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Discovery of primary prostate 
cancer biomarkers using 
cross cancer learning
Kaiyue Zhou1, Suzan Arslanturk1*, Douglas B. Craig2,3, Elisabeth Heath2,4 & Sorin Draghici1,5

Prostate cancer (PCa), the second leading cause of cancer death in American men, is a relatively 
slow-growing malignancy with multiple early treatment options. Yet, a significant number of low-
risk PCa patients are over-diagnosed and over-treated with significant and long-term quality of life 
effects. Further, there is ever increasing evidence of metastasis and higher mortality when hormone-
sensitive or castration-resistant PCa tumors are treated indistinctively. Hence, the critical need is to 
discover clinically-relevant and actionable PCa biomarkers by better understanding the biology of 
PCa. In this paper, we have discovered novel biomarkers of PCa tumors through cross-cancer learning 
by leveraging the pathological and molecular similarities in the DNA repair pathways of ovarian, 
prostate, and breast cancer tumors. Cross-cancer disease learning enriches the study population and 
identifies genetic/phenotypic commonalities that are important across diseases with pathological 
and molecular similarities. Our results show that ADIRF, SLC2A5, C3orf86, HSPA1B are among the 
most significant PCa biomarkers, while MTRNR2L1, EEPD1, TEPP and VN1R2 are jointly important 
biomarkers across prostate, breast and ovarian cancers. Our validation results have further shown that 
the discovered biomarkers can predict the disease state better than any randomly selected subset of 
differentially expressed prostate cancer genes.

Prostate cancer (PCa) is the second leading cause of cancer death in American men. PCa is generally a slow-
growing malignancy with increased lead-time due to screening. Moreover, the efficacy of treatment options 
[e.g., surgery, radio-therapy, androgen deprivation therapy (ADT)] improved the median survival of patients 
and continue to evolve as treatment-related adverse effects are better defined1. However, some PCa tumors are 
aggressive (i.e. progressing from localized disease to metastasis) and are responsible for the majority of the pros-
tate cancer associated mortalities. Hence, the identification of significant predictive biomarkers associated with 
primary and metastatic PCa would be critical in guiding the clinical decision-making. Furthermore, the cancer 
biomarkers can be used to measure the molecular pathway deregulations, which would justify the application 
of certain therapies, and customize treatment plans for individuals.

Past efforts in molecular biomarker discovery have been modestly successful and fell short in their ability 
to decisively contribute to PCa patient care mainly due to: (1) the lack of understanding of the pathobiology 
of cancer2,3; (2) underestimating the contribution of variants located in non-coding regions of genes4 and (3) 
lack of clinically relevant results due to issues in study design, assay platforms, and availability of specimens for 
biomarker development5,6. Besides, there is evidence that different cancers share similar genomic aberrations 
in the tumor cells which confirms the commonality in molecular mechanisms and biological functions. Hence, 
the discovery of significant predictive biomarkers among biologically similar cancers, regardless of the origins 
of tissue may shed light on some key alterations of carcinogenesis.

Recently, the US Food and Drug Administration (FDA) approved the first multi-cancer treatment (Keytruda), 
for patients whose cancers have a common specific biomarker. This is the first time that the FDA has approved a 
drug based on a common biomarker, instead of the organ the tumor has originated. Despite this, the majority of 
biomarker discovery studies consider each cancer disease in isolation from the rest, and attempt to characterize 
the phenotypes and discover influential biomarkers that are cancer-type specific. Hence, the critical need is to 
discover clinically relevant and actionable PCa biomarkers by better understanding the biology of PCa through 
the exploitation of cancers with similar molecular and genetic aberrations.

OPEN

1Department of Computer Science, Wayne State University, Detroit  48201, USA. 2Department of Oncology, 
Wayne State University, Detroit  48201, USA. 3Bioinformatics and Biostatistics Core, Barbara Ann Karmanos 
Cancer Institute, Detroit 48201, USA. 4Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 
Detroit  48201, USA. 5Department of Obstetrics and Gynecology, Wayne State University, Detroit  48201, 
USA. *email: suzan.arslanturk@wayne.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-89789-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10433  | https://doi.org/10.1038/s41598-021-89789-x

www.nature.com/scientificreports/

Oncologists have closely looked at ovarian and breast cancers and identified that the tumors arising from these 
cancers are typically hormone-dependent and have remarkable underlying pathological and molecular similari-
ties to prostate cancer in their DNA repair pathway abnormalities7. Alterations in DNA repair genes are common 
in primary prostate cancer and metastatic, castration-resistant prostate cancer (mCRPC) through mutations 
or deletions in BRCA2, BRCA1, CDK12, ATM, FANCD2, or RAD51C8–10. Robinson et. al. discovered that 23% 
of mCRPC harbor DNA repair pathways aberrations11. In comparison, the prevalence of germline or somatic 
aberrations in genes involved in the DNA damage repair pathway is identified at 19%12. Similarly, mutations in 
BRCA1, BRCA2, ATM, RAD51C were found in patients with triple negative/basal-like and non-triple negative 
breast cancers13. Studies have further shown that the basal-like ovarian and breast cancer tumors had similar rates 
and spectrums of mutations in DNA repair genes14–18. These biological similarities have led to remarkably similar 
treatment options. For instance, combining the androgen deprivation therapy (ADT) with PARP inhibitors (i.e. 
drugs already used in breast cancer treatment) is shown to be an effective approach in reducing the progression 
and recurrence of prostate cancer19. Several single agent activity PARP inhibitors (PARPi) are recently approved 
for treating certain ovarian and breast cancers19.

In this paper, we have built a data-driven deep learning approach, referred to as cross-cancer learning for PCa 
biomarker discovery. Cross-cancer disease learning has great potential in terms of enriching the study population 
and identifying jointly important biomarkers and treatment options across biologically similar diseases. Tradi-
tional machine learning driven molecular data based biomarker discovery approaches fail to achieve satisfactory 
results when there is limited sample size. In addition, as in the case of advanced and lethal PCa, the class imbal-
ance issues further inhibit the discovery of promising biomarkers. Several deep learning techniques, in contrast, 
extract knowledge from one or more similar tasks without restrictions on domains and distributions to enhance 
the learning process by enriching the study population and exploiting commonalities and differences across tasks. 
There have been numerous deep learning applications in different domains20–24, including bioinformatics25,26, and 
cancer imaging27,28. More recently, it has been successfully applied on cancer drug response29,30, unsupervised 
feature learning for cancer classification31 and semi-supervised learning for cancer classification32.

Method
Here, we have developed a cross-cancer learning approach to identify a clinically-relevant set of biomarkers 
associated with ovarian, prostate and breast cancers. Our framework for cross-cancer learning model develop-
ment, biomarker discovery and evaluation is described in Fig. 1.

Tissue type and disease state prediction.  One limitation of molecular datasets in general is related to 
the limited number of samples and the high dimensional feature space, leading to the “curse of dimensional-
ity”33,34. The issue of dimensionality is usually managed by feature selection or transformation techniques, lead-

Figure 1.   The proposed framework: (A) gene expression data from ovarian, prostate and breast tissues (T: 
tumor, N: normal). (B) A multi-label classification auto-encoder (MLC-AE) is built to predict the tissue type 
(ovary, prostate and breast) and disease state (tumor and normal) of a given gene expression profile. (C) An 
explanation model (SHAP) is used to identify the contribution of each input node (gene) towards prediction. 
(D) The SHAP values are used to rank the genes. (E) In parallel, a differential expression analysis is used to 
identify the DE genes associated with ovarian, prostate and breast cancers. An evaluation classifier is built using 
only cross-cancer biomarkers of prostate cancer (F), and using only a randomly selected subset of DE genes (G). 
Finally, the performances of the evaluation classifier using the cross-cancer biomarkers and random set of DE 
genes are compared (H).
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ing inevitably to a loss of valuable predictive information. Extracting a meaningful low-dimensional latent rep-
resentation from a molecular profile is the key to success in overcoming the problem of high-dimensional data 
with small sample size. For this purpose, our approach utilizes an autoencoder (AE) composed of a supervised 
deep learning architecture. The lower dimensional latent representation of the mRNA gene expression profiles is 
then used in a multi-label classification task (referred as MLC-AE) by exploiting commonalities and differences 
across tasks to differentiate the ovarian, prostate, breast tissues (the three tissues hereafter) and disease states 
(solid tumor vs. adjacent normal tissue).

Azarkhalili et al.’s recent paper35 has inspired and given us the basis on which we have built our MLC-AE 
architecture as shown in Fig. 2. Note that our prediction model is different, as DeePathology35 uses two separate 
output layers for tumor and normal types. The encoder part of our model converts the mRNA expression profile 
of each sample to a lower dimensional latent space, and the decoder reconstructs an approximation of the same 
input with minimal loss. We utilized the cosine similarity as the loss for the classification tasks. The compressed 
latent representation is then able to represent all classes within our data.

Biomarker discovery using explainable AI.  While deep learning models reach impressive prediction 
accuracies, their nested non-linear structure makes them highly non-transparent, i.e., it is not clear what infor-
mation from the input data makes them actually arrive at their decisions. For clinicians, these models appear as 
“black boxes” and hence hamper their confidence in using them for clinical decision making, mainly because 
they are unable to compare to and integrate their expert opinion with the predictions. Particularly important 
in this study is the ability to learn from the model and extract distilled biomarker information critical to PCa.

Several methods have been proposed in the literature to identify the importance of each feature. Kunpeng 
et al. introduced a reinforcement learning based approach by constructing a state vector using statistical analysis, 
autoencoders, or graph convolution networks36. However, obtaining the state vector requires to compute the 
correlation among features, which is unrealistic when the feature size is too large. DeepPINK proposed by Lu 
et al.37 requires to double the size of features for computing the original and knockoff features in the pairwise 
coupling layer to finally obtain the feature importance. However, this approach reduces the speed of computa-
tion and increases the architecture demands, potentially making the approach unfeasible for tens of thousand of 
variables. In this study, we have utilized the SHapley Additive exPlanations (SHAP)38, a game theoretic approach 
to explain and interpret the MLC-AE model. The framework proposed here uses SHAP values as a way to extract 
feature importance across three cancers. When a neural network model makes a certain prediction (e.g. predict-
ing a sample to be a prostate tumor or normal tissue) based on a set of features (i.e. gene expressions), the SHAP 
method calculates the change in performance with and without the presence of each feature. Those features 
leading to a significant performance reduction with their absence will be assigned a higher contribution score. 
Given the high dimensional feature space ( ≈ 19,000 genes for each sample), this procedure requires a substan-
tial computational effort. To address this, we use the Gradient Explainer39 as a model-specific approximation of 
expected SHAP values.

After the prediction network is fully trained, the SHAP explanation model described above is utilized to assess 
the significance of each feature. Given a dataset with N features (i.e. genes), x1, x2, . . . , xN ∈ X , where xi ∈ R

C , 
our goal is to identify the most relevant features, such that f (X) ≈ f (Xk) , where f is the prediction of model, and 
Xk ⊂ X denotes the top k significant features.

We have assigned a contribution score to each feature using the following approach. Let F be the set of all 
features, and S ⊂ F be a subset. The explanation model assigns an importance value φi to each feature by calcu-
lating the change in performance with and without the presence of each feature i. Thereafter a model fS∪{i} with 
feature i being present and the model fS with that feature being absent are separately conducted, and the impact 
of feature i is calculated through the difference in the predictive output of the two models: fS∪{i}(xS∪{i})− fS(xS) , 

Figure 2.   The network architecture: an autoencoder is utilized to extract a meaningful low-dimensional latent 
representation from a molecular profile. Meanwhile, the 12-dimensional latent representation has the ability to 
correctly classify the three tissues and disease states of a gene expression profile. Numbers aligning along each 
layer represent the number of nodes.
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where xS denotes the vector of feature values in set S. Let S ⊆ F\{i} denote the subset of features excluding feature 
i. The SHAP scores40 can then be calculated as follows:

where | · | denotes the cardinality of a set.
In an effort to reduce the computational complexity, a model-specific approximation of the expected SHAP 

values is used. Let g be the explanation model, in which, the simplified input x′ is often used to represent the 
original input data: x = hx(x

′) , such that g(z′) ≈ f (hx(z
′)) = fx(z

′) whenever z′ ≈ x′ . Hence the attribution of 
each feature can be explained by the following equation:

where M denotes the number of simplified input features, z′\i denotes z′i = 0 . With the simplified input mapping, 
hx(z

′) = zS , where S is the non-zero set in z′ and zS has zero values for features not in S, the approximation can 
be made to speed up computation38:

where S is the set of feature not in S.

Pathway analysis.  In order to identify the significantly disrupted pathways from the discovered biomark-
ers, we have used the impact analysis41,42. The impact analysis considers not only the measured gene expression 
changes, but also the structure and dynamics of a signaling pathway. The perturbation accumulation can be 
calculated for each pathway as follows:

where �E(g) represents the normalized measured expression change for all genes and PF(g) represents the per-
turbation factor for all genes on a given pathway Pi . The perturbation factor can be defined as follows:

The second term takes the interactions between genes in a signaling pathway into account. The impact analysis 
calculates the sum of all perturbation factors of genes u directly upstream of the target gene g, normalized by the 
number of downstream genes Nds(u) and weighted by a factor βug , that reflects the type of interaction: βug = 1 
for activation, βug = −1 for repression. For a gene with no upstream genes, the perturbation factor, PF, will be 
the measured expression change �E(g) . The impact factor of a pathway Pi can then be calculated as follows:

where pi represents the probability of obtaining at least the observed number of differentially expressed (DE) 
genes, Nde , just by chance41.

Experiments and results
Datasets.  Transcriptome profiles of 2180 samples with ovarian (OV), prostate (PRAD), and breast (BRCA) 
cancer tumors are obtained from the Genomic Data Commons (GDC) consortium, within The Cancer Genome 
Atlas (TCGA) database. The samples include solid tumors and adjacent normal tissue obtained through core 
needle biopsies. In order to enrich the sample size and population diversity, and alleviate the imbalance between 
labels, we have further integrated mRNA expression data from samples with prostate cancer tumors and adjacent 
normal tissue from data collected by Ren et. al.43 and Kannan et al.44. The data description is provided in Table 1.

The data from all three sources were TPM normalized. After considering the available gene IDs common 
across all data sources, 19,181 common genes were identified for further analysis.

Prediction performance of MLC‑AE.  We used the approach described above to identify a set of clinically 
relevant biomarkers associated with primary prostate cancer using cross-cancer learning. The set of samples 
within each project is split into training and test sets (Table 1) and the MLC-AE model is built using only the 
samples in the training set. The fully trained model is then applied on the samples in the testing set for valida-
tion. Our model differentiated the tissue type and disease states with a 94% balanced accuracy on the validation 
set using cross-cancer learning compared to the 54% balanced accuracy using only the PCa samples. Balanced 
accuracy is calculated by normalizing the number of correctly predicted samples of each class by the class size.

We further show that the 12-dimensional latent space encoded through the autoencoder has a discriminative 
dimension reduction as each tissue type and disease state is well-separated when plotted on the two dimensional 
space through the top principal components using the t-SNE plot as shown in Fig. 3.

φi =
∑

S⊆F\{i}

|S|!(|F| − |S| − 1)!

|F|!
[fS∪{i}(xS∪{i})− fS(xS)],

(1)φi(f , x) =
∑

z′⊆x′

|z′|!(M − |z′| − 1)!

|M|!
[fx(z

′)− fx(z
′\i)],

(2)fx(z
′) = f (hx(z

′)) ≈ f ([zS ,E[zS]]),

(3)Acc(gi) = PF(gi)−�E(gi)

(4)PF(g) = �E(g)+
∑

u∈USg

βug
PF(u)

Nds(u)
.

(5)IF(Pi) = log(
1

pi
)+

∑
g∈Pi

|PF(g)|

|�E| · Nde(Pi)
,
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Biomarker discovery.  Here, we have used the SHAP method combined with the gradient explainer 
described above to identify the cross-cancer biomarkers with the highest contribution scores towards predic-
tion. Figure 4a shows the most significant genes ranked based on their total contribution scores obtained from 
the three tissues combined (Top CC ALL) using the explanation model, and Fig. 4b shows the ranking based 
on the contribution scores obtained solely from prostate tissue (Top CC PR) using the same explanation model.

Validation of discovered biomarkers.  In order to assess the significance of the biomarkers identified, 
we constructed an evaluation classifier (i.e. a separate artificial neural network) by feeding only the significant 

Table 1.   Data description and distribution of samples across training and testing.

Data source Project Primary site Type # of Genes
# of tumor 
samples

# of normal 
samples

# of samples

Training set Testing set

GDC

TCGA-OV Ovary Transcriptome 
profiling 19212 371 0 327 44

TCGA-PRAD Prostate gland Transcriptome 
profiling 19212 495 52 465 82

TCGA-BRCA​ Breast Transcriptome 
profiling 19212 1091 113 1043 161

BioProject Ren et al. Prostate gland Transcriptome 
profiling 19252 14 14 22 6

BioProject Kannan et al. Prostate gland Transcriptome 
profiling 19252 20 10 23 7

Total 1991 189 1880 300

Figure 3.   The T-SNE analysis using the 12 dimensional latent representation from our network can generally 
separate the classes into distinguishable clusters.
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Figure 4.   The most relevant genes identified by SHAP ordered based on (a) the total contribution scores of 
the three tissues and disease states (Top CC ALL), where (T) denotes tumor and (N) denotes normal, and (b) 
contribution scores identified solely based on the prostate tissue and its disease state (Top CC PR). Note that the 
gene-specific contribution scores (x-axis) are not directly comparable across (a) and (b), as each gene’s score is 
based on a normalized calculation where the total contribution score across all genes ( ≈ 19 K) sums up to 1.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10433  | https://doi.org/10.1038/s41598-021-89789-x

www.nature.com/scientificreports/

biomarkers identified in the previous step as input to observe their predictive capability in differentiating sam-
ples with prostate tumor from adjacent normal tissue. Results of the analysis are summarized in Fig. 5a,b, which 
shows a comparison of the predictive performances using the discovered cross-cancer biomarkers, randomly 
selected subsets of DE genes and non-DE genes and additional biomarkers identified by consulted subject-mat-
ter experts and literature reviews (namely HNF1B, KLK2, MYC, NFE2L2, POU5F1B, PTEN, RNASEL, SLC45A3, 
SOX2, SRD5A2, BRCA1, BRCA2, HOXB13, TP53, RAD51D, PALB2, NCOA3, MSR1, MSH2, MLH1, AIG1, 
ATM, BRAF, CDK12, CDKN1B, CHEK2, ELAC2, HIF1A).The classifier was trained using only the training data 
and its performance was assessed only on the testing data. Results clearly show that the Top CC PR biomarkers 
are both superior in terms of their evaluation performance to any subset of DE genes as well as to the set of genes 
reported in the literature. Note that the average prediction performance obtained by randomly selected subsets 
of PCa DE genes have outperformed the Top CC ALL biomarkers. This is mainly due to the fact that biomarkers 
are validated based on their ability to distinguish prostate tumors from normal tissue. Given that the Top CC 
ALL biomarkers are those genes responsible for breast, prostate and ovarian cancers combined, their ability to 
solely predict the disease state of PCa patients is lower than top PCa genes.

Figure 6 shows a Venn diagram illustrating the relationship of the 10 cross-cancer biomarkers and DE genes 
from the three cancers identified through linear models analysis (limma). Threshold parameters used for the 
analysis are an absolute fold change greater than 0.6 and false discovery rate (FDR) adjusted p value less than 
0.05. Note that, the only non-DE cross-cancer biomarker is reported to have a fold-change of 0.5 and a p value 
< 0.05. Results show that the cross-cancer learning is able to identify some non-DE PCa genes with predictive 
capability and several other biomarkers (4 out of top 10) are reported to be DE for breast cancer. This suggests 
that cross-cancer learning can also overcome the limitations of preset thresholds utilized in DE gene detection 
through its threshold-free nature. Results have further shown that top CC PR biomarkers (AUC = 0.95) appears 
to predict the disease-state better than any randomly selected DE PCa genes (AUC = 0.93) as seen in Fig. 5a. 
This suggests that cross-cancer approach has the potential to prioritize DE genes based on their phenotype 
associations rather than other correlations (e.g., such as the complex immune response to cancer). Further, the 
cross-cancer learning’s ability to prioritize DE genes can alleviate challenges in the investigation of personalized 
treatment options and drug repositioning.

To further assess the statistical significance of the cross-cancer biomarkers, we repeatedly selected a random 
set of genes, trained and tested our predictive model based on the selected genes and calculated the AUC dis-
tribution based on 400 runs. We computed the p value as the percentage of the random AUCs higher than the 
observed, and have shown a statistically significant (< 0.00001) improvement using the discovered top CC PR 
biomarkers.

To increase the diversity of our data and alleviate the imbalance between tumor and normal samples, we 
add two small data sources43,44 into our experiments. This causes heterogeneity as all data sources might have 
different distributions. For this reason, we conducted a new and independent experiment using the Affymetrix 
oligonucleotide arrays of 128 samples (63 normal prostate tissue adjacent to tumor, 65 primary prostate tumor) 
from GEO GDS2545 dataset. This dataset contains expression values of only 9,467 genes in which 17 out of our 
top 40 CC genes (in Fig. 4b) were present (6 out of our top 10). As such, we trained an independent classifier with 
108 samples and test on the rest. This classifier uses the 17 top CC genes and 17 from random selection (for 100 
times), respectively. Although the platforms used to measure the expression levels of genes are different (RNA-Seq 
vs. Microarray Gene Expression), our reported biomarkers are still able to identify the disease state significantly 
better (AUC = 0.84) than any randomly selected set of genes (AUC = 0.62) on this previously unseen dataset.

In the following section, the novel biomarkers discovered through cross-cancer learning are further investi-
gated to measure associated pathway deregulations.

Identification of significantly impacted pathways.  Due to inherent bias present in individual stud-
ies, independent studies of the same disease often yield completely different lists of differential expressed genes, 
making interpretation extremely difficult45. Because of this, an important capability is related to the analysis of 
molecular mechanisms and signaling pathways associated with the cross-cancer biomarkers. As signals propa-
gate through a given pathway, the specific subset of biomarkers may change continuously, on various time scales. 
However, the impacted pathways may remain the same.

In order to identify the significantly disrupted pathways in a given phenotype, we have used the impact 
analysis. Impact analysis considers not only the measured gene expression changes, but also the structure and 
dynamics of a signaling pathway. The fold-changes of the most relevant 1000 cross-cancer biomarkers that are 
differentially expressed are used to calculate the pathway deregulations. The significantly impacted pathways 
identified through impact analysis are shown in Fig. 7. The p values (x-axis) represent a combination of enrich-
ment and perturbation p values corrected with FDR.

The highlighted pathways, (i.e. olfactory transduction and complement and coagulation cascades) are not 
identified as significant if analysis are conducted using only PCa DE genes. Hence, the identification of cross-
cancer biomarkers also led to the discovery of several novel pathway deregulations common across the three 
cancers. These results are supported by the associations reported in the literature between those pathways and 
several cancers. In particular, significant associations between olfactory receptors (OR) transcript abundance 
and several cancers including large invasive breast carcinoma, and prostate cancer are reported46–49. The com-
plement system, on the other hand, is considered as a component of immunity against invading pathogens and 
an imbalanced complement activation have been demonstrated in many types of tumors50. Several studies have 
reported the complement system’s role in tumour immunity and its therapeutic potential for ovarian cancer 
immunotherapy51,52.
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Figure 5.   (a) From left to right, balanced accuracies of the evaluation classifier using a randomly selected set of the most 
relevant 10 Top CC PR, 10 Top CC ALL Biomarkers (out of top 40), randomly selected 10 PCa biomarkers reported in the 
literature (literature), randomly selected 10 DE genes (DEG), any randomly selected 10 genes (random), randomly selected 
10 non-DE genes (non-DEG) and the least relevant 10 cross-cancer biomarkers (bottom CC). Reported results are across 
100 independent runs of respective gene subset selections. The most relevant cross-cancer biomarkers (Top CC PR) are the 
most reproducible as seen from the narrow interquartile ranges. The lower performance reported using biomarkers identified 
from the literature are mainly due to several of them being non-DE in the datasets used. (b) The ROC curves of different gene 
subset selections. Note that, the Top CC PR and Top CC ALL show similar predictive performances. Meanwhile, the DE genes 
perform slightly lower than CC biomarkers. As expected, the genes with SHAP scores = 0 have no impact on prediction.
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Biomarker discovery of advanced prostate cancer.  In this section, we refined the analyses discussed 
above, to discover biomarkers associated with more advanced forms of prostate cancer using mRNA gene 
expression levels. Here, an advanced case is defined as (1) a new tumor event through local recurrence, or distant 
metastasis, (2) biochemical evidence of disease (elevated PSA levels) after complete remission or response or (3) 
death due to cancer, all within 5 years of initial diagnosis.

Using TCGA data, we have extracted 640 advanced cancer samples from all three tissues combined, 139 of 
which have PCa. The PCa samples are then splitted into 72 (40 tumor and 32 normal) and 67 (47 tumor and 20 
normal) samples for training and validation, respectively. The evaluation results have demonstrated a 89.15% 
balanced accuracy in differentiating advanced PCa samples from the adjacent normal tissues. Details of the 
cross-cancer biomarkers associated with advanced PCa and evaluation performances are shown in Figs. 8 and 
9, respectively. Note that, the results for random subsets of genes (random) and non-DE genes (non-DEG) are 
possibly over-estimating their actual performance mainly due to: (1) the lack of reproducibility on differential 
expression analysis on limited sample sizes leading to a potentially misleading set of non-DE genes, and/or (2) 
limitations on model convergence due to insufficient samples and high dimensionality (small n, large p).

Figure 6.   Venn diagram showing the relationship of the Top-10 cross-cancer biomarkers (Top CC ALL) and 
DE genes from the three cancers. All but one of the Top-10 cross-cancer (Top CC ALL) biomarkers are found to 
be differentially expressed.

Figure 7.   Molecular pathway deregulations measured using differentially expressed genes with highest 
contribution scores. Highlighted pathways are identified as significant using the cross-cancer genes, and not 
significant if one considers only DE genes.
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Figure 8.   The most relevant genes for patients with advanced PCa identified by SHAP ordered based on (a) 
the total contribution scores of the three tissues and disease states (top CC ALL), and (b) contribution scores 
identified solely based on the prostate tissue and its disease state (top CC PR).
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Figure 9.   (a) From left to right, balanced accuracies of the evaluation classifier using a randomly selected set 
of the most relevant 10 Top CC PR, 10 Top CC ALL Biomarkers (out of top 40), randomly selected 10 DE genes 
(DEG), any randomly selected 10 genes (random), randomly selected 10 non-DE genes (non-DEG) and the 
least relevant 10 cross-cancer biomarkers (bottom CC). Reported results are across 100 independent runs of 
respective gene subset selections. Note that, CC biomarkers still outperform other gene subset selections. (b) 
The ROC Curves of different gene subset selections.
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Conclusion
In this paper, we proposed a data-driven deep learning approach, referred to as cross-cancer (CC) learning for 
PCa biomarker discovery. We have shown that the set of cross-cancer biomarkers have the ability to better distin-
guish the tumor from normal tissue than any other subset of genes using samples with primary prostate cancer. 
We have subsequently performed a biomarker-driven pathway analysis to better understand novel molecular 
mechanisms and pathway deregulations associated with biologically similar cancers.

One limitation and potential future work is to address the heterogeneity within the same disease by inves-
tigating the similarities and differences across ovarian, prostate, and breast cancer subtypes. For instance, the 
hormonally driven breast cancer subtypes Luminal A ( ER + /PR+ ) and Luminal B ( ER + /PR− ) are known to 
have remarkable biological similarities with PCa. Similarly, several genomic features (BRCA1 inactivation, RB1 
loss and cyclin E1 amplification, high expression of AKT3, MYC amplification and high expression; and a high 
frequency of TP53 mutations) were found to be similar between Basal-like breast cancer and high-grade serous 
ovarian cancer53. Given that, the molecular and histological subtypes of diseases should be investigated to better 
understand jointly important biomarkers across biologically similar diseases.

A set of clinically-relevant and reproducable biomarkers jointly important across different types of cancers 
have the potential to be utilized in the discovery of novel pharmaceutical cross-cancer treatments that target 
patients who respond poorly to organ-specific treatments. Future work involves developing a biomarker-driven 
analysis technique, using the cross-cancer biomarkers, that is able to support PCa drug-repurposing capabilities. 
This will help identifying and prioritizing several FDA-approved drugs, drugs under trial, or other chemicals 
that have a therapeutic effect by impacting the same pathway(s) in an antagonistic manner.

Data availability
The results published here are in whole or part based upon data generated by The Cancer Genome Atlas managed 
by the NCI and NHGRI. Information about TCGA can be found at http://​cance​rgeno​me.​nih.​gov. The analysis 
source codes are available at https://​github.​com/​ky-​zhou/​CCL-​Disco​very.
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