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Starting with the work of Serre, Katz, and Swinnerton-Dyer, theta operators have played

a key role in the study of p-adic and mod p modular forms and Galois representations.

This paper achieves two main results for theta operators on automorphic forms on

PEL-type Shimura varieties: (1) the analytic continuation at unramified primes p to the

whole Shimura variety of the mod p reduction of p-adic Maass–Shimura operators a

priori defined only over the μ-ordinary locus, and (2) the construction of new mod p

theta operators that do not arise as the mod p reduction of Maass–Shimura operators.

While the main accomplishments of this paper concern the geometry of Shimura

varieties and consequences for differential operators, we conclude with applications

to Galois representations. Our approach involves a careful analysis of the behavior of

Shimura varieties and enables us to obtain more general results than allowed by prior

techniques, including for arbitrary signature, vector weights, and unramified primes in

CM fields of arbitrary degree.

1 Introduction

Starting with the work of Serre, Swinnerton-Dyer, and Katz, theta operators have played

key roles in the study of p-adic and mod p modular forms and associated arithmetic

data at a prime number p. For example, the operator θ from [37, 38] that acts on the
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2 E. Eischen and E. Mantovan

q-expansion f (q) of a modular form f by q d
dq is employed in constructions of p-adic

L-functions in characteristic 0, as well as in the proof of the weight part of Serre’s

conjecture in characteristic p.

Recently, the potential for theta operators to be similarly powerful in higher

rank applications has led to their study in the setting of automorphic forms on Shimura

varieties X arising as (connected components of) moduli spaces of abelian varieties

endowed with polarization, endomorphism, and level structure (that is, of PEL-type). In

characteristic 0, p-adic theta operators arise as p-adic Maass–Shimura operators, that

is, as differential operators constructed from the Gauss–Manin connection and Kodaira–

Spencer morphism analogously to the C∞ Maass–Shimura operators from, for example,

[5, 11, 19, 20, 27, 34, 40]. They are defined on automorphic forms over the μ-ordinary

locus of X , and there is a mathematical obstruction to analytically continuing them to

the whole Shimura variety (as explained in [9, Section 1.3]).

On the other hand, as this paper illustrates, the mod p setting is fundamentally

different, in the sense that theta operators are entire, that is, can be analytically

continued to the whole mod p Shimura variety, and furthermore, there are more theta

operators than just those arising as mod p reductions of Maass–Shimura operators. In

particular, by building on the ideas introduced by Katz, we obtain the following results

when p is unramified in the reflex field of X .

Theorem I (Rough version of Theorems 5.0.3 and 5.1.1: analytic continuation). Reduc-

tions mod p of p-adic Maass–Shimura differential operators Dλ, a priori defined only

over the μ-ordinary locus (where they raise the weight of an automorphic form by a

weight λ), can be analytically continued to the entire mod p Shimura variety X.

More precisely, for good weights (as in Definition 4.0.4), there is a differential

operator �λ defined on automorphic forms on X whose restriction to the μ-ordinary

locus coincides with E|λ|/2 · Dλ, where E denotes the μ-ordinary Hasse invariant.

By Proposition 3.4.2, the amount λ by which Maass–Shimura operators can raise

the weight of an automorphic form is always symmetric (in the sense of Section 2.2.2).

For applications to the weight part of Serre’s conjecture, though, one would also like

more control over the weights. So the theta operators described in Theorem II below are

a boon, since they also allow the weights to vary by certain non-symmetric amounts.

This new phenomenon only occurs when the ordinary locus is empty (i.e., when the

prime p is not totally split in the reflex field of X ). This is the complement of the set

of cases handled by [9] and is specific to the μ-ordinary setting for unitary Shimura

varieties.
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Entire Theta Operators at Unramified Primes 3

Theorem II (Rough version of Theorem 6.4.3: new theta operators). Assume p does not

split completely in the reflex field. Then the class of mod p theta operators is larger

than the class of mod p reductions of Maass–Shimura operators.

In particular, there are entire theta operators that raise the weights of mod p

automorphic forms by different amounts from those allowed by the mod p reduction of

p-adic theta operators. More precisely, if ϒ is as in Equation (11) and λ is symmetric and

simple (as in Definition 6.2.3), there is an entire differential operator �̃λ that raises the

weight of mod p automorphic forms on X of good weight by the non-symmetric weight

(|λ|/2)κha + λ̃ϒ , where κha is the weight of the μ-ordinary Hasse invariant and λ̃ϒ is as

in Definition 6.4.1.

Most of the work in this paper concerns the development of techniques to prove

Theorems I and II. Keeping in mind a key source of motivation for studying mod p

theta operators in the 1st place, though, we conclude the paper by also addressing some

effects of these operators on Galois representations.

Remark 1.0.1. In the precise versions of these theorems later in this paper, we have

finer control over the weight than these rough versions might suggest. In particular,

we can vary the weights at places corresponding to different primes dividing p, but

for clarity of notation in this introduction, we have suppressed the corresponding

subscripts and partial Hasse invariants. Such control is important for anticipated

applications to theta cycles in studying the weight part of Serre’s conjectures and, as

discussed in Section 1.1 below, cannot be achieved via prior approaches.

1.1 Principal innovations and relationships with prior developments

Thanks to the approach developed in the present paper, which relies on the development

of a theory of automorphic forms over the μ-ordinary locus by the authors in [12] and the

construction of μ-ordinary Hasse invariants by Goldring and Nicole in [17], Theorems I

and II improve on the previous results for theta operators in the setting of unitary

groups of higher rank. (See Remark 1.1.1 below, for references to earlier work in the

Hilbert–Siegel case.) A careful analysis of intrinsic properties of the underlying Shimura

varieties enables us to remove restrictions from prior results.

Building on Katz’s study of the theta operator for modular forms in [26], Theorem

I was previously proved jointly by the authors together with Flander, Ghitza, and

McAndrew in [9, Theorem A] under the auxiliary assumption that p splits completely

in the reflex field of X (i.e. when the ordinary locus is nonempty). When the ordinary
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4 E. Eischen and E. Mantovan

locus is empty, the constructions in [9] still hold but the resulting �-operators vanish

on the whole mod p Shimura variety X. Theorem II was previously proved by de Shalit

and Goren in [6, 7] in the special case of scalar-valued automorphic forms and under the

assumption that the real field associated to the Shimura datum defining X is Q. (Note

that the operator they denote by � is the operator we denote by �.) The approach in [6, 7],

which is completely different from that in this paper (as, e.g., their proof relies on

Fourier–Jacobi expansions), does not readily extend to the case of non-scalar weights.

That is, extending their techniques to non-scalar weights is not merely a notational or

combinatorial issue.

In the present paper, like in [9], our approach to studying theta operators is coor-

dinate free and avoids q-expansions, Fourier–Jacobi expansions, Taylor series, Serre–

Tate expansions, etc. and instead relies on intrinsic geometric features of the underlying

Shimura variety. (Even though other references also construct theta operators without

referencing such expansions, their proofs of results about them sometimes rely in key

ways on such expansions, e.g., to obtain stronger results under particular conditions,

like discussed below.) This allows us to continue to work with vector weights like in [9].

A key ingredient for extending the approach of [9] to the case where p is merely

unramified in the reflex field (i.e., the ordinary locus need not be nonempty) is the

μ-ordinary Hasse invariants introduced by Goldring and Nicole in [17]. Working with

partial Hasse invariants, in place of the Hasse invariant from the case of nonempty

ordinary locus, enables us to extend the Hodge–de Rham splitting in characteristic p

to the whole Shimura variety in a way that enables us to naturally extend the mod

p reduction of Maass–Shimura operators to the whole Shimura variety. This method

has the advantage that it allows us to vary weights by different amounts at places

corresponding to different primes dividing p, as mentioned in Remark 1.0.1, but also

the disadvantage that forces us to restrict to good weights in Theorems I and II.

As a crucial intermediate step introduced in the present paper, we also consider

differential operators on the OMOL (“Over the Mu-Ordinary Locus”) sheaves introduced

in [12, Section 4.2], when the ordinary locus is empty (i.e., when p does not split

completely in the reflex field). In this paper, we establish the analytic continuation

of the mod p reduction of OMOL sheaves and differential operators to the whole mod p

Shimura variety (Theorem 6.3.3). As explained in [12], over the p-adic μ-ordinary locus,

there is a canonical projection from an automorphic sheaf to an OMOL sheaf of the same

weight, which is generally not an isomorphism. In the present paper, we observe that,

over the whole mod p Shimura variety, we also have an injection from an OMOL sheaf

of simple weight (as in Definition 6.2.3) to an automorphic sheaf, of good higher weight.
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Entire Theta Operators at Unramified Primes 5

This enables us to exploit the analytic continuation of OMOL sheaves and differential

operators to construct new entire theta operators, when p does not split completely in

the reflex field.

Theorem II is then achieved by exploiting the results we develop for OMOL

sheaves and their relations to automorphic sheaves in the mod p setting. As noted in

Remark 6.4.4, in the special case when the automorphic forms have scalar weights and

the base field is Q, Theorem II is also proved in [6] and [7, Sections 4 and 5], although the

operator � in loc. cit. can only be iterated (to define operators �λ, for higher weights λ)

when the signature is (n, 1) (as opposed to general signature). The scalar weights

occurring in loc. cit. are special cases of what we call simple, scalar in the present

paper.

The techniques we use in our proofs (e.g., exploiting the underlying geometry

and OMOL sheaves, and avoiding q-expansions) are genuinely different from those

in [6, 7] and immediately remove their conditions on the signature. (To be clear, the

construction of theta operators in either case does not require q-expansions, but rather,

the difference is in the techniques employed in proofs.) On the other hand, in [6, 7], de

Shalit and Goren obtain an operator �, which raises the weight by a lower amount, via

a lower exponent on the Hasse invariant than our methods produce in the cases they

consider. Their better bound on the weight is useful, for example, in their application to

the study of theta cycles at signature (n, 1) in [6, Section 5].

As a consequence of our work, the results on Hecke algebras and Galois

representations from [9, Sections 4 and 5] are extended in Section 7 to the case where

p need not split (but rather is merely unramified) and where the set of weights under

consideration is expanded.

Remark 1.1.1. While the discussion in the present paper focuses primarily on over-

coming challenges and exploring new phenomena particular to the μ-ordinary setting

(i.e., the case when the ordinary locus is empty, which is specific to the unitary case), we

note for the sake of completion that in the special case of the symplectic group GSp4 (Q),

Yamauchi has produced precise results for theta cycles, which rely on combinatorics

specific to that case [44]. Results for theta operators in the Hilbert–Siegel case of

arbitrary rank are also obtained in [9]. Earlier, Andreatta and Goren also produced

stronger results on theta operators and theta cycles in the setting of Hilbert modular

forms, that is, for GSp2 = GL2 over a totally real field [1, Section 16]. Those results build

on Katz’s weight filtration theorem (which Jochnowitz and Edixhoven had also used

earlier to obtain results about theta cycles in the setting of modular forms [8, 24]).
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6 E. Eischen and E. Mantovan

1.2 Structure of the paper

Sections 2 and 3 discuss properties of the main objects with which we work. In

particular, Section 2 introduces background information for Shimura varieties, auto-

morphic forms, and partial Hasse invariants over the μ-ordinary locus. After recalling

constructions of p-adic Maass–Shimura operators over the μ-ordinary locus [10, 11, 12],

Section 3 establishes key properties of these operators. Section 3 concludes with results

for differential operators on OMOL automorphic forms, which were first introduced

in [12, Section 4.2] and play a crucial intermediate role in achieving the results of the

present paper.

Our approach to constructing entire mod p theta operators relies heavily on

Section 4, which concerns the interplay between the characteristic p Hodge–de Rham

filtration and partial Hasse invariants (from [17]). In particular, Theorem 4.0.5 is a

key ingredient for extending the analytic continuation results from [9, Section 3] (i.e.,

when the prime p splits completely, so the ordinary locus is nonempty) to the setting

of Theorem I (p merely unramified, so the ordinary locus need not be nonempty).

Employing Theorem 4.0.5, Section 5 details how to extend the mod p reduction of

p-adic Maass–Shimura varieties, initially defined only over the μ-ordinary locus, to the

entire Shimura variety.

While Section 5 concerns the mod p reduction of p-adic differential operators,

Section 6 produces the new classes of mod p differential operators arising in Theorem II.

These new operators raise the weights of automorphic forms by amounts different

from the amounts possible with the mod p reductions of Maass–Shimura operators.

As an intermediate step, Section 6 also explains how to analytically continue the mod p

reduction of differential operators on OMOL p-adic automorphic forms. We anticipate

that the additional control over the weights will be useful for studying theta cycles and

Serre’s weight conjecture. Motivated by this anticipated application, we apply our mod

p differential operators to Galois representations in Section 7, via an analysis of their

interaction with Hecke operators.

2 Background and Setup

In the section, we introduce notation, key assumptions, and basic information about

automorphic forms on PEL-type Shimura varieties (Sections 2.1 and 2.2), the Hasse

invariant and p-adic automorphic forms over the μ-ordinary locus (Sections 2.3 and 2.4),

and the associated Hecke algebras and Galois representations (Section 2.5).
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Entire Theta Operators at Unramified Primes 7

2.1 Shimura data and Shimura varieties

We briefly introduce PEL-type Shimura varieties of unitary (A) or symplectic (C) type.

For a more extensive introduction to Shimura varieties, see [29, 31, 32]. Given that many

of the ingredients for our work exist for Shimura varieties of Hodge type, we expect it is

possible to extend our results from unitary and symplectic groups to that more general

setting.

To the extent reasonable, we employ the conventions of [9, Section 2.2]. Note,

however, that the simplifying conditions of [9, Section 2.2.2] (i.e., that p splits

completely in the reflex field) are not imposed here, since one of the achievements

of the present paper is their removal.

2.1.1 Shimura data and associated data

Our Shimura varieties are associated to a PEL-type Shimura datum, that is, a tuple

D := (D, ∗,V, 〈, 〉,h) consisting of the following:

• A finite-dimensional simple Q-algebra D

• A positive involution ∗ on D over Q

• A nonzero finitely generated left D-module V together with a non-degenerate

Q-valued alternating form 〈, 〉 on V such that 〈bv,w〉 = 〈v, b∗w〉 for all

v,w ∈ V and b ∈ D

• A ∗-homomorphism h : C → CR, where C := EndD(V) viewed as a Q-algebra

and the symmetric real-valued bilinear form 〈·,h(i)·〉 on VR is positive-

definite

From the Shimura datum D, we also obtain the following:

• A field F, defined to be the center of D.

• A totally real field F0, defined to be the fixed field of ∗ on F.

• A decomposition VC = V1 ⊕ V2 arising from the endomorphism hC = h ×R C

of VC = VR ⊗R C = V ⊗Q C on which (h(z), 1) = h(z) × 1 acts by z on V1 and

by z̄ on V2 for each z ∈ C.

• An integer n := dimF V.

• The reflex field F(D), defined to be the field of definition of the G(C)-

conjugacy class of V1 (Standard notation for the reflex field, including in the

authors’ prior work, is E. In this paper, though, we follow the convention of

using E for the Hasse invariant.).
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8 E. Eischen and E. Mantovan

We have F = F0 if F is totally real, and otherwise F is a CM field obtained as an

imaginary quadratic extension of the totally real field F0. We fix an algebraic closure Q

of Q. Given a number field L, we denote by TL the set of embeddings L ↪→ Q. Since we

will be working over both C and Cp, we also fix embeddings

ι∞ : Q ↪→ C

ιp : Q ↪→ Cp,

and we identify Q with its image under each of these embeddings. So via composition

with ι∞, TF0 is the set of embeddings F0 ↪→ R. If F0 
= F, the elements of TF arise in

complex conjugate pairs τ 
= τ ∗ with τ |F0 = τ ∗|F0 . We denote by 
F a choice of CM type,

that is, a set consisting of exactly one of τ , τ ∗ for each complex conjugate pair (τ , τ ∗) of
complex embeddings of F. We identify 
F with TF0 via the bijective map τ �→ τ |F0 . We

also sometimes drop the subscript and write T when the subscript is clear from context.

2.1.2 Additional conditions

We assume the Shimura datum D satisfies the following additional conditions:

• The prime (p) is unramified in F.

• The algebra D is split at p, that is, DQp
is a product of matrix algebras over

extensions of Qp.

• There is a Z(p)-order OD in D preserved by ∗ and whose p-adic completion is

a maximal order in DQp
.

• There is a Zp-lattice L ⊂ VQp
self-dual with respect to 〈, 〉 and preserved by

OD.

We fix a prime p in F(D) above (p) and write k(p) := OF(D)/p for its residue field. Under

the above assumption, F(D) is unramified at p. We fix an algebraic closure F of k(p),

define W := W (F) its ring of Witt vectors, and write σ for the absolute Frobenius on W.

In the following, for any number field L, we denote by LGal its Galois closure

inside Q. For any field k of characteristic p, we denote by W(k) its ring of Witt vectors.

Given a field L, we denote by OL its ring of integers, and given a prime q in L, we write

OL,q (resp. OLq ) for the localization (resp. completion) at q. If k is the residue field of

a complete field L that is unramified, we identify W(k) with the ring of integers OL.

Given a number field L, and a prime q above (p), if q is unramified, we identify TL with

Hom
(
OL,W

)
, via ιp. Composition on the right defines an action of Frobenius σ on TL; for
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Entire Theta Operators at Unramified Primes 9

any τ ∈ TL its σ -orbit is the subset

oτ = {τ ◦ σ i|i ∈ Z} ⊆ TL.

We define

OL := {
o ⊂ TL | o is a σ -orbit

}
.

2.1.3 Algebraic group associated to the Shimura datum D

We denote by G the algebraic group defined over Q whose R-points, for any Q-algebra

R, are

G(R) = {
x ∈ C ⊗Q R|xx∗ ∈ R×}

.

We denote by

ν : G → Gm

the similitude factor of G. For any character ψ : G → Gm, we denote by ψ̂ its cocharacter

Gm → Ĝ. Note that (̂νm) = (ν̂)
m for each m ∈ Z. We define

G1 := ker(ν).

We have

G1 = ResF0/Q(G0)

for some algebraic group G0 defined over F0. If F 
= F0, then G0 is an inner form of a

quasi-split unitary group over F0. In this case, our Shimura datum is of unitary type (A).

On the other hand, if F = F0, then over an algebraic closure of F0, G0 is orthogonal

(type D) or symplectic (type C). In this paper, we focus on types A and C.

Let K = KpKp, with Kp ⊂ G
(
Qp

)
hyperspecial (i.e., Kp is the stabilizer of L ) and

Kp ⊂ G
(
Ap
f

)
, be an open compact subgroup of G

(
Af

)
that is neat in the sense of [31,

Definition 1.4.1.8]. (Following the usual conventions, Af denotes the finite adeles of Q,

and Ap
f denotes the finite adeles away from p.) In other words, K is a level. Given a finite

place v, we say that v is good with respect to K and p if v � p and Kv is hyperspecial
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10 E. Eischen and E. Mantovan

at v. Otherwise, we say v is bad with respect to K and p. We denote by 
K,p the set of

places that are bad with respect to K and p.

2.1.4 Moduli space of abelian varieties associated to the Shimura datum D

Associated to our PEL-type Shimura datum and level K is a moduli space X := XK

parametrizing D-enriched abelian varieties, that is, abelian varieties together with

polarization A → At, endomorphism, and K-level structure, satisfying Kottwitz’s

determinant condition (we refer to [29, page 390], for details). (In this paper, we use

a superscript t to denote the dual of an object.) Under the conditions of Section 2.1.2,

X canonically extends to a smooth quasi-projective scheme over OF(D) ⊗Z Z(p), still

denoted X or XK . We regard X = XK as a scheme over OF(D),p. We refer to XK as the PEL-

type Shimura variety of level K associated to our choice of Shimura datum and denote

by X or XK its reduction modulo p, that is, X := X ×OF(D),p
k(p). By abuse of notation, we

also denote by X , resp. X, the schemes X ×OF(D),p
W, resp. X × F.

2.1.5 Decompositions and signatures associated to the Shimura datum

As noted in [27, (2.0.3)], for any OFGal
0

-algebra R, the ring homomorphism

OF0 ⊗Z R → ⊕τ∈TF0R

a ⊗ r �→ (τ (a)r)τ∈TF0

is an isomorphism if and only if the discriminant dF0 of F0/Q is invertible in R. Given

τ ∈ TF0 and an O⊗R-module M, we denote by Mτ the submodule of M annihilated by the

set of a ⊗ 1 − 1 ⊗ τ(a) ∈ OF0 ⊗ R, that is, the submodule on which each a ∈ OF0 acts as

scalar multiplication by τ(a). If R is a OFGal
0

-algebra in which dF0 is invertible and M is

a locally free OF0 ⊗ R-module, then similarly to [27, (2.0.9)], we have that the canonical

OF0 ⊗ R-module-homomorphism

M → ⊕τ∈TF0Mτ

is an isomorphism. If F 
= F0 and R is, in addition, an OFGal-algebra, then the action of F

induces a further decomposition

M = ⊕τ∈TFMτ = ⊕τ∈
F
Mτ ⊕ Mτ∗ = ⊕σ∈TF0M

+
σ ⊕ M−

σ ,
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Entire Theta Operators at Unramified Primes 11

where, for each σ ∈ TF0 ,M
+
σ (resp.M−

σ ) is the submodule ofMσ on which each a ∈ OF acts

as scalar multiplication by τ(a) (resp. τ ∗(a)) with τ the element of 
F such that τ |F0 = σ .

For i = 1, 2, we have a decomposition

Vi = ⊕τ∈TFVi,τ

induced by the decomposition F⊗QC = ⊕τ∈TFC (identifying a⊗b with (τ (a)b)τ∈TF ). Thus
we also have a decomposition

VC = ⊕τ∈TFVτ ,

with

Vτ := V1,τ ⊕ V2,τ

for all τ ∈ TF .
For each τ ∈ TF , we set

aτ := dimC V1,τ .

The signature of the Shimura datum is
(
aτ

)
τ∈TF . For each τ ∈ 
F , we have

n =
⎧⎨
⎩
aτ + aτ∗ in the unitary case (A)

aτ in the symplectic case (C).

In Case A (so F 
= F0), this is the signature of the unitary group G0/F0 and the signature

at τ ∈ 
F is
(
a+

τ ,a
−
τ

)
with a+

τ := aτ and a−
τ := aτ∗ . Following the conventions of [12, 36],

we also define

f(τ ) := aτ

for each τ ∈ TF , and we denote by

f := (f (τ ))τ .

the signature of the Shimura datum D.
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12 E. Eischen and E. Mantovan

2.2 Weights, representations, and automorphic forms

We summarize key details about weights and representations, following the approaches

of [12, Sections 2.3 through 2.5] and [9, Sections 2.1 and 2.2]. For additional details, see

[10, Sections 2.3 and 2.4] or [4, Section 3.2].

2.2.1 Subgroups

We denote by J the algebraic group over Z defined by

J :=
∏

τ∈TF
GLaτ

=
⎧⎨
⎩
∏

τ∈
F

(
GLaτ

× GLaτ∗
)⊆∏

τ∈
F
GLn=∏

τ∈TF0GLn, in the unitary case (A)
∏

τ∈TF0 GLn, in the symplectic case (C)

We denote by B a Borel subgroup of J, T a maximal torus contained in B, and N the

unipotent radical of B. We have a decomposition T = ∏
τ∈TF Tτ , and we have analogous

decompositions, denoted analogously, for each algebraic subgroup of J. By choosing

an ordered basis for VC compatible with the decompositions from Section 2.1.5, we

identify J(C) with a Levi subgroup of G1(C). We choose such a basis so that furthermore

Bτ is identified with the subgroup of upper triangular matrices in GLa+
τ
and Tτ with

Ta+
τ
:= G

a+
τ

m , which is, in turn, identified with the subgroup of diagonal matrices of J.

Note that each of these groups is split over OF(D)p
, that is, any maximal torus in it is

isomorphic over OF(D)p
to a product of copies of Gm.

For a choice of an ordered partition m• given by

m1,τ + · · · + msτ ,τ = aτ , (1)

for each τ ∈ TF , we denote by P = Pm• the associated block upper triangular parabolic

subgroup of J containing B, and by U = Um• the unipotent radical of P. Then the

Levi subgroup M = Mm• of P, M ∼= P/U, is a block diagonal product of groups GLmt,τ
,

t = 1, . . . , sτ , τ ∈ TF .
Our choice of ordered partitions of aτ , for all τ ∈ TF , will be uniquely determined

by the geometry of the underlying Shimura variety and its μ-ordinary locus (see

Equation (5) below and [12, §2.9] for a detailed explanation). In the following, formμ• the

partition given in Equation (5), we write Pμ = Pmμ• , Uμ = Umμ• , and Jμ = Mmμ•
∼= Pμ/Uμ.

Note that for any representation ρ of J, the associated graded representation

gr
(
ρ|Pμ

)
of Jμ and ρ|Jμ

are canonically identified. We also define a Borel subgroup

Bμ = B ∩ Jμ of Jμ and Nμ = N ∩ Jμ and Tμ = T ∩ Jμ the unipotent radical and maximal

torus of Bμ, respectively.
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Entire Theta Operators at Unramified Primes 13

2.2.2 Weights

We briefly introduce weights and their relationship with algebraic representations.

For more details, see [12, Section 2.3], [10, Section 2.4], [22, Sections 5.1.3 and 8.1.2],

[23, Part II, Chapter 2], or [15, Sections 4.1 and 15.3].

We denote by X∗ := X∗(T) the group of characters of T. Via B/N ∼= T, we also

view X∗(T) as characters on B. Given κ ∈ X∗(T) and a T-module M, we denote by M[κ]

the κ-eigenspace of M. We define

X+(T) :=
⎧⎨
⎩

(
κ1,τ , . . . , κaτ ,τ

)
τ∈TF ∈

∏
τ∈TF

Zaτ ,τ |κi,τ ≥ κi+1,τ for all i

⎫⎬
⎭ .

We identify X+(T) with the subgroup of X∗(T) of dominant weights in X∗(T) via

∏
τ∈TF

diag
(
t1,τ , . . . , taτ ,τ

) �→
∏

τ∈TF

∏
1≤i≤aτ

tκi,τi,τ .

If κ = (
κτ

)
τ∈
F

= (
κ1,τ , . . . , κn,τ

)
τ∈
F

is a dominant weight of GLm and n > m, then we

denote by (κ, 0) the dominant weight (κ1,τ , . . . , κn,τ , 0, . . . , 0)τ∈
F
of GLn. Given k ∈ Z, we

denote by k the element κ ∈ X+(T) such that κi,τ = k for all i, τ . We call k a parallel, scalar

weight, and in this case, we also sometimes just write k for the weight. More generally,

if for each τ , there exist kτ ∈ Z such that κi,τ = kτ for each i, then we call κ =
((

κτ ,i

)
i

)
τ
a

scalar weight, and we write kτ := κτ = (
kτ , . . . , kτ

)
. In this case, we also sometimes just

write kτ for the weight at τ . Also, if κ = (
κτ

)
τ
is such that κτ = κσ for all τ , σ , we say

that κ is parallel. If κ ∈ X+(T) is such that κ 
= 0 and κi,τ ≥ 0 for all i, τ , we say that κ is

positive. If κ is positive and τ ∈ TF , then we say κ is supported at τ if κi,τ 
= 0 for some i

and κj,σ = 0 for all σ 
= τ and all j. For τ ∈ TF and positive κ, we define

dκ,τ := ∣∣κτ

∣∣ :=
aτ∑
i=1

κi,τ (2)

dκ := |κ| :=
∑
τ∈TF

dκ,τ =
∑
τ∈TF

∣∣κτ

∣∣ .

We say κ is sum-symmetric at τ if κ is positive and dκ,τ = dκ,τ∗ . We say κ is sum-

symmetric if κ is positive and sum-symmetric at all τ ∈ 
F . Given τ ∈ 
F and κ ∈ X+(T),

if κi,τ = κi,τ∗ for all i ≤ min
(
aτ ,aτ∗

)
and κi,τ , κi,τ∗ = 0 for all i > min

(
aτ ,aτ∗

)
, we say that

κ is symmetric at τ . If κ is symmetric at each τ ∈ 
F , we say that κ is symmetric. This

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab190/6326546 by  eeischen@

uoregon.edu on 26 July 2021



14 E. Eischen and E. Mantovan

is the same condition on weights that occurs without a name in [40, Theorem 12.7] and

[39, Theorem 2.A].

To each dominant weight κ, we associate a representation ρκ obtained by

application a κ-Schur functor Sκ . (See, e.g., [15, Section 15.3], for details on Schur

functors.) Let R be a Zp-algebra or a field of characteristic 0, and V := VR := ⊕τ∈TF (R
aτ )

denote the standard representation of
∏

τ∈TF GLaτ
over R. If κ is a dominant weight,

the κ-Schur functor acts on R-modules so that we obtain a representation Sκ(VR)

of
∏

τ∈TF GLaτ
, which we denote by ρκ := ρκ,R. As explained in [23, Chapter II.2],

if R is furthermore of sufficiently large characteristic or of characteristic 0, then

each representation ρκ,R is irreducible, and furthermore, the set of representations

ρκ,R is in bijection with the set of dominant weights κ. Following the conventions of

[12, Section 2.3], when R is such a field and has ring of integers O, we denote by ρκ,O
a choice of a O-lattice in ρκ,R. Also, given a locally free sheaf of modules F over a

Zp-scheme T, we write Sκ(F) for the locally free sheaf of modules over T, defined by

Sκ(F)(SpecR) = Sκ(F(SpecR)), for SpecR any affine open of T.

For each positive dominant weight κ, by applying a generalized Young sym-

metrizer, we obtain a projection prκ : V⊗dκ → ρκ . If κτ is a positive, dominant weight

and R is as above, then the κτ -Schur functor is Sκτ
(V) := V⊗dκ,τ · cκ,τ , where cκ,τ denotes

the Young symmetrizer associated to κτ . As noted in [10, Lemma 2.4.6], if κ, κ ′ are two

positive, dominant weights, then prκ+κ ′ factors through the map prκ ⊗ prκ ′ ; we write

prκ,κ ′ for the induced projection ρκ ⊗ ρκ ′ → ρκ+κ ′ .

Definition 2.2.1. For any dominant weight κ = (κτ )τ∈TF , we write

||κ|| := (||κτ ||)τ∈T ∈ Z|TF |,

where ||κτ || ∈ Z is defined as in

||κτ || :=
⎧⎨
⎩

|κτ |/aτ if κτ is scalar

|κτ | otherwise.

(By Equation (2), if κτ is scalar, then
∣∣κτ

∣∣ is a multiple of aτ .)
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Entire Theta Operators at Unramified Primes 15

Note that ||κτ || is the unique integer satisfying, for χ any character of GLaτ
,

Sκτ
(Vτ ) ⊗ χ ||κτ || �

⎧⎨
⎩
S||κτ ||

(
det(Vτ ) ⊗ χ

)
if κτ is scalar

Sκτ
(Vτ ⊗ χ) otherwise.

Definition 2.2.2. For any dominant weight κ = (κτ )τ∈TF , we write

r(κ) := (r(κτ ))τ∈TF ∈ Z|TF |,

where r(κτ ) ∈ Z is defined as in

r(κτ ) := |κτ | · dim ρκτ
/aτ .

(By definition, if κ is scalar, then r(κ) = ||κ||.)
Note that r(κτ ) is the unique integer satisfying the equality

det(Sκτ
(f )) = det(f )r(κτ )

for f any linear endomorphism of the standard representation of GLaτ
.

Following the convention of [9, Definition 2.2.3], given a positive integer e, we

call a dominant weight κ admissible of depth eκ = e if the irreducible representation ρκ

of J occurs as a constituent of the representation
(
V2

)⊗e
for

V2 :=
⎧⎨
⎩

⊕τ∈TF0 Sym
2Vτ , in the symplectic case (C)

⊕τ∈
F
Vτ � Vτ∗ , in the unitary case (A)

(3)

In the above cases, we also define V2
τ to be the summand at τ . By abuse of language,

we also speak of being admissible of depth e at τ . We denote by δ(τ ) the weight of V2
τ .

Admissible weights are even in the symplectic case, and sum-symmetric in the unitary

case.

Remark 2.2.3. Here, we will be particularly interested in the case of irreducible

constituents that arise inside symmetric powers of V2 and, more generally, inside

�τSym
eτ

(
V2

τ

)
for eτ ≥ 0 integers. By [39, Theorem 2.A], such constituents are symmetric

and occur with multiplicity one. In the case where aτ = aτ∗ for all τ ∈ 
F , this is the

Peter–Weyl Theorem (see, e.g., [13, Theorem 4.66]).
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16 E. Eischen and E. Mantovan

Remark 2.2.4. Let κ = (κτ )τ∈T be a dominant weight. Note that ρκ is one-dimensional

if and only if κ is a scalar weight, that is, κ = (
kτ

)
τ
for some nonnegative integers kτ ∈ Z.

In this case ρκ = �τdet
kτ , that is, the kτ -th powers of the top exterior powers.

Remark 2.2.5. Let R be a Zp-algebra or a field of characteristic 0 and Jμ a Levi

subgroup of J as in Section 2.2.1. For any dominant weight κ ′ of Jμ, we denote by

�κ ′ = �κ ′,R the irreducible algebraic representation of Jμ over R, of highest weight κ ′.
If R is of sufficiently large characteristic or of characteristic 0, then for any dominant

weight κ of J, we identify

ρκ |Jμ
=

⊕
κ ′∈Mκ

�κ ′ ,

where Mκ denotes the set of all dominant weights κ ′ of Jμ occurring in ρκ |Jμ
(see [12,

Section 2.4]).

2.2.3 Automorphic forms

We recall the construction of automorphic forms on X , following the approach of

[4, Section 3.2]. Since we are working in the setting of automorphic forms, all the

weights that will arise for us are positive and dominant. Thus, going forward, we

only consider positive, dominant weights.

We denote by α : A → X the universal abelian scheme and by ω the sheaf

ωA/X := α∗�1
A/X (There are several conventions for the sheaf ω and closely related

sheaves in the literature. In some of the 1st-named author’s prior works, this sheaf

was denoted by ω. To avoid confusion with [12], where ω had a different meaning, we

avoid that notation here. We also note that, in contrast to the present paper, [17] and

some other references denote by ω the top exterior power of the sheaf α∗�1
A/X , but we

will explicitly denote the top exterior power as such when we need to take it.). The sheaf

ω is locally free of rank

g := n[F0 : Q]

and decomposes, according to Section 2.1.5, as

ω = ⊕τ∈
F

(
ωτ ⊕ ωτ∗

)
,
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Entire Theta Operators at Unramified Primes 17

with ωτ (resp. ωτ∗ ) locally free of rank aτ (resp. aτ∗ ). Consider the locally free sheaves

Eτ := Isom
(
ωτ ,O

aτ

X ,τ

)

E := ⊕τ∈TFEτ

endowed with an action of J = ∏
τ∈TF Jτ . For each positive dominant weight κ of T and

each irreducible representation
(
ρκ ,Vκ

)
of J of weight κ, the sheaf of weight κ (or weight

ρκ ) automorphic forms is

ωκ := E ×J Vκ

defined so that

ωκ(R) := (
E × Vκ ⊗ R

)
/
(
(�,m) ∼

(
g�, ρκ

(
tg−1

)
m

))
(4)

for each OF(D),p-algebra R. (N.B. This is closely related to the notion of a frame bundle.)

Given an OF(D),p-algebra R, an automorphic form of weight κ and level K, defined over

R, is a global section of ωκ on XK ×OF(D),p
R. As noted in [12, Section 2.5], ωκ can be

canonically identified with Sκ(ω). Note, also, that if κ = (
κτ

)
τ
, then

ωκ = �τω
κτ
τ .

Remark 2.2.6. Excluding the one-dimensional case of F0 = Q with aτ = a∗
τ = 1 (no

loss to the present paper, which aims to overcome technical challenges with extending

to higher rank the sorts of results that have already been established in low rank),

the Koecher principle ([33, Theorem 2.3 and Remark 10.2]) implies that our space

of automorphic forms is the same as the one obtained by instead working over a

compactification of XK .

2.3 The μ-ordinary locus and its Hasse invariant

We now recall the definitions and key features of the μ-ordinary locus (following

[36, 42]) and of the μ-ordinary Hasse invariant (following [17]) for PEL-type Shimura

varieties. For generalizations of these notions and key results to the context of Hodge-

type Shimura varieties, the reader may refer to [30, 43], although we shall not need them

in the present paper.
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18 E. Eischen and E. Mantovan

2.3.1 The μ-ordinary Newton polygon stratum

We briefly recall the definition and key features of the μ-ordinary Newton polygon

stratum S of X (see also [12, Section 2.6]).

Definition 2.3.1. Given the Shimura datum D, the μ-ordinary Newton polygon at p,

denoted by νp(D) := νp(n, f), is defined as the amalgamate sum νp(n, f) = ⊕o∈OF
νo(n, f),

where for each o ∈ OF , νo(n, f) is the polygon with slopes

ao
j := #{τ ∈ o|f(τ ) > n − j}

#o
, for j = 1, . . . ,n.

By construction, the μ-ordinary Newton polygon νp(n, f) is the lowest Newton

polygon at p compatible with the signature (n, f) of the Shimura datum. We say that the

polygon νp(n, f) is ordinary if ao
j ∈ {0, 1} for j = 1, . . . ,n (in which case it corresponds

to an ordinary abelian variety). So the polygon νp(n, f) is ordinary if and only if (p) is

totally split in F(D). In the following, abusing notation, we put ν(n, f) := νp(n, f).

Definition 2.3.2. A D-enriched abelian variety A (resp. a point of X) over a field

containing F is called μ-ordinary if its Newton polygon (resp. the Newton polygon of

the associated abelian variety) agrees with the μ-ordinary Newton polygon ν(n, f).

By definition, the μ-ordinary Newton polygon stratum S is the reduced sub-

scheme of X consisting of all μ-ordinary points.

Theorem 2.3.3. [42, (1.6.2) Density Theorem] The μ-ordinary Newton polygon stratum

S is open and dense in X.

Theorem 2.3.4. [36, Theorem 3.2.7] The μ-ordinary Newton polygon stratum is also

an Ekedahl–Oort stratum. That is, there exists a unique up to isomorphism μ-ordinary

D-enriched truncated Barsotti–Tate group of level 1over F. Furthermore, there exists a

unique up to isomorphism μ-ordinary D-enriched Barsotti–Tate group over F.

The latter result is the key ingredient in the construction of the μ-ordinary Hasse

invariant in [17].
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Entire Theta Operators at Unramified Primes 19

2.3.2 μ-ordinary Hasse invariant

We now recall the definition and the key features of the μ-ordinary Hasse invariant (see

also [12, Section 2.7]). In the following, |ω| denotes the Hodge line bundle over X :

|ω| := ∧topωA/X ,

where ∧top denotes the top exterior power.

Theorem 2.3.5. [17, Theorem 1.1] There exists an explicit positive integer m0 ≥ 1, and

a section

Eμ ∈ H0(X, |ω|m0)

such that:

(1) The non-vanishing locus of Eμ is the μ-ordinary locus of S.

(2) The construction of Eμ is compatible with varying the level K(p).

(3) The section Eμ extends to the minimal compactification of X.

(4) A power of Eμ lifts to characteristic zero.

By construction ([17, Definition 3.5]), m0 := lcmτ∈TF (p
eτ − 1), where eτ := #oτ ,

for τ ∈ TF .
In [17, Definition 3.5], Goldring–Nicole define the μ-ordinary Hasse invariant Eμ

(in loc. cit. denoted by μH) as

Eμ :=
∏

τ∈TF
Emτ

τ , where mτ = lcmτ ′∈TF (p
eτ ′ − 1)

peτ − 1
,

where Eτ ∈ H0(X, |ωτ |peτ −1) denotes the τ -Hasse invariant ([17, Definition 3.3], in loc.

cit. denoted by τH) and the product is over all elements of TF . In the following, for each

τ ∈ TF , we denote the weight of the τ -Hasse invariant by κha,τ ; it is the scalar weight

(peτ − 1) supported at τ .

For any subset 
 ⊆ TF , we define the 
-Hasse invariant as

E
 :=
∏
τ∈


Eτ ∈ H0(X,ωκha,
 ),
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20 E. Eischen and E. Mantovan

where by definition

(κha,
)τ :=
⎧⎨
⎩

κha,τ for τ ∈ 


0 otherwise.

In particular, the weight κha,
 is scalar and supported at 
. In the following, for 
 = TF ,
we write E := ETF of scalar weight κha := κha,TF = (κha,τ )τ∈TF .

Finally, for any b = (bτ )τ∈T ∈ Z|T |, we write b · κha, or just bκha, for the scalar

weight
(
bτ (p

eτ − 1)
)
τ∈T , and we set

Eb :=
∏

τ∈TF
Ebτ

τ ∈ H0(X,ωb·κha).

With these conventions, the μ-ordinary Hasse invariant Eμ = Em0 is a scalar-valued

automorphic form of parallel weight lcmτ∈TF (p
eτ − 1).

In the following, we denote by S the formal completion of X along S. We follow

the convention of (abusing language and) referring to the formal scheme S as the

μ-ordinary locus over W.

2.4 Automorphic sheaves over the μ-ordinary locus

We briefly recall previous results of the restriction of automorphic sheaves to S. We

refer to [12, Sections 3,4, and 6] for details.

2.4.1 Slope filtration and associated graded module

Let A[p∞] denote the p-divisible part of the universal abelian scheme A over X . For any

σ -orbit o in TF , we denote by po the associated prime of F above p and write Go = A[p∞
o ].

Hence, A[p∞] = ⊕o∈OF
Go.

By [35, §3] (see also [12, Proposition 3.1.1]), the restriction to S of A[p∞], resp.

Go for any o ∈ OF , is completely slope divisible, and it admits a slope filtration over S,
which we denote by A[p∞]•, resp. Go•. (Note that the slope filtration of Go agrees with

the filtration induced by the slope filtration of A[p∞].) We write gr(A[p∞]) (resp. gr(Go))
for the associated graded D-enriched Barsotti–Tate group.

The slope filtration of A[p∞] induces a filtration ω• of the OS ⊗W OF-module

ω, and a filtration ωo• of the OS ⊗W OF,po
-module ωo. We denote by ω := gr(ω), resp.

ωo := gr(ωo), the associated graded sheaf over S. The sheaf ω is a locally free OS ⊗WOF-

module, and ωo is a locally free OS ⊗W OF,po
-module.
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Entire Theta Operators at Unramified Primes 21

For each τ ∈ TF , let sτ denote the number of distinct slopes of the polygon νoτ
(n, f)

(see Definition 2.3.1), and set for 1 ≤ t ≤ sτ

mt,τ := rk(grt(ωτ )). (5)

By construction, mt,τ ≥ 0 for all 1 ≤ t ≤ sτ , and m1,τ + · · · + msτ ,τ = aτ for all τ ∈ TF (see

[12, §4.2] for an explicit description of the partition given the Shimura datum).

2.4.2 OMOL sheaves

Recall the subgroups Pμ,Uμ, Jμ of J introduced in Section 2.2.1. In [12, Definition 4.2.1],

for any positive dominant weight κ ′ of Jμ, we introduce the sheaf ωκ ′
:= gr(ω)κ

′
over S,

which we call an OMOL sheaf. In [12, Proposition 4.3.1], for any weight κ of J, we

describe the restriction to S of the automorphic sheaf ωκ in terms of these auxiliary

sheaves. More precisely, we prove the following result.

Proposition 2.4.1. [12, Proposition 4.3.1] Let κ be a weight of J. The sheaves, ω and ωκ

are defined over S. Moreover, each of the following holds.

(1) Each standard Uμ-stable filtration of ρκ|Pμ
induces a filtration on ωκ .

(2) The sheaf gr(ωκ) is independent of the choice of a standard filtration on

ρκ|Pμ
. More precisely, there is a canonical identification

ικ : gr(ωκ) � ⊕κ ′∈Mκ
ωκ ′

,

for Mκ as in Remark 2.2.5.

(3) There is a canonical projection �κ : ωκ → ωκ , which is an isomorphism if κ

is scalar.

2.5 Hecke algebras and Galois representations

We now recall the Galois representations (conjecturally) associated to mod p Hecke

eigenforms, following the setup of [9, Section 2.1]. We refer to [2, 18] for details.

Throughout this section, let L be a field over which G is split, that is, every

maximal torus of G is isomorphic over L to a product of copies of Gm. Suppose also that

T and B are defined over L. Although we have specified above that G is of unitary or sym-

plectic type, here we merely assume that G is a connected and reductive group over Q.

As introduced in Section 2.1.3, we continue to denote by K a level of G that is neat and
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22 E. Eischen and E. Mantovan

such that Kp ⊂ G
(
Qp

)
is hyperspecial. Note that even with the relaxed assumptions on

G, 
K,p is finite.

2.5.1 Local Hecke algebras

Suppose that v is a finite place of L and that the completion Lv of L at v is a

nonarchimedean local field. Denote by Ov the ring of integers of Lv, �v ∈ Ov a choice of

uniformizer, and qv the cardinality of Ov/�vOv. Suppose that G is split over Ov. Then

there exists a group scheme G over Ov with generic fiber G and reductive special fiber.

We denote by Gv the group of points G
(
Lv

)
. We additionally choose v so that Kv is a

hyperspecial maximal compact subgroup of Gv.

Given a commutative ring R, the local Hecke algebra of
(
Gv,Kv

)
is the R-algebra

H
(
Gv,Kv;R

)
:= {

h : Kv\Gv/Kv → R | h is locally constant and compactly supported
}

with multiplication defined by

(
h1 ∗ h2

) (
KvgKv

)
:=

∑
xKv∈Gv/Kv

h1

(
KvxKv

)
h2

(
Kvx

−1gKv

)
.

The (mod p) Satake transform is a ring isomorphism

Sv : H
(
Gv,Kv;Fp

)
→ R

(
Ĝ

)
⊗ Fp,

where R
(
Ĝ

)
is the representation ring of Ĝ, the dual group of G.

The characters ω of R
(
Ĝ

)
⊗Fp are indexed by the semi-simple conjugacy classes

s ∈ Ĝ
(
Fp

)
, via

s ↔
(
ωs

(
χρ

)
:= χρ(s)

)
,

where χρ := Tr (ρ), for ρ any irreducible representation of Ĝ.

2.5.2 Galois representations associated to mod p Hecke eigenforms

Let f be a mod p Hecke eigenform on G of level K defined over Fp (i.e., as introduced in

Section 2.2.3, a global section of the vector bundle over the associated Shimura variety).

Associated to the Hecke eigenform f , and a finite place v of L as above, we have a Hecke
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Entire Theta Operators at Unramified Primes 23

eigensystem

�f ,v : H
(
Gv,Kv;Fp

)
→ Fp

defined by

Tf = �f ,v(T)f

for each T ∈ H
(
Gv,Kv;Fp

)
. The v-Satake parameter of f is the semi-simple conjugacy

class sf ,v ∈ Ĝ
(
Fp

)
indexing the character ωf ,v,

ωf ,v := �f ,v ◦ S−1
v : R

(
Ĝ

)
⊗ Fp → Fp,

that is, ωsf ,v = ωf ,v.

Conjecture 2.5.1. Positive characteristic form of Conjecture 5.17 of [2]

There exists a continuous representation

ρ : Gal
(
L/L

) → Ĝ
(
Fp

)
,

unramified outside 
K,p, such that for all v /∈ 
K,p, the image of the Frobenius element

Frobv at v is ρ
(
Frobv

) = sf ,v.

By [2, Remark 5.19], the set of Galois representations ρ associated to f as

in Conjecture 2.5.1 is not necessarily finite. A comparison of the formulation in

Conjecture 2.5.1 with the original statement from [2] is provided in [9, Remark 2.1.2].

As an aside, we note that it might be possible to further describe the representations

ρ from Conjecture 2.5.1 (e.g., as odd); but since the present paper studies the effect of

theta operators, such details would not impact our results.

3 Some Differential Operators

In this section, we recall the construction of weight-raising differential operators on

p-adic automorphic forms, which arise as analogues of Maass–Shimura differential

operators. By construction, these operators raise the weight of the automorphic forms

by admissible weights. In Proposition 3.4.2, we observe that, as it is the case for

classical Maass–Shimura operators, the p-adic differential operators are non-trivial
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24 E. Eischen and E. Mantovan

only for symmetric weights. Hence, going forward, we will only consider differential

operators associated with symmetric weights. In Section 3.5, we discuss some prelim-

inary observations on new phenomena, which arise in positive characteristic at primes

when the ordinary locus is empty.

3.1 Gauss–Manin connection and Kodaira–Spencer morphism

Given a OFGal
0

-algebra R in which dF0 is invertible, a scheme T = SpecR, a smooth

morphism of schemes Y → T, and a polarized abelian scheme α : A → Y together

with an action of OF (e.g., when A is an abelian variety parametrized by a unitary or

symplectic Shimura variety), consider the Hodge filtration

0 → ωA/Y := α∗�1
A/Y ↪→ H1

dR (A/Y) → R1α∗OA → 0.

As in [9, 11, 12, 19, 27], we build differential operators from the Gauss–Manin connection

∇ := ∇A/Y : H1
dR (A/Y) → H1

dR (A/Y) ⊗ �1
Y/T

and the Kodaira–Spencer morphism

KS := KSA/Y : ωA/Y ⊗ ωA/Y → �1
Y/T .

(Details on the Gauss–Manin connection and the Kodaira–Spencer morphism are avail-

able in, e.g., [31, Sections 2.1.7 and 2.3.5] and [14, Section 9].)

Via the product rule (i.e., Leibniz rule), for any nonnegative integer k, we extend

the Gauss–Manin connection to a morphism

∇⊗k : (H1
dR (A/Y))⊗k → (H1

dR (A/Y))⊗k ⊗ �1
Y/T

by

∇⊗k(f1 ⊗ · · · ⊗ fk) =
k∑

i=1

ιi(f1 ⊗ · · · ⊗ ∇(fi) ⊗ · · · ⊗ fk),
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Entire Theta Operators at Unramified Primes 25

where ιi is the isomorphism

ιi : (H1
dR)⊗i ⊗ �1

Y/T ⊗ (H1
dR)⊗(k−i) ∼→ (H1

dR)⊗k ⊗ �1
Y/T

e1 ⊗ · · · ⊗ ei ⊗ u ⊗ ei+1 ⊗ · · · ⊗ ed �→ e1 ⊗ · · · ⊗ ed ⊗ u.

This map also naturally induces a morphism on symmetric powers, exterior powers,

and their compositions, similarly marked in the subscript beneath ∇. When clarification

about the specific power is not needed, we abuse notation and simply write ∇ without

the subscript.

By definition,

KS := 〈·,∇(·)〉A,

where 〈·, ·〉A is the pairing induced by the polarization on A and extended linearly in

the 2nd variable to a pairing between ω and ∇(ω), exploiting the fact that ω is isotropic

under this pairing. The Kodaira–Spencer morphism induces an isomorphism

ks : ω2 ∼→ �1
Y/T , (6)

where the notation ω2 follows the convention of Equation (3).

3.2 Decompositions

By abuse of notation, we also denote by ∇ the map (id⊗ks−1)◦∇. Recall that by Equation

(3), ω2 decomposes as ω2 = ⊕τ∈TF0ω
2
τ . Similarly to [27, Section 2.1], ∇ also decomposes

as a sum, over τ ∈ TF0 , of maps

∇τ : H1
dR(A/Y) → H1

dR(A/Y) ⊗ ω2
τ ,

and similarly for its extension to tensor, symmetric, and exterior powers and their com-

positions, as well as Schur functors. According to the decompositions of Section 2.1.5,

H := H1
dR (A/Y) decomposes as

H = ⊕τ∈TF0Hτ ,
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26 E. Eischen and E. Mantovan

and if furthermore F 
= F0 and R is a OFGal-algebra, each Hτ decomposes as

Hτ = H+
τ ⊕ H−

τ .

In Lemma 3.2.1 and Section 3.3, we briefly abuse notation and, for convenience

when dealing with two elements of T at once, denote by σ an element of T . Frobenius

does not appear in these portions, so there should be no confusion with our use of σ to

denote Frobenius elsewhere.

Lemma 3.2.1. For any τ , σ ∈ TF0 , we have the following:

∇τ

(
Hσ

) ⊆ Hσ ⊗ ω2
τ

∇τ

(
H±

σ

) ⊆ H±
σ ⊗ ω2

τ

Proof. This follows from the definition of ∇, similarly to [11, Equations (3.3)

and (3.4)]. �

Note that the Leibniz rule (i.e., product rule) immediately extends Lemma 3.2.1

to tensor, symmetric, and exterior powers, and their compositions, as well as Schur

functors.

Remark 3.2.2. Katz and Oda prove in [28] that ∇ is flat, that is, integrable, when

T = Speck with k a field. In other words,

∇1 ◦ ∇ = 0,

where

∇1 : �Y/k ⊗OS
H1
dR(A/Y) → ∧2�Y/k ⊗OY

H1
dR(A/Y)

is defined by

∇1(u ⊗ e) = du ⊗ e − u ∧ ∇(e)

for all u ∈ �Y/k and e ∈ H1
dR(A/Y), where d denotes the exterior derivative on the de

Rham complex. (For convenience, we temporarily write �Y/k on the left of H1
dR(A/Y)

here.) In this case, H1
dR(A/Y) has a horizontal basis for ∇, that is, a basis of sections on

which ∇ vanishes.
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Entire Theta Operators at Unramified Primes 27

3.3 Algebraic differential operators

The inclusion ω ↪→ H1
dR(A/Y) (from the Hodge filtration) induces inclusions ωτ ↪→ Hτ

and ω±
τ ↪→ H±

τ . Thus, we get inclusions

ιτ : ω2
τ ↪→ H2

τ , (7)

where

H2
τ :=

⎧⎨
⎩
Sym2Hτ symplectic case

H+
τ � H−

τ unitary case

Similarly to [27, Diagram (2.1.12)], we now define an algebraic differential

operator Dτ as the composition

Dτ := (
id ⊗ ιτ

) ◦ ∇τ .

In particular, for each weight κ = (
κσ

)
σ
, we obtain a map

Dτ := Dκ,τ : ωκ = �σ ωκσ
σ → Hκ ⊗ ω2

τ ⊆ Hκ ⊗ H2
τ ⊆ Hκ ⊗ H2,

where H2 = ⊕τ∈TF0H
2
τ and Hκ = �σH

κσ
σ denotes the module formed from H by taking

the same composition of powers of tensor, exterior, and symmetric products used to

form ωκ . Now, we can compose the differential operators Dτ .

Lemma 3.3.1. The differential operators Dτ commute, that is, DτDσ = DσDτ for all

τ , σ ∈ TF0 .

Proof. Similar to the proof of [27, Lemma (2.1.14)], which reduces the problem to

working over C. �

We also denote by D the sum of the differential operators Dτ , that is,

D := (id ⊗ ι) ◦ ∇,

where ι is the sum of the inclusions ιτ , that is, ι is the inclusion

ω2 ↪→ H2
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28 E. Eischen and E. Mantovan

induced by ω ↪→ H. In analogue with the conventions above, this can also be extended,

via the Leibniz rule (i.e., product rule), to a map on ωκ , which also denote by D or Dκ .

3.4 p-adic differential operators over the μ-ordinary locus

We recall the construction of p-adic differential operators over the μ-ordinary locus S
over W, from [12, Sections 5 and 6].

3.4.1 A canonical complement to ω over the μ-ordinary locus

We recall the existence of a crucial submodule U of H1
dR := H1

dR (A/S). In the following,

ω := ωA/S , and Fr∗ denotes the Frobenius morphism acting on H1
dR.

Proposition 3.4.1. Proposition 5.2.1 of [12]

There exists a unique submodule U of H1
dR such that

(1) U is (Fr∗)e-stable, where e = lcmo∈OF
(#o).

(2) U is ∇-horizontal, that is, ∇(U) ⊆ U ⊗ �1
S/W

.

(3) U is a complement to ω, that is, H1
dR = ω ⊕ U.

When the ordinary locus is nonempty, U is the unit root submodule of H1
dR.

3.4.2 Construction of p-adic differential operators

We now recall the construction of the p-adic differential operators over the μ-ordinary

locus from [12, Section 6.2]. Denote by πU the projection

πU : H1
dR � ω

modulo the module U from Proposition 3.4.1. This induces projections

πτ :
(
H1
dR

)
τ
� ωτ (8)

π±
τ :

(
H1
dR

)±
τ
� ω±

τ

(in the notation of Section 2.1.5, mod Uτ and U±
τ , respectively). For each weight κ, we

define

Dτ := Dκ,τ := πU ◦ Dτ : ωκ → ωκ ⊗ ω2
τ ,
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where πU on Dτ (ω
κ) is defined by applying πU to each factor H1

dR. Property (2) of

Proposition 3.4.1 guarantees that πU ◦ (
Dτ1

◦ · · · ◦ Dτe

) = Dτ1
◦ · · · ◦ Dτe

for any places

τi ∈ TF0 . For each nonnegative integer e and each τ ∈ TF0 , define an operator

De
τ := De

κ,τ := Dκ,τ ◦ · · · ◦ Dκ,τ︸ ︷︷ ︸
e times

.

Proposition 3.4.2. For each nonnegative integer e and each τ ∈ TF0 , the image of De
κ,τ

lies in ωκ ⊗ Symeω2
τ .

Proposition 3.4.2 on the image of p-adic differential operators seems to be

accepted in the field but not justified anywhere in the literature. As Proposition 3.4.2 is

not an immediate consequence of the definition of De
τ , we briefly justify it below. Note

that this statement is significant, because it introduces constraints on the amounts

by which the differential operators De
τ can raise weights, which are independent of

additional constraints that will be forced when the ordinary locus is empty.

Proof of Proposition 3.4.2. Note that it is sufficient to prove the statement for sections

of ω defined over a ring R that is dense in the base ring W over which S is defined.

Going forward, we take R = Q̄ ∩ W. Then it suffices (by the density of R in W) to prove

De
τ (f ) ∈ ωκ ⊗ Symeω2

τ for each global section f ∈ H0
(
X/R,ω

κ
)
.

By Serre–Tate theory ([41, Theorem 6.5], also [36, Proposition 2.3.12 (i)] and

originally due to Serre and Tate in the ordinary case), any μ-ordinary point defined over

a finite field x ∈ S(F) admits a (canonical) CM lift x̃ ∈ X (W). Furthermore, CM points

are dense in the formal neighborhood of X at x ([41, Theorem 1.1]). Hence, it suffices to

prove the statement holds locally at each μ-ordinary CM point defined over R (which

can, by extending scalars, be viewed as a CM point over W).

Fixing an embedding R ↪→ C and extending scalars, we may view each

automorphic form defined over R as an automorphic form over C. The differential

operators De
κ,τ are p-adic analogues of the C∞ Maass–Shimura operators De

ρκ ,τ defined

in, for example, [40, Section 12.9]. More precisely, the C∞ Maass–Shimura operators De
ρκ ,τ

can be constructed algebro-geometrically over C similarly to the p-adic operators De
κ,τ

by replacing S with X (C) and replacing the complement U of ω ⊂ H1
dR from the p-adic

setting with the anti-holomorphic forms H0,1 ⊆ H1
dR in the C∞-setting over C, as in

[27, Chapter II], [19, Section 4], [11, Section 8], and [10, Section 3.3.1].
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By the approach first introduced by Katz in [27, Sections 2.6 and 5.1], for each

form f defined over R, the values of De
κ,τ (f ) and De

ρκ ,τ (f ) agree (up to periods) at each

μ-ordinary CM point defined over R.

Thus, it is sufficient to prove the image of the C∞-differential operator De
ρκ ,τ lies

in the symmetric product, which Shimura accomplished in [40, Sections 13.1 through

13.8]. �

Remark 3.4.3. One could also prove Proposition 3.4.2 directly over a p-adic ring,

by proving p-adic analogues of the results on C∞-vector fields and complex Kähler

manifolds Shimura employs in [40, Section 13] to prove the image of his operators

lies in the symmetric product. When the ordinary locus is nonempty, this strategy is

carried out in [10, Remark 5.2.5] via explicit computations of Serre–Tate expansions.

When the ordinary locus is empty, analogous computations on Serre–Tate expansion

still hold by [12, Proposition 6.2.5]. We know no benefit, however, to carrying out this

tedious exercise, since it requires a longer proof and ultimately results in the same

conclusion. Further, we note that there is a well-established benefit to exploiting C to

prove statements not over C, for example, in [27], as recalled in the proof of Lemma 3.3.1

above.

Now, for any symmetric weight λ of Jτ , admissible of depth e (at τ ), we define

Dλ
τ := Dλ

κ,τ := prκ,λ ◦ (
id ⊗ prλ

) ◦ De
τ : ωκ → ωκ+λ, (9)

where prλ denotes projection onto the automorphic sheaf of weight λ (inside Symeω2
τ ),

and prκ,λ denotes the canonical projection ωκ ⊗ ωλ � ωκ+λ (see Section 2.2.2).

3.4.3 Differential operators on OMOL sheaves

In [12, Section 6.3], we observe that, for any symmetric weight λ of J, the p-adic Maass–

Shimura operators Dλ on the restriction to S of automorphic sheaves preserve the

standard filtrations, hence inducing operators

Dλ := (id ⊗ �λ) ◦ gr(Dλ) : gr(ωκ) → gr(ωκ) ⊗ ωλ → gr(ωκ) ⊗ ωλ.
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Via the isomorphisms ικ , the operators Dλ induce differential operators on OMOL

sheaves

ωκ ′ → ωκ ′ ⊗ ωλ → ωκ ′+λ.

For any weight κ ′ of Jμ, by abuse of notation, we still denote them as

Dλ := Dλ
κ ′ : ωκ ′ → ωκ ′+λ.

3.5 A 1st look at differential operators modulo p: the OMOL setting

In Sections 5 and 6, we study the mod p reduction of p-adic differential operators on

automorphic forms and on OMOL sheaves, respectively, and we analytically continue

them beyond the μ-ordinary locus to the entire Shimura variety. Both results are

achieved only under certain restrictions on the weights. For those weights that satisfy

all the assumptions, we compare the two constructions in Proposition 6.3.5.

Right now, without imposing any restrictions on weights, we conclude our

introduction to behavior over the μ-ordinary locus by explaining the relationship

between the mod p reductions of the OMOL sheaves ωκ ′
and differential operators

Dλ (introduced in Sections 2.4.2 and 3.4.3, respectively) and the mod p automorphic

sheaves ωκ ′
and differential operators Dλ studied above.

For any o ∈ OF , and eo = #o, write G(pe)
o := (Freo)∗A[po]. Similarly, for

e = lcmo∈O(eo), writeA(pe)[p] := (Fre)∗A[p] over X. By [35, Lemma 8], over S, the filtration

ofA(pe)[p] (resp. G(pe)
o [p], for all o ⊆ TF ) induced by the slope filtration is canonically split.

More precisely, we have the following result.

Lemma 3.5.1. ([35, Lemma 8]) Maintaining the above notation, over S, there are

(compatible) canonical isomorphisms of D-enriched truncated Barsotti–Tate groups of

level 1 over S

gr(A)(p
e)[p] � A(pe)[p], and gr(Go)(p

e)[p] � G(pe)
o [p], for all o ∈ OF .

Hence, in particular, there are (compatible) canonical isomorphism ofOS⊗WOF-modules

gr(ω)(p
e) � ω(pe), and gr(ωo)

(pe) � ω
(pe)
o , for all o ∈ OF .

Combined with Proposition 2.4.1, the above lemma implies the following result.
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32 E. Eischen and E. Mantovan

Proposition 3.5.2. For any weight κ of J, we have a canonical isomorphism of OS ⊗W

OF-modules

(ωκ)(p
e) �

⊕
κ ′∈Mκ

(ωκ ′
)(p

e).

At every geometric point of S, the above isomorphisms agree with those

constructed in [12, Proposition 4.3.3]. Hence, by combining the above result with [12,

Propositions 6.2.3 and 6.2.5], we deduce Proposition 3.5.3.

Proposition 3.5.3. For any weight κ, and any symmetric weight λ of J, under the

identification of OS ⊗W OF-modules (ωκ)(p
e) � ⊕

κ ′∈Mκ
(ωκ ′

)(p
e) we have

(Dλ
κ )(p

e) =
⊕
κ ′,λ′

(Dλ′
κ ′)(p

e),

where κ ′ ∈ Mκ , λ
′ ∈ Mλ satisfy κ ′ + λ′ ∈ Mκ+λ.

For λ any symmetric weight λ of J, the p-adic differential operators Dλ on OMOL

sheaves over S were constructed in [12, Section 6.3] (as recalled in Section 3.4.3 of

the present paper). By Proposition 3.5.3, the same definition yields mod p differential

operators on the pullback by Fr∗(pe) of OMOL sheaves over S, for all symmetric weights

λ′ of Jμ. In Proposition 3.5.3, we denoted these operators by (Dλ′
)(p

e). Note that they do

not arise as the mod p reduction of p-adic differential operators.

4 The Hodge–de Rham Filtration in Characteristic p

A key ingredient in the construction of p-adic differential operators over the μ-ordinary

locus (as in [12]) is the existence of a (canonical) splitting of the Hodge–de Rham

filtration of the universal abelian scheme (Proposition 3.4.1). A natural 1st step towards

extending the mod p reduction of these differential operators from the μ-ordinary locus

S to the whole Shimura variety X is to investigate whether such a splitting extends

from S to X. When the ordinary locus is nonempty, such a splitting over X exists.

Indeed, it can be constructed via the conjugate Hodge–de Rham spectral sequence in

positive characteristic. This is also the key ingredient underlying the construction of the

ordinary Hasse invariant (see [9, §3.3.1]). When the ordinary locus is empty, though, this

approach fails. Instead, we adapt our approach to the construction of the μ-ordinary

Hasse invariant by Goldring–Nicole for PEL-type Shimura varieties in [17]. (The yet more

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab190/6326546 by  eeischen@

uoregon.edu on 26 July 2021



Entire Theta Operators at Unramified Primes 33

general setting of Hodge type should be straightforward using [30], once one sorts out

numerical details.) The techniques we develop in this more general setting work only

under certain conditions on the weights, which arise from Goldring–Nicole’s approach

to partial Hasse invariants in [17].

For any o ∈ OF , we write

f(o) := {f(τ )|τ ∈ o}
f(o)>0 := {f(τ )|τ ∈ o satisfying f(τ ) > 0}
f(o)<n := {f(τ )|τ ∈ o satisfying f(τ ) < n}.

Definition 4.0.4. We call a positive dominant weight κ = (κτ )τ∈TF good (for the prime p)

if κτ is a scalar weight of GLf(τ ) whenever f(τ ) 
= min(f(o)>0).

In particular, all scalar weights are good. As we shall see in Theorem 4.0.5,

if a weight is good, then after reducing mod p, we can extend the splitting from

Proposition 3.4.1 to the entire mod p Shimura variety X.

By definition, if we decompose κ over TF , as a product of weights κτ supported

at τ ∈ TF , then κ is good if and only if the weights κτ are good for all τ ∈ TF (Whether

we view the decomposition as a product or sum depends on whether we are considering

weights as characters or as the corresponding tuples of integers.).

The main goal of this section is to establish the following result, whose

proof relies on the material introduced in the remainder of this section. Below, E
 ∈
H0(X,ω

κha,

A/X ) denotes the 
-Hasse invariant, and E = ETF (see Section 2.3.2). We refer to

Definition 2.2.1 for the notation ||κ|| ∈ Z|TF |.

Theorem 4.0.5. Let 
 ⊆ TF , and let κ be a weight. Assume κ is good. Then each of the

following statements holds:

(1) There exists a morphism of OX-modules

�κ : H1
dR(A/X)κ → ω

κ+||κ||κha
A/X = ωκ

A/X ⊗ ω
||κ||κha
A/X (10)

that satisfies the equality �κ|S = E||κ|| · πU , where πU is the mod p reduction

of the map πU : H1
dR(A/S)κ → ωκ

A/S induced via the κ-Schur functor by the

projection πU : H1
dR(A/S) → ωA/S defined in Section 3.4.2.
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(2) Assume κ is supported at 
. Then there exists a morphism of OX-modules

�κ : D(ωκ
A/X) → ω

κ+κha,

A/X ⊗ ω2

A/X = ωκ
A/X ⊗ ω

κha,

A/X ⊗ ω2

A/X ,

which satisfies the equality �κ|S = E
 ·πU , where πU is the mod p reduction

of the projection πU : D(ωκ
A/S) → ωκ

A/S ⊗ ω2
A/S defined in Section 3.4.2.

Remark 4.0.6. Note that since the Hasse invariant is of scalar weight, we do indeed

have an equality ω
κ+||κ||κha
A/X = ωκ

A/X ⊗ ω
||κ||κha
A/X as in Equation (10).

Proof of Theorem 4.0.5. By decomposing the weight κ as a product of weights

supported at single τ ∈ TF , as τ varies in TF , we reduce the proof of Theorem 4.0.5 to the

special case of a good weight κ, which is supported at a single τ . For scalar weights,

the result follows from Proposition 4.1.3, which relies on the construction of the

μ-ordinary Hasse invariant ([17, Lemmas 3.1 and 3.2], see Lemma 4.1.1). For non-scalar

weights (which, by definition of good weights, are only supported at τ ∈ TF satisfying

f(τ ) = min(f(o)>0)), the result follows from Proposition 4.2.2, which relies on Lemma

4.2.1. �

In this section, we work in positive characteristic over X. Set H1
dR := H1

dR(A/X),

and ω := ωA/X . We write H1
crys := H1

crys(A/X) for the Dieudonné crystal of A/X, and

identify its mod p reduction with H1
dR. In general, we denote by (·) the reduction mod p

of an object over W.

For convenience, through out this section, we set T = TF . Also, for any τ ∈ TF ,
write τ0 = τ|F0 ∈ TF0 , and following the conventions of Section 2.1.5, (·)τ = (·)+τ0 if τ ∈ 
F

and (·)τ = (·)−τ0 if τ 
∈ 
F .

Fix τ ∈ T . The restriction to H1
crys,τ of Frobenius Fr∗ on H1

crys induces a map

Fr∗
τ := Fr∗|H1

crys,τ
: H1

crys,τ → H1
crys,τ◦σ.

For e = eτ := #oτ , we have τ ◦ σ e = τ , and (Fr∗
τ )

e : (H1
crys,τ )

(pe) → H1
crys,τ . We write

φτ := (Fr∗
τ )

e.

4.1 The scalar-weight case

Without loss of generality, we assume f(τ ) 
= 0. (When f(τ ) = 0, the Hodge–de Rham

filtration is trivial at τ and all automorphic weights supported at τ are trivial.) Then
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Entire Theta Operators at Unramified Primes 35

the Hodge–de Rham filtration on H1
dR,τ∗ , ωτ∗ ⊆ H1

dR,τ∗ , induces a canonical filtration on∧f(τ∗) H1
dR,τ∗ = H

f(τ∗)
dR,τ∗ . The 1st step in the filtration is the locally free subsheaf

Wτ∗ := Fil1
(
Hf(τ )

dR,τ∗
)

= ker

⎛
⎝

f(τ )∧
H1
dR,τ∗ →

f(τ )∧ (
H1
dR,τ∗/ωτ∗

)⎞
⎠ .

Lemma 4.1.1. ([17, Lemmas 3.1 and 3.2]) For τ ∈ T with f(τ ) 
= 0, define

�τ∗ := φτ∗ ∧ · · · ∧ φτ∗ :
f(τ )∧

H1 (pe)
crys,τ∗ →

f(τ )∧
H1
crys,τ∗

and cτ∗ := ∑
τ ′∈oτ ,f(τ ′)>f(τ )

(
f(τ ′) − f(τ )

)
. Then each of the following statements holds:

(1) �τ∗ is divisible by pcτ∗ .

(2) �τ∗/pcτ∗ vanishes on W(pe)
τ∗ .

Remark 4.1.2. Set ai = aτ
i := |{τ ′ ∈ oτ |f(τ ′) > n − i}|, for i = 1, . . . ,n. By definition

(Definition 2.3.1), the rational numbers aτ
1/e ≤ · · · ≤ aτ

n/e, are the slopes of the Newton

polygon νoτ
(n, f) (occurring with multiplicity). Then

cτ∗ =
f (τ )∑
i=1

aτ∗
i .

We write ϕτ∗ :
(∧f(τ ) H1 (pe)

dR,τ∗
)

/W(pe)
τ∗ → ∧f(τ ) H1

dR,τ∗ for the morphism induced by

�τ∗/pcτ∗ , and denote by ϕ0
τ∗ :

(∧f(τ ) H1 (pe)
dR,τ∗

)
/W(pe)

τ∗ →
(∧f(τ ) H1

dR,τ∗
)

/Wτ∗ its composition

with the projection modulo Wτ∗ . They fit in the commutative diagram
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36 E. Eischen and E. Mantovan

The projection
∧f(τ ) prτ∗ :

∧f(τ ) H1
dR,τ∗ → ∧f(τ )

(ω∨)τ∗ induces an isomorphism

⎛
⎝

f(τ )∧
H1
dR,τ∗

⎞
⎠ /Wτ∗ �

f(τ )∧
(ω∨)τ∗ =

f(τ )∧
(ωτ )

∨.

We define �τ := (ϕτ∗)∨ and hτ := (ϕ0
τ∗)∨, and consider the commutative diagram (dual to

the one above)

Proposition 4.1.3. Maintaining the above notation, for each τ ∈ T with f(τ ) 
= 0, the

morphism of OX-modules

�τ :
f(τ )∧

H1
dR,τ →

f(τ )∧
ω

(pe)
τ =

f(τ )∧
ωτ ⊗ |ωτ |p

eτ −1

satisfies the equality

�τ |S = Eτ ·
⎛
⎝

f(τ )∧
πτ

⎞
⎠ ,

where Eτ ∈ H0(X, |ωτ |peτ −1) is the τ -Hasse invariant, and πτ is the mod p reduction of

the morphism πτ : H1
dR(A/S)1τ → (ωA/S)τ given in (8).

Proof. By definition, for each τ ∈ T with f(τ ) 
= 0, the τ -Hasse invariant Eτ satisfies

hτ = 1 ⊗ Eτ : |ωτ | :=
f(τ )∧

ωτ −→
f(τ )∧

ω
(peτ )
τ = |ωτ |p

eτ = |ωτ | ⊗ |ωτ |p
eτ −1.

Hence, the statement is an immediate consequence of the construction. �
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4.2 The vector weight case

We assume f(τ ) = min
(
f(oτ )>0

)
. The following result is a variation of Lemma 4.1.1

Lemma 4.2.1. Let τ ∈ T satisfying f(τ ) = min
(
f(oτ )>0

)
. Consider the map

φτ∗ : H1 (pe)
crys,τ∗ → H1

crys,τ∗ ,

and let aτ∗ := |{τ ′ ∈ oτ∗ |f(τ ′) = n}|.
(1) φτ∗ is divisible by paτ∗ ;

(2) φτ∗/paτ∗ vanishes on ωτ∗ .

Proof. By Remark 4.1.2, aτ = aτ
1 and cτ∗ = f(τ )aτ∗ , since, by assumption, f(τ ∗) =

max
(
f(oτ∗)<n

)
. This observation suffices to adapt the arguments in [17, Lemmas 3.1 and

3.2] to establish the above statements. �

We define �̃τ as the morphism dual to the map H1 (pe)
dR,τ∗/ω

(pe)
τ∗ → H1

dR,τ∗ induced by

by φτ∗/paτ∗ , and denote by h̃τ its composition with the inclusion ωτ ↪→ H1
dR,τ . They fit in

the commutative diagram

It follows from the construction that
∧f(τ )

�̃τ and
∧f(τ ) h̃τ agree respectively

with the morphisms �τ and hτ defined in Section 4.1. In particular, let

∗h̃τ : ω
(pe)
τ → ωτ ⊗ |ω(pe)| ⊗ |ωτ |−1 = ωτ ⊗ |ωτ |p

e−1

denote the adjugate of h̃τ (see [9,§3.3.1]), then it satisfies ∗h̃τ ◦ h̃τ = 1 ⊗ Eτ , where Eτ is

the τ -Hasse invariant.
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38 E. Eischen and E. Mantovan

Proposition 4.2.2. Maintaining the above notation, for each τ ∈ T satisfying f(τ ) =
min

(
f(oτ )>0

)
, the morphism of OX-modules

�τ := ∗h̃τ ◦ �̃τ : H1
dR,τ → ωτ ⊗ |ωτ |p

eτ −1

satisfies the equality

�τ |S = Eτ · πτ .

Proof. The statement is a consequence of the constructions. �

By construction, the morphism in Proposition 4.1.3 agrees with the top exterior

power of the morphism in Proposition 4.2.2.

5 Analytic Continuation of the mod p Reduction of Differential Operators

In this section, under some restriction on the weights, we construct weight-raising dif-

ferential operators �λ = �λ
κ on the space of mod p automorphic forms of weight κ on X,

which are mod p analogues of Maass–Shimura differential operators. Furthermore, we

prove that the restrictions to the μ-ordinary locus S of the operators �λ agree with the

mod p reduction of the differential operators Dλ constructed in [12], multiplied by a

power of the μ-ordinary Hasse invariant which—most importantly—depends only on

the weight λ, and not on κ.

We prove the following generalization of [9, Theorem 3.4.1] (which, in contrast

to the present paper, had required that p split completely in F(D)).

Theorem 5.0.3. Let 
 ⊆ TF , and let λ be a symmetric weight supported at 
. Assume

either λ − δ(τ ), for some τ ∈ 
F ∩ 
, or λ is good, and set either λ′ = λ − δ(τ ) or λ′ = λ,

respectively. Then for any good weight κ supported at 
, there exists a differential

operator

�λ

 := �λ

κ : ωκ → ωκ+λ+(|λ|/2)κha

+||λ′||·κha = ωκ+λ ⊗ ω(|λ|/2)κha,
+||λ′||·κha ,

which satisfies

�λ

 |S ≡ E||λ′||E|λ|/2


 · Dλmod p.
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Entire Theta Operators at Unramified Primes 39

Remark 5.0.4. The above statement proves that the differential operator Dλ can be

analytically continued from S to the whole mod p Shimura variety X. The explicit power

of the Hasse invariant given in Theorem 5.0.3 is not optimal, however. For example, in

the case when the ordinary locus is not empty, it is higher than the power given for the

ordinary case in [9, Theorem 3.4.1]. This is due to the limitations of our construction. In

the case when all symmetric weights are good, Theorem 5.0.3 can be improved to the

expected power of E (see Corollary 5.1.3).

Remark 5.0.5. In the symplectic case (C) all weights are good; in the unitary case (A)

this is not the case, and goodness is in general a strong restriction.

The existence of good symmetric weights is also nontrivial, in case (A). Non-

zero scalar (and hence good) symmetric weights exist if and only if there is τ ∈ TF
satisfying f(τ ) = f(τ ∗). In particular, non-zero parallel symmetric weights exist only

in the symplectic and hermitian case. Indeed, if a scalar weight � = (�τ )τ∈T ∈ ZT is

symmetric, then �τ = 0 unless f(τ ) = f(τ ∗) and �τ = �τ∗ . The converse also holds. Good

(non-scalar) symmetric weights occur more generally. For example, they exist if there is

an orbit o in TF satisfying f(o) ⊆ {0, j(o),n}, for some j(o) ∈ Z (equivalently, such that the

polygon νo(n, f) has at most 2 slopes), or if there is an orbit o in TF satisfying f(τ ) > n/2

for all τ ∈ o.

5.1 The differential operators �τ

The p-adic Maass–Shimura operators Dλ are constructed via iterations starting from

the operators Dτ , for τ ∈ 
τ . We first construct analogous mod p differential operators

�τ , for all τ ∈ 
F .

More precisely, we establish the following special case of Theorem 5.0.3.

Theorem 5.1.1. Let 
 ⊆ TF and τ ∈ 
F . For any good weight κ supported at 
, there is

a differential operator

�
,τ : ωκ → ωκ ⊗ ωκha,
 ⊗ ω2
τ ,

which satisfies

�
,τ |S ≡ E
 · Dτmod p.
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40 E. Eischen and E. Mantovan

Remark 5.1.2. The reader might be surprised to see that in order to extend Dτ to the

whole variety X, it is only necessary to multiply by the partial Hasse invariant at places

in the support 
 of κ, that is, for any modular form f , the poles of Dτ (f ) are determined

by places in 
, regardless of τ . This can be seen from the construction of Dτ in terms of

∇ and the fact that ∇(fu) = f∇(u) + u ⊗ df for any regular function f and u ∈ ⊗τ ′∈
ωτ ′

(which shows that only ∇(u) could contribute poles and only at places in 
).

For convenience, in the following, we denote by

Dτ : ωκ → (H1
dR)κ ⊗ ω2

τ

the mod p reduction of the algebraic differential operator Dτ over X defined in

Section 3.3.

Proof of Theorem 5.1.1. For any good weight κ supported at 
, define the differential

operator

�
,τ := �κ,τ := (�κ ⊗ I) ◦ Dτ : ωκ → Dτ (ω) ⊆ (H1
dR)κ ⊗ ω2

τ → ωκ ⊗ ωκha,
 ⊗ ω2
τ .

By comparing the constructions of the differential operators �κ,τ and Dκ,τ , we

see that the statement is an immediate consequence of Theorem 4.0.5. �

Corollary 5.1.3. Let 
 ⊆ TF , and let λ be a symmetric weight supported at 
. Assume

all symmetric weights supported at 
 are good. Then for any good weight κ supported

at 
, there exists a differential operator

�λ

 := �λ

κ : ωκ → ωκ+λ ⊗ ω(|λ|/2)κha,
 ,

which satisfies

�λ

 |S ≡ E|λ|/2


 · Dλmod p.

Proof. When all symmetric weights supported at 
 are good, we may construct the

operators �λ

 by iterating the operators �
,τ , for τ ∈ 
 ∩ 
F , from Theorem 5.1.1. �

Thus, in the setting of [9], we recover [9, Theorem 3.4.1].
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Entire Theta Operators at Unramified Primes 41

Remark 5.1.4. Given two positive dominant weights κ, λ, if κ good, then κ + λ is good

if and only if λ is good. Thus, all symmetric weights supported at 
 are good if and only

if the weights δ(τ ) = δτ + δτ∗ are good for all τ ∈ 
 ∩ 
F . In particular, in case (A), all

weights are good if and only if for every orbit o in T there exists an integer j(o) ∈ Z such

that f(o) ⊆ {0, j(o),n}. For example, all weights are good if the signature is definite at all

or all but one real place, and all primes v|p of F0 split in F.

Indeed, for any τ ∈ T , f(τ ) = min
(
f(oτ )>0

)
if and only if f(τ ∗) = max

(
f(oτ∗)<n

)
.

Therefore, assuming all weights are good, if there exists τ ∈ o such that f(τ ) 
= 0,n then

f(o) = {0, j(o),n} for j(o) = max
(
f(o)<n

) = min
(
f(o)>0

)
. The converse also holds.

Note that if o = o∗ (equivalently, if the prime v|p of F0 is inert in F), then

f(o) = {0, j(o),n} for some j(o) ∈ Z if and only if n is even, and for all τ ∈ o if f(τ ) 
= 0,n

then f(τ ) = n/2.

5.2 Proof of Theorem 5.0.3 on mod p reductions of differential operators

In general, the weights δ(τ ) of the automorphic sheaves ω2
τ , τ ∈ 
F , are not good for

all τ ∈ 
 ∩ 
F , hence the operators �
,τ cannot be iterated. Instead, we modify our

construction.

Proof of Theorem 5.0.3. We treat the two cases λ′ = λ a good weight and λ′ = λ − δ(τ )

a good weight separately. We first consider the case where λ′ = λ is good. Then, the

operator Dλ is constructed by iterating Dτ , for τ ∈ 
 ∩ 
F . Let

D
λ = D

λ

κ : (H1
dR)κ → (H1

dR)κ ⊗ (H1
dR)λ

denote the differential operator obtained by iterating the operators Dτ .

We define �λ

 := �λ

κ := prκ,λ ◦ (�
(|λ|/2)
κ ⊗ �λ) ◦ D

λ

κ ◦ ι,

ωκ ↪→ (H1
dR)κ → (H1

dR)κ ⊗ (H1
dR)λ → (ωκ ⊗ ω(|λ|/2)κha,
 ) ⊗ (ωλ ⊗ ω||λ||·κha) =

= (ωκ ⊗ ωλ) ⊗ ω(|λ|/2)κha,
+||λ||·κha → ωκ+λ ⊗ ω(|λ|/2)κha,
+||λ||·κha ,

where �
(|λ|/2)
κ denotes the |λ|/2-times iteration of the map �κ .

Then the statement is a consequence of Theorem 4.0.5. Finally, if λ′ = λ − δ(τ ) is

a good weight, for some τ ∈ 
, then |λ| = |λ′| + 2 and we define

�λ

 := �
,τ ◦ �λ′


 .

�
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42 E. Eischen and E. Mantovan

6 New Classes of Entire mod p Differential Operators

In this section, we construct new entire differential operators �̃ over X that, in contrast

to the operators in Section 5, cannot be obtained as (the analytic continuation of) the

mod p reduction of p-adic Maass–Shimura operators from Section 3. As discussed

in Section 5, good symmetric weights exists only under favorable restrictions on the

signature of the Shimura datum; the goal of this section is to construct a new class of

weight-raising mod p differential operators, to which such restrictions do not apply.

Our starting point is the observation that, for any τ ∈ TF , the action of Verschiebung on

mod p automorphic forms transfers forms of weight supported at τ to forms of weight

supported at τ ◦ σ−1. Hence, by composing the operators �τ with appropriate powers

of Verschiebung, we obtain mod p differential operators, which raise the weight of

automorphic forms by (non-symmetric) good weights, and can therefore be iterated and

composed without restrictions.

To better explain our construction, we observe that over the μ-ordinary locus S

twisting by Verschiebung agrees with the mod p reduction of the canonical projection

from automorphic sheaves onto their canonical OMOL quotients, that is the OMOL

sheaves of the same weights (defined in Proposition 2.4.1(3)). Under some restrictions

on the weights, we show that the mod p reductions of OMOL sheaves naturally extend

to the whole Shimura variety in positive characteristic and that the mod p reduction of

the differential operators Dλ on them also extends to entire differential operators �λ.

The new differential operators �̃ are constructed by realizing mod p OMOL sheaves as

subsheaves of automorphic sheaves of higher (good) weights.

While our techniques differ, the results in this section generalize some of the

results on �-operators in [6, §4], and [7, §4] (see Remark 6.4.4).

We assume that there exists o ∈ O such that 0,n 
∈ f(o) and eo ≥ 2.

6.1 Veschiebung twist

Let � denote absolute frobenius on X; we write A(p) = �∗A over X, ∇ = ∇A/X , and

∇(p) = ∇A(p)/X . Let

V : H1
crys = H1

crys(A/X) → (H1
crys)

(p) = H1
crys(A(p)/X)

denote relative Verschiebung, then (V ⊗ I) ◦ ∇ = ∇(p) ◦ V. For any τ ∈ TF , V induces a

homomorphism

Vτ : H1
crys,τ◦σ → (H1

crys,τ )
(p).
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Lemma 6.1.1. Let τo ∈ TF satisfying f(τo) = min(f(o)>0). For any 1 ≤ j ≤ eo.

(1) Vj
τo(H

1
dR,τo◦σ j) ⊆ ω

(pj)
τo ;

(2) ∇(pj)
(ω

(pj)
τo ) ⊆ ω

(pj)
τo ⊗ �1

X/Fp
.

Proof. For part (1), the statement is equivalent to the vanishing of the map

g ◦ V
j
τo

: H1
dR,τo◦σ j → H1 (pj)

dR, τo
→

(
H1
dR/Fil1(H1

dR)
)(pj)

τo
,

where g is the natural projection of H1
dR modulo Fil1. By the density of the μ-ordinary

locus, it suffices to prove the vanishing for every μ-ordinary geometric point.

For part (2), again it suffices to check the statement over the μ-ordinary locus.

By the functoriality of the Gauss–Manin connection, we have

(V̄j ⊗ I) ◦ ∇ = ∇(pj) ◦ V̄j,

hence the statement holds at all μ-ordinary geometric points by part (1). �

6.2 Analytic continuation of mod p OMOL sheaves

For each o ∈ OF , we fix τo ∈ o satisfying f(τo) = min(f(o)>0), and for any 0 ≤ j < eo,

write

Vj := Vj,τo := V
j
τo

: ωτ◦σ j → ω
(pj)
τo .

For any τ ∈ o, we defined 0 ≤ jτ := jτ ,τo < eo by the equality τ = τo ◦ σ jτ .

Remark 6.2.1. If o = o∗, then for each τ ∈ o, we have τ ∗ = τ ◦ σ e/2 ∈ o, for e = eo,

and in particular τ = τo ◦ σ j if and only if τ ∗ = τo ◦ σ j+e/2, for any 0 ≤ j < e. Hence,

jτ∗ ≡ jτ + e/2 mod e.

Lemma 6.2.2. Let o ∈ O satisfying 0 
∈ f(o). For any 1 ≤ j ≤ eo, let τ = τ0 ◦ σ j ∈ o, and

consider the restriction to S of the homomorphism of OF ⊗ OX-modules

V
j
: (H1

dR)τ → (H1
dR)

(pj)
τo .

Then each of the following statements is true.
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44 E. Eischen and E. Mantovan

(1) π
(pj)
τo ◦ V

j|S = V
j|S ◦ πτ .

(2) The restriction Vj : ωτ → ω
(pj)
τo induces an isomorphism of OF ⊗ OS-modules

gr1(ωτ ) � gr1(ωτo
)(p

j) = ω
(pj)
τo |S.

Proof. The statements follow from the description of the μ-ordinary Dieudonné

module and its slope filtration, see [12, Section 3.1]. In particular, the equality in

Equation (1) follows from the inclusion V
j|S(Uτ ) ⊆ Uτo

. �

We show that, under some restriction on the weights, the mod p reduction of

OMOL sheaves extends canonically from S to X.

The following definition generalizes [12, Definition 6.3.5] to non-symmetric

weights.

Definition 6.2.3. We call a positive dominant weight κ simple if it satisfies the

following for all τ ∈ TF , o = oτ :

if 0 ∈ f(oτ ), then κτ = 0; and if 0 
∈ f(oτ ), then κi,τ = 0 for all i > f(τo).

Proposition 6.2.4. For any simple weight κ, the restrictions to S of the homomor-

phisms of OF ⊗ OX-modules Vj,τo , for o ∈ OF , satisfying 0 
∈ f(o), and 1 ≤ j ≤ eo, induce

an isomorphism of OF ⊗ OS-modules

ωκ � �τ∈TF
(
ωκτ

τoτ

)(pj) |S.

Under the above identification, we have Vκ |S = �κ : ωκ → ωκ .

Proof. By definition, if κ is simple then the associated OMOL sheaf satisfies

ωκ = gr1(ω)κ ,

and the statement follows from Lemma 6.2.2(2). �

In the following, for any simple weight κ, we use the above identification to

extend from S to X the OMOL sheaf ωκ , and the canonical projection �κ : ωκ → ωκ .
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Remark 6.2.5. Let o satisfying 0 
∈ f(o), and write e = eo. Then, ωτo
|S = ωτo

and the

isomorphism ωτo
� ω

(pe)
τo |S naturally extends over X to the map Veo : ωτo

→ ω
(peo )
τo . By

definition, Veo agrees with the map h̃τo
from Section 4.2; in particular, its composition

with the adjugate ∗h̃τo
: ω

(peo )
τo → ωτo

⊗ |ωτo
|peo−1 agrees with multiplication by the

τo-Hasse invariant Eτo
.

6.3 Analytic continuation of mod p differential operators on OMOL sheaves

We prove that the mod p reduction of the differential operators Dλ on OMOL sheaves

also extends from S to X.

Remark 6.3.1. Simple symmetric weight exist if and only if there exists o ∈ O

such that 0,n 
∈ f(o). Indeed, if λ is a simple symmetric weight, and λτ 
= 0, then 0,

n 
∈ f(oτ ). Also, for any τ̄ ∈ 
F , the basic symmetric weight δ(τ̄ ) is simple if and only if

0,n /∈ f(oτ̄ ).

Lemma 6.3.2. Let τ̄ ∈ 
F . For any simple weight κ, there is a differential operator

�τ̄ = �κ,τ̄ : ωκ → ωκ ⊗ ω2
τ̄ .

If 0,n 
∈ f(oτ̄ ) then

(I ⊗ �τ̄ ) ◦ �τ̄ |S ≡ Dτ̄mod p,

where �τ̄ := Vjτ̄ ⊗ Vjτ̄∗ : ω2
τ̄ = ωτ̄ ⊗ ωτ̄∗ → ω2

τ̄ = ωτ̄ ⊗ ωτ̄∗ .

Proof. For any o ∈ OF satisfying 0 
∈ f(o), and 1 ≤ j ≤ eo, let τ = τo ◦ σ j. We define the

operator �τ̄ by the Leibniz rule starting from the operators

(�τ̄ )τ = (D(pj)
τ̄ )τo = (I ⊗ ks−1

τ̄ ) ◦ ∇̄(pj)
τo

ωτ = ω
(pj)
τo → ω

(pj)
τo ⊗ �1

X/Fp
→ ω

(pj)
τo ⊗ ω2

τ̄ = ωτ ⊗ ω2
τ̄ .
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The following commutative diagram show that if 0,n 
∈ f(oτ̄ ) then the operator

�τ̄ satisfies the congruence (I ⊗ �τ̄ ) ◦ �τ̄ |S ≡ Dτ̄mod p.

�

Theorem 6.3.3. Let 
 ⊆ TF satisfying 0 
∈ f(oτ ) for all τ ∈ 
, and let λ be a simple

symmetric weight supported at 
. Then for any simple weight κ supported at 
, there

is a differential operator

�λ

 := �λ

κ : ωκ → ωκ+λ,

satisfying

�λ

 |S ≡ Dλmod p.

Proof. For any simple weight κ supported at 
, and any τ̄ ∈ 
F satisfying 0,n /∈ f(oτ̄ ),

consider the differential operators

�
,τ̄ = (I ⊗ �τ̄ ) ◦ �κ,τ̄ : ωκ → ωκ ⊗ ω2
τ̄

defined in Lemma 6.3.2.
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For any simple symmetric weight λ supported at 
, we define �λ

 = �λ

κ by

iterating and composing the operators �
,τ̄ , for τ̄ ∈ 
F ∩ 
. That is, we define

�λ

 = prκ,λ ◦ (I ⊗ prλ) ◦ �

|λτ̄1 |

,τ̄1

◦ · · · ◦ �
|λτ̄d |

,τ̄d

,

ωκ → ωκ ⊗
(
⊗τ̄∈
F

(ω2
τ̄ )

⊗|λτ |) → ωκ ⊗ ωλ → ωκ+λ,

for any choice of an ordering of the set 
F , d = [F0 : Q]. Lemma 3.3.1 implies that

the operator �λ is independent of such a choice. We observe that, by construction,

the operator �λ

 satisfies the given congruence, as a consequence of the congruences

satisfied by the operators (I ⊗ �τ̄ ) ◦ �τ̄ . �

6.3.1 The special case of good simple weights

For weights κ that are both good and simple, the OMOL sheaves ωκ agree with the

restriction of the automorphic sheaves ωκ over S, and for all τ̄ ∈ 
F , the operators

�κ,τ̄ and �κ,τ̄ both extend the mod p reduction of the basic Maass–Shimura differential

operators Dκ,τ̄ on ωκ . We compare the two constructions.

Set ϒ = {τo ∈ o|o ∈ O satisfying 0 
∈ f(o)}, which we regard also as ϒ ⊆ O.

Remark 6.3.4. If κ is a weight supported at ϒ , then κ is good and simple. Vice

versa, if a weight κ is good and simple, then κ is supported at {τ ∈ TF | 0 
∈ f(oτ ) and

f(τ ) = f(τo)}.

For κ any weight supported at ϒ , we write ∗�κ for the adjugate of �κ : ωκ → ωκ ,

and we have

Er(κ)−1 =
∏

τo∈ϒ

E
max(r(κτo )−1,0)
τo .

We refer to Definition 2.2.2 for the notation r(κ) ∈ Z|T |.

Proposition 6.3.5. Let ϒ0 ⊆ ϒ , and κ be a weight supported at ϒ0. For any τ̄ ∈ 
F ,

Er(κ)−1 · �ϒ0,τ̄ = (∗�κ ⊗ I) ◦ �τ̄ ◦ �κ .

Furthermore, if τ̄ ∈ 
F satisfies 0,n 
∈ f(oτ̄ ), then

Er(κ)−1 · (I ⊗ �τ̄ ) ◦ �ϒ0,τ̄ = (∗�κ ⊗ I) ◦ �ϒ0,τ̄ ◦ �κ .
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Proof. Let τ̄ ∈ 
F . For each τo ∈ ϒ , the commutativity of the diagram in the proof of

Lemma 6.3.2 implies

�τo,τ̄ = (∗�τo
⊗ I) ◦ �τ̄ ◦ �τo

,

ωτo
→ ωτo

= ω
(pe)
τo → ω

(pe)
τo ⊗ ω2

τ̄ → ωτo
⊗ |ωτo

|pe−1 ⊗ ω2
τ̄ ,

where by definition �τo
= h̃τo

, and ∗h̃τo
◦ h̃τo

is multiplication by Eτo
(see Remark 6.2.5).

Furthermore, if τ̄ ∈ 
F satisfies 0,n 
∈ f(oτ̄ ), composition with the map (I ⊗ �τ̄ ) yields

(I ⊗ �τ̄ ) ◦ �τo,τ̄ = (∗�τo
⊗ I) ◦ �τo,τ̄ ◦ �τo

.

For κ any weight supported as ϒ0, we deduce the statement from the above

equalities by comparing the construction of the operators �ϒ0,τ̄ and �τ̄ ,�ϒ0,τ̄ on ωκ ,

and observing that �κ = h̃κ and ∗h̃κ ◦ h̃κ is multiplication by Er(κ). �

6.4 A new class of entire mod p differential operators

We conclude by introducing a new class of weight-raising mod p differential operators

�̃λ on mod p automorphic forms. These operators are obtained by iterating and com-

posing basic differential operators �̃τ̄ , which are defined by composing the operators

�τ̄ with the projections �τ̄ : ω2
τ̄ → ω2

τ̄ , for any τ̄ ∈ 
F satisfying 0,n 
∈ f(oτ̄ ). In order to

iterate and compose the operators �̃τ̄ , we observe that the OMOL sheaves ω2
τ̄ also arise

as subsheaves of automorphic sheaves of higher good weights.

For each o ∈ O satisfying 0,n 
∈ f(o), we choose τo ∈ o such that f(τo) = min f(o),

and set

ϒ = {τo|o ∈ O satisfies 0,n 
∈ f(o)}. (11)

Definition 6.4.1. For any simple symmetric weight λ, λ = (λτ )τ∈TF , we define the ϒ-

twist λ̃ = λ̃ϒ of λ by

λ̃τ = 0 if τ 
∈ ϒ , and λ̃τ =
eo−1∑
0

pjλτo◦σ j if τ = τo ∈ ϒ .

By definition, the weight λ̃ϒ is supported at ϒ , and hence it is good and simple. Note

that λ̃ϒ is not symmetric. We write δ̃(τ̄ ) for the ϒ-twist of δ(τ̄ ), for τ̄ ∈ 
F .
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For any OX-module F , we write

f : F (p) → SympF

for the natural morphism of OX-module. By abuse of notation, we also write f for the

induced morphisms F (pj) → SympjF , for j ≥ 1.

For any τ̄ ∈ 
F satisfying 0,n 
∈ f(oτ̄ ), let

pτ̄ = f ◦ �τ̄ : ω2
τ̄ = ωτ̄ ⊗ ωτ̄∗ → ω2

τ̄ = ω
(pj)
τo ⊗ ω

(pj
∗
)

τo∗ → Sympj(ωτo
) ⊗ Sympj

∗
(ωτo∗ ),

where o = oτ̄ . For τ̄ = τo (resp. τ̄ = τo∗ ), set j = 0 (resp. j∗ = 0).

If o 
= o∗, the sheaf Sympj(ωτo
) ⊗ Sympj

∗
(ωτo∗ ) is an automorphic sheaf, and its

weight is δ̃(τ̄ ). If o = o∗, by abuse of notation, we still denote by pτ̄ its composition with

the natural morphism

Sympj(ωτo
) ⊗ Sympj

∗
(ωτo∗ ) = Sympj(ωτo

) ⊗ Sympe/2+j
(ωτo

) → Sympj(1+pe/2)(ωτo
);

the sheaf Sympj(1+pe/2)(ωτo
) is an automorphic sheaf, and its weight is δ̃(τ̄ ).

Lemma 6.4.2. For any simple symmetric weight λ, prλ̃ : ⊗τo∈ϒ(ωτo
)⊗|λ̃τo | → ωλ̃ factors

via the homomorphism ⊗τo∈ϒ(ωτo
)⊗|λ̃τo | → ⊗τ̄∈
F

(ωδ̃(τ̄ ))⊗|λτ̄ |.

Proof. It suffices to observe that, for any simple symmetric weight λ, the morphisms

pτ̄ : ω2
τ̄ → ω2

τ̄ → ωδ̃(τ̄ ) induce (via Schur functors) a morphism pλ : ωλ → ωλ → ωλ̃, which

fits in the following commutative diagram

�

Let τ̄ ∈ 
F satisfy 0,n 
∈ f(oτ̄ ). For any 
 ⊆ TF , and any good weight κ supported

at 
, we define a differential operator �̃
,τ̄ = �̃ϒ ,
,τ̄ , on mod p automorphic forms of
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weight κ, by

�̃
,τ̄ = prκ+κha,
 ,δϒ (τ̄ ) ◦ (I ⊗ pτ̄ ) ◦ �
,τ̄ ,

ωκ → ωκ+κha,
 ⊗ ω2
τ̄ → ωκ+κha,
 ⊗ ωδ̃(τ̄ ) → ωκ+κha,
+δ̃(τ̄ ).

If ϒ ⊆ 
 , then κ + κha,
 + δ̃ϒ (τ̄ ) is also a good weight supported at 
. Hence,

the operators �̃
,τ̄ can be iterated and composed without restrictions. For any simple

symmetric weight λ, and any choice of an ordering of the set 
F , d = [F0 : Q], we define

�̃λ

 := prκ+κha,
 ,λ̃ ◦ (I ⊗ prλ̃) ◦ �̃

|λτ̄1 |

,τ̄1

◦ · · · ◦ �̃
|λτ̄d |

,τ̄d

,

ωκ → ωκ+(|λ|/2)κha,
 ⊗
(
⊗τ̄∈
F

(ω2
τ̄ )

|λτ̄ |) → ωκ+(|λ|/2)κha,
 ⊗ ωλ → ωκ+(|λ|/2)κha,


⊗ ωλ̃ → ωκ+(|λ|/2)κha,
+λ̃.

By Lemmas 3.3.1 and 6.4.2, the operators �̃λ

 are well defined, independent of

the choice of an ordering of the set 
F . We deduce the following result, concerning

entire theta operators that raise the weights by weights that are not symmetric, and

which do not arise as the mod p reductions of p-adic Maass–Shimura operators.

Theorem 6.4.3. Let ϒ as in Equation (11), and assume ϒ 
= ∅. For any simple symmetric

weight λ, and any ϒ ⊆ 
 ⊆ TF , there is a differential operator on mod p automorphic

forms of weight κ, for κ any good weight supported at 
,

�̃λ

 = �̃λ

ϒ ,
 : ωκ → ωκ+(|λ|/2)κha,
+λ̃,

which raises the weight κ by (|λ|/2)κha,
 + λ̃ϒ , where λ̃ϒ is as in Definition 6.4.1.

Remark 6.4.4. For F quadratic imaginary, p inert in F, and indefinite signature,

the choice of ϒ , τ̄ as above is unique, and the associated operator �̃ϒ ,τ̄ agrees (up

to multiplication by the Hasse invariant Eϒ ) with the operator � constructed in [7,

Section 4]. In loc. cit., the operator � is defined on automorphic forms of scalar weights

supported at ϒ and can be iterated when the signature of the unitary group is (n, 1).
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7 Application to mod p Galois Representations

In this section, we apply the results from the previous sections (more precisely, Section 5

on analytic continuation of differential operators, and Section 6.4 on a new class of

entire differential operators) to Galois representations. For the 1st of these classes of

differential operators, the results in this section remove the splitting constraint on p

from the analogous results in [9, Sections 4 and 5].

7.1 Commutation relations with Hecke operators

Following the same approach as in [9, Section 4], we study the commutation relations

with Hecke operators (and Hida’s μ-ordinary projectors built from Hecke operators at p),

of the mod p differential operators �τ and �λ constructed in Section 5, and of the mod p

differential operators �̃τ and �̃λ constructed in Section 6.4 (resp. of the p-adic Maass–

Shimura differential operators Dλ constructed in [12]).

Remark 7.1.1. The definition of the differential operators �λ = �λ

 and �̃λ = �̃λ




depends on the choice of a non-empty set 
 ⊆ TF . As we shall see the results in

this section do not depend on 
 ⊆ TF . We therefore drop the subscript 
 from our

notation.

Remark 7.1.2. The definition of the differential operators �̃λ = �̃λ
ϒ ,
 depends on the

existence and choice of a non-empty set ϒ as in Equation (11). In the following, we

assume there exists ϒ nonempty, we fix such a choice and drop the subscript ϒ from

our notation.

Remark 7.1.3. In our discussion Hecke operators below, following the approach of

[14], we only use the fact that the Hecke action is formulated in terms of algebraic

correspondences, so other approaches similarly formulated in terms of algebraic

correspondences (even if they are normalized differently) also fit into this framework

and, in particular, other normalizations would not affect the statements of Corollaries

7.1.5 and 7.2.1. (One reason for making this observation is that when writing double

coset representations of Hecke operators, one sometimes needs to normalize them

to work integrally, as explained in moving from the “naive,” “unnormalized” Hecke

operators expressed in terms of double cosets to normalized, integral Hecke operators

in [16, §1].)
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7.1.1 Hecke operators away from p

We briefly recall the definition of the action of the prime-to-pHecke operators on mod p

(resp. p-adic) automorphic forms. (We refer to [14, Ch. VII, §3], and also [9, Section 4.2],

for details.)

Fix a rational prime �, � 
= p. We assume that � is a prime of good reduction

for XK . That is, for each prime v|� of F, we assume that Kv is a hyperspecial maximal

compact subgroup of Gv = G(Fv).

Let � − Isog denote the moduli space of �-isogenies over X . We denote by

ϕ : pr∗
1A → pr∗

2A the universal �-isogeny, where pr = (pr1, pr2) : �−Isog → X×X denotes

the natural structure morphism. Similarly to [9, Definition 4.2.2], for any connected

component Z of � − Isog, we denote by T(Z,ϕ) the natural action of (Z,ϕ) on H0(X ,ωκ)

via algebraic correspondence. By abuse of notation, we also denote by T(Z,ϕ) the induced

actions on mod p automorphic forms over X (resp. on p-adic automorphic forms over

S). We generalize [9, Theorem 4.2.4].

Proposition 7.1.4. Let (Z,ϕ) be a connected component of the moduli space of

�-isogenies over X , with ν(ϕ) the similitude factor of ϕ. Let κ, λ be two weights, and

assume λ symmetric.

(1) T(Z,ϕ) ◦ Dλ = ν(ϕ)|λ|/2Dλ ◦ T(Z,ϕ).

(2) T(Z,ϕ) ◦ �λ = ν(ϕ)|λ|/2�λ ◦ T(Z,ϕ) if both κ and either λ or λ − δ(τ ), for some

τ ∈ 
F , are good.

(3) T(Z,ϕ) ◦ �̃λ = ν(ϕ)|λ|/2�̃λ ◦ T(Z,ϕ), if κ is good and λ is simple.

Proof. For Part (1), by construction of the operator Dλ, the statement reduces to the

special cases

T(Z,ϕ) ◦ Dτ = ν(ϕ)Dτ ◦ T(Z,ϕ),

for any τ ∈ 
F . By the definition, Dτ = (πτ ⊗ ks−1) ◦ ∇A/S , and the commutation

relations follow from the functoriality of the Gauss–Manin connection, the definition

of the morphisms πτ , and the equality ν(ϕ)KS = KS ◦ (ϕ∗ ⊗ ϕ∗).
For Part (7.1.4), for any τ ∈ 
F , the operators �τ are defined as �τ = (�τ ⊗

ks−1) ◦ ∇A/X , and the same argument yields the result for the weight λ = δ(τ ). On

the other hand, for a more general weight λ, the operators �λ are not constructed by

composition/iteration of the operators �τ , thus the statement does not reduce to the

aforementioned case. When λ is a good weight, the same argument still applies, with
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minor changes. When λ − δ(τ ), for some τ ∈ 
F , is a good weight, then the statement

follows from the equality �λ+δ(τ ) = �τ ◦ �λ, and the previously established cases.

For Part (3), by construction of the operator �̃λ, the statement reduces to the

special cases

T(Z,ϕ) ◦ �̃τ = ν(ϕ) · �̃τ ◦ T(Z,ϕ)

for any τ ∈ 
F satisfying 0,n 
∈ f(oτ ). By definition, �̃τ = (I⊗pτ ) ◦ �τ , and the statement

follows from Part (2) and the functoriality of the morphisms pτ . �

Finally, we recall the action of the prime-to-p Hecke operators. We define

H0(G�,Q) to be the Q-subalgebra of the local Hecke algebra H(G�,K�;Q) generated by

locally constant function supported on cosets K�γK�, for γ ∈ G� an integral matrix.

Then, the action on mod p (resp. p-adic) automorphic forms of the prime-to-p Hecke

operators agrees with that of the prime-to-p algebraic correspondences, via pullback

under the map of Q-algebras

h� : H0(G�,Q) → Q[� − Isog/Y]

where Y = X/κ(p) (resp. S/W), which to any double coset K�γK�, with γ an integral

matrix in G�, associates the union of those connected component of � − Isog where the

universal isogeny is an �-isogeny of type K�γK�.

The following Corollary is an immediate consequence of Proposition 7.1.4.

Corollary 7.1.5. Let f be a mod p Hecke eigenform of weight κ on X. Assume κ is good.

Then:

(1) For any symmetric weight λ, such that either λ or λ − δ(τ ) is good, for some

τ ∈ 
F , if �λ(f ) is nonzero then it is a mod p Hecke eigenform.

(2) For any simple symmetric weight λ, if �̃λ(f ) is nonzero, then �̃λ(f ) is a

mod p Hecke eigenform.

7.1.2 Hecke operators at p

We briefly recall the definition of the action of Hecke operators at p, on p-adic

automorphic forms over the μ-ordinary locus S. (We refer to [14, Ch. VII, §4], and also

[9, Section 4.3], for details.)
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Let p−Isogo denote the moduli space of p-isogenies over the μ-ordinary locus S.
For any connected component (Z,ϕ) of p − Isogo, we write T(Z,ϕ) for the action (Z,ϕ) on

p-adic automorphic forms over S.
We generalize [9, Theorem 4.3.3].

Proposition 7.1.6. For any connected component (Z,ϕ) of p − Isogo, with ν(ϕ) the

similitude factor of ϕ, and any two weights κ, λ, with λ symmetric,

T(Z,ϕ) ◦ Dλ = ν(ϕ)|λ|/2Dλ ◦ T(Z,ϕ).

In particular, if ν(ϕ) > 0, then T(Z,ϕ) ◦ Dλ = 0.

For any connected component (Z,ϕ) of p−Isogo/S⊗WF, we define the normalized

action of (Z,ϕ) on mod p automorphic forms over S as t(Z,ϕ) := μ−1(Z,ϕ)T(Z,ϕ), where

μ(Z,ϕ) is the purely inseparable multiplicity of the geometric fibers of Z → S.

We are now ready to introduce the action of the Hecke operators at p. Following

loc. cit., we identify J × Gm with the appropriate maximal Levi subgroup M of G over

OF(D)p
and realize the local Hecke algebra H(M(F(D)p),M(OF(D)p

);Q) as a subalgebra

of H(G(F(D)p),G(OF(D)p
);Q). (Note that, when the ordinary locus is nonempty, the Levi

subgroup M is defined over Zp.) We set Mp := M(F(D)p), and define H0(Mp,Q) to be

the Q-subalgebra of the local Hecke algebra H(Mp,M(OF(D)p
);Q) generated by locally

constant function supported on cosets M(OF(D)p
)γM(OF(D)p

), for γ ∈ Mp an integral

matrix.

Then, the action of the Hecke operators at p on mod p automorphic forms over S
agrees with the normalized action of the p-power algebraic correspondences, via

pullback under the map of Q-algebras

hp : H0(Mp,Q) → Q[p − Isogo/S],

which to any double coset K�γK�, with γ an integral matrix in G�, associates the union

of those connected component of p− Isogo where the universal isogeny is a p-isogeny of

type M(OF(D)p
)γM(OF(D)p

).

7.1.3 Ordinary projector

When the ordinary locus is nonempty, in [9, Section 4.3.1], we also address the interac-

tion between differential operators and Hida’s ordinary projector. More generally, even

when the ordinary locus is empty, we have the μ-ordinary project e, which coincides

with Hida’s ordinary projector when the ordinary locus is nonempty. The μ-ordinary
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projector e was introduced in a general setting in [21, Section 6.2] and later explored in

the context of p-adic automorphic forms over the μ-ordinary locus of unitary Shimura

varieties in [3]. The Hecke operators at p are defined in [3, Section 3], and then e is built

from them analogously to in the ordinary case. By a similar argument to the proof of

[9, Corollary 4.3.5], we then have Corollary 7.1.7, which specializes to [9, Corollary 4.3.5]

when the ordinary locus is nonempty.

Corollary 7.1.7. For any weight κ and symmetric weight λ, eDλ
κ = 0.

7.2 Consequences for Galois representations

Let χ denote the mod p cyclotomic character. Recall ν̂ : Gm → Ĝ is the cocharacter dual

to the similitude factor ν : G → Gm.

By a similar argument to the proof of [9, Theorem B], we extend [9, Theorem B]

to our context.

Corollary 7.2.1 (Action of differential operators on mod p Galois representations). Let

f be a mod p Hecke eigenform on X of weight κ, for κ a weight supported at 
, for some


 ⊆ T , and ρ : Gal(F̄/F) → Ĝ(F) a continuous representation.

Assume κ is good. Let λ be a symmetric weight.

(1) Suppose either λ − δ(τ ), for some τ ∈ 
F , or λ is good; set λ′ = λ − δ(τ ) or

λ′ = λ, respectively. Assume �λ

(f ) is nonzero.

Then, the Frobenius eigenvalues of ρ agree with the Hecke eigenvalues of

the form f (as defined in Conjecture 2.5.1) if and only if the Frobenius

eigenvalues of (ν̂|λ|/2 ◦ χ) ⊗ ρ agree with the Hecke eigenvalues of the form

�λ

(f ).

In particular, if ρ is modular of weight κ, then (ν̂|λ|/2 ◦ χ) ⊗ ρ is modular of

weight κ + λ + (|λ|/2)κha,
 + ||λ′||κha.
(2) Suppose λ is simple; fix ϒ as in Equation (11). Assume ϒ ⊆ 
 and �̃λ

ϒ ,
(f ) is

nonzero.

Then, the Frobenius eigenvalues of ρ agree with the Hecke eigenvalues of

the form f (as defined in Conjecture 2.5.1) if and only if the Frobenius

eigenvalues of (ν̂|λ|/2 ◦ χ) ⊗ ρ agree with the Hecke eigenvalues of the form

�̃λ
ϒ ,
(f ).

In particular, if ρ is modular of weight κ, then (ν̂|λ|/2 ◦ χ) ⊗ ρ is modular of

weight κ + λ̃ϒ + (|λ|/2)κha,
 .
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As in [9, Section 5.2], the above result is a 1st step in the use of �-operators

to investigate Serre’s weight conjecture (as, e.g., in the specific case of GSp4(Q) in

[44, Theorems 1.1 and 1.2]) on minimal weights of modularity for mod p Galois

representations, or more generally how the weights of modularity vary under twists

by the cyclotomic character. Some preliminary results on �-cycles analogous to [25,

Theorem on p. 55] and [9, Section 5.2] also hold in this context, when restricting to

scalar weights. As in [44], the general case, beyond scalar weights, is much more subtle.

As first observed for a special case in [6, Section 4.1] (and also in [7, Section 5]),

the cycles described by the modular weights under the action of the operators �̃ are

substantially different from those obtained under the action of the operators �, which

is likely to provide an advantage in the study of Serre’s weight conjecture.
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