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A 3D finite-strain constitutive model for the deformation response of NiTi at the single crystal
level is proposed. The model accounts for reversible phase transformation from austenite to
martensite habit plane variants, plastic deformation in the austenite phase, and rate effects
induced from latent heat. It is developed within the formalism of irreversible thermodynamics
with internal state variables based on the Eulerian logarithmic strain and its corrotational
objective rate. The inelastic deformation is defined as an average over a representative volume
element as classical in the micromechanics-based modeling approach. Transformation-induced
plastic deformation is viewed as a mechanism for accommodation of the local deformation in-
compatibility at the austenite-martensite interface. It is accounted for by introducing an inter-
action term in the free energy, which is described through the Eshelby tensor by regarding the
habit plane variants as ellipsoidal inclusions embedded in the austenite matrix, in order to
accurately reflect the internal stress states that contribute to dislocation slipping. The numerical
implementation of the model in an efficient scheme and its calibration are described in detail. The
proposed model is validated by comparing simulations with available experimental data in single
NiTi crystals. Numerical simulations of polycrystals are performed to obtain an insight into the
interaction between phase transformation and plastic deformation induced by intergrannular
constraints. The efficiency of the numerical implementation of the model is verified by simula-
tions of indentation tests.

1. Introduction

Shape Memory Alloys (SMAs) exhibit a reversible, solid-to-solid, phase transformation from austenite to martensite. High inelastic
strains, induced during forward phase transformation from austenite to martensite, can be recovered during reverse phase trans-
formation, rendering these materials highly desirable in engineering applications (Miyazaki, 1990; Otsuka and Wayman, 1999;
Morgan, 2004; Lagoudas, 2008; Jani et al., 2014; Barbarino et al., 2014). NiTi is the most widely used/studied SMA due to its excellent
mechanical properties, good processability, corrosion and wear resistance, and biocompatibility.

In NiTi, austenite, which is characterized by a cubic B2 crystallographic structure, transforms into 12 monoclinic martensite
variants (B19’ crystallographic structure) by mechanical loading and/or cooling, during which chemical composition remains
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unaltered while the atoms are organized in a new crystallographic lattice (non-diffusive, first-order phase transition). The martensite
phase is formed as thin platelets, needles, or laths within the austenite parent phase with the two phases fitting together along planes,
called invariant or habit planes, that remain unchanged, i.e., neither deform nor rotate. These planes/interfaces are between austenite
and twins of martenite variants, called Habit Plane Variants (HPVs), that comprise of two Lattice Correspondent Variants (LCVs).
Crystallographic theory predicts 192 HPVs, i.e., 192 possible distinct interfaces between austenite and martensite (Hane and Shield,
1999). Movement of interfaces between HPVs is referred to as HPV reorientation, and movement of interfaces between LCVs as
detwinning.

Phase transformation is accompanied by irrecoverable strain that accumulates with cycling (Miyazaki et al., 1986; Eggeler et al.,
2004; Nemat-Nasser and Guo, 2006; Zaki and Moumni, 2007; Norfleet et al., 2009; Kang et al., 2009, 2012; Delville et al., 2010;
Manchiraju et al., 2011; Delville et al., 2011; Morin et al., 2011a,b; Sun et al., 2012; Yin and Sun, 2012; Yin et al., 2014; Song et al.,
2014; Benafan et al., 2014). The residual strain is due to dislocation slipping in austenite phase (and deformation twinning in
martensite at higher load levels) (Miyazaki et al., 1986; Hamilton et al., 2004; Norfleet et al., 2009; Delville et al., 2010, 2011; Simon
et al., 2010; Pelton et al., 2012; Pfetzing-Micklich et al., 2012; Benafan et al., 2013, 2014) and residual martensite due to incomplete
reverse phase transformation (Miyazaki et al., 1986; Brinson et al., 2004). In the single crystal level, the accumulated residual strain is
characterized by strong anisotropy, i.e., depends greatly on crystallographic orientation, and precipitates. In solution heat-treated,
precipitation-free, single crystals, most of the irrecoverable strain is due to dislocation slipping while in the high-resistant against
dislocation activity nano-sized precipitated single crystals is mainly due to residual martensite (Gall et al., 2001, 2002; Gall and Maier,
2002). Plastic deformation in austenite is influenced by (100){011} and (101){001} slip modes (Chumlyakov et al., 1996) and, as
recently observed, by (111){110} (Ezaz et al., 2013). The plastic deformation in martensite is mainly due to twin activity, 11 possible
twinning systems were pointed out by Otsuka and Ren (2005), while only one slip system (001)[100] exists due to the low symmetry of
the martensite monoclinic crystal structure. Dislocation slipping is observed even if the overall applied stress is lower than the yield
stress of austenite as a mechanism to accommodate the deformation incompatibility at the austenite-martensite interfaces (Norfleet
etal., 2009; Simon et al., 2010), thus termed TRansformation-Induced Plasticity (TRIP). The phase transformation—plasticity coupling
results in undesirable characteristics such as reduced work output (functional fatigue) and early fatigue failure (structural fatigue)
during repeated thermomechanical cycling.

A variety of micromechanics-based models have been developed that simulate the various deformation mechanisms in NiTi at the
single crystal level (Patoor et al., 1996, 2006; Huang et al., 2000; Gall et al., 2000; Gao et al., 2000; Thamburaja and Anand, 2001,
2002; Anand and Gurtin, 2003; Thamburaja, 2005; Wang et al., 2008; Thamburaja and Nikabdullah, 2009; Manchiraju and Anderson,
2010; Yu et al., 2015b). Most of the early models capture only forward and reverse phase transformation. Subsequently, models have
been developed for reorientation of HPVs, detwinning of LCVs, dislocation slipping and deformation twinning. A summary of these
models can be found in Dhala et al. (2019). Micromechanics-based models are (i) easily implementable in numerical methods for the
full-field solution of boundary value problems in polycrystalline settings where misorientation across grains, grain boundaries, and
triple joints can give rise to complex stress states, and (ii) are amenable to mean-field scale translation rules (e.g., Mori-Tanaka and
self-consistent approaches). The existing micromechanics-based models that describe both phase transformation and plastic defor-
mation, with the exception of Cherkaoui et al. (1998) and Yu et al. (2015a), cannot effectively describe TRIP since they do not
explicitly account for the local rise of internal stress near the austenite-martensite interfaces. Furthermore, the existing models, with
the exception of Yu et al. (2015b) and Xiao et al. (2018), are isothermal, an assumption valid only for a range of strain rates within the
regime of quasi-static processes. At higher strain rates, the generation or absorption of latent heat may have a strong impact on the
deformation response of NiTi (Leo et al., 1993; McCormick et al., 1993; Shaw and Kyriakides, 1995; Prahlad and Chopra, 2003; Eggeler
et al., 2004; Morin et al., 2011c; He and Sun, 2011).

The aim of the present paper is the development of a 3D, micromechanics-based, single crystal model to describe the deformation
response of NiTi, including a description of TRIP as a mechanism for accommodation of the deformation incompatibility at the aus-
tenite-martensite interface, which allows for finite deformations and thermally-induced rate effects within a consistent thermody-
namic framework. The model accounts for reversible phase transformation from austenite to HPVs and dislocation slipping in the
austenite state, neglecting reorientation of HPVs, detwinning of LCVs, and deformation twinning in martensite. Thus, the model targets
superelasticity and shape memory effect for coupled thermo-mechanical, nearly proportional, loading within a range that does not
allow for considerable martensite plastic deformation or formation of self-accommodated martensite. The interaction between the two
phases is described through the Eshelby tensor by regarding the HPVs as ellipsoidal inclusions embedded in the austenite matrix in
order to reflect the internal stress states that can activate dislocation slipping even for applied load levels that could not otherwise
(Cherkaoui et al., 1998; Yu et al., 2015a).

Contrarily to the finite-strain, single crystal NiTi models that are all based on the multiplicative decomposition of the deformation
gradient into elastic and inelastic parts (Anand and Gurtin, 2003; Thamburaja and Anand, 2001, 2002; Thamburaja, 2005; Manchiraju
and Anderson, 2010; Paranjape et al., 2016), the present model is based on an additive decomposition of the rate of deformation, and,
thus, achieves a simpler model structure and an easier implementation procedure. Infinitesimal-strain model formulations are known
to overestimate the extend of phase transformation and predict an overly stiff rotational response (Christ and Reese, 2008; Reese and
Christ, 2008). The proposed model is based on the Eulerian logarithmic strain or Hencky strain (Hencky, 1928), which is the only strain
measure that its corotational rate is the rate of deformation tensor (Reinhardt and Dubey, 1995; Xiao et al., 1997), its spherical and the
deviatoric parts separate the volumetric deformation and the isochoric deformation in an additive manner (Xiao et al., 2004), and
satisfies the so-called Seth-Hill requirements that strain should approach + oo (—o0) when the stretch approaches + oo (0) (Darijani and
Naghdabadi, 2010). Other objective rates (e.g, Zaremba-Jaumann-Noll rate, Green-Naghdi-Dienes rate, and Truesdell rate) combined
with the Hencky or any other finite strain measure may result in spurious phenomena (e.g., shear stress oscillation, artificial stress
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residuals, etc). The proposed finite-strain model is obtained by an ad hoc extension of its infinitesimal-strain counterpart. A rotated
constitutive description is adopted, which ensures that all “rotated objects” remain unaltered under superposed spatial rigid body
motions.

The paper is organized as follows. In Section 2, the kinematics of local deformation mechanisms inside representative volume
elements and their relation to the overall inelastic deformation rate is presented. The proposed model is described in Section 3 under
the infinitesimal-strain assumption; the finite-strain model is obtained in the same section by an ad hoc extension of its infinitesimal-
strain counterpart. The numerical implementation of the model in an efficient scheme is described in detail in Section 4. The model
calibration and its validation against available experimental data are presented in Section 5 and numerical simulations of the
deformation response of polycrystals and indentation tests in Section 6. A summary of the paper is given in Section 7.

2. Kinematics

The inelastic deformation of an SMA crystal is defined as an average over a Representative Volume Element (RVE), which should be
large enough to include a sizable set of martensite HPVs and slip systems within a single crystal austenite. It is further assumed that the
austenite-martensite formed interfaces are coherent and their motion along with the dislocation motion is rate-independent.

For later use, the volume fraction of martensite corresponding to the aw,-HPV system in an RVE is denoted as &% restricted by 0 < &%
< 1. The total volume fraction of martensite in a crystal, & = ) ,£% must lie in the range 0 < &* < 1.

2.1. Strain decomposition

Assuming initially infinitesimal strains, additive decomposition of the total macroscopic strain tensor, defined as the average total
strain over the RVE, reads as

e=¢€¢"+e +eé, [€})

where €%, €', and ¢” stand for the elastic, transformation, and plastic strain tensors, respectively. Thermal strain is an order of magnitude
smaller than the transformation strain and is thus not included for simplicity. The thermal expansion of the monoclinic martensite
variants is highly anisotropic (Monroe et al., 2016) and its proper implementation in a single crystal model is not trivial (Yu et al.,
2019).

The finite strain extension of the model is described in Section 3.5.

2.1.1. Transformation strain
By the rule of mixtures, the transformation strain can be written as

0\
¢ =Y e @
a=1

where €] = %gt(d" RI* +1* ®d*), d*, 1, and g are the stress free transformation strain, the transformation direction, the habit plane
normal, and the magnitude of transformation, respectively, for each of the N; martensite HPVs, given by crystallography.
The rate of ¢ thus reads as

N
é=> e ®
a=1

2.1.2. Plastic strain
The overall plastic strain tensor of the RVE can be written, by employing the rule of mixtures, as

N,
e =(1-8e)+) &y, @
a=1
where € and elpw stand for the plastic strain tensors in the regions occupied by austenite and ay,-martensite HPV, respectively.
The rate of € is thus given as

s

y N £ 4 o > p p
@=0-08+> &, =D Pl -dy) =(1-9 & -3 lif(eﬁfefwa)

N, L
+> e [en, - S e—e) ] ©)
a=1 5

The rate of €’ can moreover be described by crystallographic slip mechanisms in the austenite phase

Na
&=(1-8>_ e (6)
=1
where €\ =1 (¢} @r} +r4 ®4}) is the orientation tensor of the ly-slipping system of austenite, g}, rl,, 7, are the respective shear
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direction, slip plane normal, and average shearing rate, respectively, and N4 denotes the number of slip systems.
Combining (5) and (6), which hold for every &* € [0, 1], a = 1, ..., N, yields

s

Ex; - EMH + ZASPV/U éI}M/x = 27 (Sﬁ - e//i’la) (7)

N; é“
P
a=2 sl
a=1

Thus, the rates of plastic strain in the austenite and ay,-martensite HPV are dependent on the dislocation slip rates on austenite’s
slip systems and on the rates of expansion/shrinkage of the HPVs, thus, the model accounts for the inheritance of plastic strain from one
phase to another.

3. Thermodynamics and constitutive equations

3.1. Helmholtz free energy & dissipation

Following the choice of the applied strain tensor € and absolute temperature T as external state variables, the Helmholtz free energy
per unit reference volume is taken to be

(e, T, &% 7}) =®,(e,T,&% 7)) + i (e, T, & 7)) + Dy (€, T, &, 7))
1 T A
=56 Cie + (e T8 7)) +c{<T— To) —Tln(?>} + o (T = Tr)E, ®)
< 0 T
asti or interaction energy
elastic energy

chemical energy

where the interaction energy is defined through its rate as in Cherkaoui et al. (1998).’

@, = (C: e)zé’ﬂmz(l%)ﬁjﬁm ©)
o
and.
6, =C: e+Z¢c (I-8%: (€ +¢é, —€), (10a)
o
ou, =6,—C:(1—S%): (6" +¢), — ) (10b)

The model parameters C and ¢ denote the effective stiffness tensor and specific heat at the reference state, respectively. The
assumption C = Cj; = C4 is adopted for simplicity. Moreover, c is assumed to be phase-independent, which is a common engineering
assumption. The parameter T is the phase equilibrium temperature and 1 is the latent heat of transformation at temperature Tt. 64 and
oy, stand for the average stress values in the austenite and the ay-martensite HPV (Cherkaoui et al., 1998), S* stands for the Eshelby’s
tensor of the ay,-martensite HPV, which depends on the elastic constants and shape of the variant, and I is the fourth-order unit tensor.

Using the above expression of the Helmholtz free energy, the dissipation inequality (A.6) reads as

e T 2\, A ca .
D=(6—C:¢€):¢€ +(sfclnﬁ+705>r+;{a:e;’foT(TfTT)}f +(1=&64:) &7 >0. (1n

The standard thermodynamical procedure, commonly referred to as the Coleman-Noll procedure (Coleman and Gurtin, 1967),
applied to the dissipation inequality (11), yields the constitutive relationships.

c =C:¢, (12)
T 1

s =cn———¢, a3
Ty Toé

Where 6 stands for the Cauchy stress tensor, and reduces the dissipation expression to

D= Z{ T m}g +(1-8&0n: ZAepyA (14)
=1

1 The derivation of the interaction term in Cherkaoui et al. (1998) is based on the Mori-Tanaka and Kréner micromechanical assumptions and the
instantaneous growth hypothesis according to which the martensitic domains form instantaneously.
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3.2. Driving forces

From the above dissipation expression, (14), the driving forces for phase transformation and plastic deformation can be invoked as
the quasi-conservative thermodynamic forces conjugate to the respective internal variables.

Martensitic transformation.— For transformation of austenite to a particular martensite HPV, a, the driving force, F', for this HPV
should satisfy the following nonequilibrium condition

~ A
Fj’:azefff(TfTT):ff;’, (15)
where ff? > 0 is the HPV hardness, and ¢ : €; is the resolved stress on the ay-transformation system, but not in the classical Schmid
sense since I” is typically not perpendicular to d°.
For this particular martensite HPV to transform back to austenite, the following condition must be met

w2
SR =0 € b (T=Tr) = f}, (16)

where f¢ > 0.
Plastic deformation of austenite.— For plastic deformation of austenite, the driving force for dislocation slip of the ly-slip system, AFI’,,
should satisfy the following condition

1
’AFP

- ‘(1 —&)on 1 8] = of a”

where Afll, > 0 is the respective slip system hardness.
Note that the absolute value of the resolved shear stress AFII, on the ly-slip system is of interest, which explains the use of the

absolute value in (16), since slip may occur in either the positive or negative direction on a slip plane, contrary to phase trans-
formation, where the polar nature of the atomic arrangements for phase transformation requires the signed value of the resolved stress
on a transformation system.

3.3. Evolution equations
The evolution laws of martensitic transformation and plastic deformation are given by the following power-law relations, in which

the exponents are chosen sufficiently large to approximate rate-independent conditions.
Martensitic transformation.— The evolution law for the volume fraction of the ay,-martensite HPV follows the power-law relation

. . Fa n . F(l n
fa = {éo (T'a) ; F{ >0, austenite — martensite — &, (|f—’a}> ; F{ <0, martensite — austenite (18)
ot Wt
where
Ny . N on
Ar=D B E Ty ift =) HYE (1= i 19)

where , is a reference transformation strain rate, [H(f/’ ] is the interaction energy (constant) matrix between the different martensite
HPVs, the scalar J; > 0 describes the increasing resistance to phase transformation due to plastic deformation, and y = Zfi‘l }yﬂ is the
accumulated total slip. ¢ff and ;f are positive scalars.

Plastic deformation of austenite.— The slip rate in the l-slip system of austenite is given as

n—1
. . Fl AF;
s =To <Af> - : (20)

4 P

with the evolution law of the hardness, zlv reading as
. NA
NI ARVA S @D

r=1

where 7, is reference plastic strain rate, the matrix
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IIII,
r 4
= migs-oni(1-2)”

P

describes the history-dependent rate of increase of the deformation resistance on slip system [ due to shearing on slip system r, given in
terms of the accumulated total slip, g stands for a constant latent-hardening parameter that ranges between 1 and 1.04, the positive
scalar 4 H, is the initial slip-system hardening rate, m, is the strain hardening exponent, and ;- are the components of the Kronecker’s
delta, 8, i.e., 5 = 1 if = r and & = 0 if l#£r. ifé, aHp, mp, and 73 are positive scalars.

3.4. Thermomechanical coupling: latent-heat effects

Latent heat effects can be neglected for mechanical and thermal loading rates sufficiently slow with respect to the time rate of heat
transfer by conduction/convection. Such an assumption is valid for a range of strain and thermal loading rates even for complex
geometries and loadings (Prahlad and Chopra, 2003). At higher rates, though, depending on the geometry, convective boundary
conditions, and associated heat transfer, the generation or absorption of latent heat may have a strong impact on the deformation
response of SMAs as shown experimentally in Shaw and Kyriakides (1995); Prahlad and Chopra (2003). In those cases, latent heat
effects can be taken into account as follows.

In view of (A.6), (14) can be written as

N Na
D=3 F&+Y \Fii=5T+V-q-r,
a=1 =1
Given the constitutive relationship (13), the entropy rate is reduced to the following explicit evaluation
T 2.
§=c—— ¢, (23)

and, thus, (23), reads as

N

j a, * X S 1ol
el — Z <Ff + T_T T> 5 _; AFl’yA heat released during plastic deformation =-V- q + r (24)

a=1
heat absorbed or released during transformation

which is the 3D form of the fully thermomechanically-coupled energy balance equation for SMAs.
The heat flux q at the referential state is assumed to be governed by Fourier’s law

q=k(VT, (25)

where k(&) = (1 -&)ka + fo;lcf“kjf,, stands for the thermal conductivity, which is approximated from the conductivities of austenite,
ka, and martensite HPVs, ky; (@ = 1, ...Np, by the rule of mixtures.

3.5. Finite-strain extension of the constitutive law

The finite-strain extension of the constitutive law is based on the Eulerian logarithmic strain

m

1
hzélnb:ZIn 7%, (26)
a=1

introduced as the logarithmic measure of the left Cauchy-Green deformation tensor b = FF (F is the deformation gradient, 1* are the m
distinct eigenvalues of b, and b* are the corresponding eigenprojections) and its conjugate Kirchhoff stress

1 =Jo, 27)

where J = detF is the Jacobian of the deformation.
The Eulerian logarithmic strain is the only strain measure whose objective time rate with respect to a corrotational frame yields the
total stretching (or rate of deformation) D = % (Vv + VvT), where v stands for the velocity and the superscript T denotes transpose, i.e.,

h=D, (28)
where the superscript “°” denotes the objective logarithmic time rate of any Eulerian symmetric second-order tensor a

a=a+aQt —Qa, (29)



M.A. Hossain and Th. Baxevanis International Journal of Plasticity 139 (2021) 102957
defined by the logarithmic spin @ = W + S (% + W) b*Db? (W is the spin tensor), and the superscript “” denotes

material time rate.
On account of (29), relation

RY aR" = R aRY, (30)
holds, where the logarithmic rotation, RL, is defined from the differential equation
R =Q'RY, RY_, =8 (31)

The left hand side of (30) represents the material time rate of a Lagrangian quantity and, thus, (31) generates a one-parameter
subgroup of rotations that define a locally rotating coordinate system in which the material time rates of the obtained rotated ten-
sors remain unaltered by superposed spatial rigid body motions (Xiao et al., 1996). Time integration of (30), assuming @ = h and h|,—o
=0, yields

' © [
h=R: ( / RLThRLdt> RLT@RL( / RLTDRLdt) R, (32)

0 0
and, thus, additive decomposition of total stretching D into elastic, transformation, and plastic deformation parts yields an additive
decomposition of the Hencky strain
h=h +h' + 1. (33)

The above additive decomposition of the Hencky strain together with (30) allows for extending the constitutive relations of initially
isotropic materials from infinitesimal to finite deformations by simply restating them in a rotated (local) description, i.e., by replacing in

all relations the infinitesimal strain € by the rotated Hencky strain, R hR?, the Cauchy stress, 5, by the rotated Kirchhoff stress, R"" tR”,
and the material time rate of any tensorial quantity by their rotated logarithmic rate.? Note that in the finite strain formulation the

lattice vectors d* I* (@ =1,2 ... N, g4, and v}, (I=1, 2 ... Nu) are stretched and rotated as F°d’, I"F* "', F°q},, and r4,F* ", respectively,
where F® = V°R® is the elastic part of the deformation gradient, V° is the elastic stretch tensor determined as

V¢ = exp(h°), 34
and the elastic rotation R is obtained by integrating the linear tensorial differential equation

R® = QR¢, R¢|_, =¥, (35)

Angggz In A¢—In 2

with Q¢ = QF — ZZ%/,< 20l + ﬁ) VD5 (47 are the m distinct eigenvalues of V*, V;, are the corresponding eigenprojections,
- €
and D° = h is the elastic stretching) (Xiao et al., 2000).

An analogous extension of the constitutive relations from infinitesimal to finite deformations for initially anisotropic materials,
athough possible in terms of invariance under the logarithmic rotation-conjugate group of the initial material symmetry group, is more
involved and not undertaken herein (Bruhns et al., 2003). Rather, the stiffness tensors of austenite and martensite, C4 and Cyy,
respectively, are assumed isotropic instead, equal to Cz“’ =(Cp = Iy)ly+ %(Ca 2 Ip)Ip, where Iy = %5 ®6 and Ip = I —Iy are the
volumetric and deviatoric projection tensors, respectively, I; designates the fourth-order tensor with components Iy, =
1 (8Sju + Sudi), A: B = AyjiiBiji for any fourth order tensors A, and B, and the subscript , stands for 4 or p (Bornert et al., 2001).

The numerical implementation of the resulting model is explained in detail in Section 4.2.

4. Numerical implementation
4.1. Numerical scheme for the integration of the constitutive response

An explicit numerical integration method is employed for estimating the change in martensite volume fractions, A&, and shear
rates, Ayh, during the current time increment, t. This method leads to improved numerical stability by resulting in a tangent stiffness
expression which is considerably reduced from the elastic stiffness; in explicit integration, the maximum allowable time step is
inversely related to the relevant material stiffness (Cormeau, 1975). This numerical procedure falls into the class of forward gradient

2 Cherkaoui et al. (1998) work that motivated the interaction term in (8) is based on the Kréner (1961) and Mori and Tanaka (1973) methods
under the infinitesimal-strain assumption. The proposed finite-strain extension of (8) and the resulting expressions (10) on the basis of rotated
logarithmic strain and rotated Kirchhoff stress is in general an approximation that assumes all phase rotations to be equal, i.e., the matrix rotation is
assumed to be fully conveyed to the embedded phases.
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methods and has been discussed in Peirce et al. (1984).
The increments of martensite volume fractions and slip on the slip systems of austenite at time t are given as

A =&, &
(36)
{Mﬁ = () iear = (1),

Linear interpolation within the time increment gives
AE = (10 + 04, ]an a7, = [(1-0)(4), +04) .0 | o, @)

where the parameter 6 ranges from O to 1; & = 0 corresponds to the simplest Euler integration procedure. Taylor expansion of the last
terms in the above equations yields

L L & w2l e Y y 74) y 74) !
§r+Az = 5, + %lAFr + ()af!‘;ﬂAfr ) (yA)HAr = (yA)r + a(aAFEJ’AAFD + a(aAf;ilAAfP"
which in view of the evolution equations reads as
o AF*  AfC . . AFL A
fo=lien(G )] @, [1 ’ ( A 8
Combining (37), (38), yields
» AF*  AfC L AFL AL
A& =¢, {1 + 0n< L — ’) }Au Ay, = (74), |1 +6n — At. (39)
I A=) A

(39) is actually of system of equations for the unknowns A&* and Ay}, which is consistent, i.e., can be solved, for small time steps.
4.2. Incrementally objective time-stepping algorithm for the finite strain model

As described in Section 3.5, a rotated description of the constitutive equations is adopted for the finite extension of the
infinitesimal-strain model. In view of (30), the numerical integration scheme outlined in Section 4.1 for infinitesimal strains can be
followed by replacing all tensorial state variables, a;, with RLtT atRf and, @, z¢, With RLtT i Atat+AtRf+ A and assuming that the lattice

vectors are constant during each increment, equal to Féd®, IF¢ ™", Féql,, and rLF¢ ™',

4.2.1. Closed-form algorithm for updating the rotation tensor R"
To update the logarithmic rate, R, ,,, the deformation gradient

ou(x,)
ox, ’

Fiiar = (6 + V,[Au))F,, where V,[u] =

the stretching
1|F F F F ’
tHAr T L t+Ar T L
DHA? = E |: At FH»IAI + ( At Fzﬁm) :| )

and the spin

W V[Fea—F (Foa—Fo
At — E At Trrar — At SrAr )
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are first updated sequentially. Then the eigenvalues, 1% ,, Of byac = FrsaFr, s, and their corresponding eigenvectors, by, ,, are
calculated in closed form, the former according to well-known formulas (see, e.g., Malvern (1998), pp. 91-92) and the latter from
Sylvester’s formula

biyar —
1+Az
r+Ar =061md + H /1/1 ’
pia Aar t+Ar

where m represents the number of distinct eigenvalues, and in turn the logarithmic rate

Z 1+ (A8 5,/ 2 2
QL + ( r+Ar r+A1 + >bzx D bﬂ :|At
+Ad t+At 7 AP t+AT Y Ar )
' [ |: aF#p r+Ar /AFFAI ln r+Ar //1{+A1) e

and the logarithmic rotation (see (31))

RIL+A1 exp [9z+m At RzL )

are updated.
The exponential map, exp[QF ', acAt], is derived in closed form as in Simo and Hughes (1998) (pp. 297),

0 \2 poy2 1 1 2 30 1 3 20
(q1+At) + (%+Ar) - § UISONY FUN S MUY AN Doadirar T 9iradisa

2 1 3 0 0 )2 2 oy 1 2 3 1 0
CXP[QHAKAI] =2 9rr a9 ar + Drrai9rar ((IHA,) + (qt+Ar) - 5 9rini9rvar — Deradriae

3 1 20 3 2 1 0 0 2 3 oy |1
Diraidivar — Divacdirae (/RN PN o/ PNY P (qt+Ar) + (qr+Ar) - 5

; . i i jk ; .
where @2 5, = cos(|| O ac | /2), Ghine = Goac® tiner @ rpar = —Sen@lh 4 At (i = 1, 2, 3) are the components of the axial (or dual)

vector ®, ,, of ®F, .. At (ejjk is the permutation tensor), and

Lsin( || o | /2) el
- sin(|| @7, 4, || /2)] > tol.
. 2 el /2 | a1 /2]
qr+Ar -
1
ST @k P24+ || @t /1920 + . ], else.
4.2.2. Closed-form algorithm for updating F¢
F¢ is updated at the end of the increment similarly to the updating of R” once the elastic strain h{,, is calculated. The exponential

map V¢ = exp(h®) is approximated as V¢ =1 + h°.

4.3. Further details on the solution scheme

The Eshelby tensor is assumed identical for all HPVs and corresponds to oblate spheroids in an isotropic matrix obtained by the
isotropization described at the end of Section 3.5. The lengths of the semi-axes of the ellipsoidal HPV inclusions are set as a; = az = a,
as = a/b, for b > 1. In the simulations that follow, b is assumed equal to 4.

5. Model calibration and validation

The calibration of the proposed model, based on the experimentally determined deformation response of the material under
uniaxial loading at various orientations, is described in this section. In the case of finite strains, experimental evaluation of the onset of
phase transformation and post-transformation stress-strain behavior generally should be based on either the 1st Piola-Kirchhoff or
Cauchy stress, i.e., either on the undeformed or deformed configuration, respectively. However, since elastic and transformation-
induced volumetric deformations in SMAs are small, the Kirchhoff stress, 7 = Jo ~0¢, may be used instead of the Cauchy stress.
Thus, the calibration procedure of the finite- and infinitesimal-strain models differ only on the experimental evaluation of the loga-
rithmic strain in the former instead of the engineering strain in the latter.

Thermoelastic parameters.— The B2 structure belongs to the cubic crystal system and thus the elastic tensor of austenite phase in NiTi
SMA single crystals possesses three independent constants, i.e., Cf; = 130 GPa, C5, = 98 GPa, and C;, = 34 GPa (Brill et al., 1991). As
already mentioned, the assumption that Cjj; = C, is adopted for simplicity. The thermal conductivity of the B2 austenite is isotropic, ks
= kad, where k4 = 18 W/(m K). In the absence of thermal conductivity measurements at the lattice level, the thermal conductivity of
the monoclinic martensite variants although anisotropic is approximated as isotropic, ky, = k8 (@ = 1, ..., Np), where ky = 8.6
W/(m K). The specific heat is taken as ¢ = 837 J/(kg K). These parameter values are given in Miiller and Bruhns (2006).

Transformation parameters.— The transformation parameters are determined from the experiments of Gall et al. (2002) for Nigg oTi
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Table 1
Model parameter values. The crystallographic data for the 24 martensite HPVs in NiTi is given in Table 2
and g = 0.1308. The strain rate exponent n is set to a high value, n = 50.

(a) Thermoelastic Parameters

parameter value
Austenite initial density po [g/(cm)®] 6.45
specific heat ¢ [MJ/(m® K)] 2.1
elastic constant Cf; [GPa] 130
elastic constant C4, [GPa] 98
elastic constant C, [GPa] 34
thermal conductivity k4 [W/(m K)] 18
HPVs elastic constants Cj; = Cp
thermal conductivity ky [W/(m K)] 8.6
(b) Transformation Parameters
parameter value
equilibrium transformation temperature, Tr, [K] 257
latent heat of transformation per unit volume, 4, [MJ/m?] 154
critical force for forward phase transformation, ;ft, [MPa] 2
critical force for reverse phase transformation, yf,, [MPa] 20
hardening coefficient, J,, [MPa] 50

(c) Austenite Plastic Deformation Parameters

parameter value
critical force for slip in (100){001}, §f%, [MPa] 700
critical force for slip in (100){011}, ;j;f, [MPa] 550

g 500
critical force for slip in (110) { 111 }, ifg, [MPa]
hardening coefficient, ,H,, [MPa] 40
ratio of self to latent hardening, q 1.4

(at.%). Tris calibrated from DSC measurements as Tt = (A5 + M;)/2 = 257 K (Gall et al., 2002). Of the 192 possible HPVs predicted by
the crystallographic theory of martensite only the 24 Type II-1 HPVs frequently observed in experiments are considered. The com-
ponents of the vectors [*and d* are given in Table 2 (Matsumoto et al., 1987; Gall and Sehitoglu, 1999) and g; = 0.1308. The interaction
matrix [Hf’ﬁ ], given in Siredey et al. (1999), is not accounted for since simulations showed that its inclusion overestimates the strain
hardening observed in the experimental data. The latent heat is determined by referring to Manchiraju and Anderson (2010), A = 154
MJ/m3. The “viscous” parameter n is set to a high value, n = 50, to approximate the rate-independent response of NiTi. The initial
critical forces for forward phase transformation are assumed identical for all martensite HPVs, ;f‘t’ = }f[, and, similarly ;f* = If, and
H} = H,. jfft, ‘ft, and H, are evaluated by minimizing the square of the residuals between the uniaxial experimental compressive
stress-strain data in Gall et al. (2002) obtained under loading in different crystallographic directions and the respective simulations as
described in C.

Parameters related to TRIP.— Experimentally, only slip in the system families (100){001}, (100){011}, (110){111} has been
observed (Ezaz et al., 2013), and, thus, only these slip families are included in the simulations. The initial critical forces for slip in these
systems, qu}l,, are assumed identical for each family, and are thus reduced to qu}’, (r=1,2,3). 2)‘; (r=1, 2, 3) and 4H, are evaluated by
the least-square optimization described in C. Note that yg and my, in (22) cannot be reliably calibrated from the experiments reported in
Gall et al. (2002) and are thus assumed null; experiments at a temperature above My would be required for their calibration, i.e., a
temperature at which stress-induced phase transformation is suppressed.

The model parameter values are given in Table 1a—c. The reference transformation rate value, &), and the reference plastic strain
rate, y,, are representative of the applied loading rate (Beyerlein and Tomé, 2008).

5.1. Model simulations vs experimental data

In Fig. 1, simulations are compared against the experimental data used for the calibration of most of the material parameters, i.e.,
the uniaxial compressive stress—strain curves obtained from the experiments of Gall et al. (2002) on solution heat-treated Nisg oTi (at.
%) single crystals loaded along the [123], [210], [111], [211], [110] and [221] crystallographic orientations. The experimental
stress-strain responses, depending on the loading orientation, differ in terms of the required load level for initiation of forward/reverse
phase transformation, strain hardening, and amount of residual deformation with the simulations to reproduce quantitatively the
experimental data in good agreement.

10
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Fig. 1. Nominal stress vs engineering strain curves corresponding to uniaxial compressive loading of a single NiTi crystal along 6 different crys-

tallographic directions. Comparison between simulations and experimental data from Gall et al. (2002).

6. Results

6.1. Simulations of the deformation response of NiTi polycrystals

The simulations presented in this section are for a polycrystalline solution heat-treated Nisg oTi (at.%) modeled in Abagus/
Explicit® suite by a8 x 8 x 8 cube assembly of brick elements (C3D8 for isothermal and C3D8T for thermomechanical analyses) via
the finite strain version of the constitutive law. In each finite element, a single set of Euler angles is assigned, which relates the crystal
basis system to the fixed global basis system, i.e., each element represents a grain with an assigned crystal orientation of the austenite
(B2) phase. In all simulations, random crystal orientation is imposed. Both uniaxial isothermal mechanical and isobaric thermal
loading are considered. In the latter simulations, a uniaxial engineering stress, %, is imposed at a temperature T = 410 K, which is then
cycled with a lower value T = 220 K. The upper and lower temperature were chosen such that full phase transformation takes place for

11
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(a) Isothermal stress—strain plots for a solution heat-
treated Nigg.9Ti (at.%) polycrystal at temperatures,
T =290, 300, 315, and 330 K. H stands for the average
logarithmic strain in the direction of loading.
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(b) Isobaric strain-temperature plots for an initially
stress-free solution heat-treated Nisg9Ti (at.%) poly-
crystal subjected to a thermal cycle under bias stress
levels X = 400, 500, and 600 MPa.

Fig. 2. Isothermal mechanical and isobaric thermal loading simulations of polycrystalline NiTi.
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Fig. 3. Von Mises type values of Kirchhoff stress, 7, and local stress at the austenite phase, 74, at an integration point in the polycrystal vs average
logarithmic strain at the direction of loading for the superelastic simulation at T = 315 K depicted in Fig. 2a.
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Fig. 4. Effective plastic strain at an integration point in the polycrystal vs average logarithmic strain at the direction of loading for the superelastic

simulation at T = 315 K depicted in Fig. 2a.

all applied bias load levels. Both mechanical and thermal loading rates are assumed sufficiently slow with respect to the time rate of

heat transfer by conduction/convection.

6.1.1. Uniaxial isothermal superelastic loading & isobaric loading

Polycrystalline constraints induce inhomogeneous phase transformation and plastic deformation resulting in stress—strain curves

12
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Fig. 5. Local martensite volume fraction vs local effective plastic strain at the end of unloading at all integration points for the superelastic sim-
ulations depicted in Fig. 2a. Note that the £-axis range in the subplot corresponding to 290 K is different from the corresponding range in the

other subplots.
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Fig. 6. Latent-heat effects on the deformation response of an NiTi single crystal. The thermal boundary conditions correspond to heat convection

in air.

that display more rounded (smooth) transitions and hardening than their single crystal counterparts (Fig. 2). The higher the tem-
perature in the superelastic simulations, the higher the required load level for initiation/completion of macroscopic forward/reverse
phase transformation. Similarly, the higher the bias load level in the isobaric simulations, the higher the temperature at initiation/
completion of macroscopic forward/reverse phase transformation (Clapeyron slopes). Moreover, the higher the bias load levels, the
higher the maximum macroscopic strain attained, up to a saturation value. Such a load dependence on the bias load levels has been
reported in literature and it is attributed to the grain and loading orientation alignment; grains that are not favorably oriented require
higher loads for attaining the same levels of transformation and plastic deformation as compared to the favorably oriented ones.
Furthermore, the higher the bias load level, evidently the higher the irrecoverable deformation, i.e., the induced plastic deformation.
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(a) Superelastic response for the isothermal case and for
21073 strain rate.
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(b) Transformation and plastic effective strain contours at the instances denoted with the capital
letters A, B, and C on the stress—strain curves in (a).

Fig. 7. Latent-heat effects on the deformation response of an NiTi polycrystal. The thermal boundary conditions correspond to heat convection
in air.

6.1.2. Interplay between transformation and plastic deformation

The contribution of the deformation incompatibility at the austenite-martensite interfaces, which is accounted for by the mean-
field micromechanics evaluation of the internal stress 7,4, in plastic deformation is depicted in Fig. 3 in which the von Mises type
values of 74 and 7 at an integration point in one of the finite elements are plotted vs the average logarithmic strain H; the von Mises type

value of a stress tensor a is defined as a = \/3/2(a’ : d'), wherea' =a — Ltr(a)a is the deviatoric stress tensor. It is clearly seen that 74

14
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(a) (b)

Fig. 8. (a) Indentation geometry; (b) The 3D finite element mesh discretization of the NiTi crystal block (half of the geometry is shown).
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Fig. 9. Reaction force vs displacement of the indenter tip for isothermal simulations at 300, 320, and 340 K. The indentation direction is parallel to
the [210] crystallographic direction.

rises to considerably higher values than 7 favoring dislocation slip activity.

In Fig. 4, it is shown that plastic deformation may be observed locally even during unloading despite the strain hardening expe-
rienced during loading, which should be attributed to the strong interactions among the grains, load shedding due to the accumulation
of plastic deformation, and to the increase of the volume fraction of austenite 1 — £-see the driving force for plastic deformation given
in eqn. (17). Furthermore, as it can be seen in the scatter plots presented in Fig. 5, in which the local martensite volume fraction is
plotted vs the local effective plastic strain at the end of unloading at all integration points for the superelastic simulations depicted in
Fig. 2a, the volume fraction of residual martensite due to incomplete transformation decreases with increasing temperature in
accordance with the Clapeyron slopes observed experimentally. The scatter of the martensite volume fraction values is attributed to the
interactions among the grains and load shedding due to phase transformation and plastic deformation. Regarding the latter, a rather
weak correlation between residual martensite and plastic deformation is observed; the higher the local plastic deformation, the lower
the residual martensite.

6.2. Latent-heat effects

Uniaxial loading simulations are performed at different loading rates to assess the model’s ability to capture the rate-dependence on
the NiTi deformation response associated with latent heat effects, i.e., phase-transformation-induced heat generation/absorption. The
thermal boundary conditions correspond to heat flux q due to convection in air of the form q = h (T — Ts)n, where h stands for the film
coefficient, Ty is the sink temperature, and n is the outward unit normal to the deformed boundary. In the calculations, h = 12 W/
(m?K), which is standard for air, and T; = 298 K. The thermal conductivity is assumed constant, equal to k = (ks + kp)/2 and the
following approximation is adopted for the finite strain formulation V, - (J"'FkIF'V,T) & kV, - V, T since Abaqus/Explicit® only
allows input of a single scalar value for the thermal conductivity (Thamburaja and Anand, 2003).

In Fig. 6a, the resulting superelastic stress—strain curves for three strain rates equal to 2 - 10~%,8 - 107, and 2 - 1073 of single crystal
loaded in the [211] direction are shown. The hysteresis loop corresponding to the lowest strain rate is very similar to that obtained
from the isothermal calculation. The higher the loading rate, the steeper the inelastic response, ie., the steeper the slopes of
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Fig. 10. Contour plots of the martensite volume fraction, effective transformation, and effective plastic strain profiles on the block’s surface and on
a cross section (in-depth direction) at the end of loading and the end of unloading. The indentation direction is parallel to the [010] crystallo-
graphic direction.

stress-strain curves during transformation/plastic deformation. The resulting response is the outcome of the interplay between the rate
of heat generation/absorption during transformation, which influences the load required for phase transformation due to the Cla-
peyron slopes, and the rate of heat transfer by conduction/convection. The heat generated due to plastic deformation plays a minor
role. During loading, the temperature of the material increases due to heat absorption induced from forward phase transformation and
plastic deformation despite heat convection in air, which prevails during elastic unloading decreasing the temperature. During reverse
phase transformation, the rate of cooling increases due to combined heat convection and transformation-induced heat absorption; it is
even possible that the temperature may drop below the ambient temperature depending on the loading rate.

In Fig. 7a, the stress—strain curve obtained from uniaxial loading of the 8 x 8 x 8 cube assembly of brick elements (Section 6.1.1) at
21073 strain rate is shown together with the corresponding stress—strain curve from the isothermal simulation. Similarly to the single
crystal simulations, the thermomechanical coupling results in steeper slopes of stress—strain curves during transformation/plastic
deformation. Transformation and plastic effective strain contours are presented in Fig. 7b at the instances denoted with the capital
letters A, B, and C on the stress-strain curves in Fig. 7a. Point A is midway during the two plateaus at the same average logarithmic
strain H for both curves, point B is at the end of loading (again at same strain H for both curves), and point C corresponds to the end of
unloading. As shown in the figure, the strain distributions are non-homogeneous due to the distribution of grain orientations. At the
same average inelastic strain, the distributions of effective transformation and plastic strains are different for the two simulations. The
transformation strains at a material point are in general higher for the isothermal case compared to the 2 - 10> strain-rate case while
the plastic strains are lower. This response is attributed to the raise of temperature due to latent heat effects in the latter case, which
influences the load required for phase transformation due to the Clapeyron slopes. The resulting increase in load for a certain
martensite volume fraction to be attained, which is non-uniform due to the grain and loading orientation alignment and the induced
latent heat effects, increases in turn the plastic deformation that can be induced at that martensite volume fraction.

6.3. Microindentation of a single crystal

In this section, microindentation simulations of a single NiTi crystal are presented in order to further demonstrate the efficiency and
robustness of the numerical implementation of the model. The 3D finite element model, shown in Fig. 8, consists of (i) a single crystal
block of dimensions 100 x 100 x 60 pm discretized by a set of approximately 350,000 brick (C3D8) elements, and (ii) an indenter tip
modeled as a rigid body with a hemispherical tip of a 15 pm radius. Displacement boundary conditions in the y-direction (indentation
direction) are imposed on a reference node (placed at the center of the indenter), which is tied rigidly to the entire surface of the
indenter. The top surface of the block is free to move while the bottom surface is constrained along the y-direction. Surface-to-surface
contact definition is used to avoid any concentrated force buildup at individual nodes at initial point of contact. The friction coefficient
between the block and the indenter is taken as 0.1.
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Fig. 11. Contour plots of the martensite volume fraction, effective transformation, and effective plastic strain profiles on the block’s cross section
(in-depth direction) at the end of loading for simulations in which the crystals are oriented such that the [010], [210], and [211] directions are
parallel to the indentation direction.

The simulation results presented in Fig. 9 are for an indentation direction that corresponds to the [010] crystallographic direction
in the block. The indenter’s displacement vs the total reaction force exerted by the slave surface on the indenter are shown for
isothermal simulations at 300, 320, and 340 K. The higher the temperature, the higher the load required for phase transformation/
TRIP and, thus, the stiffer the material response. The simulated contour plots of the martensite volume fraction, effective trans-
formation, and effective plastic strain profiles on the block’s surface and on a cross section (in-depth direction) at the end of loading
and the end of unloading are depicted in Fig. 10 for the simulation at 300 K. A four-fold symmetry of the distributions is shown. The
contour plots in the in depth direction are compared with corresponding ones from simulations in which the indentation directions
correspond to the [210] and [211] crystallographic directions in Fig. 11. It should be noted that the differences depicted in the figure
are even more pronounced if, instead of effective values, individual components of the strain tensors and volume fractions of individual
HPVs were plotted.

7. Summary

A subgrannular finite strain constitutive model for the thermomechanically-coupled, deformation response of NiTi under multi-
axial loading has been proposed. The inelastic mechanisms included are (i) the reversible phase transformation of austenite to habit
plane variants of martensite, and (ii) dislocation slipping in austenite. Interactions between transformation and plastic deformation are
accounted for by a mean-field micromechanics evaluation of the internal stress raise due to deformation incompatibility at the aus-
tenite-martensite interfaces. This physics-based description of TRIP at the constitutive response level in a finite strain formalism that
further accounts for rate effects induced by thermomechanical coupling (latent heat effects) differentiates the proposed model from
available ones in literature. The evolution equations for the inelastic mechanisms are rate-dependent based on the Eulerian strain and
its corotational objective rate. The finite strain formalism provides a robust framework to capture large rotations of material elements
and surface roughening due to finite deformation observed in the simulations performed and examine complex geometries and loading
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conditions, such as indentation.
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A. Balance Laws

A.1. Balance of energy

Postulating the existence of a state function, the specific internal energy u (taken per unit volume), the first law of thermodynamics
is written in local form as

w=06:¢€-V-q+r, (A1)

where q and r denote the heat flux at the referential state and heat supply per unit volume of the reference configuration, respectively,
and o denotes the Cauchy stress tensor.

A.2. Entropy Imbalance
Postulating the existence of specific entropy s, the second law of thermodynamics is stated as
j-&-lV-qfiq-VTleO, (A.2)
T T? T
which reduces to the strong form known as Clausius-Planck inequality
§429-q-L>0, (A.3)
T T
or in terms of dissipation, D,
D=3iT+V-q—r>0, (A.49)

where T stands for the absolute temperature.
Introducing the Helmholtz free energy per unit volume

@ =u—sT, (A.5)

and in view of (A.1), (A.4) takes the following form

D=6c:é6—®—Ts>0 (A.6)

B. Crystallographic data for the 24 martensite HPVs in NiTi

The crystallographic data for the 24 martensite HPVs in NiTi is presented in Table 2.
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Table 2
Crystallographic data for the 24 martensite HPVs in NiTi.

HPVs Habit plane normal, I Transformation direction, d*

1 0.8889 0.4044 0.21252 0.4114 0.4981 0.7633
2 0.4044 0.8889 0.2152 0.4981 0.4114 0.7633
3 0.8889 0.4044 0.2152 0.4114 0.4981 0.7633
4 0.4044 0.8889 0.2152 0.4981 0.4114 0.7633
5 0.8889 0.4044 0.2152 0.4114 0.4981 0.7633
6 0.4044 0.8889 0.2152 0.4981 0.4114 0.7633
7 0.8889 0.4044 0.2152 0.4114 0.4981 0.7633
8 0.4044 0.8889 0.2152 0.4981 0.4114 0.7633
9 0.2152 0.8889 0.4044 0.7633 0.4114 0.4981
10 0.2152 0.8889 0.4044 0.7633 0.4114 0.4981
11 0.2152 0.4044 0.8889 0.7633 0.4981 0.4114
12 0.2152 0.4044 0.8889 0.7633 0.4981 0.4114
13 0.2152 0.8889 0.4044 0.7633 0.4114 0.4981
14 0.2152 —0.8889 0.4044 —0.7633 0.4114 0.4981
15 0.2152 0.4044 —0.8889 0.7633 0.4981 0.4114
16 0.2152 —0.4044 0.8889 0.7633 —0.4981 —0.4114
17 0.8889 —0.2152 0.4044 —0.4114 —0.7633 0.4981
18 —0.8889 —0.2152 —0.4044 0.4114 —0.7633 —0.4981
19 0.4044 0.2152 0.8889 0.4981 0.7633 —0.4114
20 —0.4044 0.2152 —0.8889 —0.4981 0.7633 0.4114
21 0.8889 0.2152 —0.4044 —-0.4114 0.7633 —0.4981
22 —0.8889 0.2152 0.4044 0.4114 0.7633 0.4981
23 —0.4044 —0.2152 0.8889 —0.4981 —0.7663 —0.4114
24 0.4044 —0.2152 —0.8889 0.4981 —0.7633 0.4114

C. Optimization of the model parameters

The least-square fitting of the set of model parameters x = {f:, ;fe, af}, (r=1,2,3), ,Hp,J;} is based on minimizing the objective
function

Q) =S [2x) - 2 (€.1)
g a

where Y/ are the experimental stress values that correspond to an au-strain value from the experimentally obtained stress-strain
curve from a uniaxial compression along the fy-crystallographic direction, and =/ are the corresponding simulated values.

The initial guesses for the parameter values were defined as follows. The initial values }ft = 2.0 MPa and ;f; = 20 MPa were
determined by matching the stress at the onset of the forward and reverse transformation from the room-temperature compressive
stress-strain experimental data for [2 1 0] oriented single crystals, reported in Gall et al. (2002), that show little plastic deformation.
The initial guesses for the critical forces for the slip families were based on the work of Chowdhury and Sehitoglu (2017), If,fll, =750
MPa for the 6 slip-system family (100){001}, f,fg = 600 MPa for the 6 slip-system family (100){011}, and ;ff; = 500 MPa for the 12

slip-system family (110){111 } The initial guesses for the hardening parameters, ,H,, and J;, were arbitrary chosen.

Note that a Bayesian calibration of the model parameters has been performed in Honarmandi et al. (2021).
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