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Abstract— Predictive control techniques have been broadly
used in control of nonlinear nano-positioning systems (e.g.,
piezo actuators). One common approach to control such systems
for precision positioning is to model the system dynamics
using a nonlinear model and linearize it using Taylor series,
and then apply model predictive control (MPC). However,
the control bandwidth and the control performance are quite
limited as the obtained linear system is only guaranteed to be
accurate within small neighborhood of the linearization point.
To address this issue, we propose to linearize the nonlinear
system model using Koopman operators and then use the
obtained linear parameter-varying model for predictive control.
This linearization scheme can significantly decrease the overall
approximation error within the MPC prediction horizon, and
thus, lead to improved tracking performance. The proposed
approach was validated through trajectory tracking of piezo
actuators in simulation.

I. INTRODUCTION

Predictive control techniques have been broadly used in
control of nano-positioning systems such as piezo actuators
(PEAs). The key in the success of predictive control is the
accuracy of the system model used. Lately, recurrent neural
networks (RNNs) have been shown effective in modeling
the nonlinear dynamics of PEA systems, the nonlinearities
of which are mostly induced by hysteresis and creep effects
[1]. Although the modeling accuracy over broad bandwidth
and/or amplitude range has been improved notably compared
to other modeling approaches, the nonlinearities itself makes
it challenging to design computationally efficient controllers.
While model predictive control (MPC) can be extended to
the nonlinear case, the resulted optimization problem is non-
convex and thus intractable in general [1], [2].

This issue can be avoided through linearizing the original
nonlinear system. Taylor series has been broadly used in non-
linear system linearization [2]. However, the disadvantage is
that the approximation accuracy is only guaranteed within
small neighborhood of the linearization point. Therefore, the
modeling uncertainties will surge as the prediction horizon
increases, and then limit the performance of MPC. Feedback
linearization and flatness can also be used for lineariza-
tion but they are not effective for general nonlinear sys-
tems [3], [4]. Other options include Carleman linearization,
“polyflow”, and Koopman operator approach [5]–[7]. Among
these, only Koopman approach is data-driven [8], [9]. Koop-
man operator approach uses a finite number of functions (i.e.,
observations) to form the state of the linearized model, and
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is not restricted by the form of the nonlinear model. Data-
driven Koopman model predictive control has been proposed
for controlling nonlinear partial differential equations, where
the nonlinear dynamics is linearized [10]–[12].

In this work, we propose to achieve precision positioning
control using Koopman operator approach. Specifically, a
discrete nonlinear system represented by a RNN is linearized
using data-driven Koopman operator approach, and a predic-
tive controller is designed based on the linearized model [10].
Instead of using a linear model to approximate the system
nonlinear dynamics over the entire control process, only the
dynamics in the future Np (i.e., prediction horizon) steps is
approximated (i.e., linearized). Since the ultimate goal is to
realize precision positioning in real time, the order of the
linear system is set to be small for the sake of computation
efficiency. We show that when the observation functions are
linear to the original state, Koopman approach is similar to
performing system identification locally. Different from the
approach in [10], we also extend Koopman approach to a
bilinear model and both approaches are evaluated through
simulations. Note that even though Koopman approach can
approximate the original dynamics more accurately than the
Taylor series, the linearization accuracy decreases as the
increment of prediction horizon and/or the frequency of the
input. This issue can be mitigated through introducing a
second linear model in the predictive controller. Specifically,
the first linear model (generated with Koopman approach)
will be used to compute the optimal inputs which provide
the anchor for identifying the second model, which is also
generated using Koopman approach. For demonstration, the
control performance of using single linear model and two
linear models are compared with that of the Taylor approach
in simulation.

II. PRELIMINARIES

A. Koopman operators

Consider a system represented by a discrete model as

xk+1 = f (xk), xk ∈ Rn. (1)

Define the system observation or output yk ∈ Rm as yk =
g(xk). The Koopman operator K is defined as

Kg(xk), g◦ f (xk) = g(xk+1), ◦ : composition. (2)

Therefore, the linearity of Koopman operator can be
verified by

K(αg(xk)+βg(xk)) = αKg(xk)+βKg(xk). (3)
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The Koopman eigenfunction φ satisfies Kφ = λφ where
λ is the corresponding eigenvalue. The evolution of the
outputs can be expressed as a linear combination of infinite
number of eigenfunctions. In practice, only a finite number
of eigenfunctions will be used [13]. To analyze the non-
autonomous system, the Koopman operator is extended to
system with exogenous input as shown in Eq. (4) [10].

xk+1 = f (xk,uk) (4)

Let (ui)
∞
k denote the input sequence starting from time

k. Suppose xk ∈ X and uk ∈ U, define L = {(ui)
∞
k |ui ∈ U},

the state space X is extended to X ×L. Accordingly, the
Koopman operator K for the system Eq. (4) is defined as

Kg(xk,(ui)
∞
k ), g( f (xk,uk),(ui)

∞
k+1). (5)

With the newly defined Koopman operator (Eq. (5)), the
established Koopman operator theories can be applied for the
non-autonomous system Eq. (4).

B. RNN-based nonlinear dynamics

RNN can be used to capture complex dynamics in the-
ory given enough number of parameters. In this work, we
consider the RNN represented by Eq. (6) which is used to
model the dynamics of piezo actuators (PEAs),

xk+1 = tanh(W1xk +B2 +B1uk)

yk =W2xk +B3
, (6)

where xk ∈ RN×1, uk, and yk are the system state, input
and output at the sampling instant k, respectively [1]. The
nonlinearity of Eq. (6) is mostly induced by hysteresis
which is both frequency- and amplitude-dependent. Such
nonlinearity makes it very challenging to design controllers
with large frequency and/or amplitude bandwidth and high
accuracy.

C. Linearization with Taylor series

Eq. (6) can be linearized with Taylor series. Note that
Taylor approximation linearizes the system around a chosen
fixed point and only guarantees the accuracy around it. Let
h(x) = tanh(x). At the sampling instant k, Eq. (6) can be
linearized at the fixed point (x̄k, ūk) as

xk+1 = h(W1x̄k +B2 +B1ūk)+
∂h
∂xk

∣∣∣xk=x̄k
uk=ūk

(xk− x̄k)

+
∂h
∂uk

∣∣∣xk=x̄k
uk=ūk

(uk− ūk)

= Akxk +Bkuk +Mk

(7)

where Ak =
∂h
∂xk

∣∣∣xk=x̄k
uk=ūk

, Bk =
∂h
∂uk

∣∣∣xk=x̄k
uk=ūk

, and Mk = h(W1x̄k +

B2+B1ūk)− ∂h
∂xk

∣∣∣xk=x̄k
uk=ūk

x̄k− ∂h
∂uk

∣∣∣xk=x̄k
uk=ūk

ūk. By assuming that Ak,

Bk, and Mk remain fixed for the future Np (i.e., prediction
horizon) steps, Eq. (7) can be used to predict the future inputs
with unknowns [uk+1,uk+1, · · · ,uk+Np ].

III. KOOPMAN OPERATOR APPROACH

A. Linearization based on Koopman operators

The EDMD algorithm proposed in [14] is used to linearize
Eq. (6). Let zk = [g1(xk),g2(xk), · · · ,gm(xk)]

T , where gis are
observations. Suppose that the Koopman operator defined in
Eq. (5) is in the span of [zT

k ,uk]
T . Then we have

zk+1 =
[
A B
][zk

uk

]
= Azk +Buk. (8)

At the sampling instant k, the current state xk and input uk
are known. The goal is to use Eq. (8) to model the dynamics
in the future Np steps, where Np is the prediction horizon
of the predictive controller. Since the inputs for the future
Np steps are unknown, one can try different input sequences
(ui)

k+Np
k . For the following matrix,

U =


u1,k u1,k+1 · · · u1,k+Np

u2,k u2,k+1 · · · u2,k+Np
...

...
. . .

...
ul,k ul,k+1 · · · ul,k+Np

 , (9)

each row of U is a possible sequence of inputs for the next
Np steps. With the ith row [ui,k,ui,k+1, · · · ,ui,k+Np ] as inputs
to the nonlinear system Eq. (6), we can obtain the future
states [xi,k+1,xi,k+2, · · · ,xi,k+Np ]. Then zi,k can be constructed
as follows.

zi,k = [g1(xi,k), · · · ,gm(xi,k)]
T

zi,k+1 = [g1(xi,k+1), · · · ,gm(xi,k+1)]
T (10)

By Eq. (8), we have zi,k+1 = Azi,k +BUi,k, where Ui,k is
the entry (i,k) of U . It follows that

Z+
i = [zi,k+1, · · · ,zi,k+Np ]

= A[zi,k, · · · ,zi,k+Np−1]+B[Ui,k+1, · · · ,Ui,K+Np−1]

=
[
A B
][Zi
Ui

] (11)

where Ui is the ith row of U . For each i = 1,2, · · · ,m, a
similar equation can be derived, and they can be combined
as

Z+ =
[
Z+

1 Z+
2 · · · Z+

l

]
=
[
A B
][Z1 Z2 · · · Zl
U1 U2 · · · Ul

]
=
[
A B
]

Z.

(12)
One can solve the following least-square optimization

problem to obtain A and B.

min
A,B
|| Z+− [A B]Z || (13)

The solution will be [A,B] = Z+Z−1 with Z−1 as the
pseudoinverse of Z.

If we assume that the Koopman operator defined in Eq. (5)
is in the span of [zT

k ,uk,zT
k uk]

T , then the nonlinear dynamics
will be approximated with the following bilinear form.
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zk+1 =
[
A B B̄

] zk
uk

zkuk

= Azk +Buk + B̄zkuk. (14)

To obtain the parameters (A,B, B̄), Eq. (12) can be modi-
fied as

Z+ =
[
Z+

1 Z+
2 · · · Z+

l

]
=
[
A B B̄

]Z1 Z2 · · · Zl
U1 U2 · · · Ul
T1 T2 · · · Tl


=
[
A B B̄

]
Z

(15)

where Ti is the term due to zkuk and can be computed as
Ti(p,q) = Zi(p,q)×Ui( j). Accordingly, Eq. (13) is changed
to

min
A,B,B̄
|| Z+− [A B B̄]Z ||. (16)

Stabilization of the bilinear system has been studied in
[15], [16]. However, Eq. (14) is not suitable for designing
predictive controllers due to the nonlinear term, even though
the approximation accuracy might be improved. Note that if
g1(xk) = W2xk +B3, then dynamics of the linearized model
in the future Np steps is as follows.

zk+1 = Azk +Buk

yk = [1 0 · · · 0]zk =Czk
(17)

Remark 1. One special case is that the gi is a linear
function of xk, e.g., zk = Mxk for some invertible matrix M.
Then Eq. (8) is equivalent to

xk+1 = M−1AMxk +M−1Buk . (18)

It seems that Eq. (18) is similar to Taylor approximation.
However, it is still possible that Eq. (18) is better than
Taylor approximation as the latter is optimal around the
linearization point, while Eq. (18) is optimal in the sense that
the prediction error over the future Np steps is minimum.
Mathematically, for any other linear approximation M in
the space of [xk,uk], there exists ε > 0 such as that Taylor
approximation is more accurate in the open ball Bε([xk,uk])
than M.

In other words, the model Eq. (18) may sacrifice some
accuracy at the linearization point to achieve overall accu-
racy, which is illustrated by the simulation results in Fig. 1:
for the dynamical system xk+1 = x2

k , clearly, L1 is optimal
locally at point A1 and L2 is optimal for the range between
A1 and A2.

Remark 2. Another important factor that may affect
the approximation accuracy is the generation of U . The
nonlinearity of the system Eq. (6) depends on the input uk,
therefore, the range of uk defined as RG = max

k+1≤i≤k+Np
ui−

min
k+1≤i≤k+Np

ui may determine how local the linear approxi-

mation is. In this work, U is randomly generated with the
RG changes adaptively according to the trajectory to be

tracked, i.e., Ui,k is uniformly distributed in the range [−RG+
uk,RG+uk]. In particular, RG is set to be proportional to R̄G
i.e., RG = ρ1R̄G, where R̄G = max

k+1≤i≤k+Np
ri− min

k+1≤i≤k+Np
ri is

the range of the reference signal rk to be tracked in the future
Np steps. Ideally, ρ1 should be determined by the inversion
model of the system and can be estimated if the inversion
model is unavailable. This strategy ensures that Koopman
approach outperforms Taylor approximation for both high-
frequency and low-frequency inputs.

B. Predictive Control

In this section, MPC is reviewed first. Then how to
incorporate two linear models to enhance the controller
performance is presented.

At the sampling instance k, suppose Eq. (6) is lin-
earized with Koopman approach and the obtained linear
model is Eq. (8). Let U = [uk+1,uk+2, · · · ,uk+Np ]

T , ∆U =
[uk+1 − uk,uk+2 − uk+1, · · · ,uk+Np − uk+Np−1]

T , and 1n =
[1,1, · · · ,1]T . The predicted Np future outputs Y of the linear
system Eq. (8) are

Y = Gzk +HU +Fuk

= Gzk +H(S∆U +1uk)+Fuk

= Gzk +HS∆U +(F +H1)uk

, (19)

with

Y =


yk+1
yk+2

...
yk+Np


Np×1

, G =


CA
CA2

...
CANp


Np×1

, U =


uk+1
uk+2

...
uk+Np


Np×1

H =


0 0 . . . 0

CB 0 . . . 0
...

...
. . .

...
CANp−2B CANp−3B . . . 0


Np×Np

S =


1 0 . . . 0
1 1 . . . 0
...

...
. . .

...
1 1 . . . 1

 , F =


CB

CAB
...

CANp−1B


Np×1

.

1 1.2 1.4 1.6 1.8 2 2.2

1

2

3

4

5

Actual system

L1:Taylor

L2: Koopman

L1

L2

A2

A1

Fig. 1: Comparison of Taylor approximation and Koopman
approach in simulation.
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The cost function to be minimized for MPC is

J = (Y −Rk)
T (Y −Rk)+ρ∆UT

∆U

= ∆UT (ST HT HS+ρI)∆U +2∆UT ST HT E +ET E
, (20)

where Rk = [rk+1,rk+2, · · · ,rk+Np ]
T , I is the identity matrix,

ρ > 0, and E = Gxk +(F +H1)uk−Rk. The objective is to
minimize J under certain constraints, which is formulated as
the following optimization problem

min
∆U

J =
1
2

∆UT
Ψ∆U +Φ

T
∆U

s.t. |∆U | ≤ Ū
, (21)

where Ψ = ST HT HS+ρI and Φ = ST HT E.
For Eq. (6), the nonlinearity depends on uk, if the pre-

diction horizon remains the same and the frequency of uk
increases, the modeling accuracy of Eq. (8) will decrease
resulting in downgraded performance in trajectory tracking.
One possible way to address this issue is to add another
linear model to approximate the dynamics, i.e., use two linear
models to approximate the dynamic of the system for the
future Np steps. The computation consumption may increase
since the same optimization problem Eq. (21) has to be
solved twice. The detailed algorithm is shown below.

First, at the sampling instant k, obtain the linear model
with Koopman approach and solve the optimization problem
Eq. (21). Then the solved optimal Np inputs are U∗ =
[u∗k+1,u

∗
k+2, · · · ,u∗k+Np

], and choose the step where the second
linear model starts working. For instance, we can select
the starting point at u∗k+q with q = Np/2. Use the same
procedure to obtain the second model with the starting point
at [xk+q,u∗k+q]. Therefore, the dynamics in the future Np steps
can be described with the following model.

zi+1 =

{
A1zi +B1ui if i = k,k+1, · · · ,k+q
A2zi +B2ui if i = k+q+1,k+q+2, · · · ,k+Np

(22)
Accordingly, the parameters G, F , and H should be

modified as follows. The algorithm which incorporates the
two linear models is summarized in Algorithm 1.

G =



CA1
...

CAq
1

CA2Aq
1

...
CANp−q

2 Aq
1


Np×1

F =



CB1
...

CAq−1
1 B1

CA2Aq−1
1 B1
...

CANp−q
2 Aq−1

1 B1


Np×1

(23)

Algorithm 1: Predictive control through incorporat-
ing two linear models.

Input: Current state xk, previous input uk, prediction
horizon Np, starting step k+q for the second
model, reference signal rk.

Output: input for next step uk+1.
1 Compute R̄G of [rk+1,rk+1, . . . ,rk+Np ]
2 RG← ρR̄G
3 Generate U with U(i, j) ∈ [−RG+uk,RG+uk]

randomly generated
4 i← 1
5 while i < l +1 do
6 Start from xk, with the input sequence U(i,1 : Np)

using Eq. (6) to compute X = [xk+1, · · · ,xk+Np ].
7 For each state xk ∈ X , compute the observations

zi,k = [g1(xk),g2(xk), · · · ,gm(xk)]
T .

8 Construct matrices Z+ and Z in Eq. (12) with zi,k and
U

9 Solve the optimization problem Eq. (13) to obtain
[A1 B1]

10 Solve the optimization problem Eq. (21) to obtain
U∗ = [u∗k+1,u

∗
k+2, · · · ,u∗k+Np

]T .
11 Use U∗ to compute xk+q with Eq. (6)
12 With xk+q and u∗k+q, repeat steps 1-8 to obtain the

second linear model [A2 B2]
13 Update the MPC parameters G, F , and H according

to Eq. (24)
14 Solve the optimization problem Eq. (21) to obtain the

next input uk+1

H =



0 0 . . . 0
CB1 0 . . . 0

...
...

. . .
...

CAq−2
1 B1 CAq−3

1 B1 · · · 0
CA2Aq−2

1 B1 CA2Aq−3
1 B1 · · · 0

...
...

. . .
...

CANp−q
2 Aq−2

1 B1 CANp−q−1
2 Aq−3

1 B1 . . . 0


Np×Np

(24)

Remark 3. Note that the choice of q is important to the
accuracy of Eq. (22). It has to be properly chosen to ensure
that Eq. (22) is more accurate than the single model Eq. (8).
The purpose of introducing the second linear model is that in
case RG is very large, the modeling uncertainty of the model
Eq. (8) after q steps may be very large, thus re-linearizing the
nonlinear system model can improve the overall linearization
accuracy for the entire future Np steps.

IV. SIMULATION RESULTS

In the simulation, the RNN model [1] which captures the
nonlinear dynamics of a PEA was used.

A. Evaluate the linearization accuracy

When evaluating the linearization accuracy, the input to
the nonlinear system was pre-designed and thus no controller
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Fig. 2: Comparison of the prediction accuracy of Taylor, Koopman linear and bilinear approaches for 137Hz sinusoidal
input. (a) Prediction results, (b) zoomed-in view of (a), (c) prediction errors.

was involved. Specifically, Eq. (6) was linearized every
N1 = 20 sampling intervals, and for the following N1 steps
the same input was fed into the nonlinear system and the
linearized system to compare the outputs. Input signal with
different frequencies (12Hz, 137Hz, and 352.6Hz sinusoidal
signal) were tested.

Three approaches—the Taylor approximation (Eq. (7)), the
linear model (Eq. (8)), and the bilinear model (Eq. (14))
were compared. As an example, prediction errors in the time
domain are shown in Fig. 2 for 137Hz sinusoidal input.
The numerical comparison results are presented in Table. I.
Suppose the tracking error vector is E, 2-norm, ∞-norm, and
variance of E are shown in Table. I. The output for the future
20 steps are predicted. The size of U is 60×15 and RG =
0.5R̄G. For the observations in Koopman operator approach,
g1 = W2xk +B3 and gi = W̄gi tanh(Wgixk +Bgi) + B̄gi, i > 1,
where W̄gi,Wgi,Bgi, and B̄gi were randomly generated.

From Table. I, it can be seen that both the Koopman
linear and bilinear model improved the prediction errors by
at least 50% for all the three inputs compared to the Taylor
approximation. As seen in Fig. 2, the Taylor approach can
predict well at the points close to the linearization point but
deviates away from the actual outputs at points away from
the linearization point.

In Table. I, compared to the linear model, the bilinear
model can achieve higher accuracy by at least 30%, which is
also verified in the Fig. 2. In addition, it is worthwhile to note
that the prediction errors of the linear and bilinear approach
are not always lower than that of Taylor approximation for
every point as shown in Fig. 2, considering that they may
sacrifice the accuracies around the linearization point for
better approximation accuracy over Np steps as explained
in Remark 1.

B. Performances of predictive control with different lin-
earized models

With the linearized system, predictive controller can be
applied. The constraints on the input were ignored, however,
they can be trivially added to the controller. We chose Np =
20 and ρ = 0.5. Koopman approach using single linear model

TABLE I: Prediction error comparison.

Inputs Taylor Linear Bilinear

12Hz
N2 0.0250 0.0025 1.36e-7

N∞ 0.0238 0.0017 8.88e-8

Var 0.0079 0.0005 1.14e-8

137Hz
N2 3.6631 1.3871 0.5336

N∞ 0.4123 0.1636 0.0701

Var 0.0096 0.0013 0.0002

352.6Hz
N2 19.9141 6.6388 4.0187

N∞ 2.0258 0.5598 0.5247

Var 0.2831 0.0269 0.0113

is denoted by “Koopman1” in Table. II while the one with
two linear models is “Koopman2”. The order of the linear
model for Koopman approach was 15.

Overall, Koopman approach can eliminate the tracking
error by at least 80% for all the trajectories as shown
in Table. II, as well as Fig. 3. This improvement can be
attributed to two factors. One is the linearization accuracy
over the prediction horizon as validated in the previous
subsection. Another reason is the strategy of dynamically
changing the exploration range [−RG,RG] in which U was
generated for obtaining the model parameters. This range
will determine how local the dynamics is as explained in Re-
mark 2. When tracking low-frequency trajectory (i.e., 13Hz),
incorporating two linear models was not advantageous over
the single linear model. But when the trajectory frequency
was increased, “Koopman2” could improve the performance
by about 50% compared to “Koopman1”. This is due to
the soaring prediction error for high-frequency input, thus
introducing second linear model can mitigate the surging
prediction errors.

Compared to the nonlinear predictive controller in [1],
Koopman approach transforms the intractable nonlinear opti-
mization problem to a tractable convex optimization problem
while maintaining the tracking accuracy. The computation
cost depends on the order of the linearized model. It is
possible to use low order linearized model to ensure the
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Fig. 3: Comparison of the simulated tracking results of Taylor, Koopman1, and Koopman2 approaches for 356.2Hz
trajectory. (a) Tracking results, (b) zoomed-in view of (a), (c) tracking errors.

TABLE II: Tracking performance comparison in simulation.

Refs. 13Hz 187Hz 352.6Hz

Error(%) Erms Emax Erms Emax Erms Emax

Taylor 0.462 0.582 6.685 10.435 15.208 23.740

Koopman1 0.010 0.021 1.498 2.137 3.206 4.001

Koopman2 0.017 0.026 0.531 1.083 1.054 2.217

control accuracy and computation efficiency, as the case
demonstrated in simulations here. Moreover, Koopman ap-
proach does not depend on the form of the nonlinear model
which is just used for generating data, thus it can be applied
on other discrete nonlinear systems (e.g., the systems in [17],
[18]). Therefore, Koopman approach is more suitable for
precision control provided that the nonlinear system model
is known.

V. CONCLUSIONS AND FUTURE WORK

In this work, linearization based on Koopman operators
has been proposed for predictive control in precision posi-
tioning system. Koopman approach linearizes the nonlinear
dynamics in the way that the prediction error over future
Np steps is minimized thus is suitable for predictive control.
Furthermore, by introducing two linear models, the control
performance can be further improved. The simulation results
showed that Koopman approach is much better than the
Taylor approximation for system linearization.
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