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collected from two different buildings showing that they retain
satisfactory accuracy.
• We design LiBRA, a practical, standard-compliant, learning-based

link adaptation framework that leverages PHY layer information
to determine (i) when to trigger link adaptation and (ii) which
of the two adaptation mechanisms to trigger, and works with a
variety of RA and BA algorithms. LiBRA strikes a balance between
two performance metrics ś throughput and link recovery delay.
• We evaluate LiBRA using extensive trace-based simulations with
different sets of realistic PHY and MAC layer parameters. Our
results show that LiBRA performs closely to an oracle that al-
ways selects the right adaptation mechanism depending on the
performance metric one wants to optimize and significantly out-
performs two simple heuristics, in a variety of indoor scenarios.

2 BACKGROUND AND RELATEDWORK

Rate Adaptation. The goal of RA is to select a PHY data rate,
expressed as a combination of a modulation and a coding scheme
(MCS), that matches the Rx channel quality. Since the Rx channel
quality is not known on the Tx side without explicit feedback, the
majority of RA algorithms for legacy WiFi [2, 8, 18ś22, 29, 35, 37ś
39, 42, 45, 47, 51, 58, 62, 62, 63, 67] estimate the channel quality
using link layer statistics and employ simple heuristics based on
these statistics. The use of SNR and other PHY layer metrics has
also been proposed in the literature [19, 21, 25, 35, 51, 58, 67] but
has not been used by WiFi chipset vendors.

The 802.11ad standard defines 12 MCSs for data frame trans-
mission for the single-carrier (SC) PHY that is used by all COTS
devices [1, 4ś7], yielding data rates from 385-4620 Mbps. In con-
trast to legacy WiFi, RA has not been extensively studied in the
context of 60 GHz WLANs. A few works [24, 27, 56, 71, 72] have
argued that 60 GHz links are more stable than legacy WiFi links,
and suggested the use of simple SNR-based RA algorithms via a
direct SNR-MCSmapping. However, in our recent work, we showed
experimentally that MCS is only weakly correlated with SNR in
60 GHz WLANs [49, 50] and SNR-based RA performs poorly in
real-world indoor settings [9]. COTS 60 GHz devices, on the other
hand, use heuristics similar to those used by legacy WiFi devices,
e.g., they lower the MCS upon frame loss [14].
Beam Adaptation. The goal of BA is to find the Tx-Rx beam (sec-
tor) pair that maximizes the SNR. A naive approach is to test all
possible pairs, but the overhead of this approach (O(N 2), where N
is the number of available beams) can be prohibitive (up to a few
seconds [56]) in the case of a large number of available beams. A
number of recent works have proposed algorithms to reduce the
overhead [11, 24, 28, 31, 43, 54, 57, 70]. The 802.11ad standard takes
a different approach having each side train their Tx and Rx beams
separately [32]. First, Tx beam training takes place where each side
performs a sector level sweep (SLS), while the other side receives
in quasi-omni mode. Rx beam training follows, where each side
transmits in quasi-omni mode while the other side performs an SLS
in receive mode. This approach reduces the complexity fromO(N 2)

down to O(N ). To further simplify the process, COTS devices only
perform Tx beam training and always receive in quasi-omni mode,
further cutting down the overhead by half.

Surprisingly, the 802.11ad/ay standards do not specify when each
of the two mechanisms should be triggered, and the problem has
been largely overlooked by the research community. COTS devices
trigger RA in the case of a missing ACK and only resort to BA if a
working MCS cannot be found [49]. In [14], it is pointed out that
this approach may often be suboptimal because of the overhead
of trying all possible MCSs. Also, even if RA eventually finds a
working MCS, that MCS may still not result in optimal throughput,
since a different beam may support a higher MCS. Hence, another
approach is proposed in [14] that first performs BA in the event of
link degradation and then RA. In practice, none of the two approaches
can always guarantee optimal performance. In certain cases (e.g., a
client turning away from the AP), BA is required to restore the link,
while in other cases (e.g., a client moving backwards facing the AP),
the optimal beam may remain the same and triggering BA may
result in unnecessary overhead. In our recent work [9], we further
showed that often none of the two mechanisms is sufficient alone
and both are required for optimal performance. However, unlike in
this work, we did not explore in [9] the problem of selecting which
of the two mechanisms to trigger first. The only other work that has
looked into the problem is [24], which proposes beam sounding ś
a non-standard-compliant approach, based on a new control frame.
In contrast, in this work, we are proposing a standard-compliant

learning-based approach leveraging PHY layer information.
ML in mmWave systems. Recent works have used ML in
mmWave cellular systems for blockage prediction [10, 12, 13, 15, 59],
distinguishing blockage from mobility [65], or channel classifica-
tion [40], to guide RA [40] or BA [10, 13, 15, 59] separately, and
to trigger handoffs [12]. In our recent work [9], we also explored
for first time the use of ML to guide RA in 60 GHz WLANs. We
showed that this approach works better than SNR-based RA but
it is environment-dependent and requires online training. Differ-
ent from all these works, LiBRA leverages ML to select the right

adaptation mechanism in a variety of scenarios involving block-

age, mobility, or interference, and works with both classical and

learning-based RA and BA algorithms. Also, in contrast to the works
in [10, 12, 13, 15, 40, 59, 65] that rely on simulations, this work
performs an experimental exploration of BA and RA using both
COTS 60 GHz hardware and a software defined radio (SDR) testbed.

3 MOTIVATION

In this section, we use controlled experiments to study BA and RA
in COTS devices equipped with 802.11ad radios. Our setup consists
of a TP-Link Talon AD7200 [4] WiFi router and two different client
devices ś an Acer Travelmate P446-M laptop [1] and an ASUS ROG
Phone [6]. All three devices first perform RA if no Block ACK is
received after an Aggregated Frame (AMPDU) transmission, and
trigger BA if no working MCS is found. We flashed the Talon router
with the modified LEDE firmware from [53] that supports disabling
the BA process and manual setting of a sector. We cannot control
BA on the client devices and RA on any device. We experimented
with uplink and downlink TCP iperf sessions. We found that the
laptop behaves very similarly to the AP, since both devices have
the same chipset and phased array. Hence, we only show results
for the AP-laptop links (downlink) and phone-AP links (uplink).
Static settings. This is the simplest scenario, where the client
remains static facing the AP, without any blockage or interference.
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4 EXPERIMENTAL SETUP

4.1 X60 Testbed

COTS 802.11ad-compliant devices do not allow us to disable RA
and to access the PHY layer. Hence, in the remainder of the paper
we use the SDR-based X60 [50] testbed. X60 is the only 60 GHz
testbed that combines fully programmable PHY and MAC layers,
multi-Gbps data rates, and practical reconfigurable phased arrays.
While it is not 802.11ad-compliant, many of its features resemble

those of 802.11ad.
Each X60 node consists of a mmWave transceiver system from

NI [34] and a user-configurable phased antenna array from SiBeam.
Transmissions take place over a 2 GHz wide channel, same as in
802.11ad. The PHY reference implementation supports 9 Single
Carrier (SC) MCSs resulting in data rates from 300 Mbps to 4.75
Gbps, similar to those supported by the SC 802.11ad PHY layer. In
contrast to COTS 802.11ad radios that use CSMA, X60 uses TDMA
with 10 ms frames divided into 100 slots of 100 µs each. A slot
consists of 92 codewords, each of which has an attached CRC block.
For our study, which only includes single-link experiments and
hidden terminal scenarios, where CSMA is not useful, the use of
TDMA instead of CSMA does not affect our results. Also, note that
the structure of an X60 frame resembles an 802.11 aggregated frame
(AMPDU), consisting of multiple packets, each with its own CRC.

The in-built phased array has 24 elements; 12 each for Tx and Rx.
SiBeam’s reference codebook defines 25 beam patterns that can be
steered in real-time (electronic switching in < 1µs). The beams are
spaced roughly 5◦ apart in their main lobe, thus spanning around
120◦ in the azimuth, from -60◦ to 60◦. The 3 dB beamwidth ranges
from 25° to 35°, hence, each beam’s main lobe overlaps with several
neighboring beams. The beam patterns feature large side lobes in
addition to the central main lobe, similar to the beam patterns in
COTS 60 GHz devices [54].

4.2 Environments and scenarios

We collected a main dataset by taking measurements in multiple
environments with different characteristics in a campus building:
an open lobby, a lab, a conference room, and three corridors of
width 1.74 m, 3.2 m, and 6.2 m. Details about each environment can
be found in Appendix A.2.1. We consider three typical scenarios
capturing all the factors that can trigger BA or RA due to a drop in
channel quality.
Linear and/or angular displacement. In each environment, we
fixed the Tx position and orientation, we selected an initial Rx
position, and then moved or rotated the Rx to cause different levels
of signal attenuation due to increased distance, Tx/Rxmisalignment,
or both. In all the rotation experiments, we rotated the Rx from 0° to -
90° and from 0° to 90° in steps of 15° (where 0° is the initial orientation
at each position) facing the Tx. Details about each environment can
be found in Appendix A.2.2.
Blockage.We hand picked a few representative positions in each
environment and repeated themeasurements by introducing human
blockage on the LOS path between the Tx and the Rx, at 3 positions:
1) in the middle between the Tx and Rx, 2) near the Tx and 3) near
the Rx.
Interference. We used a TP-Link Talon AD7200 router commu-
nicating with an Acer P446-M laptop as a hidden terminal. We

Table 1: Main/training dataset summary.

Number of Cases Number of Positions

Total BA RA Total Lobby Lab Conf. Corridors

Displacement 479 380 99 94 22 13 10 49
Blockage 81 72 9 12 4 1 2 5

Interference 108 36 72 12 4 1 2 5
Overall 668 488 180 118 30 15 14 59

placed it at different positions and tried different sectors to create
3 levels of interference: 1) High interference: the throughput of
the X60 link drops by ∼80%, 2) Low interference: throughput drops
by ∼20%, and 3) Medium interference: throughput drops by ∼50%.
We performed these measurements at the same locations as the
blockage experiments.

Table 1 provides a summary of the dataset, listing the number
of measurement positions for each type of link impairment, the
number of entries for each type of link impairment, and the number
of cases where BA outperformed RA and vice versa (details in ğ5).

5 DATASET AND GROUND TRUTH

5.1 Collection methodology

We use the term state to describe every position, orientation, and the
presence/absence of blockage or interference. We define the initial
state as: the Rx position closest to Tx for each displacement scenario
in the lobby, lab, and corridors; Rx position 0 for each displacement
scenario in the conference room (Fig. 14c in Appendix A.2.1); the
0° Rx orientation for each rotation scenario; and the state before
the introduction of blockage or interference for each blockage and
interference scenario. All other states, at which the Rx position, Rx
orientation, or the blockage or interference status is different from
the initial state are called new states; these are the states where RA
or BA (or both) are needed to repair the link.

At each state, we first performed a SLS to collect SNR measure-
ments for all 625 (25 × 25) beam pairs and selected the best beam
pair based on SNR. This process emulates BA using the naive O(N 2)

algorithm described in ğ2. Then, for the best beam pair, we collected
three 1 s PHY layer traces (SNR, Noise level, power delay profile
(PDP), codeword delivery ratio (CDR)) and MAC throughput traces
for each of the 9 supported MCSs. X60 logs all these metrics for
every frame. We also measured offline the time-of-flight (ToF) for
the chosen beam pairs at all positions. For all new states, we also
collected PHY and throughput traces and ToF values for the beam
pair that was the best at the corresponding initial state. Searching
over all the MCSs with the best current/initial beam pair and selecting

the one with the highest throughput emulates RA after/before BA at

the new state. We confirmed experimentally that the average values
of all the PHY and MAC layer metrics do not change drastically
for durations of several seconds at a given position and for a given
beam pair and MCS, since we keep the environment controlled.

Each dataset entry includes the change in the value of each PHY
metric (details in ğ6.1) collected at that position before and after a
link impairment, the initial best MCS, and a label specifying which
of the twomechanisms (RA or BA) should be triggered, based on the
ground truth, which we calculate using the measured throughputs
after introducing the link impairment.
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5.2 Ground truth

Selecting the best mechanism at a given scenario depends on the
specific RA/BA algorithms used, theMAC/PHY protocol parameters
that determine the overhead, as well as by the metric one wants to
optimize. Once the RA/BA algorithms and the metric of interest are
chosen, defining the ground truth for a given entry in the dataset
boils down to łsimulatingž BA and RA using the logged SNR and
throughput traces, and selecting as the ground truth winner for
that entry the mechanism that optimizes the metric of interest. For
example, if themetric of interest is throughput, then a first definition
of the ground truth could be: łperform RA when Th(RA) ≥ Th(BA),

and BA otherwisež, where Th(RA) is the throughput achieved with
RA, i.e., the highest throughput among all the MCSs with the beam

pair same as the highest-SNR beam pair in the initial state; and
Th(BA) is the throughput achieved with BA, i.e., the throughput
with the highest-SNR beam pair, using the same MCS as the highest-

throughput MCS in the initial state.
RA/BA subtleties. In many entries of the dataset, the throughput
after BA using the highest-throughput MCS in the initial state is
zero, but lowering theMCS by 1 level results in non-zero throughput.
It would be unrealistic to define Th(BA) = 0 in such cases, since
any real MAC protocol would perform RA right after BA, if the
first transmission with the new best beam pair failed. Following
the guidelines in [14], we assume BA is always followed by RA.
Hence, our goal essentially becomes to determine whether RA alone

is enough to optimize the metric of interest at a new state or BA should

be triggered first, followed by RA. We also assume that RA always
starts at the best initial MCS and explores all the MCSs lower than
that, sending one frame at each MCS. When RA is triggered first,
this is expected, as the goal here is to repair a link, and hence a
higher, less robust MCS is unlikely to help. When RA is triggered
after BA, this assumption again makes sense, since BA typically
discovers a longer path via reflection, which is unlikely to support
an even higher MCS than before. Based on these assumptions, we
redefineTh(BA) as the highest throughput among all the MCSs lower

than or equal to the initial MCS using the highest-SNR beam pair.
Optimization metric. Although throughput seems an obvious
choice for the optimization metric, we note that BA uses control
frames to test each beam pair. Hence, throughput is always 0 dur-
ing BA. In contrast, RA data frames to test different MCSs. Hence,
throughput is suboptimal but not necessarily 0 during RA. Conse-
quently, another metric of interest is the link recovery delay, i.e.,
the delay from the moment a link breaks until we discover the first
working MCS. Since 802.11 standards do not mandate a specific
RA algorithm, different RA algorithms in the literature define a
working MCS in different ways, e.g., as an MCS that yields a non-
zero throughput or a throughput/loss rate above/below a threshold.
Here, we define a working MCS as any MCS that satisfies two con-
ditions: (1) CDR > 10% and (2) Th > 150 Mbps (50% of the PHY
data rate of the lowest MCS).

In general, RA may be sufficient to quickly restore the link sub-
optimally (and minimize the link recovery delay D), but BA may
be required to discover the new optimal beam pair (and maximize
throughput Th). Thus, we combine the two metrics in one utility

metricU as follows:U = α · Th
Thmax

+ (1−α) · (1− D
Dmax

) (1), where

Thmax is the PHY data rate of the highest MCS. The worst-case

delay Dmax is incurred when BA is the right choice and the op-
timal MCS is MCS 0 but RA is instead triggered first probing all
the available MCSs (taking NMCS · df r time, where NMCS is the
number of available MCSs and df r is the frame duration) with-
out discovering a working MCS, then BA is performed (e.g., a SLS
taking dBA time to complete), followed by another round of RA,
which again probes all NMCS MCSs finally discovering MCS0, i.e.,
Dmax = NMCS ·df r +dBA +NMCS ·df r . The parameter α ∈ [0, 1]
allows us to change the weight we assign to each metric.

Columns łBAž and łRAž in Table 1 show the number of cases
where BA outperformed RA and vice versa, using the ground truth
definition with α = 1 for simplicity (i.e., maximizing throughput).
As we can see, RA alone should be triggered in 27% of the cases
(180/668) and BA should be triggered before RA in 73% of the cases.
However, these numbers change if we consider each type of link
impairment separately. Under displacement, RA outperforms BA
in 21% of the cases, but under blockage only in 9/81 cases. On the
other hand, under interference, RA is the preferred option in 67% of
the cases. These differences motivate us to first study the problem
separately under each link impairment type and then using the
combined dataset.

6 LINK ADAPTATION USING PHY LAYER
INFORMATION

In this section, we explore the use of PHY layer information to
guide link adaptation.

6.1 Metrics

We examine a number of PHY layer metrics and we explore whether
each of them can predict the right adaptation mechanism in case
of different link impairments. Some of these metrics are intuitively
useful, while others have been used in previous link adaptation
studies in legacy WiFi, e.g, [55]. For each metric, we plot in Figs. 4-9
the CDF of the metric values for all the cases where BA outperforms
RA (denoted as łBAž) and for all the cases where RA outperforms
BA (denoted as łRAž), separately for each of the 3 datasets corre-
sponding to the three link impairment scenarios in Table 1, and
for the combined dataset. We again assume α = 1 for simplicity.
Our goal is to investigate whether we can identify clear thresholds
for (some of) the metrics that allow us to separate the cases where
each adaptation mechanism should be triggered.

6.1.1 Displacement. We define each metric and study its behavior
using the łDisplacementž dataset (the largest of the three datasets),
where in the majority of the cases (79%) BA outperforms RA.
SNR Difference.We consider the difference between the SNR at
the initial and the current state, each averaged over 1 s. As Fig. 4a
shows, when the SNR drop is more than 7 dB, BA always outper-
forms RA. The cause of a high SNR drop is an angular displacement
that results in beam misalignment; in such cases, lowering the MCS
is not enough to repair the link. Using this threshold, we can classify
73% of the BA cases in this scenario. However, when the SNR drop
is lower than 7 dB, the number of cases where each mechanism
outperforms the other one is roughly the same.
ToF Difference. We consider the difference between the ToF at
the initial and the current state. ToF increases with the distance
and hence, one can expect a non-zero ToF difference in cases where
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Table 2: Testing Dataset Summary.

Number of Cases Number of Positions

Total BA RA Total Building 1 Building 2

Displacement 165 129 36 34 23 11
Blockage 27 24 3 4 2 2

Interference 36 12 24 4 2 2
Overall 228 165 63 42 27 15

inspection of the dataset and the CDFs in Figs. 4d-9d, we turned
to ML-based approaches. We tried 3 popular classical ML models,
which are most suited for our 2-class classification problem ś deci-
sion trees (DT), random forests (RF), and support vector machines
(SVM). In the case of DT and RF, we tried two impurity measures:
Gini index and entropy. We also limited the maximum depth of
the trees generated by both algorithms to reduce overfitting. For
SVM, we tried both linear and non-linear classification metrics and
different regularization parameters. We also tried a deep neural net-
work (DNN) model ś a fully connected dense network with 4 dense
layers. Rectified linear (relu) activation was used in the first 3 layers
and sigmoid activation was used in the last layer. In order to reduce
overfitting to the data, we explored different techniques present in
the literature. Among these techniques, inclusion of Dropout [52]
after each layer gave the best results.
5-fold cross validation. We used all the metrics discussed in ğ6.1
as input to the ML models. We then ran a stratified 5-fold cross
validation on the entire dataset, and calculated the accuracy and
the weighted F1 score. We repeated this process 500 times with
random splits of the dataset. All four models achieved very high

average accuracy and F1 scores. The accuracy/F1 score for the best
combination of parameters with each model was 95%/95% with DT,
98%/98% with RF, 91%/91% with SVM, and 95%/90% with DNN.
Accuracy with a different dataset. Several of the metrics cap-
ture properties of the multipath channel structure, which is heavily
affected by the environment. To evaluate whether the ML mod-
els, which are trained on a dataset collected in one building, can
accurately predict the correct adaptation mechanism in different
buildings, we collected a new dataset (testing dataset in Table 2) in
two different buildings. In Building 1, we conducted measurements
in a long 2.5 m wide corridor with the Rx at several distances away
from the Tx. This building is much older than the building where
we collected our main dataset, with walls of different material, and
fewer reflective surfaces. In Building 2, we conducted measure-
ments in a wide open area, much larger than the lobby in Fig. 14a.
We trained the ML models on the main dataset and tested them on
the testing dataset. Both the accuracy and F1 score dropped but still
remained at satisfactory levels (85%/85% with DT, 88%/88% with RF
and SVM, 83%/76% with DNN).
Metric importance. We calculated the Gini importance of each
metric using the testing dataset. The results are shown in Table 3.
We observe that the initial MCS and SNR have the highest impor-
tance (above 0.2), followed by the Noise Level. On the other hand, as
expected from Fig. 6, PDP has the lowest importance. Nonetheless,
we observe that no metric has a very high value, suggesting that
all metrics are useful in our classification problem. We also want to
point out that the metric selection depends on the used hardware,
as the values of some of the metrics are hardware dependent. For
example, we found out that the noise level values span a large range
with X60 even in the absence of interference. In practice, chipset

Table 3: Gini importance.

SNR ToF Noise Level PDP CSI CDR Initial MCS

0.215 0.08 0.16 0.06 0.12 0.125 0.26

vendors might exclude some of the metrics for different types of
hardware, based on the importance of each of them.

7 LiBRA DESIGN

While the accuracy drops when the models are trained and tested
in different buildings, triggering the wrong adaptation mechanism
does not always have the same performance impact in practice. The
cost depends on two factors: the overhead of triggering the wrongly
predicted mechanism, which can delay restoring the link (e.g., the
overhead of a full SLS in the case of wrongly triggering BA or the
overhead of trying various MCSs in the case of wrongly triggering
RA) and the overhead of sending data at a suboptimal PHY data rate
after restoring the link. The impact of each of these factors depends
on the specific RA and BA algorithms used, the MAC and PHY layer
parameters (e.g., number of beam pairs, number of supported MCSs
and their data rates, frame duration, etc.), the data flow duration,
and the optimization metric.

To study the impact of triggering the wrong adaptation mecha-
nism on the overall performance under practical settings, in this sec-
tion, we design LiBRA (described in Algorithm 1 in ğA.1), a practi-
cal, standard-compliant Learning-based Beam andRateAdaptation
framework. LiBRA leverages PHY layer information to determine (i)
when to trigger link adaptation and (ii) which of the two adaptation
mechanisms should be triggered. All the PHY layer metrics used
by LiBRA are available in the firmware of both legacy and 60 GHz
COTS devices; hence, 60 GHz chipset vendors can easily implement
LiBRA at the firmware and/or the driver level. LiBRA optimizes the
utility metric defined in Eqn. (1) in ğ5.2; the network operator can
select the value of α depending on the metric (throughput vs. delay)
they prefer to optimize. The design of a practical link adaptation
approach has to address the following three issues:
1) When to trigger link adaptation? While the ML models in
ğ6.2 determine which of the two mechanisms should be triggered
after a link impairment, in practice we also need a method to deter-
mine whether adaptation is needed to deal with a link impairment.
We tried again a learning based approach. We augmented our train-
ing and testing datasets in Tables 1 and 2, respectively, with new
entries, one for each new state, where we considered the first 1 s
of PHY layer and throughput traces with the best beam pair and
MCS at that state as an initial state and the second 1 s trace as the
new state. We then trained the RF ML model from ğ6.2 using three
classes ś BA, RA, and NA (No Adaptation). Our NA entries include
static LOS, blockage, and interference scenarios. The accuracy of
the RF model using 5-fold cross validation on the training dataset
was 98% and using the testing dataset was 94%. We thus use this

3-class model in the design of LiBRA.
2) Length of observationwindow. In training and testing the ML
models until now, we used traces of length equal to 2 s (1 s before
and 1 s after a link impairment). In reality, such a long observation
window before triggering adaptation is not practical. Hence, we
retrained and tested our 3-class RF model using traces of total
duration equal to 40 ms. The accuracy dropped only by 3 percentage
points, using the test dataset. Hence, LiBRA makes decisions every
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20 ms (or 2 frames in X60), using the values of the metrics averaged
over two 20 ms observation windows. In practice, the observation
window can get shorter depending on the protocol frame duration;
e.g., in 802.11ad, where themax frame duration is 2ms, LiBRAwould
make decisions every 4 ms. The overhead of running the ML model
is negligible in modern smartphones equipped with GPUs (0.5 ms
in the ROG phone [6], the first 802.11ad-enabled smartphone).

Note that our approach of ignoring long-term history in making
adaptation decisions is consistent with state-of-the-art RA designs
for legacy WiFi [47, 63], which also use observations windows
ranging from a few ms up to a few tens of ms. However, in the case
of 60 GHz, longer observation windows may have some benefits,
e.g., they may allow the transmitter to learn blockage patterns and
make better decisions in the future. We believe that learning link
status patterns over longer periods of time is an interesting avenue
for future investigation, but is out of scope of this work.
3) Tx- orRx-initiated adaptation?While a Rx-initiated approach
appears to be the natural choice, since all the PHY layer metrics
are collected on the Rx side, we note that all legacy RA and BA
algorithms are Tx-initiated. Hence, an Rx-initiated approach would
require new control frames for the Rx to notify the Tx to trigger a
rate search or a SLS. Since we target a standard-compliant design,
we selected a Tx-initiated approach. A challenge with this approach
is to make the PHY layer metrics available on the Tx side in a
standard-compliant manner that prevents the use of new control
frames. We address this challenge by leveraging the 802.11 ACKs and
channel reciprocity, similar to [23, 55]. However, a second challenge
appears in the case of a lost frame; the Rx will not send back an
ACK and hence, the Tx will never update its PHY layer metrics.
We note that a missing ACK is a clear indication that the channel
has worsened and link adaptation is required; the challenge is in
selecting RA or BA. Using our training dataset, we observed that
when the current MCS is lower than 6, BA is the right mechanism
92% of the time. Hence, LiBRA always triggers BA in these cases.
On the other hand, with MCS 6 or higher, BA is the right choice
48% of the time and RA 52% of the time. Here, our choice depends
on the BA overhead. We trigger BA first when the BA overhead is
low (up to a few ms) and RA first otherwise.
Adaptation algorithms. LiBRA is generic and works with a vari-
ety of RA and BA algorithms from the literature. Our goal is not
to design new optimal RA/BA algorithms but to demonstrate the
benefits of triggering the right mechanism at each scenario and the
efficiency of leveraging learning-based models and PHY layer infor-
mation. In ğ8, we evaluate LiBRAwith different standard-compliant
BA algorithms that incur different amount of overhead.

In contrast to BA, which is only triggered to repair a link, a
practical RA algorithm also has to occasionally explore higher
working MCSs than the one in use. Here, we design a simple frame-
based RA algorithm inspired by legacy algorithms [14, 47, 62, 63].
However, we note that other algorithms could be used instead.
When RA is triggered to deal with a link impairment, it starts
at the current MCS and probes all the lower MCSs (by sending
one AMPDU at each of them) until it finds the highest-throughput
workingMCS. If noworkingMCS is found, BA is triggered, followed
by another round of RA at the new best beam, starting at the same
MCS that was in use before adaptation was triggered. To explore
higher working MCSs, LiBRA follows an approach similar to [63].

It estimates the average CDR over an interval T and probes the
immediately higher MCS if CDR > CDRORI , where CDRORI is a
threshold calculated as described in [63]. To reduce the probing
frequency to MCSs that consistently offer lower throughput, we use
an adaptive probing intervalT inspired by [47]:T = T0 ·min(2k , 25),
where k denotes the number of failed probes at the higher MCS
(yielding throughput lower than the current MCS) and T0 is the
minimum probing interval, equal to 5 frames in our implementation
(50 ms in X60 or 10 ms in 802.11ad).
MLmodel training. In ğ6.2, we showed that the RF model retains
satisfactory accuracy, when tested in environments with very differ-
ent characteristics compared to the environment used for training.
Hence, we expect that offline training will be sufficient for LiBRA,
as long as a comprehensive dataset, including all three types of link
impairment ś linear and angular displacement, blockage, interfer-
ence ś is used for training. On the other hand, as we mentioned in
ğ6.2, vendors might have to perform separate training for different
types of hardware (e.g., different AP models).

8 LiBRA EVALUATION

In this section, we evaluate LiBRA in diverse indoor scenarios. Al-
though the PHY layer information used by LiBRA is available at
the firmware level of COTS 60 GHz devices (ğ7), 60 GHz drivers
currently do not expose this information to the user. This is a com-
mon practice even with legacy WiFi chipsets, with two notable
exceptions [26, 64]. Hence, we are not able to implement LiBRA
in COTS 802.11ad hardware. On the other hand, the X60 nodes do
not support real-time bidirectional communication. Since LiBRA
relies on ACKs to extract PHY layer information, implementing
LiBRA on X60 is not feasible either. Finally, an implementation on
a different SDR-based platform, e.g., OpenMili [68] or a narrow-
band platform [24, 56], would compromise realism, as no platform
other than X60 provides performance and MAC/PHY features com-
mensurate to those of 802.11ad. Since a realistic implementation
is not feasible on any available hardware platform, we resort to
trace-based simulation with realistic PHY/MAC parameters for the
evaluation of LiBRA, which is a standard practice in the design of
mmWave systems [23, 24, 56, 57, 61, 69, 70].

We are not able to directly compare LiBRA against MOCA, the
non-standard-compliant approach from [24], for two reasons: (i)
Beam Sounding frames in MOCA are sent at MCS 0, (27.5 Mbps)
ś the most robust MCS, used only for control frames in 802.11ad.
In X60, the lowest supported MCS yields a data rate of 300 Mbps,
very close to MCS 1 (385 Mbps) in 802.11ad. Sending the sounding
frames at that MCS would result in a significantly lower delivery
probability; (ii) X60 does not offer a multi level codebook with differ-
ent beamwidths, which is a key component of MOCA’s beamwidth
adaptation algorithm. However, in our recent work [9], we showed
that maintaining a failover sector, as proposed in [24], does not
work in scenarios involving angular displacement between the Tx
and Rx, which are very common in practice, and SNR-based RA
performs poorly in real-world indoor settings.

8.1 Evaluation methodology

Protocol parameters. The time to perform BA depends on the
beamwidth (which determines the number of beams to test) and the
BA algorithm. We consider four realistic values in our evaluation:
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0.5 ms, 5 ms, 150 ms, and 250 ms. For the first two values, we used
Eqn. (2) from [24], which calculates the BA overhead in case of
802.11ad COTS devices (O(N ) search algorithm with quasi-omni
reception), with a 30◦ beamwidth ś used in X60 and most commer-
cial devices today ś and a 3◦ beamwidth ś the minimum allowed by
802.11ad. For the last two values, we assumed directional reception
and the O(N 2) search algorithm that trains both Tx and Rx beams
and used Fig. 11 in [56] with a 9◦/7◦ beamwidth. We used α = 0.7

with the first two BA overhead values; since the link recovery de-
lay in these cases is expected to be low, we give more weight to
throughput. In contrast, when the BA overhead is high (150 or 250
ms), we use α = 0.5, increasing the delay weight.

The time to perform RA to restore a link is given by the product
of the number of MCSs traversed while searching for the highest-
throughput working MCS and the maximum frame aggregation
time (FAT) ś recall that RA sends one aggregated frame at each
tested MCS. We consider 2 different FAT values: 2 ms ś the maxi-
mum value allowed in 802.11ad ś and 10 ms ś the maximum value
allowed in 802.11ac, also used in X60.
Metrics. We compare the amount of data delivered with LiBRA

against the amount of data delivered by an oracle solution Oracle-
Data, which always triggers the right adaptation mechanism that
maximizes the total amount of bytes delivered. This metric depends
on both the throughput and the link recovery delay, as well as on
the flow duration. For a short flow duration, it might be preferable
to start sending data quickly at a suboptimal working MCS instead
of looking for the optimal beam pair/MCS configuration. We also
compare the link recovery delay alone against another oracle so-
lution Oracle-Delay, which always triggers the right adaptation
mechanism that minimizes the link recovery delay. We include two
more heuristics in our study: always performing RA first, which is
what all COTS devices do today; and always performing BA first
which is suggested in [14]. Both heuristics trigger adaptation when
the current MCS becomes non-working (ğ5.2). Note that for all
algorithms, we take into account the BA or RA overhead in our
calculations. The oracles always incur only one of the two over-
heads in each case, while the other three algorithms may incur
both overheads in case of misprediction. Also, note that all algo-
rithms (including the oracle solutions) use the same mechanism as
LiBRA to probe higher rates periodically. The oracles make optimal
decisions only with respect to restoring a link.

8.2 Single link impairment scenarios

We first consider simple scenarios, where there is only one link
impairment, using our combined dataset from Buildings 1 and 2.
We consider two data flow lengths: 1 s and 0.4 s.

Figs. 10a-10g plot the CDFs of the difference between the bytes
delivered by Oracle-Data and each other algorithm for all combina-
tions of the different RA/BA overheads and for the 2 flow durations.
For the 1 s flow duration, we make the following observations: (1)
LiBRA performs very close to the oracle in all cases and much better
than the two heuristics in most cases. With a FAT of 2 ms, it delivers
the same number of bytes as the oracle in about 85% of the cases.
In contrast, łBA Firstž delivers the same number of bytes as the
oracle in only 70-81% of the cases, and its efficiency worsens as the
BA duration increases. łRA Firstž performs even worse, delivering
the same number of bytes as the oracle in only 50-58% of the cases.

With a FAT of 10 ms, the amount of bytes delivered by LiBRA is
within 10 MB from the oracle in 80-84% of the cases. The same
number is only 71-81% for łBA Firstž and 26-35% for łRA Firstž. (2)
The maximum loss for LiBRA is always much lower compared to
both łRA Firstž and łBA Firstž for low BA overhead (0.5 and 5 ms)
and within 100 MB from łBA Firstž in the case of very long BA
duration (150 and 250 ms). (3) The FAT has a smaller impact on the
performance compared to the BA duration.

With a short flow of 0.4 s, we make similar observations with
the exception of the worst case performance with LiBRA, which is
never lower than with łBA Firstž or łRA Firstž. Overall, the flow
duration has the lowest impact on łBA Firstž, which triggers a
constant overhead first (the overhead of a full SLS) but always dis-
covers the optimal configuration. On the other hand, the impact of
flow duration is highest on łRA Firstž, which often settles down
to a working but suboptimal MCS. The impact is particularly pro-
nounced in the case of long flows, where the data loss due to the
use of a suboptimal MCS is larger.

Figs. 11a-11g plot the CDFs of the difference between the re-
covery delay with the Oracle-Delay and each other algorithm. We
observe that the recovery delay is the longest with łRA Firstž for
low BA duration (0.5 ms, 5 ms) and with łBA Firstž for high BA
duration (150 ms, 250 ms). In contrast, LiBRA strikes a balance,
achieving within 5 ms from the optimal delay in 57-98% of the cases
with all parameter combinations and long delays in a much smaller
fraction of cases compared to łBA Firstž. For example, with a 250
ms BA overhead, the median delay difference is 0 ms with LiBRA

but more than 200 ms for łBA Firstž.
Overall, these figures show that for today’s 802.11ad devices that

have only a few sectors and employ quasi-omni reception, limiting
the BA overhead to a few ms [49, 60], łBA Firstž is a good choice,
albeit its worst case performance is lower than LiBRA’s. The real
benefit of LiBRA will become more prominent in the future, as the
number of available sectors increases and devices start employing
directional reception to improve the range or to limit interference
in dense deployments [30, 66] or in the case of MIMO [23].

8.3 Multiple link impairment scenarios

We now evaluate LiBRA in scenarios involving multiple link impair-
ments. Each scenario consists of 10 time segments, each of varying
duration from 300 ms to 3 s. We consider 4 types of scenarios: (i)
Mobility: We emulate mobility by moving the Rx at the beginning of
each segment introducing differing degrees of linear and/or angular
displacement, (ii) Blockage: we alternate segments of human block-
age of random duration at random positions between the Tx and Rx
and segments of clear LOS, (iii) Interference: we alternate segments
of varying levels of interference and segments of clear channel,
and (iv) Mixed: a combination of the above three. We collected 10
300-s PHY layer and throughput traces for each segment involved
in each scenario. We then generated 50 random timelines of 3-30 s
duration for each type of scenario, by choosing uniformly randomly
a time between 300 ms and 3 s as the time to spend at each of the
10 segments. We only show the results for two BA overhead values
(0.5 ms and 250 ms) due to space limits.

Fig. 12 plots the percentage of bytes delivered by each algorithm
compared to the bytes delivered by Oracle-Data and Fig. 13 plots
the difference between the average link recovery delay (the sum of
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Algorithm 1 LiBRA

N , M ← Number of Tx, Rx beams
minMCS,maxMCS ← Minimum, maximum supported MCS
minTput,minCDR ← Throughput, CDR thresholds for working MCS
T ← To, k ← 0

function BA()
maxSNR ← −∞

for beamPair ID ← 0 to (N xM ) − 1 do

SNR ← measure_snr(beamPair ID)

if SNR > maxSNR then

bestBeamPair ID ← beamPair ID

maxSNR ← SNR
curr _beam_pair ← bestBeamPair ID

function RA(initMCS, initTput )
maxTput ← initTput

forMCS ← initMCS tominMCS step − 1 do

tput ← measureTput(MCS )

if tput < maxTput then

if isWorking(MCS + 1) then

curr _mcs ← MCS + 1

else

BA()

RA(initMCS, 0)
return

maxTput ← tput

if isWorking(MCSmin) then

curr _mcs ← MCSmin

else

BA()

RA(initMCS, 0)

function isWorking(MCS )
return measureTput(MCS ) ≥ minTput && CDR(MCS ) ≥ minCDR

function selectAction(f rameID)
if probeMCS then

if curr _tput < prev_tput or noACK then

k ← k + 1

curr _mcs ← curr _mcs − 1

else

k ← 0

if f rameID % 2 == 1 then

f rameID ← f rameID + 1

T ← To ·min(2k , 25)

probeMCS ← f alse

return

T ← T − 1

if noACK then

if curr _mcs < 6 or BAOverhead < BAOverheadThreshold then

BA()

RA(curr _mcs, 0)

else

RA(curr _mcs − 1, 0)

else

if f rameID % 2 == 0 then

return

metr ics ← updateMetrics(f rameID, f rameID − 1)

action ← classifyBaRaNa(metr ics, prev_metr ics)

if action == BA then

BA()

RA(curr _mcs, curr _tput )

T ← To
else if action == RA then

RA(curr _mcs − 1, curr _tput )

T ← To
prev_metr ics ←metr ics

while true do
sendFrame(f rameID)

selectAction(f rameID)

CDR(curr _mcs) ← updateCDR()

if T == 0 andCDR(curr _mcs) > CDRORI (curr _mcs) then

curr _mcs ← curr _mcs + 1
probe_mcs ← true

prev_tput ← curr _tput
f rameID ← f rameID + 1

A APPENDIX

A.1 LiBRA Algorithm

LiBRA is described in Algorithm 1.

A.2 Dataset collection: Measurement
environments and scenarios

In this section, we provide details about the environments we used
to collect the main dataset (Table 1) and the various scenarios we
considered.

A.2.1 Environments. We collected a dataset by taking measure-
ments in multiple environments within a campus building.
Lobby. This is a large open space with glass panels covering the
upper part and metallic sheets covering the lower part of one side
and a wall on the other side. It is shown in Fig. 14a along with the
various Tx and Rx positions we used for our measurements.
Lab. This is an 11.8 × 9.2 × 3.4 m3 space with 4 rows of desks
surrounded by metallic storage cabinets and white boards (Fig. 14b).
Conference Room. This is a 10.4 × 6.8 × 3.2 m3 space with a large
white board covering one of the walls (Fig. 14c). There are metallic
cabinets, a large desk in the center of the room, and many chairs.
Corridors. We performed measurements in 3 corridors of width
1.74 m, 3.2 m, and 6.2 m. In the lobby, the conference room, and the
corridors, the Tx and Rx antennas were kept at a height of 1.4 m.
In the lab, LOS at this height was blocked by furniture, hence we
placed the Tx antenna at a height of 2.05 m and the Rx antenna at
a height of 1.25 m.

A.2.2 Linear and/or angular displacement scenario – details. Here
we provide details about the measurements involved in the displace-
ment scenario in ğ4.2.
Lobby: We first fixed the Tx at position Tx1 and the Rx at position
0 (Fig. 14a). We then moved the Rx while keeping the orientation
fixed along three directions ś backwards, laterally, and diagonally
ś and took measurements at multiple positions in each direction.
We also took measurements by rotating the Rx at positions 2 and
19. We then took a second set of measurements with the Tx fixed
at position Tx2 and the Rx at 9 positions.
Lab: The Tx was fixed and the Rx was placed at 10 different posi-
tions, starting at position 0. We also took measurements by rotating
the Rx at positions 2, 5, and 8.
Conference room: The Tx was fixed and the Rx was placed at
different positions and orientations around the table, shown in
Fig. 14c, starting at position 0. Note that for positions 4, 5, 6 and
7, the Rx is facing in the same direction as the Tx and communica-
tion is enabled through reflections. We also performed rotations at
positions 0 and 4.
Corridors: In the narrow corridor, we performed measurements
at 17 different Rx positions starting from a distance of 2.5 m away
from the Tx and moving back in steps of 1.25 m, with the Tx and Rx
always facing each other. In the 2 wider corridors, we fixed the Tx
and performed measurements at 10 different Rx positions at steps
of 1.25 m with the Tx and Rx facing each other at all times. We also
performed rotations 5 m, 10 m, and 15 m away from the Tx.
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Figure 14: Environments and measurement positions. The arrows show the Tx and initial Rx orientations.
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