to a binary
attribute with two values, privileged group and unprivileged
group. For example, our sample may have race as the sensi-
tive attribute and {White, Black, Hispanic, Asian} €
S. We convert these values into a binary attribute. We treat one
or more races as the privileged group, and all the other races

as the unprivileged group (1 vs. the rest). Hypothetically,
we may treat White and Asian as the privileged group
and Black and Hispanic as the unprivileged group in
a classifier deciding on loan approvals. There is no universal
rule on categorization—it is task-specific. 2 For the i th obser-
vation, we say s; = 0 if the observation is in the unprivileged
group and s; = 1 if the observation is in the privileged group.
Finally, in this work we make the assumption that a sensi-
tive attribute does not contain any missing values. By doing
this, we can better understand the impact of missing values
on outcomes as it relates to the sensitive attribute without
adding a confounding factor.

In this work, our classification task is binary. Our goal is
to predict labels in Y using a set of non-sensitive features. Let
Y ={y1, y2, ..., y»} and for the ith observation, y; € {4+, —}
with + be a favorable outcome such as getting approved for
a loan and — be an unfavorable outcome. Similarly, let Y
represent the predicted outcome with ¥ = {$1, 9, ..., Iu}
and y; € {4, —} is the predicted label of the ith observation.

3.2 Fairness background

Bias is prejudice in favor of or against something or someone,
usually in a way that is unfair and unfairness is different
treatment of people based on a sensitive attribute.
Formal definition of fairness From a legal perspective, many
anti-discrimination laws define unfairness using disparate
treatment and disparate impact to show unfair treatment of
people based on a sensitive attribute. Disparate treatment
is intentional discrimination based on a sensitive attribute,
whereas disparate impact is unintentional discrimination [3].
Researchers define fairness using two concepts, demo-
graphic parity and equalized odds [51]. Demographic parity
requires that the predicted label be independent of the sen-
sitive attribute. More formally, P(Y = 1|S = 0) = P(Y =
1|S = 1). Equalized odds requires that the prediction label
and the sensitive attribute are independent conditional on the
true class. That is, P(Y = 1|S = 0,Y = y) = P(Y =
11S = 1,Y = y), Vy € {—, +} [28]. It has been shown
that except in trivial cases, any practically useful classifier
satisfying equalized odds cannot be discriminatory [25].
Measurements of fairness A number of researchers have
proposed different metrics for quantifying fairness. Feld-
man et al. and Zafar et al. [23,53] propose disparate impact
(“p%-rule”) to measure fairness. This metric is closest
to the legal definition of fairness and is often used in
anti-discrimination law to quantify fairness and discrimina-
tion. Chouldechova et al. [17] propose group conditioned
fairness measures, including grouped false positive rate

2 We understand that keeping each minority class separate is also
advantageous for measuring fairness. We will explore larger domain
categorical sensitive values in future work.
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(s-FPR) and grouped false negative rate (s-FNR). These
metrics are closely connected to the notion of equalized
odds.

In this paper, we use p%-rule and error rate balance to
quantify fairness of classifiers. The p%-rule is defined as:

(PO =4IS=1 PE =45 =0)
P =+|S=0) PA =+[S=1)

The higher the value, the fairer the classifier is. Generally, if
the p%-rule is greater than 80%, or 0.8, the classifier is con-
sidered to be non-discriminatory [6]. Consider the example
of a loan approval. Suppose gender is the sensitive attribute
and getting approved for a loan is the positive outcome. The
p%-rule measures the ratio between the probability of get-
ting approved if the customer is female versus male. If the
approval rate for male applicants is significantly higher than
female applications, we can say that this classifier is discrim-
inatory based on gender.

Error rate balance is defined as balancing the false positive
rate and false negative rate across all sensitive groups. In par-
ticular, the goal is to achieve: P(I? =—|§=0,Y =y) =
P(Y =—|S=1,Y =y),Vy € {—, +}. When y = +, the
constraint equalizes the false negative rate (FNR) across two
sensitive groups. When y = —, the constraint equalizes the
false positive rate (FPR). For a fair classifier, the error rate
difference should be small across all sensitive groups. Using
our loan approval example, the false negative rate (FNR) rep-
resents the how often an applicant is qualified for the loan, but
the classifier decides that applicant is not qualified. The false
positive rate (FPR) is the rate represents the rate at which an
applicant is not qualified for a loan, but the classifier decides
the applicant is qualified. The goal of error rate balancing is
to make sure that the FPR and the FNR are similar and small.

3.3 Data issue: missing values

Missing values are very common in quantitative research
especially in survey research [1]. King and colleagues show
that approximately half of the respondents of political sci-
ence surveys do not answer all of the questions [38]. Missing
values occur at two different levels, the unit level and the
item level [19]. A unit level missing value occurs when there
is no information collected from a respondent and informa-
tion about the respondent does not appear in the training set.
If the non-response rate is different across sensitive groups,
then unit level missing values can be viewed as a type of
selection bias. An item level missing value occurs when a
respondent does not answer all of the survey questions, and
the incomplete information is represented as missing values
in the training set. In this paper, when we discuss missing val-
ues, we are discussing item level missing values. When we
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discuss selection bias, we are considering unit level miss-
ing values. The missing value problem can be described
based on different characteristics. We consider the follow-
ing characteristics since they are prevalent in the literature:
the proportion of missing values, the missing value mecha-
nisms, and the patterns of missing values [19].

Proportion of missing values The proportion of missing
values can affect the quality of the statistical analysis and
prediction output. Schafer and colleagues [48] and Bennett
and colleagues [5] suggest that statistical analysis is likely to
be biased if the percentage of missing values is more than 5%
to 10%. Let U = {uy, ua, ..., u,} be a binary variable indi-
cating whether an observation contains one or more missing
values. Recall M is the set of binary missing value indicators
in X and m/ = {m{, mé ...mj}} is the set of binary miss-
ing value indicators for the jth non-sensitive feature in X.
We say that m! = 1if x] is missing, and m] = 0 if x] is
not missing. For the ith observation, u; = 0 if there are no
missing values for any of the variables in this observation,
ie,m! =m? = ... =ml =0, and u; = 1if the equality
does not hold. We define the proportion of missing values in
a data set as follows: A = @, where n is the number of
observations.

Missing value mechanisms To understand different missing
value mechanisms, we partition the training set R into two
subsets: the observed data, R,s, and the missing data, Ry,
where R = (Ryps, Ryyis). Previous work has defined three
classes of generative mechanisms for missing values: missing
at random (MAR), missing completely at random (MCAR),
and missing not at random (MNAR) [47]. With MAR, the
probabilities of missing values given the data set R depend

only on observed data (R,ps) [19]:
P(M|R) = P(M|Robs, Rmis) = P(M|Robs)

For example, suppose we are given a training data set with one
binary outcome, one binary sensitive attribute and three cate-
gorical non-sensitive attributes. Suppose education level is a
categorical non-sensitive feature containing missing values.
If the probabilities of missing values in the education level
depend only on observed data, i.e., the sensitive attribute and
the other two non-sensitive features, then those missing val-
ues are under MAR. With MAR, the proportion of missing
values can vary across different categories of sensitive values
as long as the probability of the missing values in the non-
sensitive categorical feature (education level) depends only
on observed data.

MCAR is a special case of MAR in which the probabil-
ities of missing values depend neither on the observed data
(Ryps) nor the missing data (R,;,;5) [19]. With MCAR, miss-
ing values are completely randomly distributed:

PM[R) = P(M[Rps, Rpis) = P(M)
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The last missing value mechanism is MNAR. It occurs
when the probability of a missing value depends on both the
observed values and the missing values themselves [19]:

P(M|R) = P(M|R0b51 Rmis) 5’é P(MlRobs)

Using our education example, suppose the missing val-
ues in education level depend on the education level of the
respondents. For example, respondents with a lower educa-
tion level are less likely to disclose their information than
respondents with a higher education level. We would say
that those missing values are under MNAR.

With MAR and MNAR, there are multiple methods for fill-

ing missing values, the most popular of which is imputation
[40]. There are no established methods for filling in missing
data under MNAR, but Jakobsen and colleagues show that
it is possible to fill missing data under MNAR with sensi-
tivity analyses [30]. It can also be difficult to determine the
missing value mechanism for a data set. It is possible to use
Little’s multivariate test [41] to determine the MCAR mech-
anism. However, the MAR and MNAR mechanisms cannot
be distinguished using observed data [15,29].
Patterns of missing values Missing values can also be char-
acterized based on the types of patterns they form. There
are three patterns of missing values identified in the litera-
ture: univariate (multivariate), monotone, and arbitrary [48].
The univariate missing value pattern occurs if only one fea-
ture in the data contains missing values.®> The monotone
missing value pattern occurs when x/ is missing, and x/*1,
x/*2 . xP are also missing. It typically arises during lon-
gitudinal studies if respondents drop out during the study
period. Finally, the arbitrary missing value pattern is the most
general pattern in which any set of variables may be missing
from any observation in the data. For example, there may
exist missing values in the outcome variable Y and/or in the
sensitive attribute S. In this paper, we focus on the impact of
missing values within non-sensitive features. Therefore, we
do not consider missing values in Y and S, but instead only
consider missing values in non-sensitive features X that have
a univariate missing value pattern.

3.4 Dataissue: selection bias

Selection bias occurs if observations from some groups in
the sample are oversampled and others are undersampled. In
this case, some groups are over represented and others are
under represented. If we build a classifier using the biased
data, the model would be biased toward some groups of users.
Kamiran et al. explain that if a data set is unbiased, i.e., sen-

3 Some researchers define the univariate missing value pattern slight
differently, allowing for one or more features in the data to contain
missing values [19].

sitive attribute S and outcome Y are statically independent,
we have [32]:

Pexp(SZS:YZY)ZP(SZS)XP(Y:)’),
s€{0,1},y € {—, +}

Pexp(s, y) is the probability of the sample distribution given
statistical independence.

Selection bias can be caused by many types of sampling
bias such as representation bias, population bias, and non-
response bias. Table 1 summarizes each type of selection
bias.

To quantify the severity of selection bias, we define bias,
B as follows:

RS =5,Y=y)| - |[ERS =5,Y =y)I|
B=2.2. ,
seS yeY

VS =1{0,1}, Y = {—, +}

where |R(s, y)| is actual number of observations with sensi-
tive attribute S = s and outcome Y = y and |E(R(s, y))| is
the expected number of observations given statistical inde-
pendence, |E(R(s, y))| = Pexp(S =5,Y = y) xn. We take
the absolute value of the difference between the expected
number of observations and the actual number of observa-
tions in each group. With this metric, § = 0 if there is no
selection bias and 1 if the data are extremely biased, i.e., the
dataset contains only observations from one sensitive group
and the individuals in the group have the same outcome.

4 Proposed fixing method

In this section, we present algorithms to mitigate the negative
effects of missing values and selection bias on fairness. Our
approach is to adapt strategies that have been used in other
contexts to our scenario. We use the fairness fixing algo-
rithm by Calmon et al. [14] as a starting point. This algorithm
learns a probabilistic transformation to change feature values
labels in the data to control discrimination. While this algo-
rithm was developed with categorical data in mind, it does
not account for missing values and selection bias. We adjust
the transform to incorporate new reweighting and resampling
schemes depending on the specific data characteristics.

4.1 Fixing biased missing values through
reweighting

Our approach for addressing biases caused by missing values
is to weight observations based on whether or not they con-
tain missing values. When training our classifier, we assign
a class weight that is determined by the imbalance in the

@ Springer
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Table 1 Definition and examples of different types of selection bias

Sampling bias Definition

Example

Representation bias

The sample is collected from a small group and people
in this group may share certain characteristics

Can result from convenience sampling: a
group that is easier to get information from

that are not representative of the population of interest

Population bias

Sample lacks diversity such as demographic diversity
and geographical diversity, and therefore, the

The demographics of a social media sample
does not generalize to the US population

sample does not represent the overall population

Non-response bias

other groups

It occurs when a group of respondents has
a significantly lower response rate than

Optional surveys to employees may be
completed by those who have more time

data. Class weights of most classifiers are based on the fre-
quencies of feature values. We use this idea to address the
missing value problem. We want the classifier to learn more
information from observations that do not contain missing
values than observations containing missing values. Thus,
we assign a higher weight to observations without missing
values and a lower weight to observations with missing val-
ues so as to oversample higher quality observations. Let W =
{wy, wa, ..., w,} represent weights for observations, where
w; is the weight for the ith observation. We assign weights
as follows:

P(S=si,Y=yi,U=0) .c
Pls=s 7=y Hui=1
w; =
P(S=s;,Y=yi)
P(S=s;,Y=y;,U=0)

ifu; =0
Recall that S represents the sensitive attribute, Y represents
the outcome variable, and U represents a missing value indi-
cator. We see that the weight difference between missing
and non-missing observations depends on the proportion of
missing values in each sensitive group and on the outcome.
In groups with a larger fraction of missing values, the weight
for observations containing missing values is much smaller
than the weight for observations with no missing values. In
groups with a small proportion of missing values, weights are
similar for observations with and without missing values.
Table 2 shows examples of the distribution of missing val-
ues and the weights for each observation with and without
missing values in each group. Looking at the unprivileged
group with a positive outcome, we see that the total number
of observations in this group is 1500 and number of obser-
vations with missing values in this group is 600. With our
weight formula, the weight for observations with missing val-
ues is % = (0.6 and the weight for observations without
missing values is % = 1.67. The low weight for the
observations with missing values means that these observa-
tions have a lower quality. Looking at the other rows in the
table, we see that those observations with missing values all
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have a higher quality than the first row. We will evaluate the
merits of this weighting scheme in Sect. 7.

4.2 Fixing selection bias using resampling

As previously mentioned, selection bias exists when some
groups are oversampled and others are undersampled. When
we have oversampled groups, we want to remove some obser-
vations. When we have undersampled groups, we want to
add some observations. Researchers have shown that uni-
form resampling is a simple method to solve selection bias
[32,39].# Algorithm 1 shows our approach for fixing selec-
tion bias with uniform resampling. The input to the algorithm
is the set of observations R, the sensitive attributes S, and the
output labels Y. The output of the algorithm is R’, our trans-
formed data set after resampling. For each sensitive group and
outcome, |R(s, y)| represents the actual number of observa-
tions in the training data and |E(R(s, y))| is the expected
number of observations given statistical independence. In
the oversampled groups, we want to uniformly resample
|IR(s, y)|, and randomly drop these observations to reach the
expected number of observations in that group (lines 3-5).
In particular, the number of observations that needs to be
dropped is equal to [R(s, y)| — |[E(R(s, y))|. In the case of
undersampled groups, we use bootstrapping, i.e., sampling
with replacement, to increase the number of observations
by randomly adding some repeated observations (lines 5-7).
We bootstrap |E(R(s, y))| — |[R(s, y)| number of observa-
tions from R(s, y) and append them to the original training
data. We pause to mention that our resampling algorithm
can only fix selection bias that violates the statistical inde-
pendence between the sensitive attribute and the outcome
mentioned in Sect.3.4. This algorithm cannot fix selection
bias that requires external knowledge to identify. For exam-

4 Instead of uniform resampling, we could extract contextual informa-
tion from data and perform data augmentation based on the contextual
information. Because of the potential bias introduced when doing this
with categorical data, we leave that for future work.
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Table 2 Distribution of missing values and weights

Sensitive group Outcome Total number of Number of miss- Weight on miss- Weight on non-
observations ing observations ing observations missing observa-
tions
Unprivileged Positive 1500 600 0.6 1.67
Unprivileged Negative 2500 250 0.9 1.11
Privileged Positive 3000 500 0.83 1.2
Privileged Negative 2000 400 0.8 1.25

ple, implicit bias due to policing interventions [9] may not
be noticeable statistically if it is not more systemic.

Algorithm 1: Fixing selection bias

Input: R, S, Y
Output: R’
1 initialize R" = @ for s € S do
2 for y € Y do
3 if | E(R(s,y)) |<| R(s, y) | then
4 | R =random_drop(R(s, y)) append R to R’
5 else
6 \ R =bootstrap(R(s, y)) append R to R’
7 end
8 end
9 end
10 return R’

4.3 Fixing both selection bias and missing values

When both missing values and selection bias occur in the
training data, we want to fix both problems by combining
the fix algorithms proposed for missing values and selec-
tion bias. Because the impact of missing values on fairness
differs depending upon the mechanism, we propose two dif-
ferent fixing algorithms, each specific to a particular missing
value mechanism. Figure 1 shows the flowchart for our fix-
ing algorithms when both selection bias and missing values
are present in the data set. First, we need to determine the
missing value mechanism. If the missing values are under
MAR, including MCAR, we use stratified resampling then
reweighting. If the missing values are under MNAR, we use
uniform resampling then reweighting. If the missing value
mechanism is unknown, we treat it as MNAR and use uni-
form resampling then reweighting.

Algorithm 2 shows the high level fixing algorithm. The
input into the algorithm is the set of observations R, the sen-
sitive attribute S, and the output label Y. The output of the
algorithm is R/, our transformed data set after resampling
and W, the weights after reweighting.

Stratified resampling and reweight Kamiran and Calders sug-
gest preferential resampling, which focuses on observations

Missing value mechanism

MAR (including MCAR)

Uniform resampling

Stratified resampling

Reweighting

Reweighting

|

Fig. 1 Flowchart of our fixing algorithm with both selection bias and
missing values

that are more influential to decision making such as data
points on the support vectors using SVM [32]. When miss-
ing values are under MAR, we want to fix selection bias using
stratified resampling. In groups that are undersampled, unlike
uniform resampling from the previous section, we sample
with replacement from observations without missing values,
i.e., we only choose observations from R, (s, y) = {rj|u; =
0,s; =s,yi = y}fori € {1,2,...,n},s € {0,1},y €
{+, —} and add them to the original training data. In groups
that are oversampled, we randomly drop some observations
to reach the optimal number of observations. With stratified
resampling, we can reduce the proportion of missing values
and then apply our reweighting algorithm based on the num-
ber of missing values in each group in the training data after
resampling.

Uniform resampling and reweight When missing values are
under MNAR, the missing value distribution is biased. If
we use stratified resampling, we are adding more bias into
the training data. Therefore, with MNAR, in groups that are
undersampled, we sample with replacement from all obser-
vations, i.e., uniform resampling. With uniform resampling,
the proportion of missing values in the resampled data would
remain constant, but uniform resampling can mitigate the
negative effects caused by selection bias. Then, to mitigate
missing value issues, we calculate weights as we show in
Sect.4.1 (Algorithm 2: lines 15-20).
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Table 3 Accuracy, F1 score and fairness measures with different types of missing values on synthetic data

No missing MCAR MAR MNAR

Accuracy 0.758 (0.012) 0.755 (0.013) 0.756 (0.014) 0.759 (0.018)
F1 score 0.738 (0.016) 0.734 (0.021) 0.736 (0.017) 0.739 (0.017)
pYo-rule 0.903 (0.09) 0.894 (0.011) 0.749 (0.019) 0.658 (0.02)
FNR for female 0.308 (0.01) 0.302 (0.009) 0.325 (0.012) 0.353 (0.019)
FPR for female 0.375 (0.012) 0.378 (0.011) 0.326 (0.01) 0.312 (0.017)
FNR for male 0.264 (0.008) 0.273 (0.009) 0.246 (0.007) 0.221 (0.007)
FPR for male 0.457 (0.015) 0.448 (0.013) 0.465 (0.016) 0.506 (0.019)
Number of missing values 0 1295 1302 1304
Proportion of missing values 0 0.21 0.212 0.212

Table 4 Distribution of training sets for selection bias

Sensitive value Outcome Balanced set Bias level 1 Bias level 2
Female Positive 1524 1300 1070
Female Negative 1475 1700 1920

Male Positive 1018 1170 1320

Male Negative 983 830 690

Total 5000 5000 5000

Bias g 0 0.151 0.299

Algorithm 2: Fixing selection bias and missing values
Input: (R, S,7Y)
Output: R’ and W
initialize R" = ¥ A = missing value mechanism for s € S do
for y € Y do
if | E(R(s, y)) |<| R(s, y) | then
| R =random_drop(R(s, y)) append R to R’
end
if | E(R(s, ) |>| R(s, y) | then
if A = MNAR then
| R =bootstrap(R(s, y)) append R to R’
else
\ R = bootstrap(R(s, y, U = 0)) append R to R’
end
end
end
end
fori € {1,2,...,n}do
if u;=0 then

[R(S=si.Y=yi)|
[R(S=s;,Y=y;,U=0)|

- 7 I R I S I

=
R o= S

— e e e
N e Ww

-

else

—
®

‘ w; = |R(S=s;,Y=y;,U=0)|
! [R(S=si,Y=yi)I

-
°

end
end
22 return R, W

%)
S

5
[
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5 Building intuition using synthetic data
examples

In order to build some intuition about the impact of miss-
ing values and selection bias on fairness, we setup some
simple experiments on synthetic data® that vary the distri-
bution and the proportion of missing values, as well as the
amount of selection bias. We use logistical regression to pre-
dict labels using all the non-sensitive features, and we use
the p%-rule and error rate balance to measure fairness of the
classifier.

All the data sets for this simple experiment contain four
categorical non-sensitive features, one outcome, and one sen-
sitive group. The outcome variable has two values, — and
+. As an example, a positive outcome may indicate getting
approved for a loan. A sensitive attribute may be gender with
two values, male and female, and male may be consid-
ered the privileged group, i.e., men are more likely to a get
positive outcome than women. In this experiment, we do not
want to discriminate based on gender.

Missing values To illustrate the effect of missing values, we
choose a non-sensitive feature and remove some of the exist-
ing feature values, making them missing values. We build
four data sets: (1) one without missing values (this serves
as our best case in terms of classification accuracy and fair-
ness), (2) one with missing values under MCAR, (3) one with

3> We will present how we create synthetic data in Sect.6.1.
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missing values under MAR, and (4) one with missing values
under MNAR. We build our machine learning models using
5000 observations and evaluate the models using five fold
cross-validation. All four data sets with missing data have
a similar number of missing values, approximately 20% of
total number of observations.°

Table 3 shows the average and standard error (in parenthe-
ses) for accuracy, F1 score, and the fairness measures (rows)
for all four data sets (columns). From the results, we see that
different mechanisms for generating missing values have dif-
ferent impacts on the F1 score and the fairness measures. In
terms of prediction accuracy/F1 score, they are similar to
the best case, i.e., no missing values. All three mechanisms
have less than a 1% change in accuracy and F1 score. In
contrast, the missing values, especially MAR and MNAR
have a larger impact on fairness. Fairness using the p%-rule
decreases by less than 1% for MCAR, approximately 15%
for MAR and almost 25% for MNAR. The false negative rate
(FNR) increases and false positive rate (FPR) decreases for
the minority class (females), particularly for missing values
under MNAR. On the other hand, FPR increases and FNR
decreases for the majority class (males). The differences in
the error rate between the majority class and the minority
class are larger for missing values under MAR and MNAR,
especially for MNAR. This example highlights the impor-
tance of understanding the generative process of the missing
values when trying to understand the impact of missing val-
ues on the fairness of the machine learning classifiers.
Selection bias To illustrate the effect of selection bias, we
construct three synthetic data sets: 1) one without selection
bias (Balanced), 2) one with relatively little selection bias
(Bias Level 1), and 3) one with more bias (Bias Level 2).”
All three data sets contain 5000 observations. We use each of
them to train a logistic regression model. We then evaluate
each model on three test sets containing 1000 observations
that have the same three bias levels as the training sets.

Table 4 shows the distribution of the sensitive attribute for
the three data sets. In the balanced data set, the number of
positive and negative cases for each class value is similar.
No subgroup is undersampled or oversampled. In the Bias
Level 1 data set, all the groups are slightly oversampled or
undersampled, between 3% and 5%. In the Bias Level 2 data
set, some groups such as females with a negative outcome
are oversampled at a high rate, approximately 15% higher,
and other groups such as females with positive outcome are
undersampled at a rate that is approximately 15% lower. We

© We use 20% here to create an example showing how missing values
can affect fairness. This example is to build intuition. Our full empirical
analysis is presented in Sect.7.

7 We chose these three bias levels as an example to show how selec-
tion can affect fairness. A complete empirical analysis is presented in
Sect.7.2.

can see that this leads to a bias of 0.151 for the Level 1 data
set and 0.299 for the Level 2 data set.

Table 5 shows the average value and standard error of clas-
sification accuracy, F1 score, and fairness measures for the
three data sets. The accuracy and F1 scores across the three
data sets are about the same, within a percent of each other.
In the balanced data set, the p%-rule is highest and the error
rates between male and female classes are the most balanced.
In the Bias Level 1 data set (the less biased data set), the fair-
ness measures are a little worse than the balanced set. For
example, the p%-rule is 15% lower. In the Bias Level 2 data
set (the more biased data set), the fairness measures are sub-
stantially worse. Here, the p%-rule is close to 40x lower. All
three data sets contain the same number of observations. The
only difference is the distribution of the observations across
different groups. We see that the different amounts of selec-
tion bias lead to similar classification accuracy. However, the
impact on fairness differs substantially.

In general, these simple experiments illustrate that selec-
tion bias and missing values should not be ignored when
analyzing fairness.

6 Experiment setup

In this section, we describe our experimental setup. We begin
by presenting the details of our data sets, both real world and
synthetic. We then present our evaluation measures for both
learning and fairness.

6.1 Data set

COMPAS data set The COMPAS recidivism risk data set
[31] contains 7214 observations with 14 continuous and cat-
egorical features. For our experiments, the goal is to predict
whether the individual recidivated. If an individual is not
recidivated, we label that as a positive outcome. If an indi-
vidual is recidivated, we label that as a negative outcome.
This data set contains 3963 observations with the positive
outcome and 3251 observations with the negative label. Race
is the sensitive attribute, with black as the unprivileged group
and non-black as privileged group. Non-sensitive categorical
features include age (binned into three age groups, less than
25, 25-45, greater than 45), the number of prior crimes, the
COMPAS score, and the severity of the charge.

Adult data set The UCI Adult data set [20] contains 48,842
observations with 15 features. For our experiments, the goal
is to predict whether an individual has an income greater than
$50,000 per year. This data set is more imbalanced than the
COMPAS data since there are 11,687 observations with a
positive outcome and 37,155 with a negative outcome. Gen-
der is the sensitive attribute with male as the privileged group
and female as the unprivileged group. Non-sensitive categor-
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Table 5 Accuracy, F1 score, and fairness measures using training sets with different level of selection bias (8)

Balanced set

Bias level 1 Bias level 2

Accuracy 0.768 (0.015)
F1 score 0.764 (0.015)
p%-rule 0.914 (0.018)
FNR for female 0.367 (0.02)

FPR for female 0.298 (0.017)
FNR for male 0.259 (0.019)
FPR for male 0.437 (0.025)

0.77 (0.015) 0.771 (0.016)
0.762 (0.014) 0.769 (0.018)
0.778 (0.021) 0.541 (0.029)
0.423 (0.025) 0.466 (0.028)
0.269 (0.024) 0.209 (0.016)
0.239 (0.021) 0.199 (0.023)
0.468 (0.024) 0.504 (0.029)

ical features include age (binned into decades) and education
level. In the adult data set, about 6% of the observations con-
tain missing values across three features. In our experiment,
none of our sensitive and non-sensitive categorical features
contains missing values.

Synthetic data set Our synthetic data generator has a num-
ber of parameters we can adjust including: (1) the number of
non-sensitive features, (2) the number of observations (3) the
correlation between non-sensitive features and the outcome
variable, the sensitive attribute, and the other non-sensitive
features, (4) the binning strategy (equal frequency, equal
width, etc.), (5) the number of bins, (6) the bias level of the
selection bias, (7) the proportion of missing values, and (8)
the missing value mechanism (MAR, MNAR, or MCAR).
As an example, Table 6 shows different synthetic data sets
in which the number of bins and the proportion of missing
values are varied, and the other parameters are kept constant.
Details about parameters of the synthetic data are provided
in Appendix A. Table 6 shows the average p%-rule scores on
the synthetic data sets using five fold cross-validation. We
only report the average p%-rule score from the five fold CV
because the standard error is very small (within 0.02) across
all the different settings. We can see that when the number
of bins is four, the data fit the best, i.e., they are the least
sensitive. The synthetic data we create here contain 20,000
observations with 10,000 positive outcome labels and 10,000
negative outcome labels. (Details about the distribution are
provided in Appendix A.) This data set allows us to control
the properties of the data more than we can with the real-
world data sets.

6.2 Evaluation method

Missing values We use five fold cross-validation to evaluate
the performance of our classifiers trained on data sets with
missing values. We first generate missing values with differ-
ent missing value mechanisms and proportions of missing
values on the original data sets. We then randomly shuffle
the missing values and perform cross-validation. In the first
fold, we take the first 20% of the shuffled data set as test set
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and the rest as training set. We then run the fix algorithm and
train the classifiers, again, using five fold cross-validation.
We validate the classifiers on the test set to obtain the accu-
racy, Fl-score, and fairness measures.

Selection bias We use a slightly different approach for cross-
validation for these experiments. First, we randomly shuffle
the original data set. Then, in the first fold, we take the first
20% of data as the test set and the rest (80%) as the training
set. In this task, because we want to measure how different
bias levels can affect fairness, we need to manipulate the
training data to simulate selection bias. To do so, for each bias
level, we use the training set as a seed to generate multiple
training data sets. With the seed training data, we randomly
drop some observations in each group until the desired bias
level is reached. We use the same procedure to generate the
test data sets of different bias levels. Then, using each training
set, we train a classifier and we validate the classifier on all
the test sets with varying levels of bias. In the second fold,
we take the next 20% as the test set seed and the rest as the
training set seed. We then use the seeds to generate training
and test data sets and we repeat this for each fold.

7 Experiment

In this section, we begin by investigating the impact of miss-
ing values and selection bias on both accuracy and fairness
as the levels of missing values and selection bias change.
We then apply our fairness fixing algorithm to assess the
improvement in terms of fairness and the impact on accuracy
and F1-score. We conduct our empirical evaluation using cat-
egorical data from the COMPAS recidivism risk data set, the
UCIT Adult data set, and a synthetic data set as described
in Sect.6.1. We add an additional feature to Calmon et al.
that captures the missing values [14]. We then implement
our approach for calculating the weighting and sampling
schemes, using this adjusted data to train the classifier. We
make all of our code available for further research in this
area. For all of the experiments, we use the fixed data to
train a logistic regression classifier and compute the accuracy,
F1-score, and the fairness measures disparate impact (“p%-
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Table 6 p%-rule score on synthetic data sets with a varying number of bins and a varying proportion of missing values

Number of bins A=0 A = 0.05 A =01 A =0.15 A =02 A =0.25
2 0.496 0.488 0.473 0.487 0.473 0.468
3 0.846 0.838 0.778 0.818 0.804 0.788
4 0.904 0.859 0.814 0.764 0.748 0.717
5 0.842 0.809 0.68 0.599 0.567 0.592
6 0.782 0.698 0.655 0.677 0.703 0.679

rule”) and error rate balance using five fold cross-validation
(see Sect. 6).

This section is organized as follows. We begin by pre-
senting our empirical evaluation for data containing varying
levels of missing values, then data containing different
amounts of selection bias, and lastly, data containing both
missing values and selection bias.

7.1 Missing values and fairness

For this set of experiments, we analyze the impact of dif-
ferent proportions and mechanisms of missing values in each
of our data sets. We consider all three missing value mecha-
nisms: MAR, MCAR, and MNAR. Figure 2 shows accuracy,
F1 score, and fairness measures for each data set, where each
row shows results for a different data set. Going from left
to right, the subfigures show accuracy and F1 score, p%-
rule, false negative rate (FNR), and false positive rate (FPR).
Unlike Sect.5 where we set proportion of missing values to
20% (A = 0.2) to build the intuition, in this section, we try
multiple values for A. For all subfigures, the x-axis shows
the proportion of missing values and the y-axis shows the
score being measured. Each line in the figure shows a differ-
ent missing value mechanism (blue = MAR, red = MCAR,
green = MNAR). As we mentioned in Sect.6, we use five
fold CV for evaluation and we obtain one set of measure-
ments for each test set. In this figure, because the standard
error is very small across all folds (within 0.01-0.02 for accu-
racy and F1 score, within 0.02 for p%-rule and error rates),
each line represents average value across all measurements
in all five folds.

In each data set, the F1 score is lower than the accuracy
because each data set is imbalanced. In the COMPAS and
synthetic data sets, the number of observations with a posi-
tive outcome is higher than the number of observations with
a negative outcome (about 10% more). In the adult data set,
the distribution is much more imbalanced with the number of
observations having a positive outcome occurring three times
more often than the number of observations with a negative
outcome. Across all three missing value mechanisms, accu-
racy scores and F1 scores decrease as proportion of missing
values increases. In general, the accuracy and F1 score of

the classifiers remain fairly consistent across missing value
mechanisms when the proportion of missing values is less
than 20%. In terms of fairness, for missing values under
MCAR the p%-rule and error rates are fairly consistent as the
proportion of missing values increases. This is not surprising
since with MCAR missing values are uniformly randomly
distributed in the data set, and therefore, the missing values
do not introduce bias.

With the MNAR missing value mechanism, as the pro-
portion of missing values grows, the i%-rule gets smaller
and the error rate differences between the privileged group
and unprivileged group get larger. Unlike MCAR, MNAR
does introduce bias into the data set. Thus, MNAR has a sig-
nificantly larger impact on fairness than MCAR, with a drop
in p%-rule of 15-32% depending upon the data set. It is also
interesting to see the impact of the false negative rate on the
underprivileged group—it is higher across all proportions
of missing values and the gap widens as the proportion of
missing values increases. With the MAR missing value mech-
anism, the impact on fairness measures is in between that of
MCAR and MNAR. In this case, missing values depend on
the observed data. Therefore, it is possible that more miss-
ing values exist in one sensitive group when compared to the
other, meaning that the missing values become proxies for the
sensitive attribute. Our results are consistent with previous
studies in the statistical community about missing values. For
example, Dong et al. suggest that MCAR is less of a threat
to statistical inferences than MAR or MNAR, and MNAR is
the largest threat [19].

Effectiveness of Reweighting on MAR and MNAR We now
evaluate the effectiveness of our fixing algorithms on miss-
ing values under MAR and MNAR. Recall, that our fixing
algorithm assigns a higher weight to observations without
missing values and a lower weight to observations with miss-
ing values so that the classifier can learn more information
from observations without missing value. Because MCAR
has very little impact on fairness, we only evaluate our fixing
algorithm on MNAR and MAR missing value mechanisms.
Figure 3 shows the accuracy score and fairness measures
before and after reweighting on MAR distributed missing
values, and Fig.4 shows the accuracy score and fairness
measures before and after reweighting on MNAR distributed
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Fig.2 Accuracy, F1 score, and fairness measures across missing value mechanisms

missing values. In both figures, the subfigures have the same
x and y axes as Fig.2. In both figures, we report the average
of measurements from cross-validation because the standard
error is very small (within 0.02 for all metrics). The blue line
represents the non-fixed results, and the red line represents
the fixed results using reweighting.

For MAR, we see that our reweighting algorithm is effec-
tive when the proportion of missing values is greater than
5-10%. In those cases, we can see a 5% to 20% improve-
ment in fairness on the real-world data sets and synthetic
data with little decrease in accuracy and F1 score (less than
a 4% decrease). The impact on fairness is larger for all the
data sets if the missing values are generated from the MNAR
mechanism. This is not surprising given that it is correcting
a larger bias. In all figures, we can see a trade-off between
fairness and performance. For example in Fig. 3, in the sub-
figures showing accuracy and F1 score, the blue lines are
higher than the red lines for a trade off in fairness scores.
The trade-off is relatively smaller in the COMPAS and syn-
thetic data than the trade off in the adult data. In the COMPAS
data, when the proportion of missing values is between 10 and
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25%, the p%-rule scores after reweighting are higher than the
p%-rule without missing values (about 3% increase). Such
improvement comes with a trade-off in performance that both
accuracy and F1 score are lower when the proportion of miss-
ing values is between 10 and 25% (about 4% decrease in F1
score from 0.65 to 0.61 and about 3% decrease in accuracy
from 0.695 to 0.665).

7.2 Selection bias

In the previous section, we mentioned that selection bias
happens when some groups in the sample are oversampled
or undersampled, i.e., sensitive attributes and outcomes are
not sampled independently. In this subsection, we investigate
how selection bias impacts fairness and analyze how well our
proposed resampling fixing algorithm mitigates the negative
effect of selection bias.

In each data set, we use the five fold cross-validation eval-
uation method described in Sect. 6. Similar to missing values,
we report average value of measurements from the cross val-
idation because the standard error is small for each metric
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Fig.3 Accuracy, F1 score, and fairness measures with MAR before and after reweighting

(within 0.02 for accuracy and F1 score, 0.03 for p%-rule and
0.02 for error rates). Figure 5 shows the accuracy, F1 score,
and fairness measures for different level of selection bias on
the test sets. The x-axis shows the level of selection bias,
and the y-axes show the accuracy with F1 score and fairness
measures. The blue line represents the results before using
our fix algorithm, and the red line represents the results after
using our fix algorithm. Across three data sets, the accuracy
and F1 scores are fairly consistent with less than a 2% change
across different levels of selection bias. On the other hand, the
fairness measures, including the p%-rule and the error rate
balance, decrease as the amount of selection bias increases.
The improvement of our fixing algorithm is over 40% when
the selection bias is over 20%. Such improvement can be
explained by the balance of the training data. Imbalanced
training data can have significant impacts on fairness. For
example, Buolamwini and colleagues [11] show that some
facial recognition algorithms result in gender and race bias,
e.g., darker-skinned females have significantly lower accu-
racy than others because the data used to train the algorithms

contain fewer samples for some demographic groups. Our
resampling algorithm can mitigate these types of biases in the
training data. This result shows that it is possible to maintain
similar F1 scores and accuracy levels as that of the biased
data even after the bias has been reduced.

7.3 Selection bias and missing values

In the previous two subsections, we discussed the impact of
missing values and selection bias individually. In this subsec-
tion, we want to consider both real-world data issues together
to understand how fairness is affected when both issues occur
simultaneously. We then evaluate the effectiveness of our fix-
ing algorithms for improving fairness in this situation.

For ease of exposition, we focus this evaluation on the
COMPAS data set. While we do not present the results from
the other data sets, they are comparable to the results we
show for the COMPAS data set. We present two different
experiments. In the first experiment, the bias level is con-
stant, and we vary the proportion of missing values. In the

@ Springer



International Journal of Data Science and Analytics

COMPAS Data with MNAR

Accuracy and F1 score P%-rule FNR FPR
0.80 0.95 0.7 0.6
0.75 0.90 06 os{
o T )
So70d | eo0s{ L meme=ss T N e ————
s 0.85 ===z
807 \ g i )
- 0,80 g
% 065{ mmmmmn 9 <
9 e cmnamss—m===——==: 3 g 04 0.3
g | T Eemmesemey % 075 =
§ 0.60 §
& 070 03 0.2
0.55 i @zZZIT70TT
0.65 0.2 = 0.1
0.50
000 005 010 015 020 025 000 005 010 015 020 025 000 005 010 015 020 025 000 005 010 015 020 025
Proportion of Missing Values Proportion of Missing Values Proportion of Missing Values Proportion of Missing Values
Adult Data with MNAR
Accuracy and F1 score P%-rule FNR FPR
0.80 0.95 0.7 0.6
o N 0.90 E i
g
H - 0.85
gomw .. £ gos 0.4
SR, . 00 | Bl  RTSw e T smaamges ===zl
g SS=sall @ 080 g | L ase=smooEATeNESSs..
3065 SIS ommmm-- 2 r SEaES S
12 L L 2 S 0.4+ 03
g 2075 =
§ 0.60 g
= 0.70 03 0.2
0.55
0.65 0.2 01
0.50
000 005 010 015 020 025 000 005 010 015 020 025 000 005 010 015 020 025 000 005 010 015 020 025
Proportion of Missing Values Proportion of Missing Values Proportion of Missing Values Proportion of Missing Values
Synthetic Data with MNAR
Accuracy and F1 score P%-rule FNR FPR
0.80 0.95 0.7 0.6
0.90 .
LE, PO — mmmmmms======= .8 05 Same e
¢ o —mmmmzzscosmese=e"
o o 0.
g o0 5 805 0.4
g @ 0.80 &
% 065 2 5
F H S04 0.3
g & 075 &
§ 0.60 g
< 0.70 b (. - o2
0.55 SS===ssaae,
0.65 0.2 0.1
0.50
000 005 010 015 020 025 000 005 010 015 020 025 000 005 010 015 020 025 000 005 010 015 020 025
Proportion of Missing Values Proportion of Missing Values Proportion of Missing Values Proportion of Missing Values
—_ %-rule without ig —_ %-rule with reweight —— Unprivileged group without reweight —— Unprivileged group with reweight

== F1 score without reweight == F1 score with reweight

ged group without g -- ged group with

Fig.4 Accuracy, F1 score, and fairness measures with MNAR before and after reweighting

second experiment, we keep the proportion of missing values
constant and vary the level of selection bias. In each experi-
ment, we consider two missing value mechanisms: MAR and
MNAR. We choose not to include MCAR because in Fig.2
we have shown that with MCAR, the fairness measures and
performance measures do not change much across various
proportion of missing values. Also in theory, missing values
under MCAR do not introduce any bias and the only negative
effect of MCAR is the reduction in sample size. We expect
that with both selection bias and MCAR missing values, the
fairness and performance measures will be the same as the
case with only selection bias. Our evaluation uses the same
cross-validation technique as the selection bias experiments
with one difference. At the beginning of the process, before
shuffling, we create missing values with different missing
value mechanisms and proportions.

Figure 6 shows the accuracy, F1 score, and fairness mea-
sures with selection bias and MNAR missing values using
COMPAS data. Similar to figures presented in the previous
sections, we show the average values. For these experiments,

@ Springer

the standard errors are within 0.03 for all metrics. In the top
four figures, we keep the selection bias level constant and
vary the proportion of missing values. In the bottom four
figures, we keep the proportion of missing values constant
and vary the level of selection bias. The blue line shows the
results when the fixing algorithm is not applied. The red line
shows the results when the fixing algorithm is applied. In
this figure, we see similar results to those presented when we
investigated missing values and selection bias individually
in Sects. 7.1 and 7.2 . The figure shows that the proportion
of missing values and the selection bias level can both neg-
atively affect fairness. We see that there is an improvement
in fairness of over 35% when the fixing algorithm is applied,
while the accuracy and F1 score decreases by less than 3%.
Once again, we see a large payoff in terms of fairness with
very little impact on the performance of the classifier.
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Fig.5 Accuracy, F1 score, and fairness measures with selection bias before and after resampling

7.4 Effectiveness of uniform resampling and
stratified resampling

In Sect 4.3, we compare the different resampling strategies—
uniform resampling and stratified resampling when there are
missing values. If the missing values are under MNAR, we
choose to use uniform resampling to avoid adding more bias
from the biased missing values. If the missing values are
under MAR, we choose to use stratified resampling where
we only resample from observations without missing values
to reduce the proportion of missing values.

As we discuss in Sect. 3.3, there is no existing method to
determine whether missing values are under MAR or MNAR.
If the distribution of missing values is unknown, the best
strategy is to treat the mechanism as MNAR and use uniform
resampling. In Fig. 6, the red line shows the accuracy and
fairness measures with MNAR missing values after applying
uniform resampling and reweighting. The accuracy scores
decrease a little as the bias increases, but the fairness mea-
sures improve significantly, over 35%. In Fig. 7, the red line

shows the accuracy and fairness measures when the miss-
ing values are distributed as MAR after applying uniform
resampling and reweighting. In this case, we do not know
the distribution of missing values. The green line shows the
accuracy and fairness measures after using stratified resam-
pling. In the figure, the accuracy scores are similar with and
without the fixing, but the fairness measures are higher for
the green line (stratified resampling) than the red line (uni-
form resampling) and the blue line (no fixing). If we know the
distribution of missing values is MAR, we can use a strat-
ified resampling method to get the best performance from
the fixing algorithm. If we do not know the distribution and
use the uniform resampling method, the result is not optimal,
but it is still much better than the fairness measures without
applying any fixing algorithms.
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8 Conclusion

This work studies how real-world data issues like missing
values and selection bias can negatively affect fairness of

nisms, MAR, MNAR, and MCAR. We then propose fixing
algorithms to mitigate the negative effects resulting from
missing values and selection bias. We propose a reweight-
ing method for missing values and a resampling method for

selection bias. Using two real-world data sets, the COM-
PAS data and Adult data, as well as a synthetic data set,

categorical sensitive attributes. We begin by expanding the
framing of fairness to consider three missing value mecha-
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we evaluate the impact of missing values and selection bias
on accuracy and fairness. For all of our experiments, we
vary the level of bias and the missing value mechanism
and measure fairness using p%-rule and error rate balance.
We find that among all types of missing values, MNAR has
biggest impact on fairness and MCAR has the least impact.
In other words, all missing value generation mechanisms are
not equal with regard to fairness. When considering differ-
ent levels of selection bias, not surprisingly, our results show
that higher levels of bias lead to a larger negative impact
on fairness. We evaluate our pre-training fixes for missing
values using reweighting, selection bias using resampling
and both missing values and selection bias using a com-
bined fixing method that incorporates both reweighting and
resampling. We show that our fixing methods are able to sig-
nificantly mitigate the negative effects on fairness of missing
values and selection bias with a small impact on accuracy
and F1 score. To support further research in this area, both
our code and the synthetic data set have been made avail-
able.

While this is an important first step, there are several
avenues for future work. First, there are many other real-
world data issues other than missing values and selection
bias. For example, real-world data can be noisy. Because
noise can have various distributions, future work should
investigate the impact of these different types of noise on
fairness. Second, our fixing algorithms for missing values
and selection bias take place during preprocessing. Future
work could investigate ways to adjust the learning process
to account for these biases. Finally, in additional to contin-
uous and categorical data, there are many other data types
including text and image data. It would be meaningful to
study different real-world data issues on other commonly
used types of data to understand how they impact fairness.
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A Appendix: Synthetic data distribution

The synthetic data set we used in our empirical evaluation has
the following specifications: three non-sensitive variables,
20,000 observations, a constant correlation, equal frequency
binning, and a constant bias level. The missing value mech-
anism is MAR. Figure 8 shows the Pearson correlation score
between the outcome, Y, the sensitive attribute, gender and
the three non-sensitive features. Table 7 shows the distribu-
tion of the synthetic data and the bias level g is 0.22.
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Y Gender X1 X2 X3

Fig. 8 Pearson correlation score between outcome, sensitive attribute
and non-sensitive features

Table 7 Distribution of the synthetic data

Sensitive value Outcome Number of observations
Female Positive 4485

Female Negative 6684

Male Positive 5515

Male Negative 3316

Total 20000

Bias g8 0.22
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