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Abstract The inelastic deformation response of NiTi sin-
gle crystals involves reversible phase transformation and

dislocation slip, which is enhanced by the deformation

incompatibility among the phases. The phase transforma-
tion–plasticity coupling results in decrease in performance,

including reduced work output and early fatigue failure.

The characterization of the inelastic properties in this
material class is crucial for material assessment/ranking

and robust performance predictions. Given that direct

mesoscale measurements of (coupled) deformation mech-
anisms are in many cases impractical, top-down charac-

terization of single-crystal properties from limited

macroscopic experiments is mostly employed. Here,
Bayesian inference and a micromechanics-based contin-

uum single-crystal model are adopted for determining

(i) material property values within confidence intervals that
allow for a propagation of the quantified uncertainty onto

performance predictions, which can be used toward a more

efficient design methodology; (ii) ranking of the relative
influence of the various material parameters on the defor-

mation response that can further translate to the respective

influence of the various deformation mechanisms condi-
tional on the adopted material model; and (iii) a quantita-

tive evaluation of the importance of the deformation

incompatibility among the phases in the overall deforma-
tion response.

Keywords NiTi ! Materials ! Mechanical behavior ! Slip !
SMA ! Stress–strain

Introduction

Deformed Shape Memory Alloys (SMAs) can recover their

original shape upon transformation of their crystallo-
graphic structure from a low symmetry (martensite) to a

higher symmetry (austenite) phase [1–3]. SMAs are, thus,

desirable in engineering applications such as vascular
stents and monolithic, frictionless, compact, lightweight,

solid-state actuators [4–8]. The crystallographic phase

transformation is non-diffusive, reversible, triggered by
thermal and/or mechanical loading. The martensite phase is

formed as thin platelets, needles, or laths within the

austenite parent phase, resulting in crystallographic slip,
termed TRansformation-Induced Plasticity (TRIP), as a

mechanism to accommodate the deformation incompati-
bility at the austenite–martensite interfaces [9, 10]. TRIP

accumulates with transformation cycling, degrading the

desired functionality of SMAs and is further responsible for
a reduction in transformation stress, strain, and

hysteresis [11–18].

Numerous constitutive equations of the deformation
response of SMAs at the single-crystal level have been

developed based on continuum mechanics [19–31]. These

models, which are formulated by incorporating crystallo-
graphic information into a local continuum formulation,
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allow continuum stresses to be resolved onto individual

planes responsible for mediating inelastic deformation. The
scale in these models is smeared out and, thus, the spatial

arrangement of the crystallographic details is not captured.

However, they are (i) easily implementable in numerical
methods for the full-field solution of boundary value

problems in polycrystalline settings where misorientation

across grains, grain boundaries, and triple joints can give
rise to complex stress states, and (ii) are amenable to mean-

field scale translation rules (e.g., Mori-Tanaka and self-
consistent approaches). Due to limitations in simultaneous

measuring infinitesimal stress and strain increments at the

mesoscale, the constitutive equations are in general derived
and calibrated through a top-down approach by fitting

material parameters to macroscopic experiments.

Given that material models are abstractions of reality,
necessarily simplifying or omitting physical phenomena,

assessing the credibility of performance predictions is of

critical importance, particularly when these models are
used in engineering design. Traditional engineering design

is based on empirical safety factors. To allow for more

efficient designs, empirical safety factors should be
replaced by confidence bounds that account for (i) mea-

surement errors, (ii) deficiencies of the material models

used in the material characterization and performance
predictions, and (iii) material variability. The growing

importance of the related field of Uncertainty Quantifica-

tion (UQ) is highlighted by the extensive guidelines and
standards by the American Society of Mechanical Engi-

neers [32, 33]. UQ methods provide a robust framework

for (i) the quantification of uncertainties by handling
multiple error sources, (ii) the forward propagation of

uncertainty, (iii) model selection in terms of data fit and

model simplicity, and (iv) revealing model sensitivities and
correlations among model parameters [34–40].

Instead of the classical, deterministic approach to model

calibration that yields the single set of material parameter
values that best matches the observed data in some

appropriate sense, Bayesian inference determines a prob-

ability density function (pdf) for the model parameters, i.e.,
accounts for uncertainty in the estimated parameters. In

turn, the model predictions are descriptors of the random

field that emerges as a solution of the underlying stochastic
model [36, 41–43]. Bayesian inference, rooted in Bayes’

theorem, leads to an optimal update on prior knowledge

conditional on the observational data. In Bayes’ theorem,
the likelihood pdf plays a role analogous to the cost/ob-

jective function in traditional fitting/optimization describ-

ing the error between model predictions and observational
data. The error is formulated in terms of either the tradi-

tional additive error models [44–46] or embedded error

models [47–50]; the latter assigning statistical bias cor-
rection terms to the model parameters directly. In the case

of nonlinearity and high-dimensionality, the posterior dis-

tribution is evaluated as a stationary distribution of a
Markov chain generated by a Markov Chain Monte Carlo

(MCMC) method [51, 52], which can be based on adaptive

Metropolis–Hastings algorithms [53–55]. Ranking of the
influence of the model parameters and their interdepen-

dencies on a model’s predictions for the sake of model

refinement, e.g., reduction of cost and complexity in model
optimization problems, or gaining an insight into the

physical process described by the model (conditional to the
model) can be provided by ANalysis Of VAriance

(ANOVA), which is a global variance-based sensitivity

analysis [56–59]. Furthermore, Bayesian inference is a
powerful approach for model selection among competing

models emulating the response of a physical sys-

tem [60–62], balancing ability to reproduce data with
predictiveness and model simplicity [63–65].

In this paper, the Bayesian approach is adopted for the

characterization of the inelastic deformation response of
NiTi single crystals in a top-down approach from macro-

scopic experimental data. Uniaxial compressive loading

experiments at six different crystallographic directions are
utilized for this purpose [66]. The constitutive model

accounts for phase transformation and plastic deformation

based on micromechanics to accurately reflect the internal
stress states that contribute to TRIP. Due to the complexity

of the deformation response several simplifying assump-

tions are necessarily adopted. The presented analysis pro-
vides (i) material parameter values within confidence

intervals; (ii) ranking the relative influence of the various

material parameters on the deformation response; and (iii)
a quantitative evaluation of the importance of accounting

for the internal stress rise due to the deformation incom-

patibility among the phases in the overall deformation
response. The obtained results offer an insight into the

importance of the various deformation mechanisms in the

overall deformation response conditional to the adopted
model, and allow for a propagation of the quantified

uncertainty onto performance predictions, which can be

used toward a more efficient design methodology in which
empirical safety factors can be replaced with confidence

bounds.

The paper is organized as follows. In ‘‘Deformation
Response of Single NiTi Crystals’’ section, the NiTi single-

crystal deformation mechanisms are briefly reviewed. The

constitutive model accounting for those is presented in
‘‘Model for the Deformation Response of Single NiTi

Crystals’’ section. An outline of the Bayesian calibration,

model selection, and ANOVA is given in ‘‘Outline of
Bayesian Calibration, Model Selection, and Analysis of

Variance’’ section and the related results in ‘‘Results and

Discussion’’ section. A summary of the findings is provided
in ‘‘Summary’’ section.
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Deformation Response of Single NiTi Crystals

In NiTi, austenite transforms from a cubic B2 crystallo-
graphic structure into 12 monoclinic (B190) martensite

variants by mechanical loading and/or cooling. The

martensite phase forms within the austenite parent phase
with the two phases fitting together along planes, called

invariant or habit planes, that remain unchanged, i.e.,

neither deform nor rotate. These planes/interfaces are
between austenite and twins of martensite variants, called

Habit Plane Variants (HPVs), that comprise of two Lattice
Correspondent Variants (LCVs). Crystallographic theory
predicts 192 HPVs, i.e., 192 possible distinct interfaces

between austenite and martensite [67]. Movement of

interfaces between HPVs is referred to as HPV reorienta-
tion, and movement of interfaces between LCVs as

detwinning.
Plastic deformation in austenite is strongly influenced by

h100i 011f g and h101i 001f g slip modes [68] and, as

recently observed, by h111i 110f g [69]. TRIP in austenite

is observed during phase transformation as a mechanism to
accommodate the deformation incompatibility at the

austenite–martensite interfaces [9, 10]. The phase trans-
formation–plasticity coupling detrimentally affects perfor-

mance, reflected in a reduced work output (functional

fatigue) and early fatigue failure (structural fatigue) during
repeated thermomechanical cycling [9, 70–86]. The plastic

deformation in martensite is mainly due to twin activity, 11

possible twinning systems were pointed out by [87], while
only one slip system (001) [100] exists due to the low

symmetry of the martensite monoclinic crystal structure.

Model for the Deformation Response of Single
NiTi Crystals

The adopted single-crystal model accounts for reversible

phase transformation from austenite to HPVs, dislocation
slipping in the austenite state, and anisotropy in the elastic

properties of the two phases, neglecting reorientation of

HPVs, detwinning of LCVs, and deformation twinning in
martensite [88]. Thus, the model targets pseudoelasticity

and shape memory effect for nearly proportional loading

within a range that does not allow for considerable
martensite plastic deformation or formation of self-ac-

commodated martensite. The interaction between the two

phases is described through the Eshelby tensor by regard-
ing the HPVs as ellipsoidal inclusions embedded in the

austenite matrix in order to reflect the internal stress states

that can activate dislocation slipping, i.e., TRIP, even for
applied load levels that wouldn’t otherwise [89, 90].

Kinematics

The inelastic deformation of an SMA crystal is defined as
an average over a Representative Volume Element (RVE),

which should be large enough to include a sizable set of

martensite HPVs and slip systems within a single-crystal
austenite. It is further assumed that the austenite–marten-

site formed interfaces are coherent and their motion along

with the dislocation motion is rate-independent.
For later use, the volume fraction of martensite corre-

sponding to the ath-HPV system in an RVE is denoted as

na; restricted by 0" na " 1: The total volume fraction of

martensite in a crystal, n ¼
P

a n
a; must lie in the range

0" na " 1:
Assuming infinitesimal strains, additive decomposition

of the total macroscopic strain tensor reads as

e ¼ ee þ et þ ep; ð1Þ

where ee; et; and ep stand for the elastic, transformation,

and plastic strain tensors, respectively. Thermal strain is an
order of magnitude smaller than the transformation strain

and is thus not included for simplicity. The thermal

expansion of the monoclinic martensite variants is highly
anisotropic [91] and its proper implementation in a single-

crystal model is not trivial [92].

Transformation Strain

By the rule of mixtures, the transformation strain can be
written as

et ¼
XNt

a¼1

beat n
a; ð2Þ

where beat ¼ 1
2 gt l

a ' da þ da ' lað Þ; la; da; and gt are the

stress free transformation strain, the habit plane normal, the
transformation direction, and the magnitude of transfor-

mation, respectively, for each of the Nt martensite HPVs,

given by crystallography considerations.

The rate of et thus reads as

_et ¼
XNt

a¼1

beat _n
a: ð3Þ

Plastic Strain

The overall plastic strain tensor can be written as

ep ¼ ð1( nÞepA þ
XNt

a¼1

naepMa
; ð4Þ
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where epA and epMa
stand for the plastic strain tensors in the

regions occupied by austenite and ath-martensite HPV,
respectively.

The rate of ep is thus given as

_ep ¼ ð1( nÞ _epA þ
XNt

a¼1

na _epMa
(
XNt

a¼1

_na epA ( epMa

! "

¼ ð1( nÞ _epA (
XNt

a¼1

_na

1( n
epA ( epMa

! "
" #

þ
XNt

a¼1

na _epMa (
_na

na
epA ( epMa

! "
" #

: ð5Þ

The rate of ep can moreover be described by crystallo-

graphic slip mechanisms in the austenite phase

_ep ¼ ð1( nÞ
XNA

l¼1

Abelp _c
l
A; ð6Þ

where Abelp ¼ 1
2 qlA ' rlA þ rlA ' qlA
! "

is the orientation ten-

sor of the lth-slipping system of austenite, qlA; r
l
A; _clA are

the respective shear direction, slip plane normal, and

average shearing rate, respectively, and NA denotes the

number of slip systems.

Combining (5) and (6), which hold for every na 2
½0; 1*; a ¼ 1; . . .;Nt; yields

_epA ¼
PNt

a¼1

_na

1( n
epA ( epMa

! "
þ
XNA

l¼1

Abelp _c
l
A;

_epMa ¼
_na

na
epA ( e

p
Ma

! "
:

8
>>><

>>>:
ð7Þ

Thus, the rates of plastic strain in the austenite and ath-
martensite HPV are dependent on the dislocation slip rates

on austenite’s slip systems and on the rates of expansion/

shrinkage of the HPVs, thus, the model accounts for the
inheritance of plastic strain from one phase to another.

Thermodynamics and Constitutive Equations

Helmholtz Free Energy

Following the choice of the applied strain tensor e and

absolute temperature T as external state variables, the
Helmholtz free energy per unit reference volume is taken to

be

U e; T; na; clA
! "

¼ Uel e; T ; n
a; cAlð Þ þ Uint e; T; n

a; cAlð Þ

þ Uch e; T; na; cAlð Þ ¼ 1

2
ee : C : ee

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
elasticenergy

þ Uint e; T ; n
a; clA

! "
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

interaction energy

þ c ðT ( T0Þ ( T ln
T

T0

$ %& '
þ k
TT

ðT ( TTÞn
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

chemicalenergy

;

ð8Þ

where the interaction energy is defined through its rate as

in [89] 1

_Uint ¼ C : eeð Þ : _ep ( rA : ð1( nÞ
XNA

l¼1

Abelp _c
l
A; ð9Þ

and

rA ¼ C : ee þ
XNt

a¼1

naC : I( Sað Þ : beat þ epMa
( epA

( )
;

ð10aÞ

rMa ¼ rA ( C : I( Sað Þ : beat þ e
p
Ma

( e
p
A

! "
: ð10bÞ

The model parameters C and c denote the effective stiff-

ness tensor and specific heat at the reference state,
respectively. The effective stiffness tensor, C; can be

evaluated in terms of the martensite volume fraction, n; by
the rule of mixtures, i.e., CðnÞ ¼ CA þ n CM ( CAð Þ ¼
CA þ nDC; where the subscripts A and M denote austenite

and martensite, respectively. Here, the assumption C ¼
Ca

M ¼ CA is adopted for simplicity since first principal

calculations show that the elastic properties of the B2 and

B190 phases are similar [104]. Moreover, c is assumed to

be phase-independent, which is a common engineering
assumption. The parameter TT is the phase equilibrium

temperature and k is the latent heat of transformation at

temperature TT: rA and rMa stand for the average stress

values in the austenite and the ath-martensite HPV [89], Sa

stands for the Eshelby’s tensor of the ath-martensite HPV,
which depends on the elastic constants and shape of the

variant, and I is the fourth-order unit tensor.

Using the above expression of the Helmholtz free
energy, the standard thermodynamical procedure, com-

monly referred to as the Coleman–Noll procedure [93],

applied to the dissipation inequality

1 The derivation of the interaction term in [89] is based on the Mori-
Tanaka and Kröner micromechanical assumptions and the instanta-
neous growth hypothesis according to which the martensitic domains
form instantaneously.
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D ¼ r : _e( _U( _Ts ¼ r( C : eeð Þ

: _ee þ s( cln
T

T0
þ k
T0

n
$ %

_T

þ
XNt

a¼1

r : beat (
k

TTðT ( TTÞ

& '
_n
a þ ð1( nÞrA

:
XNA

l¼1

Abelp _c
l
A + 0; ð11Þ

where s is the entropy, yields the constitutive relationships

r ¼ CðnÞ : ee; ð12Þ

s ¼ c ln
T

T0
( k
T0

n; ð13Þ

and reduces the dissipation expression to

D ¼
XNt

a¼1

r : beat (
k
TT

ðT ( TTÞ
& '

_n
a þ ð1( nÞrA

:
XNA

l¼1

Abelp _c
l
A: ð14Þ

Driving Forces

From the above dissipation expression, (14), the driving

forces for phase transformation and plastic deformation can

be invoked as the quasi-conservative thermodynamic for-
ces conjugate to the respective internal variables.

Martensitic transformation For transformation of

austenite to a particular martensite HPV, a; the driving

force, Ft
a; for this HPV should satisfy the following

nonequilibrium condition

Fa
t ¼ r : beat (

k
TT

ðT ( TTÞ ¼ f f
a
t ; ð15Þ

where f f
a
t [ 0 is the HPV hardness, and r : beat is the

resolved stress on the ath-transformation system, but not in
the classical Schmid sense since la is typically not per-

pendicular to da.
For this particular martensite HPV to transform back to

austenite, the following condition must be met

(Fa
t ¼ (r : beat þ

k
TT

ðT ( TTÞ ¼ rf
a
t ; ð16Þ

where rf
a
t [ 0.

Plastic deformation of austenite For plastic deformation
of austenite, the driving force for dislocation slip of the lth-

slip system, AF
l
p, should satisfy the following condition

AF
l
p

***
*** ¼ ð1( nÞrA : Abelp

***
*** ¼ Af

l
p; ð17Þ

where Af
l
p [ 0 is the respective slip system hardness.

Evolution Equations

The evolution laws of martensitic transformation and
plastic deformation are given by the following power–law

relations, in which the exponents are chosen sufficiently

large to approximate rate-independent conditions.
Martensitic transformation The evolution law for the

volume fraction of the ath-martensite HPV follows the

power-law relation

_na ¼

_n0
Fa
t

f f
a
t

$ %n

; Fa
t [ 0; austenite ! martensite

( _n0
Fa
t

** **

rf
a
t

$ %n

; Fa
t\0; martensite ! austenite

8
>>><

>>>:

ð18Þ

where

f f
a
t ¼

PNt

b¼1 H
ab
t nb þ naJtcþ c

f f
a
t ;

rf
a
t ¼

PNt

b¼1 H
ab
t nb þ 1( nað ÞJtcþ c

r f
a
t ;

(

ð19Þ

where _n0 is a reference transformation strain rate, Hab
t

h i
is

the interaction energy (constant) matrix between the dif-

ferent martensite HPVs, the scalar Jt [ 0 describes the

transformation hardening due to plastic deformation, and

c ¼
PNA

l¼1 clA
** ** is the accumulated total slip. cf f

a
t and

c
r f

a
t are

positive scalars.

Plastic deformation of austenite The slip rate in the lth-
slip system of austenite is given as

_clA ¼ _c0
AFl

p

Af
l
p

 !
AF

l
p

***
***

Af
l
p

0

@

1

A
n(1

; ð20Þ

with the evolution law of the hardness, Af
l
p; reading as

A
_f
l

p ¼
XNA

r¼1

AH
lr
p _crA
** **; Af

l
p 0ð Þ ¼ c

Af
l
p; ð21Þ

where _c0 is reference plastic strain rate, the matrix

AH
lr
p ¼ AHp ql þ ð1( qlÞdlr

+ ,
1( c

c0p

 !mp

; ð22Þ

describes the history-dependent rate of increase of the

deformation resistance on slip system l due to shearing on

slip system r, given in terms of the accumulated total slip,

ql stands for a constant latent-hardening parameter that
ranges between 1 and 1.04, the positive scalar AHp is the

initial slip system hardening rate, mp is the strain hardening

exponent, and dlr are the components of the Kronecker’s

delta, d; i.e., dlr ¼ 1 if l ¼ r and dlr ¼ 0 if l 6¼
r; c

Af
l
p; AHp; mp; and c0p are positive scalars.
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Numerical Scheme for the Integration
of the Constitutive Response

The numerical procedure adopted for the integration of the

constitutive law falls into the class of forward gradient

methods, presented in detail in [88] and discussed in [94].
This method leads to improved numerical stability by

resulting in a tangent stiffness expression which is con-

siderably reduced from the elastic stiffness; in explicit
integration, the maximum allowable time step is inversely

related to the relevant material stiffness [95].

The Eshelby tensor is assumed identical for all HPVs
and corresponds to oblate spheroids—the martensite phase

is formed as thin platelets, needles, or laths within the

austenite parent phase—in an isotropic matrix obtained by

the isotropization of the stiffness tensor, Ciso ,
C :: IVð ÞIV þ 1

5 C :: IDð ÞID; where IV ¼ 1
3 d' d and ID ¼

Is ( IV are the volumetric and deviatoric projection ten-

sors, respectively, Is designates the fourth-order tensor with

components Isijkl ¼ 1
2 dikdjl þ dildjk
! "

, and A :: B ¼ AijklBlkji

for any fourth-order tensors A and B. The lengths of the

semi-axes of the ellipsoidal HPV inclusions are set as a1 ¼
a2 ¼ a; a3 ¼ a=b; for b[ 1: In the simulations that fol-

low, b is assumed equal to 4.

Outline of Bayesian Calibration, Model Selection,
and Analysis of Variance

First, the relevant notation and terminology is introduced.
Let Mðx; hÞ denote the numerical model of an SMA

structure with the constitutive response presented in the

previous section, which depends on a set of control vari-
ables x (e.g., displacement, temperature), and a set of

material parameters h to be identified (characterized by a

pdf) from a set of reference data d: The reference data

comprises of N data points d ¼ di , d xið Þ½ *i¼1...N2 RN : di
are the measured values for known control inputs xi 2 Rqx :
The set of parameters characterizing the error terms—i.e.,

hyperparameters—to be defined below, is denoted by /:
pð!j!Þ and pð!Þ denote conditional and marginal pdfs,
respectively.

Model for Bayesian Inference

The relation between the measured values di and the true

process TðxiÞ is represented as

di ¼ TðxiÞ þ gi; ð23Þ

where gi is the measurement error for the ith-observation
and is modeled as independent and identically distributed

(iid) normal random variable, gi ¼ N ð0; r2Þ; where r is a

hyperparameter in the set of inferred parameters /:
A strategy to model the relationship between the model

output and experimental data is the additive error

model [44–46]

TðxiÞ ¼ Mðxi; hÞ þ dðxiÞ; ð24Þ

where d is the model discrepancy function that accounts for
missing physics in the model (and numerical approxima-

tion errors). d can modeled as a Gaussian process, dðxiÞ ¼
GPðldðxiÞ;Cdðxi; xjÞÞ; with ldðxiÞ ¼ ½1; xTi *b

d ¼ bd0þ

bd1xi;1 þ ! ! ! bdqxxi;qx and Cdðxi; xi0Þ ¼ r2d
21(md

CðmdÞ

ffiffiffiffiffiffiffi
2md

p
Qd

( )md

Kmd
ffiffiffiffiffiffiffi
2md

p
Qd

( )
(Matérn covariance function), where r2d

represents the variance of the real process, md is the

smoothness parameter of the covariance function, Kmd is

the modified Bessel function of the second kind of order md,

CðmdÞ is the gamma function, and Qdðxi; xi0Þ ¼

Pqx
k¼1

xi;k(xi0 ;k
xd

k

( )2
& '1=2

is the Mahalanobis distance between

xi and xi0 with roughness parameters xd
k [96]. The integer

part of md determines the mean square differentiability of

the underlying process. The rest of the parameters /d ¼
r2d; b

d;xd
. /

2 /; where bd ¼ bdk
+ ,T

k¼1...qx
and xd ¼

xd
k

+ ,T
k¼1...qx

; are to be inferred from the measurement data.

Note that the discrepancy term d is not explicitly con-

sidered in this paper. As a result, the assumed level of

confidence in the simulations (‘‘model = reality’’) may
result in a non-conservative uncertainty reduction.

Bayesian Inference

The Bayes’s theorem updates any prior information

regarding the parameters h by incorporating new infor-
mation obtained from the reference data d; i.e., combines

information from the prior and likelihood pdfs to give a pdf

for the parameters

pðhjd;MÞ ¼ pðdjh;MÞpðhjMÞ
pðdjMÞ ¼

R
pðdjh;MÞpðhjMÞdh

; ð25Þ

where

– pðhjMÞ is the prior pdf of the parameters;
– pðdjh;MÞ is the likelihood pdf that plays an analogous

role to the cost/objective function in traditional fitting/
optimization in the sense that it describes the discrep-

ancy between model predictions and observational

data;
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– pðhjd;MÞ is the posterior pdf that contains all the

information on the parameters h; conditional on d and

M;
– pðdjMÞ is the evidence pdf, typically ignored when

sampling from the posterior since it is a normalizing

factor that ensures that the posterior pdf integrates to
unity; however, this term plays a central role in model

selection, as will be described later.

For simpler notation, M is kept implicit in the following.

Prior Distribution

The prior distribution indicates the initial degree of belief
in the parameters’ values by either prior quantitative

knowledge or subjective expert opinion. It is common

practice to assign uninformative prior pdfs to parameters
for which little knowledge is available (for example, a

uniform distribution or normal distribution with large

variances) and assume statistical independence among
them

pðh;/Þ ¼ pðhÞpð/Þ: ð26Þ

Conjugate priors such that the prior and posterior distri-

butions of the parameter belong to the same family are
recommended for practical and computational purposes.

Further discussion on the choice of priors may be found in,

e.g., [39, 97].

Likelihood

From the statistical models and the above definitions and

assumptions, the likelihood function is expressed as a

multivariate normal distribution, assuming statistical
independence of reference data, as follows

pðdjhÞ-N l;Cð Þ; ð27Þ

where l ¼ di½ *i¼1...N ; C ¼ r2I; and I is the N . N identity

matrix.

Posterior Distribution

Given that the model M is nonlinear and multi-dimen-

sional, the posterior pdf pðhjdÞ is evaluated by a Markov

Chain Monte Carlo (MCMC) method [51], specifically
Gibbs sampler and Metropolis–Hastings (MH) algo-

rithm [53, 54]. The key idea behind MCMC is to generate a

Markov chain whose stationary distribution corresponds to
the posterior distribution [52]. An adaptive MH algorithm

proposed in [98] is used in this work in order to enhance

the rates at which the chains generated by the algorithm
converge to the posterior distribution. In each iteration of

this algorithm, a parameter candidate is sampled from an

adaptive proposal distribution, i.e., a multivariate normal

distribution (q), centered at the previous parameter sample
in the chain (or the initial guess for the first iteration) with a

variance–covariance matrix that is adapted using the vari-

ance–covariance of all previous parameter samples in the
chain as described by [98]. Then, the parameter candidate

is accepted or rejected in a probabilistic manner based on

the Metropolis–Hastings ratio

MH ¼ pðhcandÞpðdjhcandÞ
pðhi(1Þpðdjhi(1Þ

. qðhi(1jhcandÞ
qðhcandjhi(1Þ

; i ¼ 2; . . .; nf g
ð28Þ

where the joint densities, i.e., prior . likelihood, for the

sampled candidate, hcand, and the previous sample in the

chain, hi(1, which are proportional to their posterior den-

sities, are compared using the first ratio, known as the

Metropolis ratio. The probabilities of the forward and

backward moves from hi(1 to hcand are also compared using

the second ratio (Hastings ratio) in order to account for the
asymmetry in the proposal distribution.

At the end, the burn-in period, which that includes the

samples before the parameter convergence, is discarded

from the sample chain fh1. . .hng. The mean of remaining
samples and the square root of diagonal terms in their

variance–covariance matrix (standard deviations) indicate

the most plausible values and uncertainties of model
parameters.

Bayesian Model Selection

Model selection is performed based on the Bayesian
hypothesis testing [99]. Assuming all models have equal

prior probabilities ahead of analysis, the Bayes factor, i.e.,

the ratio of marginal likelihoods (or model evidences), is
considered as a metric to identify to what extent a model (a

null hypothesis) is favored by evidence (data)

BðMi;MjÞ ¼
pðdjMiÞ
pðdjMjÞ

; ð29Þ

where

pðdjMÞ ¼
Z

pðdjh;MÞpðhjMÞdh ð30Þ

is the model evidence. Here, the model selection process
involves the pairwise comparison of models, where

BðMi;MjÞ[ 1 indicates optimality of Mi over Mj and

BðMi;MjÞ\1 the other way around.

Among the different methods proposed to approxi-

mate (30) [100], the MCMC sampling from the posterior
in an importance sampling-based integration scheme is
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adopted, according to which, the model evidence equals a

harmonic average of likelihood values

pðdjMkÞ /

(
1

n

Xn

i¼1

pðdjhik;MkÞ(1

)(1

; ð31Þ

associated with the MCMC sampled parameters [60, 100].

ANOVA by Design Of Experiment approach

ANOVA by Design Of Experiment (DOE) is a rigorous
technique for global sensitivity analysis that performs well

in high-dimensional problems. This approach relies on a set

of frequentist hypothesis testing, where the insensitivities
of model outcomes to the individual parameters and their

interactions are assumed to be the null hypotheses. The

model outcome variation (uncertainty) is decomposed into
a sum of contributions due to the input factors and their

interactions (according to a chosen DoE and appropriate
levels for the parameters) to calculate the corresponding F
values, i.e., ratios between variances, for ranking the

parameters based on their influence on the model out-
comes [101, 102]. Herein, a two-level Full-Factorial

Design (FFD) is applied to take into account all the level

combinations for the parameters, which is equivalent to 2S

level-parameter combinations, where S is the number of

parameters.

Results and Discussion

Model Parameter Information

In this section, a summary of the model parameters is
given. Those related to the inelastic response are subjected

to Bayesian calibration from the experimental data reported

in [66] for Ni50:9Ti (at.%) single-crystal isothermal uniax-
ial loading; deterministic values are adopted for the rest of

the parameters. The model parameters are also listed in

Table 1a–c. Three dots ‘‘…’’ in the parameter values col-
umn indicate that the respective parameters are subjected to

probabilistic calibration.

Elastic parameters The B2 structure belongs to the
cubic crystal system and thus the elastic tensor of austenite

phase in NiTi SMA single crystals possesses three inde-

pendent constants, i.e., CA
11 ¼ 130 GPa, CA

22 ¼ 98 GPa, and

CA
44 ¼ 34 GPa [103]. As already mentioned, the assump-

tion that Ca
M ¼ CA is adopted for simplicity [104].

Transformation parameters Of the 192 possible HPVs

predicted by the crystallographic theory of martensite only

the 24 Type II-1 HPVs frequently observed in experiments
are considered. The components of the vectors laand da are
given in [105, 106] and gt ¼ 0:1308. The interaction

matrix Hab
t

h i
, given in [107], is not accounted for since

simulations showed that its inclusion overestimates the

transformation hardening observed in the experimental

data. The ‘‘viscous’’ parameter n is set to a high value,
n ¼ 50, to approximate the rate-independent response of

NiTi. The reference transformation rate value, _n0, is rep-

resentative of the applied loading rate, determined using
the method suggested in [108].

A deterministic value is adopted for the latent heat,

k ¼ 154 MJ/m3, calibrated from differential scanning
calorimetry [30].

The initial critical forces for forward phase transfor-

mation are assumed identical for all martensite HPVs,
c
f f

a
t ¼ c

f f t, and, similarly, c
r f

a
t ¼ c

r f t.
c
f f t,

c
r f t, and Jt are sub-

ject to Bayesian calibration.

Parameters related to dislocation slipping– Experi-
mentally, only slip in the system families h100i 001f g,
h100i 011f g, h110i 111f g has been observed [69], and,

thus, only these slip families are included in the simula-
tions. The initial critical forces for slip in these systems,
c
Af

l
p, are assumed identical for each family, and are thus

reduced to c
Af

r
p (r ¼ 1; 2; 3). c

Af
r
p (r ¼ 1; 2; 3) and AHp are

Table 1 Model parameter values

(a) Elastic parameters
Parameter Value

Austenite CA
11 [GPa] 130

CA
22 [GPa] 98

CA
44 [GPa] 34

HPVs Ca
M ¼ CA

(b) Transformation parameters
Parameter Value

Equilibrium transformation temperature, TT , [K] 257

Latent heat of transformation per unit volume, k, [MJ/m3] 154

Critical force for forward phase transformation, c
f f t, [MPa] ...

Critical force for reverse phase transformation, c
r f t, [MPa] ...

Hardening coefficient, Jt, [MPa] ...

(c) Austenite plastic deformation parameters

Parameter Value

Ratio of self to latent-hardening, ql 1.4

Critical force for slip in h110i !111f g, c
Af

1
p, [MPa] …

Critical force for slip in h100i 001f g, c
Af

2
p, [MPa] …

Critical force for slip in h100i 011f g, c
Af

3
p, [MPa] …

Hardening coefficient, AHp, [MPa] …

The crystallographic data for the 24 martensite HPVs in NiTi is
given [105, 106]. The strain rate exponent n is set to n ¼ 50
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evaluated by Bayesian calibration, while the reference

plastic strain rate, _c0, is determined as in [108]. Note that

c0p and mp in (22) cannot be reliably calibrated from the

experiments reported in [66] and are thus assumed null;

experiments at a temperature above Md would be required

for their calibration, i.e., a temperature at which stress-
induced phase transformation is suppressed.

Probabilistic Model Calibration

The Bayesian inference methodology described in Sec-

tion 4 is used to perform the probabilistic calibration of the
model for the seven parameters, listed in Table 1 with three

dots ‘‘…’’ as their values, from the experimental stress–

strain curves reported in [66] for Ni50:9Ti (at.%) single
crystals uniaxially loaded in six crystallographic directions

at room temperature. Since there is no prior knowledge

available for these parameters, the prior pdfs are assumed
to be uniform over the parameter ranges specified in

Table 2. The level of discrepancy between the simulations

and experimental data is measured by minimizing the
squared Euclidean distance between predicted and experi-

mental stress values, Ri;j
pred and Ri;j

exp; respectively, at spec-

ified strain values (denoted by index i) for each loading
direction (denoted by index j)

DSE ¼
X

i

Ri;j
pred ( Ri;j

exp

( )2
; ð32Þ

i.e., by minimizing the differences between the predicted

and experimental stress–strain curves.
The model calibration is performed by generating

30,000 parameter samples during the MCMC process.

After the elimination of the burn-in period, the mean value
and standard deviation of the remaining samples for each

parameter are calculated and listed in Table 2 as their

calibrated value and uncertainty.

Uncertainty propagation from the probabilistically cali-

brated parameters to the model outputs, i.e., the uniaxial
stress–strain responses in different loading directions, is

performed by running the model for the mean parameter

values and each sample in the convergence region, sorting
the resulting output samples, and then discarding 2.5% of

these samples from the upper and lower bounds to estimate

95% credible intervals. The most plausible model predic-
tions (red lines) and 95% credible intervals (green shaded

areas) in addition to the corresponding experimental data
(blue lines) are plotted in Fig. 1. Depending on the loading

orientation the experimental stress–strain responses differ

in terms of the required load level for initiation of forward/
reverse phase transformation, strain hardening, and amount

of residual deformation with the simulations to quantita-

tively reproduce the experimental data in good agreement.
The discrepancy between the most plausible model pre-

dictions and the experimental data should be attributed to

the constitutive model’s assumptions/simplifications,
mostly to those related to self- and latent-hardening laws

due to both phase transformation and plastic deformation

and to a lesser extend to others, such as the equal hardness
assumption for all HPVs.

Correlations among the parameters is examined via the

Pearson correlation coefficient

qX;Y ¼ rX;Y
rXrY

; ð33Þ

where rX , rY , and rX;Y denote the standard deviation of

parameter X, the standard deviation of parameter Y, and the
covariance between X and Y, respectively, quantifies the

linear correlations for each pair of model parameters. The
coefficient varies between ( 1 and 1, where the sign

demonstrates the correlation direction. Values closer to ( 1

and 1 imply higher linear correlations between pair
parameters, while values closer to 0 correspond to lower

correlations. In Table 3, the Pearson correlation coeffi-

cients for all pairs of calibrated parameters are tabulated.
All coefficient values indicate almost no or weak linear

correlations, except for the two hardening parameters, Jt
and AHp, that show some degree of correlation (q / 0:4).
The marginal distributions of Jt and AHp and their joint

(pair) distribution are shown in Fig. 2. Figure 2a and b

shows a distinct convergence peak in their marginal fre-

quency distributions, while Fig. 2c and d indicate the
convergence region in the joint pdf of these two parameters

in 3D and 2D, respectively. Some degree of linearity of
color features in Fig. 2d may qualitatively provide the

insight indicated from the Pearson correlation coefficient

into the linear correlation between the two parameters.

Table 2 Initial values, ranges, and MCMC calibrated values with
uncertainty for the unknown model parameters

Parameter Initial value,

h1
Range,
½hlbhub*

MCMC calibrated value
with uncertainty, hhi0 rh

c
f f t, [MPa] 2 [1 5] 3.48 ± 1.04
c
r f t, [MPa] 17 [12 22] 19.95 ± 1.74

Jt, [MPa] 0.1 [0.001 10] 0.32 ± 0.11

c
Af

1
p, [MPa] 700 [550 800] 673.36 ± 75.66

c
Af

2
p, [MPa] 550 [450 650] 552.31 ± 55.07

c
Af

3
p, [MPa] 600 [450 750] 548.40 ± 71.62

AHp, [MPa] 0.1 [0.001 10] 3.85 ± 2.84
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Fig. 1 Experimental stress–strain curves (blue lines) obtained from
the uniaxial compressive loading experiments at six crystallographic
directions [66], most plausible stress–strain curve predictions (red

lines), and 95% credible intervals (green shaded areas). For interpre-
tation of the references to color in this figure caption, the reader is
referred to the web version of this paper (Color figure online)

Table 3 Pearson correlation
coefficients between the pair
model parameters

c
f f t, [MPa] c

r f t, [MPa] Jt, [MPa] c
Af

1
p, [MPa] c

Af
2
p, [MPa] c

Af
3
p, [MPa] AHp, [MPa]

c
f f t, [MPa] 1 - 0.05 - 0.29 0.01 - 0.07 0.04 - 0.08
c
r f t, [MPa] - 0.05 1 0.04 - 0.05 - 0.01 - 0.15 - 0.27

Jt, [MPa] - 0.29 0.04 1 0.21 0.11 - 0.001 0.39

c
Af

1
p, [MPa] 0.01 - 0.05 0.21 1 0.01 - 0.21 0.06

c
Af

2
p, [MPa] - 0.07 - 0.01 0.11 0.01 1 - 0.08 0.05

c
Af

3
p, [MPa] 0.04 - 0.15 - 0.001 - 0.21 - 0.08 1 - 0.14

AHp, [MPa] - 0.08 - 0.27 0.39 0.06 0.05 - 0.14 1
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Quantitative Analysis of the Contribution
of the Inelastic Deformation Mechanisms in Model
Performance

As already mentioned, the model accounts for reversible
phase transformation from austenite to HPVs and disloca-

tion slipping in the austenite state. In contrast to most

existing micromechanics-based single-crystal models, with
the exception of [89, 90], a mean-field contribution of the

deformation incompatibility at the interphases on the

internal stress states that drive dislocation slipping during
phase transformation, i.e., TRIP, is introduced. In an effort

to elucidate the relative contribution of the inelastic

deformation mechanisms and of the aforementioned
micromechanical description of the internal stress rise due

to the deformation incompatibility among the phases in the

overall deformation response, two extra models are con-
structed and compared pairwise with each other and the

adopted model M using the Bayesian model selection

outlined in ‘‘4.3’’ section. Model MA does not account for
dislocation slipping and model MB does account for dis-

location slipping but without the introduced contribution of

the deformation incompatibility among the phases into the
driving forces for dislocation slipping, i.e., rA ¼ r ð¼ rMaÞ
in (10).

The probabilistic calibration of MA and MB follows the

same procedure adopted for M; note that just 3 parameters,
c
f f t,

c
r f t, and Jt, need to be calibrated for MA. The models’

outputs for uniaxial loading in the [1 1 1]-direction are

compared in Fig. 3. The expected high importance of dis-

location slipping in the deformation response is obvious.
However, model selection between MB and M in terms of

model’s ability to reproduce data is not possible from a

visual comparison alone. The Bayes factor calculated for

all pairs of models (Table 4) based on (29) suggest dra-
matic evidence in favor of models MB and M over model

MA, in accordance with the visual comparison of the sub-

figures in Fig. 3, while the evidence in favor of model M
over MB is rather weak. M is the most likely model (based

on model evidence), with MB being 10% less likely. Thus,

the incorporation of the mean-field evaluation of the
internal stress that contributes to TRIP does improve the

model’s ability to reproduce the experimental data and

should result in parameter values that are more represen-
tative of reality. Note that the calibrated values of the

initial critical forces for slip are substantially lower in

model MB and the calibrated values of the hardening
parameters higher (Table 5).

ANOVA

A two-level FFD-based seven-way ANOVA by DoE is

utilized to identify the sensitivity of model outputs to the
variations of model parameters listed in Table 2. To per-

form this analysis, two levels are considered for each

parameter based on its 95% credible interval bounds

obtained from Table 2, i.e., hhi0 2. rh: The l2-norm of

squared Euclidean distances (in the form of (32)) between

the stress–strain results for the parameter mean values and
their counterparts for each level-parameter combination is

obtained and input into the ANOVA analysis.

The ANOVA results are shown in Table 6 in descending
order for F values that corresponds to a reduction in the

parameter influence. Unsurprisingly, the most influential

Fig. 2 Marginal posterior
frequency distribution for
parameters Jt and AHp ((a) and
(b) respectively). 3D (c) and 2D
(d) joint posterior pdf for the
two parameters
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parameters are the ones related to the phase transformation,

namely, the critical force for forward phase transformation,

the transformation hardening due to plastic deformation,
and the critical force for reverse phase transformation in a

decreasing order of the level of influence on the model

outputs.

Based on energetic grounds [69], h100i 011f g has the
lowest energy barrier (the unstable peak value) and hence

is most likely to be activated, h110i !111f g is a harder slip

system, and h100i 001f g is the hardest slip system to acti-
vate and it has hardly been observed. h100i 011f g permits

glide only in three independent slip systems out of the six

physically possible (or geometric) slip systems, thus
h100i 011f g cannot produce five independent slip systems

to satisfy the Mises criteria for arbitrary deformations,

same as h100i 001f g. h110i !111f g can produce five inde-
pendent slip systems (out of physically possible 12 slip

systems). According to the ANOVA by DoE analysis, the

ranking of the critical forces for dislocation slipping from
the most influential to the least is as follows:

h110i !111f g; h100i 011f g; and h100i 001f g: The difference

in F values between h110i !111f g; h100i 011f g is quite
small and both values are orders of magnitude greater than

the F value corresponding to h100i 001f g; which is a small

value (1 1), i.e., the influence of the h100i 001f g on the
overall deformation response is negligible.

Fig. 3 Probabilistic model
predictions (MA, MB, and M) vs
experimental stress–strain curve
for the uniaxial compressive
loading experiment in the [1 1
1]-crystallographic direction

Table 4 Bayes factor, BðMi;MjÞ, for each pair models

Mi Mj

MA MB M

MA 1 2:7. 10(4 2:5. 10(4

MB 3:7. 103 1 0.9

M 4:0. 103 1.1 1

Table 5 MCMC calibrated values of the unknown parameters with
uncertainty for models M and MB

Parameter M MB

c
f f t, [MPa] 3.48 ± 1.04 3.77 ± 0.89
c
r f t, [MPa] 19.95 ± 1.74 20.27 ± 1.37

c
Af

1
p, [MPa] 673.36 ± 75.66 498.09 ± 31.80

c
Af

2
p, [MPa] 552.31 ± 55.07 469.79 ± 73.88

c
Af

3
p, [MPa] 548.40 ± 71.62 537.06 ± 99.56

Jt, [MPa] 0.32 ± 0.11 0.59 ± 0.24

AHp, [MPa] 3.85 ± 2.84 4.90 ± 2.91

Table 6 Parameters’ informa-
tion in the FFD-based ANOVA
and influence in descending
order

F value

c
f f t, [MPa] 36.85

Jt, [MPa] 9.48
c
r f t, [MPa] 7.76

c
Af

1
p, [MPa] 6.09

c
Af

3
p , [MPa] 5.05

AHp, [MPa] 0.38

c
Af

2
p, [MPa] 2:81. 10(4
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Summary

Bayesian inference has been employed in order to obtain a
quantitative insight into the inelastic deformation response

of NiTi single crystals from a limited set of macroscopic

uniaxial loading experiments via a phenomenological
constitutive response, which is formulated by incorporating

crystallographic information into a local continuum for-

mulation. The model accounts for reversible phase trans-
formation from austenite to HPVs, dislocation slipping in

the austenite state, and anisotropy in the elastic properties

of the two phases, which are considered to be the dominant
deformation mechanisms active during the experiments.

Using the classical additive error model, a probabilistic

calibration of model parameter values is carried out and
their mean values and uncertainty are obtained. The

Bayesian methodology is appropriate for forward propa-

gation of quantified uncertainty onto performance predic-
tions. Through Bayesian model selection and Analysis of

Variance by Design Of Experiment approach, (i) a ranking

of the inelastic deformation mechanisms in terms of their
relative influence on the overall deformation response, and

(ii) a quantitative evaluation of the importance of the
nucleation and build-up of slip in austenite to accommo-

date the high transformation strains upon traversing

austenite–martensite interphases, are provided, conditional
on the adopted constitutive response.
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