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Starting with the work of Serre, Katz, and Swinnerton-Dyer, theta operators have played
a key role in the study of p-adic and mod p modular forms and Galois representations.
This paper achieves two main results for theta operators on automorphic forms on
PEL-type Shimura varieties: (1) the analytic continuation at unramified primes p to the
whole Shimura variety of the mod p reduction of p-adic Maass-Shimura operators a
priori defined only over the p-ordinary locus, and (2) the construction of new mod p
theta operators that do not arise as the mod p reduction of Maass—-Shimura operators.
While the main accomplishments of this paper concern the geometry of Shimura
varieties and consequences for differential operators, we conclude with applications
to Galois representations. Our approach involves a careful analysis of the behavior of
Shimura varieties and enables us to obtain more general results than allowed by prior
techniques, including for arbitrary signature, vector weights, and unramified primes in

CM fields of arbitrary degree.

1 Introduction

Starting with the work of Serre, Swinnerton-Dyer, and Katz, theta operators have played
key roles in the study of p-adic and mod p modular forms and associated arithmetic

data at a prime number p. For example, the operator 6 from [37, 38] that acts on the
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g-expansion f(q) of a modular form f by qdiq is employed in constructions of p-adic
L-functions in characteristic 0, as well as in the proof of the weight part of Serre’s
conjecture in characteristic p.

Recently, the potential for theta operators to be similarly powerful in higher
rank applications has led to their study in the setting of automorphic forms on Shimura
varieties X arising as (connected components of) moduli spaces of abelian varieties
endowed with polarization, endomorphism, and level structure (that is, of PEL-type). In
characteristic 0, p-adic theta operators arise as p-adic Maass-Shimura operators, that
is, as differential operators constructed from the Gauss—-Manin connection and Kodaira—
Spencer morphism analogously to the C°*° Maass—Shimura operators from, for example,
[5, 11, 19, 20, 27, 34, 40]. They are defined on automorphic forms over the u-ordinary
locus of X, and there is a mathematical obstruction to analytically continuing them to
the whole Shimura variety (as explained in [9, Section 1.3]).

On the other hand, as this paper illustrates, the mod p setting is fundamentally
different, in the sense that theta operators are entire, that is, can be analytically
continued to the whole mod p Shimura variety, and furthermore, there are more theta
operators than just those arising as mod p reductions of Maass—Shimura operators. In
particular, by building on the ideas introduced by Katz, we obtain the following results

when p is unramified in the reflex field of X.

TheoremI (Rough version of Theorems 5.0.3 and 5.1.1: analytic continuation). Reduc-
tions mod p of p-adic Maass—-Shimura differential operators D*, a priori defined only
over the u-ordinary locus (where they raise the weight of an automorphic form by a
weight 1), can be analytically continued to the entire mod p Shimura variety X.

More precisely, for good weights (as in Definition 4.0.4), there is a differential
operator ®* defined on automorphic forms on X whose restriction to the pu-ordinary

locus coincides with E*/2 . D*, where E denotes the u-ordinary Hasse invariant.

By Proposition 3.4.2, the amount A by which Maass—Shimura operators can raise
the weight of an automorphic form is always symmetric (in the sense of Section 2.2.2).
For applications to the weight part of Serre’'s conjecture, though, one would also like
more control over the weights. So the theta operators described in Theorem II below are
a boon, since they also allow the weights to vary by certain non-symmetric amounts.
This new phenomenon only occurs when the ordinary locus is empty (i.e., when the
prime p is not totally split in the reflex field of X). This is the complement of the set
of cases handled by [9] and is specific to the p-ordinary setting for unitary Shimura

varieties.
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Theorem II  (Rough version of Theorem 6.4.3: new theta operators). Assume p does not
split completely in the reflex field. Then the class of mod p theta operators is larger
than the class of mod p reductions of Maass-Shimura operators.

In particular, there are entire theta operators that raise the weights of mod p
automorphic forms by different amounts from those allowed by the mod p reduction of
p-adic theta operators. More precisely, if T is as in Equation (11) and A is symmetric and
simple (as in Definition 6.2.3), there is an entire differential operator ®* that raises the
weight of mod p automorphic forms on X of good weight by the non-symmetric weight
(IA/2)kpq + AT, where Kkna 15 the weight of the u-ordinary Hasse invariant and 1T is as

in Definition 6.4.1.

Most of the work in this paper concerns the development of techniques to prove
Theorems I and II. Keeping in mind a key source of motivation for studying mod p
theta operators in the 1st place, though, we conclude the paper by also addressing some

effects of these operators on Galois representations.

Remark 1.0.1. In the precise versions of these theorems later in this paper, we have
finer control over the weight than these rough versions might suggest. In particular,
we can vary the weights at places corresponding to different primes dividing p, but
for clarity of notation in this introduction, we have suppressed the corresponding
subscripts and partial Hasse invariants. Such control is important for anticipated
applications to theta cycles in studying the weight part of Serre’s conjectures and, as

discussed in Section 1.1 below, cannot be achieved via prior approaches.

1.1 Principal innovations and relationships with prior developments

Thanks to the approach developed in the present paper, which relies on the development
of a theory of automorphic forms over the pu-ordinary locus by the authors in [12] and the
construction of u-ordinary Hasse invariants by Goldring and Nicole in [17], Theorems I
and IT improve on the previous results for theta operators in the setting of unitary
groups of higher rank. (See Remark 1.1.1 below, for references to earlier work in the
Hilbert-Siegel case.) A careful analysis of intrinsic properties of the underlying Shimura
varieties enables us to remove restrictions from prior results.

Building on Katz's study of the theta operator for modular forms in [26], Theorem
I was previously proved jointly by the authors together with Flander, Ghitza, and
McAndrew in [9, Theorem A] under the auxiliary assumption that p splits completely

in the reflex field of X (i.e. when the ordinary locus is nonempty). When the ordinary

1202 AInr 92 uo npa-uobalon@usyosies Aq 9$G9ZE9/06 | GBUL/UIWI/SE0 L 0 /10P/ooIIB-80UBAPE/UIWI/WOD dNO-oIWspeo.//:sdny WoJj papeojumoq



4 E. Eischen and E. Mantovan

locus is empty, the constructions in [9] still hold but the resulting ®-operators vanish
on the whole mod p Shimura variety X. Theorem II was previously proved by de Shalit
and Goren in [6, 7] in the special case of scalar-valued automorphic forms and under the
assumption that the real field associated to the Shimura datum defining X is Q. (Note
that the operator they denote by © is the operator we denote by ©.) The approach in [6, 7],
which is completely different from that in this paper (as, e.g., their proof relies on
Fourier-Jacobi expansions), does not readily extend to the case of non-scalar weights.
That is, extending their techniques to non-scalar weights is not merely a notational or
combinatorial issue.

In the present paper, like in [9], our approach to studying theta operators is coor-
dinate free and avoids g-expansions, Fourier-Jacobi expansions, Taylor series, Serre—
Tate expansions, etc. and instead relies on intrinsic geometric features of the underlying
Shimura variety. (Even though other references also construct theta operators without
referencing such expansions, their proofs of results about them sometimes rely in key
ways on such expansions, e.g., to obtain stronger results under particular conditions,
like discussed below.) This allows us to continue to work with vector weights like in [9].

A key ingredient for extending the approach of [9] to the case where p is merely
unramified in the reflex field (i.e., the ordinary locus need not be nonempty) is the
wn-ordinary Hasse invariants introduced by Goldring and Nicole in [17]. Working with
partial Hasse invariants, in place of the Hasse invariant from the case of nonempty
ordinary locus, enables us to extend the Hodge-de Rham splitting in characteristic p
to the whole Shimura variety in a way that enables us to naturally extend the mod
p reduction of Maass—-Shimura operators to the whole Shimura variety. This method
has the advantage that it allows us to vary weights by different amounts at places
corresponding to different primes dividing p, as mentioned in Remark 1.0.1, but also
the disadvantage that forces us to restrict to good weights in Theorems I and II.

As a crucial intermediate step introduced in the present paper, we also consider
differential operators on the OMOL (“Over the Mu-Ordinary Locus”) sheaves introduced
in [12, Section 4.2], when the ordinary locus is empty (i.e., when p does not split
completely in the reflex field). In this paper, we establish the analytic continuation
of the mod p reduction of OMOL sheaves and differential operators to the whole mod p
Shimura variety (Theorem 6.3.3). As explained in [12], over the p-adic p-ordinary locus,
there is a canonical projection from an automorphic sheaf to an OMOL sheaf of the same
weight, which is generally not an isomorphism. In the present paper, we observe that,
over the whole mod p Shimura variety, we also have an injection from an OMOL sheaf

of simple weight (as in Definition 6.2.3) to an automorphic sheaf, of good higher weight.
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Entire Theta Operators at Unramified Primes 5

This enables us to exploit the analytic continuation of OMOL sheaves and differential
operators to construct new entire theta operators, when p does not split completely in
the reflex field.

Theorem II is then achieved by exploiting the results we develop for OMOL
sheaves and their relations to automorphic sheaves in the mod p setting. As noted in
Remark 6.4.4, in the special case when the automorphic forms have scalar weights and
the base field is Q, Theorem II is also proved in [6] and [7, Sections 4 and 5], although the
operator O in loc. cit. can only be iterated (to define operators ®*, for higher weights 1)
when the signature is (n,1) (as opposed to general signature). The scalar weights
occurring in loc. cit. are special cases of what we call simple, scalar in the present
paper.

The techniques we use in our proofs (e.g., exploiting the underlying geometry
and OMOL sheaves, and avoiding g-expansions) are genuinely different from those
in [6, 7] and immediately remove their conditions on the signature. (To be clear, the
construction of theta operators in either case does not require g-expansions, but rather,
the difference is in the techniques employed in proofs.) On the other hand, in [6, 7], de
Shalit and Goren obtain an operator ®, which raises the weight by a lower amount, via
a lower exponent on the Hasse invariant than our methods produce in the cases they
consider. Their better bound on the weight is useful, for example, in their application to
the study of theta cycles at signature (n, 1) in [6, Section 5].

As a consequence of our work, the results on Hecke algebras and Galois
representations from [9, Sections 4 and 5] are extended in Section 7 to the case where
p need not split (but rather is merely unramified) and where the set of weights under

consideration is expanded.

Remark 1.1.1. While the discussion in the present paper focuses primarily on over-
coming challenges and exploring new phenomena particular to the u-ordinary setting
(i.e., the case when the ordinary locus is empty, which is specific to the unitary case), we
note for the sake of completion that in the special case of the symplectic group GSp, (Q),
Yamauchi has produced precise results for theta cycles, which rely on combinatorics
specific to that case [44]. Results for theta operators in the Hilbert-Siegel case of
arbitrary rank are also obtained in [9]. Earlier, Andreatta and Goren also produced
stronger results on theta operators and theta cycles in the setting of Hilbert modular
forms, that is, for GSp, = GL, over a totally real field [1, Section 16]. Those results build
on Katz's weight filtration theorem (which Jochnowitz and Edixhoven had also used

earlier to obtain results about theta cycles in the setting of modular forms [8, 24]).
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6 E. Eischen and E. Mantovan
1.2 Structure of the paper

Sections 2 and 3 discuss properties of the main objects with which we work. In
particular, Section 2 introduces background information for Shimura varieties, auto-
morphic forms, and partial Hasse invariants over the u-ordinary locus. After recalling
constructions of p-adic Maass—Shimura operators over the u-ordinary locus [10, 11, 12],
Section 3 establishes key properties of these operators. Section 3 concludes with results
for differential operators on OMOL automorphic forms, which were first introduced
in [12, Section 4.2] and play a crucial intermediate role in achieving the results of the
present paper.

Our approach to constructing entire mod p theta operators relies heavily on
Section 4, which concerns the interplay between the characteristic p Hodge-de Rham
filtration and partial Hasse invariants (from [17]). In particular, Theorem 4.0.5 is a
key ingredient for extending the analytic continuation results from [9, Section 3] (i.e.,
when the prime p splits completely, so the ordinary locus is nonempty) to the setting
of Theorem I (p merely unramified, so the ordinary locus need not be nonempty).
Employing Theorem 4.0.5, Section 5 details how to extend the mod p reduction of
p-adic Maass—-Shimura varieties, initially defined only over the u-ordinary locus, to the
entire Shimura variety.

While Section 5 concerns the mod p reduction of p-adic differential operators,
Section 6 produces the new classes of mod p differential operators arising in Theorem II.
These new operators raise the weights of automorphic forms by amounts different
from the amounts possible with the mod p reductions of Maass—Shimura operators.
As an intermediate step, Section 6 also explains how to analytically continue the mod p
reduction of differential operators on OMOL p-adic automorphic forms. We anticipate
that the additional control over the weights will be useful for studying theta cycles and
Serre’s weight conjecture. Motivated by this anticipated application, we apply our mod
p differential operators to Galois representations in Section 7, via an analysis of their

interaction with Hecke operators.

2 Background and Setup

In the section, we introduce notation, key assumptions, and basic information about
automorphic forms on PEL-type Shimura varieties (Sections 2.1 and 2.2), the Hasse
invariant and p-adic automorphic forms over the u-ordinary locus (Sections 2.3 and 2.4),

and the associated Hecke algebras and Galois representations (Section 2.5).
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Entire Theta Operators at Unramified Primes 7
2.1 Shimura data and Shimura varieties

We briefly introduce PEL-type Shimura varieties of unitary (A) or symplectic (C) type.
For a more extensive introduction to Shimura varieties, see [29, 31, 32]. Given that many
of the ingredients for our work exist for Shimura varieties of Hodge type, we expect it is
possible to extend our results from unitary and symplectic groups to that more general
setting.

To the extent reasonable, we employ the conventions of [9, Section 2.2]. Note,
however, that the simplifying conditions of [9, Section 2.2.2] (i.e., that p splits
completely in the reflex field) are not imposed here, since one of the achievements

of the present paper is their removal.

2.1.1 Shimura data and associated data
Our Shimura varieties are associated to a PEL-type Shimura datum, that is, a tuple

D :=(D,*,V,{,), h) consisting of the following:

e A finite-dimensional simple Q-algebra D

e A positive involution * on D over Q

e Anonzero finitely generated left D-module V together with a non-degenerate
Q-valued alternating form (,) on V such that (bv,w) = (v,b*w) for all
v,weVandbeD

¢ A x-homomorphism h : C — Cp, where C := Endj (V) viewed as a Q-algebra
and the symmetric real-valued bilinear form (-, h(i)-) on Vg is positive-

definite
From the Shimura datum ©, we also obtain the following:

e A field F, defined to be the center of D.

e A totally real field F,, defined to be the fixed field of « on F.

e A decomposition V¢ = V; @ V, arising from the endomorphism ks = h xz C
of V¢ = Vg ®g C =V ®g C on which (h(z),1) = h(z) x 1 acts by z on V; and
by z on V, for each z € C.

e Aninteger n :=dim;V.

e The reflex field F(®), defined to be the field of definition of the G(C)-
conjugacy class of V; (Standard notation for the reflex field, including in the
authors’ prior work, is E. In this paper, though, we follow the convention of

using E for the Hasse invariant.).
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8 E. Eischen and E. Mantovan

We have F = F if F is totally real, and otherwise F is a CM field obtained as an
imaginary quadratic extension of the totally real field F,,. We fix an algebraic closure Q
of Q. Given a number field L, we denote by 7; the set of embeddings L — Q. Since we

will be working over both C and (Cp, we also fix embeddings

lo: Q= C

p:Qf—>(Cp,

2

and we identify Q with its image under each of these embeddings. So via composition
with ¢, T, is the set of embeddings F, < R. If F, # F, the elements of 7 arise in
complex conjugate pairs t # t* with 7|z = t¥|p,. We denote by X a choice of CM type,
that is, a set consisting of exactly one of 7, 7* for each complex conjugate pair (r, t*) of
complex embeddings of F. We identify ¥y with 7 via the bijective map v > t|z. We

also sometimes drop the subscript and write 7 when the subscript is clear from context.

2.1.2 Additional conditions

We assume the Shimura datum © satisfies the following additional conditions:

e The prime (p) is unramified in F.

e The algebra D is split at p, that is, Dq, is a product of matrix algebras over
extensions of Qp.

e Thereis a Z),-order Op in D preserved by * and whose p-adic completion is
a maximal order in DQp.

e There is a Z,-lattice £ C VQp self-dual with respect to (,) and preserved by
Op.

We fix a prime p in F(D) above (p) and write k(p) := Opg,/p for its residue field. Under
the above assumption, F(®) is unramified at p. We fix an algebraic closure F of k(p),
define W := W (IF) its ring of Witt vectors, and write o for the absolute Frobenius on W.

In the following, for any number field L, we denote by LG4l its Galois closure
inside Q. For any field k of characteristic p, we denote by W(k) its ring of Witt vectors.
Given a field L, we denote by O; its ring of integers, and given a prime q in L, we write
Oy,q (resp. OLq) for the localization (resp. completion) at q. If k is the residue field of
a complete field L that is unramified, we identify W(k) with the ring of integers O;.
Given a number field L, and a prime q above (p), if q is unramified, we identify 7; with

Hom (O, W), via tp- Composition on the right defines an action of Frobenius o on 7; for

1202 AInr 92 uo npa-uobalon@usyosies Aq 9$G9ZE9/06 | GBUL/UIWI/SE0 L 0 /10P/ooIIB-80UBAPE/UIWI/WOD dNO-oIWspeo.//:sdny WoJj papeojumoq



Entire Theta Operators at Unramified Primes 9

any 1 € 7 its o-orbit is the subset
0, ={toollieZ} CT,.

We define

O :={oC T, |oisao -orbit}.
2.1.3 Algebraic group associated to the Shimura datum D
We denote by G the algebraic group defined over Q whose R-points, for any Q-algebra
R, are

G(R) = {X €C®q R|xx* € RX}.
We denote by

v:G— G,

the similitude factor of G. For any character ¢ : G — G,,,, we denote by V¥ its cocharacter
G,, — G. Note that (7"7) = ()™ for each m € Z. We define

G, = ker(v).
We have
G, = Resg, 0(Gp)

for some algebraic group G, defined over F,. If F # F;, then G is an inner form of a
quasi-split unitary group over F,. In this case, our Shimura datum is of unitary type (A).
On the other hand, if F = F;, then over an algebraic closure of F,, G, is orthogonal
(type D) or symplectic (type C). In this paper, we focus on types A and C.

LetK = Kpr, with K, C G (Qp) hyperspecial (i.e., K, is the stabilizer of .) and
KP C G (A]IC’), be an open compact subgroup of G (Af) that is neat in the sense of [31,
Definition 1.4.1.8]. (Following the usual conventions, Af denotes the finite adeles of Q,
and Ajlz denotes the finite adeles away from p.) In other words, K is a level. Given a finite

place v, we say that v is good with respect to K and p if v { p and K, is hyperspecial
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10 E. Eischen and E. Mantovan

at v. Otherwise, we say v is bad with respect to K and p. We denote by Xy , the set of
places that are bad with respect to K and p.

2.1.4 Moduli space of abelian varieties associated to the Shimura datum D

Associated to our PEL-type Shimura datum and level K is a moduli space & = Ay
parametrizing ®©-enriched abelian varieties, that is, abelian varieties together with
polarization A — A!, endomorphism, and K-level structure, satisfying Kottwitz's
determinant condition (we refer to [29, page 390], for details). (In this paper, we use
a superscript t to denote the dual of an object.) Under the conditions of Section 2.1.2,
X canonically extends to a smooth quasi-projective scheme over Oz(9) ®; Zpy, still
denoted X or Xy. We regard X = Xy as a scheme over Op(q), ,,. We refer to Xy as the PEL-
type Shimura variety of level K associated to our choice of Shimura datum and denote
by X or Xy its reduction modulo p, that is, X := X X O k(p). By abuse of notation, we
also denote by X, resp. X, the schemes X X Opoy e W, resp. X x F.

2.1.5 Decompositions and signatures associated to the Shimura datum

As noted in [27, (2.0.3)], for any O,ca-algebra R, the ring homomorphism

Ga.
FO

OFO ®Z R — @TEﬁOR

axr— (t(a)r)feﬁo

is an isomorphism if and only if the discriminant dp, of F,/Q is invertible in R. Given
T € Tp, and an O ® R-module M, we denote by M, the submodule of M annihilated by the
setofa®1—-1®1t(a) € (’)F0 ® R, that is, the submodule on which each a € OFO acts as
scalar multiplication by 7(a). If R is a OFgal—algebra in which dp, is invertible and M is
a locally free OFO ® R-module, then similarly to [27, (2.0.9)], we have that the canonical

Op, ® R-module-homomorphism
M — GBTEﬁOMT

is an isomorphism. If F # F, and R is, in addition, an Ogca-algebra, then the action of F

induces a further decomposition

_ _ _ + -
M= @reﬁMr - @reZFMr @Mr* - @UeﬁoMa @Mar
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Entire Theta Operators at Unramified Primes 11

where, for each o € Tz , M, (resp. M) is the submodule of M, on which each a € O acts
as scalar multiplication by t(a) (resp. t*(a)) with t the element of ¥ such that Tlp, =0

Fori = 1,2, we have a decomposition
Vi=® ez Vi

induced by the decomposition F®yC = &, ., C (identifying a ® b with (t(a)d),.7;). Thus

we also have a decomposition
Ve = @1677:' Ve,
with
Vo=V, ®V;y,

forall r € 7.

For each v € T, we set
a, :=dim¢ Vy ..

The signature of the Shimura datum is (a,) For each v € Xy, we have

teTp’

a, +a,. inthe unitary case (A)
n =

a in the symplectic case (C).

T

In Case A (so F # Fy), this is the signature of the unitary group G,/F, and the signature
at v € z is (af, a;) with af := a, and a; := a,.. Following the conventions of [12, 36],

we also define
f(r) :=a,
for each t € T, and we denote by

fi=( (T))r'

the signature of the Shimura datum ®.
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12 E. Eischen and E. Mantovan
2.2 Weights, representations, and automorphic forms

We summarize key details about weights and representations, following the approaches
of [12, Sections 2.3 through 2.5] and [9, Sections 2.1 and 2.2]. For additional details, see
[10, Sections 2.3 and 2.4] or [4, Section 3.2].

2.2.1 Subgroups
We denote by J the algebraic group over Z defined by

_|IMiex, GLg, x GLg,,) S[1;cx,GLy =[l;c7;,GLy, in the unitary case (A)

J:=[] 6L, =

teTr [lees, GLn in the symplectic case (C)

We denote by B a Borel subgroup of J, T a maximal torus contained in B, and N the
unipotent radical of B. We have a decomposition T = [],., T,, and we have analogous
decompositions, denoted analogously, for each algebraic subgroup of J. By choosing
an ordered basis for Vi compatible with the decompositions from Section 2.1.5, we
identify J(C) with a Levi subgroup of G, (C). We choose such a basis so that furthermore
B, is identified with the subgroup of upper triangular matrices in GL,+ and T, with
Ta;r = G‘,Zn;r, which is, in turn, identified with the subgroup of diagonal matrices of J.
Note that each of these groups is split over OF(Q)p, that is, any maximal torus in it is
isomorphic over OF(@)p to a product of copies of G,,,.

For a choice of an ordered partition m, given by
my .+ +mg . =a;, (1)

for each v € T, we denote by P = P, the associated block upper triangular parabolic

subgroup of J containing B, and by U = U,

m. the unipotent radical of P. Then the

Levi subgroup M = M,, of P, M = P/U, is a block diagonal product of groups GLp, ./
t=1,...,s;,, 1 €Tg

Our choice of ordered partitions of a,, for all t € 7, will be uniquely determined
by the geometry of the underlying Shimura variety and its p-ordinary locus (see
Equation (5) below and [12, §2.9] for a detailed explanation). In the following, for m% the
partition given in Equation (5), we write P, = P,u, U, = U, and J, = M,,» =P, /U,,.

Note that for any representation p of J, the associated graded representation
gr ('0|Pu) of J, and ply, are canonically identified. We also define a Borel subgroup
B,=BNJ,of J,and N, = NNJ, and T, = T NJ, the unipotent radical and maximal

torus of B, respectively.
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Entire Theta Operators at Unramified Primes 13

2.2.2 Weights
We briefly introduce weights and their relationship with algebraic representations.
For more details, see [12, Section 2.3], [10, Section 2.4], [22, Sections 5.1.3 and 8.1.2],
[23, Part II, Chapter 2], or [15, Sections 4.1 and 15.3].

We denote by X* := X*(T) the group of characters of T. Via B/N = T, we also
view X*(T) as characters on B. Given « € X*(T) and a T-module M, we denote by M|«]

the x-eigenspace of M. We define

+ — ar, :
X™(T) = (Kllr,...,Kar'T)re,E' € H 27 iy > kiyq . foralli
t<Tr

We identify X+ (T) with the subgroup of X*(T) of dominant weights in X*(T) via

[1 diag ¢y vta, )= [T [T

t€Tr teTr 1<i<a.

If k = (k),ex, = (K1,r0---Kns) ey, is @ dominant weight of GL,, and n > m, then we
denote by («x,0) the dominant weight (P L ) of GL,,. Given k € Z, we
denote by k the element « € X1 (T) such that k; . = kforalli, . We call k a parallel, scalar
weight, and in this case, we also sometimes just write k for the weight. More generally,
if for each t, there exist k, € Z such that Kir = k. for each i, then we call ¥ = ((Km-)i)f a

scalar weight, and we write k, := «, = (k,,...,k,). In this case, we also sometimes just

e
write k, for the weight at z. Also, if ¥ = (k,) is such that «, = «, for all 7,0, we say
that « is parallel. If k € X (T) is such that « # 0 and k; . > 0 for all i, r, we say that « is
positive. If « is positive and t € T, then we say « is supported at 7 if k; . # 0 for some i

and «;, = 0 for all o # v and all j. For v € 75 and positive «x, we define

ar
d, .= |Kr| = ZKi,r (2)
i=1
d, = lk|:= Z de..= z || -
t€Tr t€Tr

We say « is sum-symmetric at t if « is positive and d,, = d We say « is sum-

K,T%"

symmetric if k is positive and sum-symmetric at all r € Z. Given t € ; and « € X+ (T),

if k; , = k; .« for all i < min (a,,a,.) and «;

i 71Kk« = 0 for all i > min (a,,a,.), we say that

k is symmetric at 7. If « is symmetric at each t € X, we say that « is symmetric. This
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14 E. Eischen and E. Mantovan

is the same condition on weights that occurs without a name in [40, Theorem 12.7] and
[39, Theorem 2.A].

To each dominant weight «, we associate a representation p, obtained by
application a «-Schur functor S,. (See, e.g., [15, Section 15.3], for details on Schur
functors.) Let R be a Z,-algebra or a field of characteristic 0, and V := Vg := @, 7, (R?")
denote the standard representation of [[, .7, GL, over R. If « is a dominant weight,
the «-Schur functor acts on R-modules so that we obtain a representation S (Vy)
of [[;c7; GLg,, which we denote by p, = p,g. As explained in [23, Chapter IL.2],
if R is furthermore of sufficiently large characteristic or of characteristic 0, then
each representation p, r is irreducible, and furthermore, the set of representations
. r 1s in bijection with the set of dominant weights «. Following the conventions of
[12, Section 2.3], when R is such a field and has ring of integers O, we denote by PO
a choice of a O-lattice in p, z. Also, given a locally free sheaf of modules F over a
Zp—scheme T, we write S, (F) for the locally free sheaf of modules over T, defined by
S, (F)(SpecR) = S, (F(SpecR)), for SpecR any affine open of T.

For each positive dominant weight «, by applying a generalized Young sym-
metrizer, we obtain a projection pr, : V®% — p . If k, is a positive, dominant weight
and R is as above, then the «,-Schur functor is S, (V) := V&der . C..» Where ¢, . denotes
the Young symmetrizer associated to «,. As noted in [10, Lemma 2.4.6], if K,k are two

positive, dominant weights, then pr, , . factors through the map pr, ® pr,,; we write

K’

pr, . for the induced projection p, ® o, = P, 1,/-

Definition 2.2.1. For any dominant weight « = (k) we write

teTp!

lliel] == (Il Doy € ZVTF,

where ||«,|| € Z is defined as in

| Ik |/a, if k, is scalar
Kkl =
T

k| otherwise.

(By Equation (2), if «, is scalar, then |« | is a multiple of a,.)
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Entire Theta Operators at Unramified Primes 15

Note that ||«,|| is the unique integer satisfying, for x any character of GL,_,

S det(V.) ® if k_ is scalar
Se, (Vo) @ x!lell = e (422(V2) © ) v
S, (V; ® x) otherwise.

Definition 2.2.2.  For any dominant weight x = (k,),c7;, we write
r(k) = (r(k) e, € 277,

where r(k,) € Z is defined as in
r(c,) == |« |- dimp, /a,.

(By definition, if « is scalar, then r(x) = ||«||.)

Note that r(x,) is the unique integer satisfying the equality
det(S,. (f)) = det(f)"*")
for f any linear endomorphism of the standard representation of GL,, .

Following the convention of [9, Definition 2.2.3], given a positive integer e, we
call a dominant weight « admissible of depth e, = e if the irreducible representation p,

of J occurs as a constituent of the representation (V2)®e for

DreTs, Sym?V,_, in the symplectic case (C)

v? = (3)

®,cx,V: ¥ V.., inthe unitary case (A)

In the above cases, we also define Vr2 to be the summand at tr. By abuse of language,
we also speak of being admissible of depth e at . We denote by §(r) the weight of V2.
Admissible weights are even in the symplectic case, and sum-symmetric in the unitary

case.

Remark 2.2.3. Here, we will be particularly interested in the case of irreducible
constituents that arise inside symmetric powers of V? and, more generally, inside
X, Sym® (VTZ) for e, > 0 integers. By [39, Theorem 2.A], such constituents are symmetric
and occur with multiplicity one. In the case where a, = a,. for all t € X, this is the

Peter-Weyl Theorem (see, e.g., [13, Theorem 4.66]).
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16 E. Eischen and E. Mantovan

Remark 2.2.4. Let k = (k,),.7 be a dominant weight. Note that p, is one-dimensional
if and only if « is a scalar weight, that is, k = (l_cr)r for some nonnegative integers k, € Z.

In this case p, = X, det*, that is, the k,-th powers of the top exterior powers.

Remark 2.2.5. Let R be a Z,-algebra or a field of characteristic 0 and J, a Levi
subgroup of J as in Section 2.2.1. For any dominant weight «’ of J,, we denote by
0, = 0, the irreducible algebraic representation of J, over R, of highest weight «".
If R is of sufficiently large characteristic or of characteristic 0, then for any dominant

weight « of J, we identify

lOK'Ju = @ Q'+

k' €My

where 91, denotes the set of all dominant weights «’ of J,, occurring in p,|; (see [12,
n
Section 2.4]).

2.2.3 Automorphic forms
We recall the construction of automorphic forms on X, following the approach of
[4, Section 3.2]. Since we are working in the setting of automorphic forms, all the
weights that will arise for us are positive and dominant. Thus, going forward, we
only consider positive, dominant weights.

We denote by ¢ : A — X the universal abelian scheme and by o the sheaf
WA x = a, QY ,x (There are several conventions for the sheaf » and closely related
sheaves in the literature. In some of the 1st-named author’s prior works, this sheaf
was denoted by w. To avoid confusion with [12], where » had a different meaning, we
avoid that notation here. We also note that, in contrast to the present paper, [17] and
some other references denote by w the top exterior power of the sheaf oz*SZ}4 X but we
will explicitly denote the top exterior power as such when we need to take it.). The sheaf

w is locally free of rank
g :=nlF;:Ql
and decomposes, according to Section 2.1.5, as

w = GBTEEF (wr @ wr*)’
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Entire Theta Operators at Unramified Primes 17

with o, (resp. w..) locally free of rank a, (resp. a,.). Consider the locally free sheaves

&, :=Isom (wr, Oggr)

&= @reﬂ:gr

endowed with an action of J = [[, 7, J,. For each positive dominant weight « of T and
each irreducible representation (,oK, VK) of J of weight «, the sheaf of weight « (or weight
p,) automorphic forms is

o i=ExTV,

defined so that

o (R) := (£ x V, ®R)/ ((e,m) ~ (gE,,oK (tg_l) m)) 4)

for each O s, ,-algebra R. (N.B. This is closely related to the notion of a frame bundle.)
Given an Opqg) ,-algebra R, an automorphic form of weight « and level K, defined over
R, is a global section of & on Xy X Opconp R. As noted in [12, Section 2.5], * can be

canonically identified with S, (). Note, also, that if ¥ = (Kt)r, then
o =K ol

Remark 2.2.6. Excluding the one-dimensional case of F; = Q with a, = a} =1 (no
loss to the present paper, which aims to overcome technical challenges with extending
to higher rank the sorts of results that have already been established in low rank),
the Koecher principle ([33, Theorem 2.3 and Remark 10.2]) implies that our space
of automorphic forms is the same as the one obtained by instead working over a

compactification of X%.

2.3 The p-ordinary locus and its Hasse invariant

We now recall the definitions and key features of the u-ordinary locus (following
[36, 42]) and of the p-ordinary Hasse invariant (following [17]) for PEL-type Shimura
varieties. For generalizations of these notions and key results to the context of Hodge-
type Shimura varieties, the reader may refer to [30, 43], although we shall not need them

in the present paper.
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18 E. Eischen and E. Mantovan

2.3.1 The p-ordinary Newton polygon stratum
We briefly recall the definition and key features of the p-ordinary Newton polygon

stratum S of X (see also [12, Section 2.6]).

Definition 2.3.1. Given the Shimura datum D, the u-ordinary Newton polygon at p,
denoted by vp(’D) = vp(n,f), is defined as the amalgamate sum vp(n,f) = BoeopVo (1),

where for each o € O, v,(n,f) is the polygon with slopes

__ #reolf(x) >n—j}
o #o

al

,forj=1,...,n.

By construction, the p-ordinary Newton polygon v,(n,§) is the lowest Newton
polygon at p compatible with the signature (n, f) of the Shimura datum. We say that the
polygon v,(n, ) is ordinary if a]9 € {0,1} forj = 1,...,n (in which case it corresponds
to an ordinary abelian variety). So the polygon v, (n,f) is ordinary if and only if (p) is
totally split in F(®). In the following, abusing notation, we put v(n, f) := v,(n, ).

Definition 2.3.2. A D-enriched abelian variety A (resp. a point of X) over a field
containing F is called w-ordinary if its Newton polygon (resp. the Newton polygon of

the associated abelian variety) agrees with the u-ordinary Newton polygon v(n, f).

By definition, the p-ordinary Newton polygon stratum S is the reduced sub-

scheme of X consisting of all u-ordinary points.

Theorem 2.3.3. [42, (1.6.2) Density Theorem] The u-ordinary Newton polygon stratum

S is open and dense in X.

Theorem 2.3.4. [36, Theorem 3.2.7] The p-ordinary Newton polygon stratum is also
an Ekedahl-Oort stratum. That is, there exists a unique up to isomorphism p-ordinary
©-enriched truncated Barsotti-Tate group of level lover F. Furthermore, there exists a

unique up to isomorphism p-ordinary ©-enriched Barsotti-Tate group over F.

The latter result is the key ingredient in the construction of the u-ordinary Hasse

invariant in [17].
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2.3.2 p-ordinary Hasse invariant
We now recall the definition and the key features of the u-ordinary Hasse invariant (see

also [12, Section 2.7]). In the following, |w| denotes the Hodge line bundle over X
|a)| = /\topa)A/X,

where AP denotes the top exterior power.

Theorem 2.3.5. [17, Theorem 1.1] There exists an explicit positive integer m; > 1, and

a section
E, € H(X, |o|™)

such that:

(1) The non-vanishing locus of E, is the u-ordinary locus of S.
(2) The construction of E, is compatible with varying the level K?.
(3) The section E, extends to the minimal compactification of X.

(4) A power of E, lifts to characteristic zero.

By construction ([17, Definition 3.5]), my := lem, ., (p® — 1), where e, = #o
forz e Tg.

In [17, Definition 3.5], Goldring—Nicole define the u-ordinary Hasse invariant EM

T

(in loc. cit. denoted by “H) as

lem, .7 (p% — 1)
per —1

’

E, = H ET, where m, =
t€Tr

where E, € HO(X, |, [P ~1) denotes the r-Hasse invariant ([17, Definition 3.3], in loc.
cit. denoted by "H) and the product is over all elements of 7. In the following, for each
t € Tp, we denote the weight of the r-Hasse invariant by «y,, ,; it is the scalar weight
(p® — 1) supported at 7.

For any subset ¥ C 75, we define the ¥-Hasse invariant as

Ey =[] E, e HOX, o/2®),

TeX
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20 E. Eischen and E. Mantovan

where by definition

Kha,; fOrte X
(Kha,}j)r = .
0 otherwise.

In particular, the weight «y, 5 is scalar and supported at . In the following, for ¥ = T,
we write E := E, of scalar weight ky,, = kpa 7, = (Kha ) reTs-
Finally, for any b = (b,),c7 € Z!7!, we write b - kp,, or just biy,, for the scalar

weight (b, (p® — 1)), and we set

E2 = [ EPr e HO(X, b 2a).
teTr

With these conventions, the u-ordinary Hasse invariant E, = E™0 jis a scalar-valued

automorphic form of parallel weight lem, . (p® — 1).

In the following, we denote by S the formal completion of X along S. We follow
the convention of (abusing language and) referring to the formal scheme S as the

w-ordinary locus over W.

2.4 Automorphic sheaves over the p-ordinary locus

We briefly recall previous results of the restriction of automorphic sheaves to S. We
refer to [12, Sections 3,4, and 6] for details.

2.4.1 Slope filtration and associated graded module
Let A[p®] denote the p-divisible part of the universal abelian scheme A over X'. For any
o-orbit o in 75, we denote by p, the associated prime of F above p and write G, = AlpS].
Hence, A[p™] = ®,c0,9,-

By [35, §3] (see also [12, Proposition 3.1.1]), the restriction to S of A[p™], resp.
G, for any o € Oy, is completely slope divisible, and it admits a slope filtration over S,
which we denote by A[p™],, resp. G,,. (Note that the slope filtration of G, agrees with
the filtration induced by the slope filtration of A[p*>].) We write gr(Alp*]) (resp. gr(G,))
for the associated graded ©-enriched Barsotti-Tate group.

The slope filtration of A[p™] induces a filtration o, of the Og ®yw Op-module
w, and a filtration ,, of the Og ®w O, -module w,. We denote by » := gr(w), resp.
w, = gr(w,), the associated graded sheaf over S. The sheaf @ is a locally free Og Qw Op-

module, and w, is a locally free Og ®yw O ,, -module.
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Foreacht € Tg, lets, denote the number of distinct slopes of the polygon v, (n,f)

(see Definition 2.3.1), and setfor 1 <t <s,
m; . = rk(gri(e,)). (5)

By construction, m;, > Oforalll <t <s,andm; +---+mg ,=a, forall t € T (see

[12, 84.2] for an explicit description of the partition given the Shimura datum).

2.4.2 OMOL sheaves

Recall the subgroups P;u UM’JM of J introduced in Section 2.2.1. In [12, Definition 4.2.11],
for any positive dominant weight «" of J,, we introduce the sheaf " = gr(w)¢ over S,
which we call an OMOL sheaf. In [12, Proposition 4.3.1], for any weight « of J, we
describe the restriction to S of the automorphic sheaf " in terms of these auxiliary

sheaves. More precisely, we prove the following result.

Proposition 2.4.1. [12, Proposition 4.3.1] Let « be a weight of J. The sheaves, w and »*

are defined over S. Moreover, each of the following holds.

(1) Each standard U, -stable filtration of p,p, induces a filtration on o*.
(2) The sheaf gr(w*) is independent of the choice of a standard filtration on

p.ip. - More precisely, there is a canonical identification
K|Py,
!’
. K\ ~ K
4 8r(@") = Bpreon, @

for M, as in Remark 2.2.5.
(3) There is a canonical projection @* : v — «*, which is an isomorphism if «

is scalar.

2.5 Hecke algebras and Galois representations

We now recall the Galois representations (conjecturally) associated to mod p Hecke
eigenforms, following the setup of [9, Section 2.1]. We refer to [2, 18] for details.
Throughout this section, let L be a field over which G is split, that is, every
maximal torus of G is isomorphic over L to a product of copies of G,,,. Suppose also that
T and B are defined over L. Although we have specified above that G is of unitary or sym-
plectic type, here we merely assume that G is a connected and reductive group over Q.

As introduced in Section 2.1.3, we continue to denote by K a level of G that is neat and
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such that K,CcG ((@p) is hyperspecial. Note that even with the relaxed assumptions on

G, X p, is finite.

2.5.1 Local Hecke algebras

Suppose that v is a finite place of L and that the completion L, of L at v is a
nonarchimedean local field. Denote by O, the ring of integers of L, @, € O, a choice of
uniformizer, and g, the cardinality of O,/w,O,. Suppose that G is split over O,. Then
there exists a group scheme G over O, with generic fiber G and reductive special fiber.
We denote by G, the group of points G (LV). We additionally choose v so that K, is a
hyperspecial maximal compact subgroup of G,.

Given a commutative ring R, the local Hecke algebra of (G,,K,) is the R-algebra
H (G, K,;R) :={h:K,\G,/K, — R | his locally constant and compactly supported}
with multiplication defined by

(hl * hZ) (KngV) = Z hl (KVXKV) h2 (Kvxingv)'
xKyeGy /Ky

The (mod p) Satake transform is a ring isomorphism

where R (@) is the representation ring of G, the dual group of G.

The characters w of R (@) ®Fp are indexed by the semi-simple conjugacy classes

seG (]Fp), via

s < (ws (xp) = xp(S)),

where x, := Tr (p), for p any irreducible representation of G.

2.5.2 Galois representations associated to mod p Hecke eigenforms
Let f be a mod p Hecke eigenform on G of level K defined over Fp (i.e., as introduced in
Section 2.2.3, a global section of the vector bundle over the associated Shimura variety).

Associated to the Hecke eigenform f, and a finite place v of L as above, we have a Hecke
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eigensystem

v H (GV,KV;FP) —TF

\I’f p

'

defined by
Tf = Wp, (Df

foreach T € H (GV,KV; Fp). The v-Satake parameter of f is the semi-simple conjugacy

class s¢, € G (Fp) indexing the character oy ,,

wf,V = \ij,V [} S;l 'R (G) ®Fp — Fp’

that is, Wy, = Of o
Conjecture 2.5.1. Positive characteristic form of Conjecture 5.17 of [2]

There exists a continuous representation
p: Gal(L/L) > G (F,),

unramified outside EK,p, such that for all v ¢ EK,p, the image of the Frobenius element

Frob, at v is p (Frob,) = s¢ .

By [2, Remark 5.19], the set of Galois representations p associated to f as
in Conjecture 2.5.1 is not necessarily finite. A comparison of the formulation in
Conjecture 2.5.1 with the original statement from [2] is provided in [9, Remark 2.1.2].
As an aside, we note that it might be possible to further describe the representations
p from Conjecture 2.5.1 (e.g., as odd); but since the present paper studies the effect of

theta operators, such details would not impact our results.

3 Some Differential Operators

In this section, we recall the construction of weight-raising differential operators on
p-adic automorphic forms, which arise as analogues of Maass—Shimura differential
operators. By construction, these operators raise the weight of the automorphic forms
by admissible weights. In Proposition 3.4.2, we observe that, as it is the case for

classical Maass—-Shimura operators, the p-adic differential operators are non-trivial
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only for symmetric weights. Hence, going forward, we will only consider differential
operators associated with symmetric weights. In Section 3.5, we discuss some prelim-
inary observations on new phenomena, which arise in positive characteristic at primes

when the ordinary locus is empty.

3.1 Gauss-Manin connection and Kodaira-Spencer morphism

Given a C’)F(();al—algebra R in which dFO is invertible, a scheme T = SpecR, a smooth
morphism of schemes Y — T, and a polarized abelian scheme o« : A — Y together
with an action of O (e.g., when A is an abelian variety parametrized by a unitary or

symplectic Shimura variety), consider the Hodge filtration
0 — wyyy =,y — Hip (A/Y) — R'a,0, — 0.
Asin|[9,11,12,19, 27], we build differential operators from the Gauss—Manin connection
V= Vyy  Hig (A/Y) » Hip (A7) ® QY r
and the Kodaira—Spencer morphism
KS:=KS, )y 1wy )y @wy,y = Q%,/T.

(Details on the Gauss—Manin connection and the Kodaira—Spencer morphism are avail-
able in, e.g., [31, Sections 2.1.7 and 2.3.5] and [14, Section 9].)
Via the product rule (i.e., Leibniz rule), for any nonnegative integer k, we extend

the Gauss—-Manin connection to a morphism

Ver 1 (Hgg (A/Y)®* > (Hip (4/Y)®* @ Q) 1

k
V@k(fl®"'®fk)Izti(fl‘g’"‘@’v(ﬁ‘)@"'@fk%

i=1
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where (; is the isomorphism

i (Hip)®' ® Q%(/T ® (HéR)®(kil) - (HcllR)®k ® Q%//T
el®"'®ei®u®ei+1®"'®edl—>el®"'®ed®u-
This map also naturally induces a morphism on symmetric powers, exterior powers,
and their compositions, similarly marked in the subscript beneath V. When clarification
about the specific power is not needed, we abuse notation and simply write V without

the subscript.
By definition,

XS := <'l V())AI
where (-,-), is the pairing induced by the polarization on A and extended linearly in

the 2nd variable to a pairing between » and V(w), exploiting the fact that w is isotropic

under this pairing. The Kodaira—Spencer morphism induces an isomorphism
ks : w? > Q%,/T, (6)
where the notation w? follows the convention of Equation (3).

3.2 Decompositions

By abuse of notation, we also denote by V the map (id®ks™!)oV. Recall that by Equation
(3), w* decomposes as v = .7, »?. Similarly to [27, Section 2.1], V also decomposes

as a sum, over Tt € 7}0, of maps
V, :HIR(A/Y) — Hiz(A)Y) ® ?,

and similarly for its extension to tensor, symmetric, and exterior powers and their com-
positions, as well as Schur functors. According to the decompositions of Section 2.1.5,

H:=H); (A/Y) decomposes as

H= @teﬁoHr'
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26 E. Eischen and E. Mantovan

and if furthermore F # F; and R is a Opca-algebra, each H, decomposes as
H =H'®H,.

In Lemma 3.2.1 and Section 3.3, we briefly abuse notation and, for convenience
when dealing with two elements of 7 at once, denote by ¢ an element of 7. Frobenius
does not appear in these portions, so there should be no confusion with our use of o to

denote Frobenius elsewhere.

Lemma 3.2.1. Foranyr,o € 7}0, we have the following:
Vr (Ha) < H(T ® w?
V. (Hy) S Hy ® of

Proof. This follows from the definition of V, similarly to [11, Equations (3.3)
and (3.4)]. [ ]

Note that the Leibniz rule (i.e., product rule) immediately extends Lemma 3.2.1
to tensor, symmetric, and exterior powers, and their compositions, as well as Schur

functors.

Remark 3.2.2. Katz and Oda prove in [28] that V is flat, that is, integrable, when
T = Speck with k a field. In other words,

VioV =0,

where

V1 Qyk ®0 HI:(A]Y) — Azszy/k ®0y HIL(A]Y)

is defined by

Viu®e)=du®e—uAVe)

forall u € Qy/k and e € HéR(A/ Y), where d denotes the exterior derivative on the de
Rham complex. (For convenience, we temporarily write €2y, on the left of HéR(A/Y)
here.) In this case, HéR(A/Y) has a horizontal basis for V, that is, a basis of sections on

which V vanishes.
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3.3 Algebraic differential operators

The inclusion w < H};(A/Y) (from the Hodge filtration) induces inclusions w, — H,

and w¥ < HZ. Thus, we get inclusions

L, w? < HZ, (7)

where

. Sym?H,  symplectic case
T
Hf X H. unitary case

Similarly to [27, Diagram (2.1.12)], we now define an algebraic differential

operator D, as the composition
D, :=(id®1,) o V,.
In particular, for each weight « = («,)_, we obtain a map
D,:=D, ,:0 =N, 0 - H ® w?> C H* ® H*> C H* ® H?,

T K,T

where H? = @TETFOHf and H* = X_H," denotes the module formed from H by taking
the same composition of powers of tensor, exterior, and symmetric products used to

form »*. Now, we can compose the differential operators D..

Lemma 3.3.1. The differential operators D, commute, that is, D, D, = D D_ for all

t,ae7}0.

Proof. Similar to the proof of [27, Lemma (2.1.14)], which reduces the problem to

working over C. L
We also denote by D the sum of the differential operators D,, that is,
D:=@{(d®yoV,
where ¢ is the sum of the inclusions ¢, that is, : is the inclusion

w? < H?
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28 E. Eischen and E. Mantovan

induced by w — H. In analogue with the conventions above, this can also be extended,

via the Leibniz rule (i.e., product rule), to a map on w*, which also denote by D or D, ..

3.4 p-adic differential operators over the p-ordinary locus

We recall the construction of p-adic differential operators over the u-ordinary locus S

over W, from [12, Sections 5 and 6].

3.4.1 A canonical complement to w over the pu-ordinary locus
We recall the existence of a crucial submodule U of HéR = HéR (A/S). In the following,

W= WS, and Fr* denotes the Frobenius morphism acting on H (liR.

Proposition 3.4.1. Proposition 5.2.1 of [12]
There exists a unique submodule U of H éR such that
(1) U is (Fr*)®-stable, where e = lcm, . (#0).
(2) U is V-horizontal, thatis, V(U) CU® Q}S‘/W‘
(3) U is a complement to w, that is, HéR =wd®U.

When the ordinary locus is nonempty, U is the unit root submodule of HéR.

3.4.2 Construction of p-adic differential operators
We now recall the construction of the p-adic differential operators over the u-ordinary

locus from [12, Section 6.2]. Denote by ny; the projection
Ty HcllR -
modulo the module U from Proposition 3.4.1. This induces projections

T, (HcliR)r — w, (8)
+

+ . 1 +
b o (HdR)t — Wy

(in the notation of Section 2.1.5, mod U, and UZ, respectively). For each weight «, we

define

. . oK K 2
D,:=D, =ngoD, :0" - o @7,
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where 7;; on D () is defined by applying m;; to each factor HéR. Property (2) of

Proposition 3.4.1 guarantees that 7y o (D, o---0D,) = D, o---o D_ for any places

T1

7; € T, For each nonnegative integer e and each t € 7, define an operator

e times

Proposition 3.4.2.  For each nonnegative integer e and each 7 € 7, the image of D,

lies in w* ® Sym®w?.

Proposition 3.4.2 on the image of p-adic differential operators seems to be
accepted in the field but not justified anywhere in the literature. As Proposition 3.4.2 is
not an immediate consequence of the definition of D¢, we briefly justify it below. Note
that this statement is significant, because it introduces constraints on the amounts
by which the differential operators D¢ can raise weights, which are independent of

additional constraints that will be forced when the ordinary locus is empty.

Proof of Proposition 3.4.2. Note that it is sufficient to prove the statement for sections
of w defined over a ring R that is dense in the base ring W over which § is defined.
Going forward, we take R = Q N'W. Then it suffices (by the density of R in W) to prove
D¢(f) € w* ® Sym®w? for each global section f € H® (X/R, a)").

By Serre-Tate theory ([41, Theorem 6.5], also [36, Proposition 2.3.12 (i)] and
originally due to Serre and Tate in the ordinary case), any p-ordinary point defined over
a finite field x € S(F) admits a (canonical) CM lift x € X' (W). Furthermore, CM points
are dense in the formal neighborhood of X at x ([41, Theorem 1.1]). Hence, it suffices to
prove the statement holds locally at each p-ordinary CM point defined over R (which
can, by extending scalars, be viewed as a CM point over W).

Fixing an embedding R < C and extending scalars, we may view each
automorphic form defined over R as an automorphic form over C. The differential

operators Df | are p-adic analogues of the C> Maass-Shimura operators D¢ . defined
e
PiciT

can be constructed algebro-geometrically over C similarly to the p-adic operators Dy ;

in, for example, [40, Section 12.9]. More precisely, the C°*° Maass—Shimura operators D

by replacing S with X' (C) and replacing the complement U of w C HcliR from the p-adic
setting with the anti-holomorphic forms HO! C H&R in the C*-setting over C, as in
[27, Chapter II], [19, Section 4], [11, Section 8], and [10, Section 3.3.1].
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By the approach first introduced by Katz in [27, Sections 2.6 and 5.1], for each
form f defined over R, the values of Df (f) and Df_.(f) agree (up to periods) at each
p-ordinary CM point defined over R.

Thus, it is sufficient to prove the image of the C*°-differential operator Df, _ lies
in the symmetric product, which Shimura accomplished in [40, Sections 13.1 through
13.8]. |

Remark 3.4.3. One could also prove Proposition 3.4.2 directly over a p-adic ring,
by proving p-adic analogues of the results on C®-vector fields and complex Kéhler
manifolds Shimura employs in [40, Section 13] to prove the image of his operators
lies in the symmetric product. When the ordinary locus is nonempty, this strategy is
carried out in [10, Remark 5.2.5] via explicit computations of Serre-Tate expansions.
When the ordinary locus is empty, analogous computations on Serre-Tate expansion
still hold by [12, Proposition 6.2.5]. We know no benefit, however, to carrying out this
tedious exercise, since it requires a longer proof and ultimately results in the same
conclusion. Further, we note that there is a well-established benefit to exploiting C to
prove statements not over C, for example, in [27], as recalled in the proof of Lemma 3.3.1

above.

Now, for any symmetric weight A of J_, admissible of depth e (at ), we define

D; =D, . :=pr,, o (id®@pr,) 0 D¢ : 0 - 1, 9

where pr, denotes projection onto the automorphic sheaf of weight A (inside Sym®w?),

and pr, ; denotes the canonical projection v ® w* — *** (see Section 2.2.2).

3.4.3 Differential operators on OMOL sheaves
In [12, Section 6.3], we observe that, for any symmetric weight A of J, the p-adic Maass—
Shimura operators D* on the restriction to S of automorphic sheaves preserve the

standard filtrations, hence inducing operators

D" := (id ® @) o gr(D") : gr(w*) — gr(v*) ® v* — gr(w*) .
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Via the isomorphisms ¢, the operators D* induce differential operators on OMOL
sheaves

e ! A

» _)Ql(@Q +A

— Q’(/ .
For any weight «" of J .. by abuse of notation, we still denote them as

’ ’
2}» = 2’)(»/ :QK — QK +)».

3.5 A 1stlook at differential operators modulo p: the OMOL setting

In Sections 5 and 6, we study the mod p reduction of p-adic differential operators on
automorphic forms and on OMOL sheaves, respectively, and we analytically continue
them beyond the p-ordinary locus to the entire Shimura variety. Both results are
achieved only under certain restrictions on the weights. For those weights that satisfy
all the assumptions, we compare the two constructions in Proposition 6.3.5.

Right now, without imposing any restrictions on weights, we conclude our
introduction to behavior over the p-ordinary locus by explaining the relationship
between the mod p reductions of the OMOL sheaves ¢ and differential operators
D* (introduced in Sections 2.4.2 and 3.4.3, respectively) and the mod p automorphic
sheaves o and differential operators D* studied above.

For any o € Op, and e, = #o0, write Qépe) = (Fr®)*Alp,l. Similarly, for
e=Ilcm,.o(e,), write A(pe)[p] := (Fr®)* Alp] over X. By [35, Lemma 8], over S, the filtration
of AP*)[p] (resp. gépe)[p], for all o € 75) induced by the slope filtration is canonically split.

More precisely, we have the following result.
Lemma 3.5.1. ([35, Lemma 8]) Maintaining the above notation, over S, there are
(compatible) canonical isomorphisms of ®-enriched truncated Barsotti-Tate groups of
level 1 over S

gr(A)P9[pl ~ AP)[p], and gr(G,)?"[pl ~ ¥ [pl, forall o € .
Hence, in particular, there are (compatible) canonical isomorphism of O¢®w Op-modules

gr(w)(pe) ~ w(pe), and gr(wo)(pe) ~ wff’e), for all o € Op.

Combined with Proposition 2.4.1, the above lemma implies the following result.
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Proposition 3.56.2. For any weight « of J, we have a canonical isomorphism of Og ®y

Op-modules

@)P7 = P @)

K'eM

At every geometric point of S, the above isomorphisms agree with those
constructed in [12, Proposition 4.3.3]. Hence, by combining the above result with [12,

Propositions 6.2.3 and 6.2.5], we deduce Proposition 3.5.3.

Proposition 3.5.3. For any weight x, and any symmetric weight A of J, under the
identification of Og ®y Op-modules (@) P*) ~ P oy ()P we have

(DHP?) = P@p)®”,

k' N
where k" € M, A € M, satisfy «’' +1 e M, ;.

For A any symmetric weight A of J, the p-adic differential operators D* on OMOL
sheaves over S were constructed in [12, Section 6.3] (as recalled in Section 3.4.3 of
the present paper). By Proposition 3.5.3, the same definition yields mod p differential
operators on the pullback by Fr*®) of OMOL sheaves over S, for all symmetric weights
A of J,,- In Proposition 3.5.3, we denoted these operators by (QA/)(pe). Note that they do

not arise as the mod p reduction of p-adic differential operators.

4 The Hodge-de Rham Filtration in Characteristic p

A key ingredient in the construction of p-adic differential operators over the u-ordinary
locus (as in [12]) is the existence of a (canonical) splitting of the Hodge-de Rham
filtration of the universal abelian scheme (Proposition 3.4.1). A natural 1st step towards
extending the mod p reduction of these differential operators from the u-ordinary locus
S to the whole Shimura variety X is to investigate whether such a splitting extends
from S to X. When the ordinary locus is nonempty, such a splitting over X exists.
Indeed, it can be constructed via the conjugate Hodge-de Rham spectral sequence in
positive characteristic. This is also the key ingredient underlying the construction of the
ordinary Hasse invariant (see [9, §3.3.1]). When the ordinary locus is empty, though, this
approach fails. Instead, we adapt our approach to the construction of the p-ordinary

Hasse invariant by Goldring-Nicole for PEL-type Shimura varieties in [17]. (The yet more
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general setting of Hodge type should be straightforward using [30], once one sorts out
numerical details.) The techniques we develop in this more general setting work only
under certain conditions on the weights, which arise from Goldring-Nicole's approach
to partial Hasse invariants in [17].

For any o € Op, we write

f(0) := {f(z)Ir € o}
f(0)- 1= {f(r)|r € o satisfying f(r) > 0}

f(0) o, = {f(x)|r € o satisfying f(r) < n}.

Definition 4.0.4. We call a positive dominant weight ¥ = («,), 7, good (for the prime p)

if k., is a scalar weight of GL;,) whenever f(r) # min(f(o). o).

In particular, all scalar weights are good. As we shall see in Theorem 4.0.5,
if a weight is good, then after reducing mod p, we can extend the splitting from
Proposition 3.4.1 to the entire mod p Shimura variety X.

By definition, if we decompose « over T, as a product of weights «, supported
at v € T, then « is good if and only if the weights «_ are good for all 7 € 7z (Whether
we view the decomposition as a product or sum depends on whether we are considering
weights as characters or as the corresponding tuples of integers.).

The main goal of this section is to establish the following result, whose
proof relies on the material introduced in the remainder of this section. Below, E5. €
HO(X, wkha'z) denotes the ©-Hasse invariant, and E = Er, (see Section 2.3.2). We refer to

A/X
Definition 2.2.1 for the notation ||«|| € Z/*!.

Theorem 4.0.5. Let X C 7, and let « be a weight. Assume « is good. Then each of the

following statements holds:

(1) There exists a morphism of Ox-modules
I : Hig (A/X)F — a)KAJ;y(KHKha = oy x ® w%l)l?ha (10)

that satisfies the equality Mfs = EIl . 7, where 7, is the mod p reduction
of the map ny; : HéR(A/S)" — w"A/S induced via the «k-Schur functor by the
projection my; : HéR(A/S) — w45 defined in Section 3.4.2.
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(2) Assume « is supported at . Then there exists a morphism of Oy-modules

. K+Kha,s 2 _ Kha,» 2
I, .D(a)"A/X) > o x T @Yy = a)"A/X Ry ® WY x

which satisfies the equality I1, g = Ey, -7y, where 7y is the mod p reduction

of the projection 7y : D(wg/s) — wfél/S ® ‘“,24/5 defined in Section 3.4.2.

Remark 4.0.6. Note that since the Hasse invariant is of scalar weight, we do indeed
k+|k||kha [l lkha
X

have an equality Wy = ‘”KA/X R, x " as in Equation (10).

Proof of Theorem 4.0.5. By decomposing the weight « as a product of weights
supported at single v € 75, as t varies in 7T, we reduce the proof of Theorem 4.0.5 to the
special case of a good weight «, which is supported at a single t. For scalar weights,
the result follows from Proposition 4.1.3, which relies on the construction of the
p-ordinary Hasse invariant ([17, Lemmas 3.1 and 3.2], see Lemma 4.1.1). For non-scalar
weights (which, by definition of good weights, are only supported at r € 7 satisfying
f(r) = min(f(o).)), the result follows from Proposition 4.2.2, which relies on Lemma
4.2.1. |

In this section, we work in positive characteristic over X. Set H (llR = H éR(A/X ),
and o := wy,x. We write ngys = ngYS(A/X) for the Dieudonné crystal of A/X, and
identify its mod p reduction with H éR' In general, we denote by (-) the reduction mod p
of an object over W.

For convenience, through out this section, we set 7 = 7. Also, for any v € T,
write 75 = 1jp, € T,

and (), = () if T ¢ =

, and following the conventions of Section 2.1.5, (-), = (-);‘5 ifreXy

. . . 1 . *k 1 .
Fix v € 7. The restriction to Hg, . of Frobenius Fr* on Hg s induces a map
Fr¥ .= Fr¥|,n :H... _— H!
T Herys,e © 77Crys,t Crys,too*
. . (g1 e 1 ;
Fore = e, :=#0,, we have t 0 0° = 7, and (Fr})° : (Hgyys )P — Hipys .- We write
[ *\ e
¢, = (Fry)°.

4.1 The scalar-weight case

Without loss of generality, we assume f(r) # 0. (When f(r) = 0, the Hodge-de Rham

filtration is trivial at r and all automorphic weights supported at r are trivial.) Then
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the Hodge-de Rham filtration on H éR por O € HéR .+ induces a canonical filtration on
/\f(’*) HéR = H(flgr)*. The 1st step in the filtration is the locally free subsheaf

(o) f(@)
. 1 f() 1 1
W, := Fil (Hdgrr*) =ker [ A\ Hip .. —> )\ (HdR,,* /wf*)

Lemma 4.1.1. ([17, Lemmas 3.1 and 3.2]) For t € 7 with f(r) # 0, define

O e @
. . 1
q).[* = ¢‘L’* VANRIRRIVAN ¢‘L’* . /\ HCI'YS,T* — /\ HCI'YS,‘L’*

and ¢+ i= X co. i)~ f(r) (F(T") = f(2)) . Then each of the following statements holds:
(1) &,. is divisible by p%*.
(2) &.,./p%* vanishes on nge).

Remark 4.1.2. Set a; = a] := |{t' € o,[f(r)) > n —i}|, fori = 1,...,n. By definition
(Definition 2.3.1), the rational numbers a}/e < --- < aj, /e, are the slopes of the Newton

polygon v, (n,f) (occurring with multiplicity). Then

fo

_ z T*
C.L.* _ ai .
=1

We write ¢_« : (/\f(r) Héf({pfz) /Wi‘fe) - N\® HéR,r* for the morphism induced by

®_./pS*, and denote by (pg* : (/\f(r) Héf({pjz) /Wffe) — (/\f(T)HclIR T*) /W,_« its composition
with the projection modulo W;,.. They fit in the commutative diagram

5 7 () .
/\f( )HdRI;_* /\f( )HéR,T*

Pr*
mod W) ’ mod W«

(N 322 : (N Hl ) [Wr-
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The projection A’ pr.«: N Hip .. — /\f(’)(a)v)r* induces an isomorphism

f(r) (o) (o)
/\H&er* IV, ~ /\(a)v)r* = /\(a)t)v.

We define I, := (¢,)" and h, := (¢%)", and consider the commutative diagram (dual to

the one above)

(q)_’_*/pc‘r* )\/

) L") r
/\f( )HdRZjT /\f( )HéR,T
I,

AT @) hr AT o,

Proposition 4.1.3. Maintaining the above notation, for each ¢t € 7 with f(r) # 0, the

morphism of Ox-modules

o) o .
M, : NHig. = o’ =\ o, ®loP

satisfies the equality
f(o)
M |s=E; - /\ T
where E, € H(X, |o,|P” ') is the r-Hasse invariant, and 7, is the mod p reduction of
the morphism 7, : Hj (A/S)! — (w4,s), given in (8).

Proof. By definition, for each r € 7 with f(r) # O, the r-Hasse invariant E, satisfies

f(t) f(r)
P et
he =10E, : o] i= \ o, — N 0P =0, P =0, & o,

ez_l

Hence, the statement is an immediate consequence of the construction. |
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4.2 The vector weight case

We assume f(r) = min (f(or)>0). The following result is a variation of Lemma 4.1.1

Lemma 4.2.1. Let t € 7 satisfying f(r) = min (f(0,). (). Consider the map

¢r* . Hl (029 N Hl

*Thcrys,t* crys,t*s

and let a .« := [{t’ € 0«|f(z)) = n}|.

(1) ¢,« is divisible by p%;

(2) ¢,«/p%* vanishes on w,.

Proof. By Remark 4.1.2, a, = aj and c.. = f(r)a,., since, by assumption, f(t*) =
max (f(0,+)_,). This observation suffices to adapt the arguments in [17, Lemmas 3.1 and
3.2] to establish the above statements. |

We define I:I, as the morphism dual to the map H ép(\p :,2 /wgi

N Hlg .. induced by
by ¢,-/p%*, and denote by h, its composition with the inclusion w, — HéR, .- They fitin

the commutative diagram

1(p°) (¢ [P )Y 1
dR,m HdR,T

wgpe)

It follows from the construction that A" 1. and A'™ h, agree respectively

with the morphisms IT, and h, defined in Section 4.1. In particular, let
~ e e _ e_
*h,:wgp)—>w1®|w(p)|®|a)r| l=w, @ o, P71

denote the adjugate of h, (see [9,§3.3.1]), then it satisfies *h_ o h, = 1 ® E,, where E, is

the r-Hasse invariant.
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Proposition 4.2.2. Maintaining the above notation, for each v € T satisfying f(z) =
min (f(0,). ), the morphism of Ox-modules

er—1

M, :="h, oIl : Hyp , — 0, ® |,

T

satisfies the equality

M |sg=E 7.

Proof. The statement is a consequence of the constructions. |

By construction, the morphism in Proposition 4.1.3 agrees with the top exterior

power of the morphism in Proposition 4.2.2.

5 Analytic Continuation of the mod p Reduction of Differential Operators

In this section, under some restriction on the weights, we construct weight-raising dif-
ferential operators ®* = ®* on the space of mod p automorphic forms of weight « on X,
which are mod p analogues of Maass—Shimura differential operators. Furthermore, we
prove that the restrictions to the u-ordinary locus S of the operators ®* agree with the
mod p reduction of the differential operators D* constructed in [12], multiplied by a
power of the p-ordinary Hasse invariant which—most importantly—depends only on
the weight A, and not on «.

We prove the following generalization of [9, Theorem 3.4.1] (which, in contrast

to the present paper, had required that p split completely in F(D)).

Theorem 5.0.3. Let ¥ C 7, and let A be a symmetric weight supported at . Assume
either A — §(r), for some 7 € ¥z N X, or A is good, and set either A’ = A — §(r) or A’ = 1,
respectively. Then for any good weight « supported at X, there exists a differential

operator

’ ’
Ok 1= O : @ — T/ Dknay IV e b g o1/ Db s+ b

which satisfies

Okls = EWIELZ . D*mod p.
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Remark 5.0.4. The above statement proves that the differential operator D* can be
analytically continued from S to the whole mod p Shimura variety X. The explicit power
of the Hasse invariant given in Theorem 5.0.3 is not optimal, however. For example, in
the case when the ordinary locus is not empty, it is higher than the power given for the
ordinary case in [9, Theorem 3.4.1]. This is due to the limitations of our construction. In
the case when all symmetric weights are good, Theorem 5.0.3 can be improved to the

expected power of E (see Corollary 5.1.3).

Remark 5.0.5. In the symplectic case (C) all weights are good; in the unitary case (A)
this is not the case, and goodness is in general a strong restriction.

The existence of good symmetric weights is also nontrivial, in case (A). Non-
zero scalar (and hence good) symmetric weights exist if and only if there is v € 75
satisfying f(r) = f(r*). In particular, non-zero parallel symmetric weights exist only
in the symplectic and hermitian case. Indeed, if a scalar weight £ = (£,), .7 € ZT is
symmetric, then £, = 0 unless f(r) = f(r*) and ¢, = £,.. The converse also holds. Good
(non-scalar) symmetric weights occur more generally. For example, they exist if there is
an orbit o in 7T satisfying f(o) < {0,j(0), n}, for some j(0) € Z (equivalently, such that the
polygon v, (n,{) has at most 2 slopes), or if there is an orbit o in 7 satisfying f(r) > n/2

forall r €o.

5.1 The differential operators O

The p-adic Maass-Shimura operators D* are constructed via iterations starting from
the operators D_, for t € X,. We first construct analogous mod p differential operators
©,,forall r € Zj.

More precisely, we establish the following special case of Theorem 5.0.3.

Theorem 5.1.1. Let X C 7 and t € X5. For any good weight « supported at X, there is

a differential operator

. K K K 2
Oy ;10" = 0" @M E Q wy,

which satisfies

Oy .ls = Ex - D,mod p.
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Remark 5.1.2. The reader might be surprised to see that in order to extend D, to the
whole variety X, it is only necessary to multiply by the partial Hasse invariant at places
in the support ¥ of «, that is, for any modular form f, the poles of D_(f) are determined
by places in ¥, regardless of t. This can be seen from the construction of D, in terms of
V and the fact that V(fu) = fV(u) + u ® df for any regular function f and u € ®, s,/

(which shows that only V(u) could contribute poles and only at places in X).

For convenience, in the following, we denote by

D, : 0" — (Hip)" ® ?

the mod p reduction of the algebraic differential operator D, over X defined in
Section 3.3.

Proof of Theorem 5.1.1. For any good weight « supported at X, define the differential

operator

Oz, =0, =, ®D oD, : 0 > D, (0) C (Hip)" ® »? > 0" ® 0> ® w?.

,T

By comparing the constructions of the differential operators ®, . and D, ., we

see that the statement is an immediate consequence of Theorem 4.0.5. |
Corollary 5.1.3. Let £ C 7, and let A be a symmetric weight supported at . Assume

all symmetric weights supported at X are good. Then for any good weight x supported

at ¥, there exists a differential operator
Ok = ®ﬁ C o = T @ @M/ Dknax
which satisfies
®% s = EY? . D*mod p.

Proof. When all symmetric weights supported at ¥ are good, we may construct the

operators @AZ by iterating the operators Oy, _, for r € ¥ N X, from Theorem 5.1.1. |

Thus, in the setting of [9], we recover [9, Theorem 3.4.1].

1202 AInr 92 uo npa-uobalon@usyosies Aq 9$G9ZE9/06 | GBUL/UIWI/SE0 L 0 /10P/ooIIB-80UBAPE/UIWI/WOD dNO-oIWspeo.//:sdny WoJj papeojumoq



Entire Theta Operators at Unramified Primes 41

Remark 5.1.4. Given two positive dominant weights «, A, if ¥ good, then « + A is good
if and only if A is good. Thus, all symmetric weights supported at ¥ are good if and only
if the weights 8(r) = §, + 8, are good for all ¢ € ¥ N Xp. In particular, in case (A), all
weights are good if and only if for every orbit o in 7 there exists an integer j(o) € Z such
that §(0) < {0,j(0), n}. For example, all weights are good if the signature is definite at all
or all but one real place, and all primes v|p of F; split in F.

Indeed, for any r € T, f(r) = min (f(0,). () if and only if f(z*) = max (f(0,+)_,).
Therefore, assuming all weights are good, if there exists t € o such that f(r) # 0, n then
f(0) = {0,j(0), n} for j(0) = max (f(0) _,,) = min (f(0). ). The converse also holds.

Note that if o = o* (equivalently, if the prime v|p of F, is inert in F), then
f(0) = {0,j(0),n} for some j(o) € Z if and only if n is even, and for all t € o if f(z) #0,n
then f(r) = n/2.

5.2 Proof of Theorem 5.0.3 on mod p reductions of differential operators

In general, the weights §(7) of the automorphic sheaves w?, 1 € X, are not good for
all t € ¥ N X, hence the operators Oy . cannot be iterated. Instead, we modify our

construction.

Proof of Theorem 5.0.3. We treat the two cases A’ = A a good weight and A’ = A — §(t)
a good weight separately. We first consider the case where A’ = A is good. Then, the

operator D* is constructed by iterating D, for t € £ N Xy. Let
=h =
D' =D, : (H}p)" ~ (Hip)" ® Hy)

denote the differential operator obtained by iterating the operators D,.
We define ©%} := O} := pr, ; o (M2 @ 1% oD, o1,

o (HéR)K — (HéR)K ® (HéR)A. — (Cl)K ® a)(l)‘l/z)’(halz) ® (CL))L ®w||)‘”"(ha) _
= (@ ® W) @ @M/ DknazHMl*na _y (KA @ () (1A/2kha,z +IM KD

where H’((|)\|/2) denotes the |1|/2-times iteration of the map II,.
Then the statement is a consequence of Theorem 4.0.5. Finally, if A’ = A —§(z) is

a good weight, for some t € T, then |A| = |A/| + 2 and we define

A Az
®% == 05, 0 O%.
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6 New Classes of Entire mod p Differential Operators

In this section, we construct new entire differential operators ® over X that, in contrast
to the operators in Section 5, cannot be obtained as (the analytic continuation of) the
mod p reduction of p-adic Maass-Shimura operators from Section 3. As discussed
in Section 5, good symmetric weights exists only under favorable restrictions on the
signature of the Shimura datum; the goal of this section is to construct a new class of
weight-raising mod p differential operators, to which such restrictions do not apply.
Our starting point is the observation that, for any r € 7, the action of Verschiebung on
mod p automorphic forms transfers forms of weight supported at r to forms of weight
supported at t o 0 ~!. Hence, by composing the operators ®, with appropriate powers
of Verschiebung, we obtain mod p differential operators, which raise the weight of
automorphic forms by (non-symmetric) good weights, and can therefore be iterated and
composed without restrictions.

To better explain our construction, we observe that over the u-ordinary locus S
twisting by Verschiebung agrees with the mod p reduction of the canonical projection
from automorphic sheaves onto their canonical OMOL quotients, that is the OMOL
sheaves of the same weights (defined in Proposition 2.4.1(3)). Under some restrictions
on the weights, we show that the mod p reductions of OMOL sheaves naturally extend
to the whole Shimura variety in positive characteristic and that the mod p reduction of
the differential operators D* on them also extends to entire differential operators ©*.
The new differential operators ® are constructed by realizing mod p OMOL sheaves as
subsheaves of automorphic sheaves of higher (good) weights.

While our techniques differ, the results in this section generalize some of the
results on ®-operators in [6, §4], and [7, §4] (see Remark 6.4.4).

We assume that there exists 0 € O such that 0,n ¢ f(v) and e, > 2.

6.1 Veschiebung twist

Let ® denote absolute frobenius on X; we write AP = ®*A over X, V = Voax: and

denote relative Verschiebung, then (V® 1) o V = VP o V. For any v € 7, V induces a

homomorphism

Vv, :H} — (Hypys )P

Crys,too
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Lemma 6.1.1. Let 7, € T satisfying f(r,) = min(f(0). o). Forany 1 <j <e,.
) @),

(1) v, (Hy C oy,

R,7o ool

=@, @) ®) 1
(2) V7w, ") C o ®QX/FP'

Proof. For part (1), the statement is equivalent to the vanishing of the map
i)

goV, :H. > H® (He/Fil (Hj)

R,1,007 dR, 7, %o

where g is the natural projection of H éR modulo Fil'. By the density of the u-ordinary
locus, it suffices to prove the vanishing for every u-ordinary geometric point.
For part (2), again it suffices to check the statement over the u-ordinary locus.

By the functoriality of the Gauss—Manin connection, we have

VoD oV=v"" o,
hence the statement holds at all u-ordinary geometric points by part (1). |

6.2 Analytic continuation of mod p OMOL sheaves

For each o € O, we fix 7, € o satisfying f(r,) = min(f(0).y), and for any 0 < j < e,,

write

V=V, =V o j—>w§fi).

J JiTo To 700
For any t € o, we defined 0 <j, :=j, . <e, by the equality r =7, 0 olr.

2

Remark 6.2.1. If o = o*, then for each t € o, we have t* = 1 0 0%2 € o, for e = e,

and in particular © = 7, o o/ if and only if t* = 7, 0 6/*¢/2, for any 0 < j < e. Hence,

Jix=J;, +e/2mode.

Lemma 6.2.2. Let o € O satisfying 0 ¢ f(0). Forany 1 <j <e, lett =150 o/ € 0, and

consider the restriction to S of the homomorphism of O ® Ox-modules
7 (Hy), - HpE.

Then each of the following statements is true.
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(1) nﬁ?)07|szﬁ|sont. A
@)

(2) The restriction V; : o, — wr, * induces an isomorphism of Op ® Og-modules

gr'(w,) ~ gr'(o,)?) = 0%

Proof. The statements follow from the description of the pu-ordinary Dieudonné
module and its slope filtration, see [12, Section 3.1]. In particular, the equality in
Equation (1) follows from the inclusion V7 |((U,) < U,,. |

We show that, under some restriction on the weights, the mod p reduction of
OMOL sheaves extends canonically from S to X.
The following definition generalizes [12, Definition 6.3.5] to non-symmetric

weights.

Definition 6.2.3. We call a positive dominant weight « simple if it satisfies the

following for all r € Tz, 0 =0,:
if 0 € f(0,), then x, = 0; and if O ¢ f(0o,), then ; , = 0 for all i > f(z,).
Proposition 6.2.4. For any simple weight «, the restrictions to S of the homomor-

phisms of Op ® Ox-modules Vj'tn, for o € O, satisfying 0 ¢ f(0), and 1 <j < e,, induce

an isomorphism of Op ® Og-modules

®)
o =Mooy, (o) 1S,
Under the above identification, we have V*|S = @o* : 0" — &".

Proof. By definition, if « is simple then the associated OMOL sheaf satisfies
o = gr' ()",
and the statement follows from Lemma 6.2.2(2). |

In the following, for any simple weight «, we use the above identification to

extend from S to X the OMOL sheaf »*, and the canonical projection @* : v* — o*.

1202 AInr 92 uo npa-uobalon@usyosies Aq 9$G9ZE9/06 | GBUL/UIWI/SE0 L 0 /10P/ooIIB-80UBAPE/UIWI/WOD dNO-oIWspeo.//:sdny WoJj papeojumoq



Entire Theta Operators at Unramified Primes 45

Remark 6.2.5. Let o satisfying 0 ¢ f(0), and write e = e,. Then, o, | = », and the

isomorphism w, =~ w?j )| s naturally extends over X to the map V, : o, — a)g’ ", By

definition, V., agrees with the map fzro from Section 4.2; in particular, its composition
~ e eo . KT .
with the adjugate *h, : w%’ RN w,, ® |o, [P°~! agrees with multiplication by the

1,-Hasse invariant E, .

6.3 Analytic continuation of mod p differential operators on OMOL sheaves

We prove that the mod p reduction of the differential operators D* on OMOL sheaves

also extends from S to X.

Remark 6.3.1. Simple symmetric weight exist if and only if there exists 0 € ©
such that 0,n ¢ f(0). Indeed, if A is a simple symmetric weight, and A, # 0, then O,
n ¢ f(o,). Also, for any 7 € X, the basic symmetric weight §(7) is simple if and only if

0,1 ¢ j(oz).

Lemma 6.3.2. Let T € X. For any simple weight «, there is a differential operator
0; =0,; 0 - o ®al.

If0,n ¢ f(o;) then
I® @) 0 ;S = D;mod p,

where w; :=V;, @V, , 0k = 0; @z > ©0F = 0; @ W

Proof. For any o € O satisfying 0 ¢ f(v),and 1 <j<e, lett=1,0 oJ. We define the

operator ®; by the Leibniz rule starting from the operators

©:), = @), = A®ks;1) o VI

®) ) ool _ @)

_ 2 _ 2
W, =Wy, —> Wr, X/F, — wr, Qw; =0, Qw;.
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The following commutative diagram show that if 0,n ¢ f(o;) then the operator

O: satisfies the congruence (I® @;) 0 ©:|S = D:mod p.
D=

1 2 2 2
Wy —————— H QWE ———— Wr QW ———— W, QW=
T (D7)~ ( dR)T T el T T I®ws: =T

wl wl

—— gr' (HlR)r ® w2 grt(wr) @ w? —— erl(w;) ® w2 | Vel

| g (wr) ——

1

Theorem 6.3.3. Let ¥ C 7 satisfying 0 ¢ f(o,) for all ¢ € X, and let A be a simple
symmetric weight supported at X. Then for any simple weight « supported at X, there

is a differential operator

satisfying
©®%|S = D*mod p.

Proof. For any simple weight « supported at X, and any 7 € X satisfying 0,n ¢ §(o;),

consider the differential operators

2N

Oy ;:=I®w;) 00, ; 1o > 0 ®w

defined in Lemma 6.3.2.
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. . . . )\’ A
For any simple symmetric weight A supported at X, we define O = O by
iterating and composing the operators Oy ;, for 7 € ¥z N X. That is, we define
‘)\fd‘

[Azy |
0 = pr, ;oI ®pr) 0Byt o °0O5 2.

o > o ® (®fezF@§)®M") - o ® ot — T,

for any choice of an ordering of the set Xz, d = [F; : Q. Lemma 3.3.1 implies that
the operator ©” is independent of such a choice. We observe that, by construction,
the operator Q)i satisfies the given congruence, as a consequence of the congruences

satisfied by the operators (I ® ;) o ©:. |

6.3.1 The special case of good simple weights

For weights « that are both good and simple, the OMOL sheaves w* agree with the
restriction of the automorphic sheaves " over S, and for all T € X, the operators
0, ; and O, ; both extend the mod p reduction of the basic Maass-Shimura differential
operators D, : on »*. We compare the two constructions.

Set T = {7, € olo € O satisfying 0 ¢ §(0)}, which we regard also as T C O.

Remark 6.3.4. If « is a weight supported at Y, then « is good and simple. Vice

versa, if a weight « is good and simple, then « is supported at {r € 7z|0 & f(o,) and

f(z) = f(zy)}.

For « any weight supported at Y, we write *&“ for the adjugate of w® : w* — ",

and we have

Er(/()fl — H Einax(r(Kfo)—l,O)
° .

oY

We refer to Definition 2.2.2 for the notation r(x) € 771,

Proposition 6.3.5. Let Y, C T, and « be a weight supported at Y. For any 7 € X,
E®O 1.0y ;= "®)o0; cw".

Furthermore, if T € X5 satisfies 0,n & f(0;), then

Er(;c)fl . (H ® w.f) ° ®To,f — (*wk X H) OQTo,f ow”.
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Proof. Let 7 € X . For each 7, € T, the commutativity of the diagram in the proof of

Lemma 6.3.2 implies

wi=Co, ®DoB;0m,,

W, = 0, = wg ) a)g ) ® w? — w;, ® |o, P! @,
where by definition @, = fzro, and *fzru o fzra is multiplication by E; (see Remark 6.2.5).

Furthermore, if T € X5 satisfies 0,n ¢ f(0;), composition with the map (I ® @) yields

I®wz) o0, ;= (*wr0 ®Do®, ;ow, .
For « any weight supported as Y, we deduce the statement from the above
equalities by comparing the construction of the operators © ; and ©;, Oy, ; on o,

and observing that &* = h* and *A" o h* is multiplication by E"®). [ ]

6.4 A new class of entire mod p differential operators

We conclude by introducing a new class of weight-raising mod p differential operators
©* on mod p automorphic forms. These operators are obtained by iterating and com-
posing basic differential operators (:)f, which are defined by composing the operators
©: with the projections w; : wg — Q%, for any T € X satisfying O,n ¢ f(0;). In order to
iterate and compose the operators ®:, we observe that the OMOL sheaves w? also arise
as subsheaves of automorphic sheaves of higher good weights.

For each o € O satisfying 0,n ¢ f(0), we choose 7, € o such that f(z,) = min (o),

and set
Y = {7,lo € O satisfies 0, n ¢ f(0)}. (11)

Definition 6.4.1. For any simple symmetric weight A, A = (A,),c7;, we define the Y-
twist A = AT of A by

e,—1

hy=0ifr ¢ T, and i, = > pla, ,iifr=1,€T.
0

By definition, the weight A is supported at Y, and hence it is good and simple. Note

that A7 is not symmetric. We write §(7) for the Y-twist of §(7), for T € DI
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For any Ox-module F, we write

f:FP — SymPF

for the natural morphism of Ox-module. By abuse of notation, we also write f for the
induced morphisms F?) — Sym? F, forj > 1.
For any 7 € ¥y satisfying 0,n ¢ f(o;), let
p:=fow; 0 =0w; ®wp — 0 = 0P @ 0¥l - sym” () ® Sym? (o,,),
where 0 = 0;. For T = 7, (resp. 7 = 1,.), set j = 0 (resp. j* = 0).
If o # 0%, the sheaf Symp] (w;,) ® Symp' ’ (wra*) is an automorphic sheaf, and its
weight is §(%). If 0 = 0*, by abuse of notation, we still denote by p- its composition with

the natural morphism
sym? (;,) ® Sym? (w,_.) = Sym? (w,)) ® Sym?* (, ) - Sym? P w, );
the sheaf Sym? (1+pe/2)(a)fa) is an automorphic sheaf, and its weight is §(7).

Lemma 6.4.2. For any simple symmetric weight 1, pr; : ®10€T(wro)®|ifv| — o* factors

via the homomorphism ®106T(w10)®|if0‘ - ®zexy (@5 D)@l

Proof. It suffices to observe that, for any simple symmetric weight A, the morphisms

2 2 A A

p; : 02 —> w? - »*@ induce (via Schur functors) a morphism p* : * — w* — »*, which

fits in the following commutative diagram

Pry

/_\ .

® ()Pl @ ()P —

®T(Vf)®”l @T(pr)mTl pxl
A JT ®|Ar] 5(7—_) ®A7| i
&, (w70)®‘ ol —— 7, Rreco (Synlp (WTO)) > ®r (W% ) w

pry

Let 7 € Xy satisfy 0,n & f(0;). For any ¥ C 7, and any good weight « supported

at ¥, we define a differential operator (:)Z'f = (:)le,f, on mod p automorphic forms of
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weight «, by

®2,f = Pty 5.8v(@) © I®p;)o ®Eyf'
o — wK+Kha,2 ® w-% — wK+Kha,E ® ws(f) N wK+Kha,)I+S(f).

IfY C %, then «k +«py 5 + 8T (%) is also a good weight supported at ¥. Hence,
the operators (:)E,f can be iterated and composed without restrictions. For any simple

symmetric weight A, and any choice of an ordering of the set £, d = [F, : Q], we define

~ ~ |Az ~ Az
0% :=pr so(®pr;)o lzéllmuo@‘z‘?‘

K+Kha,s A /Td’

of — @ TIA/2knay g (®feEF(Q%)Mf|) — @ TUA/2)kna x ®Qk — @t U2I/2)kna s

® " — @ HM/2knaz+i

By Lemmas 3.3.1 and 6.4.2, the operators @ﬁ: are well defined, independent of
the choice of an ordering of the set X;. We deduce the following result, concerning
entire theta operators that raise the weights by weights that are not symmetric, and

which do not arise as the mod p reductions of p-adic Maass—Shimura operators.

Theorem 6.4.3. Let Y asin Equation (11), and assume T # ¢. For any simple symmetric
weight A, and any T € ¥ C 7T, there is a differential operator on mod p automorphic

forms of weight «, for « any good weight supported at ¥,

S SA . Al/2 A
0t =04y W — T/ Drpa i

which raises the weight « by (|A|/2)ky, 5 + AT, where 7 is as in Definition 6.4.1.

Remark 6.4.4. For F quadratic imaginary, p inert in F, and indefinite signature,
the choice of Y,7 as above is unique, and the associated operator C:)T,f agrees (up
to multiplication by the Hasse invariant E,) with the operator ® constructed in [7,
Section 4]. In loc. cit., the operator ® is defined on automorphic forms of scalar weights

supported at Y and can be iterated when the signature of the unitary group is (n, 1).
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7 Application to mod p Galois Representations

In this section, we apply the results from the previous sections (more precisely, Section 5
on analytic continuation of differential operators, and Section 6.4 on a new class of
entire differential operators) to Galois representations. For the 1st of these classes of
differential operators, the results in this section remove the splitting constraint on p

from the analogous results in [9, Sections 4 and 5].

7.1 Commutation relations with Hecke operators

Following the same approach as in [9, Section 4], we study the commutation relations
with Hecke operators (and Hida's p-ordinary projectors built from Hecke operators at p),
of the mod p differential operators ®, and ®” constructed in Section 5, and of the mod p
differential operators (:)r and ©” constructed in Section 6.4 (resp. of the p-adic Maass—

Shimura differential operators D* constructed in [12]).

Remark 7.1.1.  The definition of the differential operators ®* = ®% and 6" = 6%
depends on the choice of a non-empty set ¥ C 7. As we shall see the results in
this section do not depend on ¥ < 7. We therefore drop the subscript ¥ from our

notation.

Remark 7.1.2.  The definition of the differential operators ©* = 0% ; depends on the
existence and choice of a non-empty set Y as in Equation (11). In the following, we
assume there exists T nonempty, we fix such a choice and drop the subscript Y from

our notation.

Remark 7.1.3. In our discussion Hecke operators below, following the approach of
[14], we only use the fact that the Hecke action is formulated in terms of algebraic
correspondences, so other approaches similarly formulated in terms of algebraic
correspondences (even if they are normalized differently) also fit into this framework
and, in particular, other normalizations would not affect the statements of Corollaries
7.1.5 and 7.2.1. (One reason for making this observation is that when writing double
coset representations of Hecke operators, one sometimes needs to normalize them

" ou

to work integrally, as explained in moving from the “naive,” “unnormalized” Hecke
operators expressed in terms of double cosets to normalized, integral Hecke operators

in [16, §1].)
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7.1.1 Hecke operators away from p

We briefly recall the definition of the action of the prime-to-p Hecke operators on mod p
(resp. p-adic) automorphic forms. (We refer to [14, Ch. VII, §3], and also [9, Section 4.2],
for details.)

Fix a rational prime ¢, £ # p. We assume that ¢ is a prime of good reduction
for Xy. That is, for each prime v|¢ of F, we assume that K|, is a hyperspecial maximal
compact subgroup of G, = G(F,).

Let ¢ — Isog denote the moduli space of ¢-isogenies over X. We denote by
¢ : prj A — prj.Athe universal £-isogeny, where pr = (pr;, pr,) : £—Isog — X' x X denotes
the natural structure morphism. Similarly to [9, Definition 4.2.2], for any connected
component Z of £ — Isog, we denote by Tz, the natural action of (Z,¢) on HO(X, »")
via algebraic correspondence. By abuse of notation, we also denote by T ,, the induced
actions on mod p automorphic forms over X (resp. on p-adic automorphic forms over
S). We generalize [9, Theorem 4.2.4].

Proposition 7.1.4. Let (Z,¢) be a connected component of the moduli space of
¢-isogenies over X, with v(¢) the similitude factor of ¢. Let «, A be two weights, and
assume A symmetric.
(1) Tz, oD =v(@*/?D o Ty .
(2) Tz, o Or = v(ip)*/2e* o T(z,, if both « and either A or 1 — §(r), for some
7 € X, are good.

(B) Ty, 00" =v(@)"26" 0Ty, if k is good and 4 is simple.

Proof. For Part (1), by construction of the operator D*, the statement reduces to the

special cases
Tiz,p) 2Dy =v(@)D, 0Tz,

for any v € Xj. By the definition, D, = (n; ® ks™!) o Vs, and the commutation
relations follow from the functoriality of the Gauss—Manin connection, the definition
of the morphisms =, and the equality v(¢)KS = KS o (¢p* ® ¢*).

For Part (7.1.4), for any v € Xg, the operators ®, are defined as ®, = (I, ®
ks™1) o V 4/x, and the same argument yields the result for the weight A = 4§(z). On
the other hand, for a more general weight A, the operators ®” are not constructed by
composition/iteration of the operators ®,, thus the statement does not reduce to the

aforementioned case. When 2 is a good weight, the same argument still applies, with
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minor changes. When A — §(t), for some t € X, is a good weight, then the statement
follows from the equality ®*+*() = @_o ®*, and the previously established cases.
For Part (3), by construction of the operator ©®*, the statement reduces to the

special cases
Tz, ° O, =v(p) 06,0 Tz,

for any v € X satisfying O, n ¢ f(0,). By definition, @t = ([®p,) 0O, and the statement

follows from Part (2) and the functoriality of the morphisms p_. |

Finally, we recall the action of the prime-to-p Hecke operators. We define
Ho(G,, Q) to be the Q-subalgebra of the local Hecke algebra H(G,,K,; Q) generated by
locally constant function supported on cosets K,yK,, for y € G, an integral matrix.
Then, the action on mod p (resp. p-adic) automorphic forms of the prime-to-p Hecke
operators agrees with that of the prime-to-p algebraic correspondences, via pullback

under the map of Q-algebras
hy : Ho(Gy, Q) — QlE — Isog/Y]

where Y = X/k(p) (resp. S/W), which to any double coset K,yK,, with y an integral
matrix in G,, associates the union of those connected component of £ — Isog where the
universal isogeny is an ¢-isogeny of type K,y K,.

The following Corollary is an immediate consequence of Proposition 7.1.4.

Corollary 7.1.5. Let f be amod p Hecke eigenform of weight x on X. Assume « is good.
Then:

(1) For any symmetric weight A, such that either A or A — §(z) is good, for some
T € X, if ®*(f) is nonzero then it is a mod p Hecke eigenform.
(2) For any simple symmetric weight A, if ©*(f) is nonzero, then ®*(f) is a

mod p Hecke eigenform.

7.1.2 Hecke operators at p

We briefly recall the definition of the action of Hecke operators at p, on p-adic
automorphic forms over the u-ordinary locus S. (We refer to [14, Ch. VII, §4], and also
[9, Section 4.3], for details.)

1202 AInr 92 uo npa-uobalon@usyosies Aq 9$G9ZE9/06 | GBUL/UIWI/SE0 L 0 /10P/ooIIB-80UBAPE/UIWI/WOD dNO-oIWspeo.//:sdny WoJj papeojumoq



54 E. Eischen and E. Mantovan

Let p—Isog® denote the moduli space of p-isogenies over the u-ordinary locus S.
For any connected component (Z, ¢) of p — Isog®, we write T, , for the action (Z, ¢) on
p-adic automorphic forms over S.

We generalize [9, Theorem 4.3.3].

Proposition 7.1.6. For any connected component (Z,¢) of p — Isog®, with v(p) the

similitude factor of ¢, and any two weights «, A, with » symmetric,

A Al/29
T(Z’(p) oD = v((p)| I72p* o T(Z,¢)-
In particular, if v(¢) > 0, then T(; , o D* = 0.

For any connected component (Z, ) of p—Isog®/SQyF, we define the normalized
action of (Z,¢) on mod p automorphic forms over S as bz = w1z, 0T (z.4) where
uw(Z, ) is the purely inseparable multiplicity of the geometric fibers of Z — S.

We are now ready to introduce the action of the Hecke operators at p. Following
loc. cit., we identify J x G,,, with the appropriate maximal Levi subgroup M of G over
(’)F@)p and realize the local Hecke algebra H(M(F(’)D)p),M(OF(@)p);Q) as a subalgebra
of H(G(F(@)p), Q(OF(Q)p); Q). (Note that, when the ordinary locus is nonempty, the Levi
subgroup M is defined over Zp.) We set M), := M(F(@)p), and define Hy(M,, Q) to be
the Q-subalgebra of the local Hecke algebra H(Mp,M(OF(Q)p); Q) generated by locally
constant function supported on cosets M(OF(@)p)yM(OF@)p), for y € M, an integral
matrix.

Then, the action of the Hecke operators at p on mod p automorphic forms over &
agrees with the normalized action of the p-power algebraic correspondences, via

pullback under the map of Q-algebras

hp : Ho(M,, Q) — QIp —Isog®/S],

which to any double coset K,y K,, with y an integral matrix in G,, associates the union

of those connected component of p —Isog® where the universal isogeny is a p-isogeny of
type M((’)F@)p)yM(OF@)p).

7.1.3 Ordinary projector

When the ordinary locus is nonempty, in [9, Section 4.3.1], we also address the interac-
tion between differential operators and Hida's ordinary projector. More generally, even
when the ordinary locus is empty, we have the p-ordinary project e, which coincides

with Hida's ordinary projector when the ordinary locus is nonempty. The u-ordinary
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projector e was introduced in a general setting in [21, Section 6.2] and later explored in
the context of p-adic automorphic forms over the u-ordinary locus of unitary Shimura
varieties in [3]. The Hecke operators at p are defined in [3, Section 3], and then e is built
from them analogously to in the ordinary case. By a similar argument to the proof of
[9, Corollary 4.3.5], we then have Corollary 7.1.7, which specializes to [9, Corollary 4.3.5]

when the ordinary locus is nonempty.

Corollary 7.1.7. For any weight « and symmetric weight A, €D} = 0.

7.2 Consequences for Galois representations

Let x denote the mod p cyclotomic character. Recall b : G,, — G is the cocharacter dual
to the similitude factor v: G — G,,.
By a similar argument to the proof of [9, Theorem B], we extend [9, Theorem B]

to our context.

Corollary 7.2.1 (Action of differential operators on mod p Galois representations). Let
f be amod p Hecke eigenform on X of weight «, for « a weight supported at X, for some
¥ C 7, and p: Gal(F/F) — G(F) a continuous representation.

Assume « is good. Let A be a symmetric weight.

(1) Suppose either A — §(t), for some t € X, or A is good; set ' = » — §() or
A = A, respectively. Assume @)lE (f) is nonzero.
Then, the Frobenius eigenvalues of p agree with the Hecke eigenvalues of
the form f (as defined in Conjecture 2.5.1) if and only if the Frobenius
eigenvalues of (D*1/2 o ) ® p agree with the Hecke eigenvalues of the form
% ().
In particular, if p is modular of weight «, then ($*//2 6 x) ® p is modular of
weight k + 4 + (IA|/2)kpa 5 + |12 ||k

(2) Suppose A is simple; fix T as in Equation (11). Assume Y C ¥ and é?z(f) is
nonzero.
Then, the Frobenius eigenvalues of p agree with the Hecke eigenvalues of
the form f (as defined in Conjecture 2.5.1) if and only if the Frobenius

eigenvalues of (p/*/2

(:)%m: -
In particular, if p is modular of weight «, then (¥
weight k& + A7 + (IAl/2)kp, 5-

o x) ® p agree with the Hecke eigenvalues of the form

IM/2 6 ¥) ® p is modular of

1202 AInr 92 uo npa-uobalon@usyosies Aq 9$G9ZE9/06 | GBUL/UIWI/SE0 L 0 /10P/ooIIB-80UBAPE/UIWI/WOD dNO-oIWspeo.//:sdny WoJj papeojumoq



56 E. Eischen and E. Mantovan

As in [9, Section 5.2], the above result is a 1st step in the use of ®-operators
to investigate Serre’s weight conjecture (as, e.g., in the specific case of GSp,(Q) in
[44, Theorems 1.1 and 1.2]) on minimal weights of modularity for mod p Galois
representations, or more generally how the weights of modularity vary under twists
by the cyclotomic character. Some preliminary results on ®-cycles analogous to [25,
Theorem on p. 55] and [9, Section 5.2] also hold in this context, when restricting to
scalar weights. As in [44], the general case, beyond scalar weights, is much more subtle.

As first observed for a special case in [6, Section 4.1] (and also in [7, Section 5]),
the cycles described by the modular weights under the action of the operators ® are
substantially different from those obtained under the action of the operators ®, which

is likely to provide an advantage in the study of Serre’'s weight conjecture.
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