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Abstract The inelastic deformation response of NiTi sin-
gle crystals involves reversible phase transformation and
dislocation slip, which is enhanced by the deformation
incompatibility among the phases. The phase transforma-
tion—plasticity coupling results in decrease in performance,
including reduced work output and early fatigue failure.
The characterization of the inelastic properties in this
material class is crucial for material assessment/ranking
and robust performance predictions. Given that direct
mesoscale measurements of (coupled) deformation mech-
anisms are in many cases impractical, top-down charac-
terization of single-crystal properties from limited
macroscopic experiments is mostly employed. Here,
Bayesian inference and a micromechanics-based contin-
uum single-crystal model are adopted for determining
(i) material property values within confidence intervals that
allow for a propagation of the quantified uncertainty onto
performance predictions, which can be used toward a more
efficient design methodology; (ii) ranking of the relative
influence of the various material parameters on the defor-
mation response that can further translate to the respective
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influence of the various deformation mechanisms condi-
tional on the adopted material model; and (iii) a quantita-
tive evaluation of the importance of the deformation
incompatibility among the phases in the overall deforma-
tion response.

Keywords NiTi - Materials - Mechanical behavior - Slip -
SMA - Stress—strain

Introduction

Deformed Shape Memory Alloys (SMAs) can recover their
original shape upon transformation of their crystallo-
graphic structure from a low symmetry (martensite) to a
higher symmetry (austenite) phase [1-3]. SMAs are, thus,
desirable in engineering applications such as vascular
stents and monolithic, frictionless, compact, lightweight,
solid-state actuators [4-8]. The crystallographic phase
transformation is non-diffusive, reversible, triggered by
thermal and/or mechanical loading. The martensite phase is
formed as thin platelets, needles, or laths within the
austenite parent phase, resulting in crystallographic slip,
termed TRansformation-Induced Plasticity (TRIP), as a
mechanism to accommodate the deformation incompati-
bility at the austenite-martensite interfaces [9, 10]. TRIP
accumulates with transformation cycling, degrading the
desired functionality of SMAs and is further responsible for
a reduction in transformation stress, strain, and
hysteresis [11-18].

Numerous constitutive equations of the deformation
response of SMAs at the single-crystal level have been
developed based on continuum mechanics [19-31]. These
models, which are formulated by incorporating crystallo-
graphic information into a local continuum formulation,

@ Springer



Shap. Mem. Superelasticity

allow continuum stresses to be resolved onto individual
planes responsible for mediating inelastic deformation. The
scale in these models is smeared out and, thus, the spatial
arrangement of the crystallographic details is not captured.
However, they are (i) easily implementable in numerical
methods for the full-field solution of boundary value
problems in polycrystalline settings where misorientation
across grains, grain boundaries, and triple joints can give
rise to complex stress states, and (ii) are amenable to mean-
field scale translation rules (e.g., Mori-Tanaka and self-
consistent approaches). Due to limitations in simultaneous
measuring infinitesimal stress and strain increments at the
mesoscale, the constitutive equations are in general derived
and calibrated through a top-down approach by fitting
material parameters to macroscopic experiments.

Given that material models are abstractions of reality,
necessarily simplifying or omitting physical phenomena,
assessing the credibility of performance predictions is of
critical importance, particularly when these models are
used in engineering design. Traditional engineering design
is based on empirical safety factors. To allow for more
efficient designs, empirical safety factors should be
replaced by confidence bounds that account for (i) mea-
surement errors, (ii) deficiencies of the material models
used in the material characterization and performance
predictions, and (iii) material variability. The growing
importance of the related field of Uncertainty Quantifica-
tion (UQ) is highlighted by the extensive guidelines and
standards by the American Society of Mechanical Engi-
neers [32, 33]. UQ methods provide a robust framework
for (i) the quantification of uncertainties by handling
multiple error sources, (ii) the forward propagation of
uncertainty, (iii) model selection in terms of data fit and
model simplicity, and (iv) revealing model sensitivities and
correlations among model parameters [34-40].

Instead of the classical, deterministic approach to model
calibration that yields the single set of material parameter
values that best matches the observed data in some
appropriate sense, Bayesian inference determines a prob-
ability density function (pdf) for the model parameters, i.e.,
accounts for uncertainty in the estimated parameters. In
turn, the model predictions are descriptors of the random
field that emerges as a solution of the underlying stochastic
model [36, 41-43]. Bayesian inference, rooted in Bayes’
theorem, leads to an optimal update on prior knowledge
conditional on the observational data. In Bayes’ theorem,
the likelihood pdf plays a role analogous to the cost/ob-
jective function in traditional fitting/optimization describ-
ing the error between model predictions and observational
data. The error is formulated in terms of either the tradi-
tional additive error models [44—46] or embedded error
models [47-50]; the latter assigning statistical bias cor-
rection terms to the model parameters directly. In the case
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of nonlinearity and high-dimensionality, the posterior dis-
tribution is evaluated as a stationary distribution of a
Markov chain generated by a Markov Chain Monte Carlo
(MCMC) method [51, 52], which can be based on adaptive
Metropolis—Hastings algorithms [53-55]. Ranking of the
influence of the model parameters and their interdepen-
dencies on a model’s predictions for the sake of model
refinement, e.g., reduction of cost and complexity in model
optimization problems, or gaining an insight into the
physical process described by the model (conditional to the
model) can be provided by ANalysis Of VAriance
(ANOVA), which is a global variance-based sensitivity
analysis [56-59]. Furthermore, Bayesian inference is a
powerful approach for model selection among competing
models emulating the response of a physical sys-
tem [60-62], balancing ability to reproduce data with
predictiveness and model simplicity [63-65].

In this paper, the Bayesian approach is adopted for the
characterization of the inelastic deformation response of
NiTi single crystals in a top-down approach from macro-
scopic experimental data. Uniaxial compressive loading
experiments at six different crystallographic directions are
utilized for this purpose [66]. The constitutive model
accounts for phase transformation and plastic deformation
based on micromechanics to accurately reflect the internal
stress states that contribute to TRIP. Due to the complexity
of the deformation response several simplifying assump-
tions are necessarily adopted. The presented analysis pro-
vides (i) material parameter values within confidence
intervals; (ii) ranking the relative influence of the various
material parameters on the deformation response; and (iii)
a quantitative evaluation of the importance of accounting
for the internal stress rise due to the deformation incom-
patibility among the phases in the overall deformation
response. The obtained results offer an insight into the
importance of the various deformation mechanisms in the
overall deformation response conditional to the adopted
model, and allow for a propagation of the quantified
uncertainty onto performance predictions, which can be
used toward a more efficient design methodology in which
empirical safety factors can be replaced with confidence
bounds.

The paper is organized as follows. In “Deformation
Response of Single NiTi Crystals” section, the NiTi single-
crystal deformation mechanisms are briefly reviewed. The
constitutive model accounting for those is presented in
“Model for the Deformation Response of Single NiTi
Crystals” section. An outline of the Bayesian calibration,
model selection, and ANOVA is given in “Outline of
Bayesian Calibration, Model Selection, and Analysis of
Variance” section and the related results in “Results and
Discussion” section. A summary of the findings is provided
in “Summary” section.
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Deformation Response of Single NiTi Crystals

In NiTi, austenite transforms from a cubic B2 crystallo-
graphic structure into 12 monoclinic (B19’) martensite
variants by mechanical loading and/or cooling. The
martensite phase forms within the austenite parent phase
with the two phases fitting together along planes, called
invariant or habit planes, that remain unchanged, i.e.,
neither deform nor rotate. These planes/interfaces are
between austenite and twins of martensite variants, called
Habit Plane Variants (HPVs), that comprise of two Lattice
Correspondent Variants (LCVs). Crystallographic theory
predicts 192 HPVs, i.e., 192 possible distinct interfaces
between austenite and martensite [67]. Movement of
interfaces between HPVs is referred to as HPV reorienta-
tion, and movement of interfaces between LCVs as
detwinning.

Plastic deformation in austenite is strongly influenced by
(100){011} and (101){001} slip modes [68] and, as
recently observed, by (111){110} [69]. TRIP in austenite
is observed during phase transformation as a mechanism to
accommodate the deformation incompatibility at the
austenite—martensite interfaces [9, 10]. The phase trans-
formation—plasticity coupling detrimentally affects perfor-
mance, reflected in a reduced work output (functional
fatigue) and early fatigue failure (structural fatigue) during
repeated thermomechanical cycling [9, 70-86]. The plastic
deformation in martensite is mainly due to twin activity, 11
possible twinning systems were pointed out by [87], while
only one slip system (001) [100] exists due to the low
symmetry of the martensite monoclinic crystal structure.

Model for the Deformation Response of Single
NiTi Crystals

The adopted single-crystal model accounts for reversible
phase transformation from austenite to HPVs, dislocation
slipping in the austenite state, and anisotropy in the elastic
properties of the two phases, neglecting reorientation of
HPVs, detwinning of LCVs, and deformation twinning in
martensite [88]. Thus, the model targets pseudoelasticity
and shape memory effect for nearly proportional loading
within a range that does not allow for considerable
martensite plastic deformation or formation of self-ac-
commodated martensite. The interaction between the two
phases is described through the Eshelby tensor by regard-
ing the HPVs as ellipsoidal inclusions embedded in the
austenite matrix in order to reflect the internal stress states
that can activate dislocation slipping, i.e., TRIP, even for
applied load levels that wouldn’t otherwise [89, 90].

Kinematics

The inelastic deformation of an SMA crystal is defined as
an average over a Representative Volume Element (RVE),
which should be large enough to include a sizable set of
martensite HPVs and slip systems within a single-crystal
austenite. It is further assumed that the austenite—marten-
site formed interfaces are coherent and their motion along
with the dislocation motion is rate-independent.

For later use, the volume fraction of martensite corre-
sponding to the oy,-HPV system in an RVE is denoted as
&%, restricted by 0 < ¢&* < 1. The total volume fraction of
martensite in a crystal, ¢ =) &”, must lie in the range
0<& <1

Assuming infinitesimal strains, additive decomposition
of the total macroscopic strain tensor reads as

e=¢ +&+ &, (1)

t
’

where &°, &', and &° stand for the elastic, transformation,
and plastic strain tensors, respectively. Thermal strain is an
order of magnitude smaller than the transformation strain
and is thus not included for simplicity. The thermal
expansion of the monoclinic martensite variants is highly
anisotropic [91] and its proper implementation in a single-
crystal model is not trivial [92].

Transformation Strain

By the rule of mixtures, the transformation strain can be
written as

M
d=> 7, (2)
=1
where & =1g (" ®d" +d* @ I"), I, d*, and g are the
stress free transformation strain, the habit plane normal, the
transformation direction, and the magnitude of transfor-
mation, respectively, for each of the N; martensite HPVs,

given by crystallography considerations.
The rate of &' thus reads as

N, )
#=D we ©
a=1

Plastic Strain

The overall plastic strain tensor can be written as

M
&= (18 +> &4, (4)
a=1
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where &} and &), stand for the plastic strain tensors in the
regions occupied by austenite and oy,-martensite HPV,
respectively.

The rate of &P is thus given as

Ny Ny .
P=(1-0d8+> & - E(R—d,)
a=1 a=1

:(1—5)[,0;%_215_“6(3&—8&1)]

=1

N éoc
+ Z & [gqu —= (eh — 8&1)] ) (5)

=1

The rate of & can moreover be described by crystallo-
graphic slip mechanisms in the austenite phase

Na
£ =(1-8> agih, (6)
=1

where A:‘i\i, = % (qg ® rﬂ\ + rf\ ® qg) is the orientation ten-
sor of the ly-slipping system of austenite, ¢'y, rly, 7', are
the respective shear direction, slip plane normal, and
average shearing rate, respectively, and N, denotes the
number of slip systems.

Combining (5) and (6), which hold for every &* e
[0,1], « =1,..., N, yields

o8& Sy
Ep = 1 _é(sA_le) "‘ZASPVA»
)
o
éPMi :%(SIA — 8113,[7).

Thus, the rates of plastic strain in the austenite and o,-
martensite HPV are dependent on the dislocation slip rates
on austenite’s slip systems and on the rates of expansion/
shrinkage of the HPVs, thus, the model accounts for the
inheritance of plastic strain from one phase to another.

Thermodynamics and Constitutive Equations
Helmholtz Free Energy

Following the choice of the applied strain tensor & and
absolute temperature 7 as external state variables, the

Helmbholtz free energy per unit reference volume is taken to
be
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(e, 7,87 = Our(&, T, &, Ppr) + Oine (&, T, E%, 7 01)

1
+ (Dch(87 Ta 517/})A1) = 586 :C g + (Dint(87 T7 éaa V‘ZA)
—— ———

elasticenergy

+ c{(r —Ty) — Tln(%)} —&—Ti(T — Tr)¢,

0 T

interaction energy

chemicalenergy
(8)

where the interaction energy is defined through its rate as
in [89] '

Na
D = (C: ) 18 —op: (1-8) ) agyih, 9)
=1
and
A
or=C se—i—Zé“C :(I-8%) (Ef—ksfv[ —spA),
a=1 ’
(10a)
om, =04 —C: (I—8%): (& + &y —&}). (10b)

The model parameters C and ¢ denote the effective stiff-

ness tensor and specific heat at the reference state,
respectively. The effective stiffness tensor, C, can be
evaluated in terms of the martensite volume fraction, &, by
the rule of mixtures, i.e., C(&) =Ca + &(Cy — Ca) =
Ca + EAC, where the subscripts A and M denote austenite
and martensite, respectively. Here, the assumption C =
C{; = Ca is adopted for simplicity since first principal
calculations show that the elastic properties of the B2 and
B19’ phases are similar [104]. Moreover, c¢ is assumed to
be phase-independent, which is a common engineering
assumption. The parameter 77 is the phase equilibrium
temperature and /A is the latent heat of transformation at
temperature T7. 64 and oy, stand for the average stress
values in the austenite and the oy,-martensite HPV [89], S*
stands for the Eshelby’s tensor of the oy,-martensite HPV,
which depends on the elastic constants and shape of the
variant, and I is the fourth-order unit tensor.

Using the above expression of the Helmholtz free
energy, the standard thermodynamical procedure, com-
monly referred to as the Coleman—Noll procedure [93],
applied to the dissipation inequality

! The derivation of the interaction term in [89] is based on the Mori-
Tanaka and Kroner micromechanical assumptions and the instanta-
neous growth hypothesis according to which the martensitic domains
form instantaneously.
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D=6:é—®—Ts=(6—C:¢)

D&+ lnT—|—/1£ T

i s—c T

al s -
+Z|:628tmj|f+(lé)6A

where s is the entropy, yields the constitutive relationships

c=C(¢): ¢, (12)
T 2
S:CIHFO—Fof, (13)

and reduces the dissipation expression to

D= Z{
:ZAELV'Q- (14)

T Tr)|E + (1= E)on

Driving Forces

From the above dissipation expression, (14), the driving
forces for phase transformation and plastic deformation can
be invoked as the quasi-conservative thermodynamic for-
ces conjugate to the respective internal variables.
Martensitic  transformation For transformation of
austenite to a particular martensite HPV, o, the driving

force, F}, for this HPV should satisfy the following
nonequilibrium condition
A
Ff‘:a:?f‘—T—(T—TT):fff‘, (15)
T

where ¢f >0 is the HPV hardness, and o : & is the
resolved stress on the oy, -transformation system, but not in
the classical Schmid sense since I* is typically not per-
pendicular to d”.

For this particular martensite HPV to transform back to
austenite, the following condition must be met
—Fl=—6:%8 + T (T Tr) = 7, (16)

T
where f7 > 0.

Plastic deformation of austenite For plastic deformation

of austenite, the driving force for dislocation slip of the -

slip system, AFé, should satisfy the following condition

‘AFL‘:‘(I_@O'A:A?; = A (17)

where Afé > ( is the respective slip system hardness.

Evolution Equations

The evolution laws of martensitic transformation and
plastic deformation are given by the following power—law
relations, in which the exponents are chosen sufficiently
large to approximate rate-independent conditions.

Martensitic transformation The evolution law for the
volume fraction of the oy-martensite HPV follows the
power-law relation

Fa n ) )
50 (ff ) ; F{ >0, austenite — martensite
t

750 <| L |) ; FY <0, martensite — austenite

¢

&=

(18)
where
{ Z VHPE - e gy + 17, (19)
= Spn B+ (1= &V + (1

where ¢, is a reference transformation strain rate, [Ht“ b l is
the interaction energy (constant) matrix between the dif-
ferent martensite HPVs, the scalar J; > 0 describes the
transformation hardening due to plastic deformation, and
=" 74| is the accumulated total slip. §f7 and f} are
positive scalars.

Plastic deformation of austenite The slip rate in the /-
slip system of austenite is given as

n—1

a=n(E) (B) )
P P

with the evolution law of the hardness, Afi), reading as
Jq Na
r=1
where 7, is reference plastic strain rate, the matrix
y mp
AHllar = aH,[q' + (1 - ¢")d] (1 — y—()) , (22)
p

describes the history-dependent rate of increase of the
deformation resistance on slip system / due to shearing on
slip system r, given in terms of the accumulated total slip,
g stands for a constant latent-hardening parameter that
ranges between 1 and 1.04, the positive scalar AH}, is the
initial slip system hardening rate, m1, is the strain hardening
exponent, and ), are the components of the Kronecker’s
delta, 9, ie., o,=1 if I=r and 6, =0 if [#

r, gfi), aHp, m,, and yg are positive scalars.
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Numerical Scheme for the Integration
of the Constitutive Response

The numerical procedure adopted for the integration of the
constitutive law falls into the class of forward gradient
methods, presented in detail in [88] and discussed in [94].
This method leads to improved numerical stability by
resulting in a tangent stiffness expression which is con-
siderably reduced from the elastic stiffness; in explicit
integration, the maximum allowable time step is inversely
related to the relevant material stiffness [95].

The Eshelby tensor is assumed identical for all HPVs
and corresponds to oblate spheroids—the martensite phase
is formed as thin platelets, needles, or laths within the
austenite parent phase—in an isotropic matrix obtained by
the isotropization of the stiffness tensor, Ciso =
(C:Iy)ly +£(C :: Ip)Ip, where Iy =16 ® 6 and Ip =
I; — Iy are the volumetric and deviatoric projection ten-
sors, respectively, I; designates the fourth-order tensor with
components /i, = % (5ik5j1 + 5,75]7(), and A :: B = A; By
for any fourth-order tensors A and B. The lengths of the
semi-axes of the ellipsoidal HPV inclusions are set as a; =
ay =a, a3 = a/b, for b > 1. In the simulations that fol-
low, b is assumed equal to 4.

Outline of Bayesian Calibration, Model Selection,
and Analysis of Variance

First, the relevant notation and terminology is introduced.
Let M(x;0) denote the numerical model of an SMA
structure with the constitutive response presented in the
previous section, which depends on a set of control vari-
ables x (e.g., displacement, temperature), and a set of
material parameters 6 to be identified (characterized by a
pdf) from a set of reference data d. The reference data
comprises of N data points d = [d; = d(x;)]._, yE€ R". d;
are the measured values for known control inputs x; € R%.
The set of parameters characterizing the error terms—i.e.,
hyperparameters—to be defined below, is denoted by ¢.
p(-]-) and p(-) denote conditional and marginal pdfs,
respectively.

Model for Bayesian Inference

The relation between the measured values d; and the true
process T(x;) is represented as

di =T(x;) +n;, (23)

where 7; is the measurement error for the iy-observation
and is modeled as independent and identically distributed
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(iid) normal random variable, 1; = N'(0, 6), where ¢ is a
hyperparameter in the set of inferred parameters ¢.
A strategy to model the relationship between the model

output and experimental data is the additive error
model [44-46]
T(x;) = M(x;; 0) + 6(x;), (24)

where ¢ is the model discrepancy function that accounts for
missing physics in the model (and numerical approxima-
tion errors). 0 can modeled as a Gaussian process, 0(X;) =

GP((x:), C*(xi,x;)),  with  p’(x;) = [1,x]1B° = B+
0 _ v

Boxiy + - 'ﬁgxx,-’qx and C°(x;,x;) = 6%% <\/ 2v‘>Q‘3)

Ko (\/ 2v"Q5) (Matérn covariance function), where a§

represents the variance of the real process, V' is the
smoothness parameter of the covariance function, K is
the modified Bessel function of the second kind of order v°,

[(v’) is the gamma function, and Q°(x;,x;) =

1/2
ik —X;! 2 . . .
{ Z‘:l (%) } is the Mahalanobis distance between

D
x; and x; with roughness parameters a);g [96]. The integer
part of v° determines the mean square differentiability of
the underlying process. The rest of the parameters ¢° =

(3B, 0’} €¢, where p=[f]_ ~ and o =

1T .
[?] k—1..q. 4re to be inferred from the measurement data.

Note that the discrepancy term J is not explicitly con-
sidered in this paper. As a result, the assumed level of
confidence in the simulations (“model = reality”) may

result in a non-conservative uncertainty reduction.
Bayesian Inference

The Bayes’s theorem updates any prior information
regarding the parameters 6 by incorporating new infor-
mation obtained from the reference data d, i.e., combines
information from the prior and likelihood pdfs to give a pdf
for the parameters

p(d|0, M)p(0|M)
(d|M) = [ p(d|0, M)p(6]M)d0’

p(0d, M) = » (25)

where

— p(0|M) is the prior pdf of the parameters;

— p(d|0,M) is the likelihood pdf that plays an analogous
role to the cost/objective function in traditional fitting/
optimization in the sense that it describes the discrep-
ancy between model predictions and observational
data;
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— p(0|d,M) is the posterior pdf that contains all the
information on the parameters 6, conditional on d and
M;

— p(d|M) is the evidence pdf, typically ignored when
sampling from the posterior since it is a normalizing
factor that ensures that the posterior pdf integrates to
unity; however, this term plays a central role in model
selection, as will be described later.

For simpler notation, M is kept implicit in the following.
Prior Distribution

The prior distribution indicates the initial degree of belief
in the parameters’ values by either prior quantitative
knowledge or subjective expert opinion. It is common
practice to assign uninformative prior pdfs to parameters
for which little knowledge is available (for example, a
uniform distribution or normal distribution with large
variances) and assume statistical independence among
them

p(0,¢) =p(0)p(). (26)

Conjugate priors such that the prior and posterior distri-
butions of the parameter belong to the same family are
recommended for practical and computational purposes.
Further discussion on the choice of priors may be found in,
e.g., [39, 97].

Likelihood

From the statistical models and the above definitions and
assumptions, the likelihood function is expressed as a
multivariate normal distribution, assuming statistical
independence of reference data, as follows

p(d[6) ~ N (n,C), (27)

where = [d;],_, v, C=0’I, and Iis the N x N identity
matrix.

Posterior Distribution

Given that the model M is nonlinear and multi-dimen-
sional, the posterior pdf p(6|d) is evaluated by a Markov
Chain Monte Carlo (MCMC) method [51], specifically
Gibbs sampler and Metropolis—Hastings (MH) algo-
rithm [53, 54]. The key idea behind MCMC is to generate a
Markov chain whose stationary distribution corresponds to
the posterior distribution [52]. An adaptive MH algorithm
proposed in [98] is used in this work in order to enhance
the rates at which the chains generated by the algorithm
converge to the posterior distribution. In each iteration of
this algorithm, a parameter candidate is sampled from an

adaptive proposal distribution, i.e., a multivariate normal
distribution (g), centered at the previous parameter sample
in the chain (or the initial guess for the first iteration) with a
variance—covariance matrix that is adapted using the vari-
ance—covariance of all previous parameter samples in the
chain as described by [98]. Then, the parameter candidate
is accepted or rejected in a probabilistic manner based on
the Metropolis—Hastings ratio

(o)

p(6 p(d|o™)
i—1| pcand
a0 )
q(acand|0171)

(28)
={2,...,n}

where the joint densities, i.e., prior x likelihood, for the

sampled candidate, %™

, and the previous sample in the
chain, ', which are proportional to their posterior den-
sities, are compared using the first ratio, known as the
Metropolis ratio. The probabilities of the forward and
backward moves from @'~ to 8™ are also compared using
the second ratio (Hastings ratio) in order to account for the
asymmetry in the proposal distribution.

At the end, the burn-in period, which that includes the
samples before the parameter convergence, is discarded
from the sample chain {0'...0"}. The mean of remaining
samples and the square root of diagonal terms in their
variance—covariance matrix (standard deviations) indicate
the most plausible values and uncertainties of model
parameters.

Bayesian Model Selection

Model selection is performed based on the Bayesian
hypothesis testing [99]. Assuming all models have equal
prior probabilities ahead of analysis, the Bayes factor, i.e.,
the ratio of marginal likelihoods (or model evidences), is
considered as a metric to identify to what extent a model (a
null hypothesis) is favored by evidence (data)

B(Mi,Mj) :%, (29)
where
plam) = [ plaio.mp(olar)do (30)

is the model evidence. Here, the model selection process
involves the pairwise comparison of models, where
B(M;,M;) > 1 indicates optimality of M; over M, and
B(M;,M;) <1 the other way around.

Among the different methods proposed to approxi-
mate (30) [100], the MCMC sampling from the posterior
in an importance sampling-based integration scheme is
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adopted, according to which, the model evidence equals a
harmonic average of likelihood values
-1

1< ; _1
diM;) ~< - d|e,, M 31
plaipt) = S plaof i) (- (1)
associated with the MCMC sampled parameters [60, 100].
ANOVA by Design Of Experiment approach

ANOVA by Design Of Experiment (DOE) is a rigorous
technique for global sensitivity analysis that performs well
in high-dimensional problems. This approach relies on a set
of frequentist hypothesis testing, where the insensitivities
of model outcomes to the individual parameters and their
interactions are assumed to be the null hypotheses. The
model outcome variation (uncertainty) is decomposed into
a sum of contributions due to the input factors and their
interactions (according to a chosen DoE and appropriate
levels for the parameters) to calculate the corresponding F
values, i.e., ratios between variances, for ranking the
parameters based on their influence on the model out-
comes [101, 102]. Herein, a two-level Full-Factorial
Design (FFD) is applied to take into account all the level
combinations for the parameters, which is equivalent to 25
level-parameter combinations, where S is the number of
parameters.

Results and Discussion
Model Parameter Information

In this section, a summary of the model parameters is
given. Those related to the inelastic response are subjected
to Bayesian calibration from the experimental data reported
in [66] for NisgoTi (at.%) single-crystal isothermal uniax-
ial loading; deterministic values are adopted for the rest of
the parameters. The model parameters are also listed in
Table la—c. Three dots “...” in the parameter values col-
umn indicate that the respective parameters are subjected to
probabilistic calibration.

Elastic parameters The B2 structure belongs to the
cubic crystal system and thus the elastic tensor of austenite
phase in NiTi SMA single crystals possesses three inde-
pendent constants, i.e., C; = 130 GPa, C5, = 98 GPa, and
Cf4 = 34 GPa [103]. As already mentioned, the assump-
tion that C{; = C, is adopted for simplicity [104].

Transformation parameters Of the 192 possible HPVs
predicted by the crystallographic theory of martensite only
the 24 Type II-1 HPVs frequently observed in experiments
are considered. The components of the vectors [*and d* are
given in [105, 106] and g; = 0.1308. The interaction
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Table 1 Model parameter values

(a) Elastic parameters

Parameter Value
Austenite C}, [GPa] 130
C5, [GPa] 98
C2, [GPa] 34
HPVs C} =Ca
(b) Transformation parameters
Parameter Value
Equilibrium transformation temperature, 77, [K] 257
Latent heat of transformation per unit volume, A, [MJ/m?] 154
Critical force for forward phase transformation, _;if,, [MPa]
Critical force for reverse phase transformation, ¢f,, [MPa]
Hardening coefficient, J,, [MPa]
(c) Austenite plastic deformation parameters
Parameter Value
Ratio of self to latent-hardening, ¢’ 1.4

Critical force for slip in (110){111}, Rfé, [MPa]
Critical force for slip in (100){001}, gfﬁ [MPa]
Critical force for slip in (100){011}, $£°, [MPa]
Hardening coefficient, Hp, [MPa]

The crystallographic data for the 24 martensite HPVs in NiTi is
given [105, 106]. The strain rate exponent #n is set to n = 50

matrix [Ht“ b }, given in [107], is not accounted for since

simulations showed that its inclusion overestimates the
transformation hardening observed in the experimental
data. The “viscous” parameter n is set to a high value,
n = 50, to approximate the rate-independent response of
NiTi. The reference transformation rate value, f.o, is rep-
resentative of the applied loading rate, determined using
the method suggested in [108].

A deterministic value is adopted for the latent heat,
A =154 MJ/m3, calibrated from differential scanning
calorimetry [30].

The initial critical forces for forward phase transfor-
mation are assumed identical for all martensite HPVs,
Y = ¢f, and, similarly, $fY = $f . ¢f., ¢f.. and J; are sub-
ject to Bayesian calibration.

Parameters related to dislocation slipping— Experi-
mentally, only slip in the system families (100){001},
(100){011}, (110){111} has been observed [69], and,
thus, only these slip families are included in the simula-
tions. The initial critical forces for slip in these systems,
fjé, are assumed identical for each family, and are thus
reduced to Zf; (r=1,2,3). gfl’) (r=1,2,3) and oH, are
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evaluated by Bayesian calibration, while the reference
plastic strain rate, 7, is determined as in [108]. Note that
yg and m,, in (22) cannot be reliably calibrated from the
experiments reported in [66] and are thus assumed null;
experiments at a temperature above M, would be required
for their calibration, i.e., a temperature at which stress-
induced phase transformation is suppressed.

Probabilistic Model Calibration

The Bayesian inference methodology described in Sec-
tion 4 is used to perform the probabilistic calibration of the
model for the seven parameters, listed in Table 1 with three
dots “...” as their values, from the experimental stress—
strain curves reported in [66] for NispoTi (at.%) single
crystals uniaxially loaded in six crystallographic directions
at room temperature. Since there is no prior knowledge
available for these parameters, the prior pdfs are assumed
to be uniform over the parameter ranges specified in
Table 2. The level of discrepancy between the simulations
and experimental data is measured by minimizing the
squared Euclidean distance between predicted and experi-

4 and id

mental stress values, X!/ exp’

pre respectively, at spec-
ified strain values (denoted by index i) for each loading

direction (denoted by index j)

. N2
Dse = > (Tpea — T8, ) - (32)
i.e., by minimizing the differences between the predicted
and experimental stress—strain curves.

The model calibration is performed by generating
30,000 parameter samples during the MCMC process.
After the elimination of the burn-in period, the mean value
and standard deviation of the remaining samples for each
parameter are calculated and listed in Table 2 as their
calibrated value and uncertainty.

Table 2 Initial values, ranges, and MCMC calibrated values with
uncertainty for the unknown model parameters

Parameter Initial value, Range, MCMC calibrated value
0! [01b0,b] with uncertainty, (8) + o9

¢f . [MPa] 2 [15] 348 + 1.04

¢f.» [MPa] 17 [12 22] 19.95 + 1.74

Ji, [MPa] 0.1 [0.001 10] 0.32 + 0.11

<fl [MPa] 700 [550 800] 673.36 + 75.66

gfé, [MPa] 550 [450 650] 552.31 4+ 55.07

gfg, [MPa] 600 [450 750] 548.40 &+ 71.62

AHp, [MPa] 0.1 [0.001 10] 385 +2.84

Uncertainty propagation from the probabilistically cali-
brated parameters to the model outputs, i.e., the uniaxial
stress—strain responses in different loading directions, is
performed by running the model for the mean parameter
values and each sample in the convergence region, sorting
the resulting output samples, and then discarding 2.5% of
these samples from the upper and lower bounds to estimate
95% credible intervals. The most plausible model predic-
tions (red lines) and 95% credible intervals (green shaded
areas) in addition to the corresponding experimental data
(blue lines) are plotted in Fig. 1. Depending on the loading
orientation the experimental stress—strain responses differ
in terms of the required load level for initiation of forward/
reverse phase transformation, strain hardening, and amount
of residual deformation with the simulations to quantita-
tively reproduce the experimental data in good agreement.
The discrepancy between the most plausible model pre-
dictions and the experimental data should be attributed to
the constitutive model’s assumptions/simplifications,
mostly to those related to self- and latent-hardening laws
due to both phase transformation and plastic deformation
and to a lesser extend to others, such as the equal hardness
assumption for all HPVs.

Correlations among the parameters is examined via the
Pearson correlation coefficient

(33)

where oy, oy, and oxy denote the standard deviation of
parameter X, the standard deviation of parameter Y, and the
covariance between X and Y, respectively, quantifies the
linear correlations for each pair of model parameters. The
coefficient varies between — 1 and 1, where the sign
demonstrates the correlation direction. Values closer to — 1
and 1 imply higher linear correlations between pair
parameters, while values closer to O correspond to lower
correlations. In Table 3, the Pearson correlation coeffi-
cients for all pairs of calibrated parameters are tabulated.
All coefficient values indicate almost no or weak linear
correlations, except for the two hardening parameters, J;
and Hp, that show some degree of correlation (p ~ 0.4).
The marginal distributions of J; and AH, and their joint
(pair) distribution are shown in Fig. 2. Figure 2a and b
shows a distinct convergence peak in their marginal fre-
quency distributions, while Fig. 2c and d indicate the
convergence region in the joint pdf of these two parameters
in 3D and 2D, respectively. Some degree of linearity of
color features in Fig. 2d may qualitatively provide the
insight indicated from the Pearson correlation coefficient
into the linear correlation between the two parameters.
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Fig. 1 Experimental stress—strain curves (blue lines) obtained from lines), and 95% credible intervals (green shaded areas). For interpre-
the uniaxial compressive loading experiments at six crystallographic tation of the references to color in this figure caption, the reader is

directions [66], most plausible stress—strain curve predictions (red referred to the web version of this paper (Color figure online)

Table 3 Pearson correlation
coefficients between the pair
model parameters

i [MPa] {f. [MPa] J,, [MPa] Sfl [MPa] §f7, [MPa] §f;, [MPa] aHp. [MPa]

if v [MPa] 1 - 0.05 - 0.29 0.01 - 0.07 0.04 — 0.08
f, [MPa] — 0.05 1 0.04 — 0.05 —0.01 - 0.15 —0.27
Ji, [MPa] - 0.29 0.04 1 0.21 0.11 — 0.001 0.39
Rf}‘), [MPa] 0.01 — 0.05 0.21 1 0.01 — 021 0.06
;fé, [MPa] — 0.07 — 0.01 0.11 0.01 1 — 0.08 0.05
sz» [MPa] 0.04 —0.15 —0.001 —0.21 — 0.08 1 —0.14
AHp, [MPa] — 0.08 - 0.27 0.39 0.06 0.05 —0.14 1
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Fig. 2 Marginal posterior

frequency distribution for
parameters J; and AH,, ((a) and
(b) respectively). 3D (c) and 2D
(d) joint posterior pdf for the
two parameters

Frequency
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Quantitative Analysis of the Contribution
of the Inelastic Deformation Mechanisms in Model
Performance

As already mentioned, the model accounts for reversible
phase transformation from austenite to HPVs and disloca-
tion slipping in the austenite state. In contrast to most
existing micromechanics-based single-crystal models, with
the exception of [89, 90], a mean-field contribution of the
deformation incompatibility at the interphases on the
internal stress states that drive dislocation slipping during
phase transformation, i.e., TRIP, is introduced. In an effort
to elucidate the relative contribution of the inelastic
deformation mechanisms and of the aforementioned
micromechanical description of the internal stress rise due
to the deformation incompatibility among the phases in the
overall deformation response, two extra models are con-
structed and compared pairwise with each other and the
adopted model M using the Bayesian model selection
outlined in “4.3” section. Model M4 does not account for
dislocation slipping and model My does account for dis-
location slipping but without the introduced contribution of
the deformation incompatibility among the phases into the
driving forces for dislocation slipping, i.e., 65 = 6 (= 64,)
in (10).

The probabilistic calibration of M, and My follows the
same procedure adopted for M; note that just 3 parameters,
of v of > and J;, need to be calibrated for M,. The models’
outputs for uniaxial loading in the [1 1 1]-direction are
compared in Fig. 3. The expected high importance of dis-
location slipping in the deformation response is obvious.
However, model selection between My and M in terms of

model’s ability to reproduce data is not possible from a
visual comparison alone. The Bayes factor calculated for
all pairs of models (Table 4) based on (29) suggest dra-
matic evidence in favor of models Mg and M over model
M, in accordance with the visual comparison of the sub-
figures in Fig. 3, while the evidence in favor of model M
over My is rather weak. M is the most likely model (based
on model evidence), with My being 10% less likely. Thus,
the incorporation of the mean-field evaluation of the
internal stress that contributes to TRIP does improve the
model’s ability to reproduce the experimental data and
should result in parameter values that are more represen-
tative of reality. Note that the calibrated values of the
initial critical forces for slip are substantially lower in
model My and the calibrated values of the hardening
parameters higher (Table 5).

ANOVA

A two-level FFD-based seven-way ANOVA by DoE is
utilized to identify the sensitivity of model outputs to the
variations of model parameters listed in Table 2. To per-
form this analysis, two levels are considered for each
parameter based on its 95% credible interval bounds
obtained from Table 2, i.e., (8) £ 2 x ay. The />-norm of
squared Euclidean distances (in the form of (32)) between
the stress—strain results for the parameter mean values and
their counterparts for each level-parameter combination is
obtained and input into the ANOVA analysis.

The ANOVA results are shown in Table 6 in descending
order for F values that corresponds to a reduction in the
parameter influence. Unsurprisingly, the most influential
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Fig. 3 Probabilistic model
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Table 4 Bayes factor, B(M;, M;), for each pair models
M; M;
My Mg M
Ma 1 2.7 x 107 2.5x 107
Mg 3.7 x 10° 1 0.9
M 4.0 x 103 1.1 1

Table S MCMC calibrated values of the unknown parameters with
uncertainty for models M and My

Parameter M Mg

if» [MPa] 348 £ 1.04 3.77 £ 0.89
f., [MPa] 19.95 + 1.74 20.27 + 1.37
Zfll), [MPa] 673.36 £+ 75.66 498.09 + 31.80
;ff), [MPa] 552.31 £ 55.07 469.79 + 73.88
<f3, [MPa] 548.40 £ 71.62 537.06 £ 99.56
Ji, [MPa] 0.32 £ 0.11 0.59 £ 0.24
AH,, [MPa] 385+ 284 4.90 £+ 291

parameters are the ones related to the phase transformation,
namely, the critical force for forward phase transformation,
the transformation hardening due to plastic deformation,
and the critical force for reverse phase transformation in a
decreasing order of the level of influence on the model
outputs.
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Table 6 Parameters’ informa-

tion in the FFD-based ANOVA F value
and influence in descending ¢f. [MPa] 36.85
order

Ji, [MPa] 9.48

+f1» [MPa] 7.76

44> [MPa] 6.09

“f» > [MPa] 5.05

AH,, [MPa] 0.38

/3, [MPa] 2.81 x 1074

Based on energetic grounds [69], (100){011} has the
lowest energy barrier (the unstable peak value) and hence
is most likely to be activated, (110){111} is a harder slip
system, and (100){001} is the hardest slip system to acti-
vate and it has hardly been observed. (100){011} permits
glide only in three independent slip systems out of the six
physically possible (or geometric) slip systems, thus
(100){011} cannot produce five independent slip systems
to satisfy the Mises criteria for arbitrary deformations,
same as (100){001}. (110){111} can produce five inde-
pendent slip systems (out of physically possible 12 slip
systems). According to the ANOVA by DoE analysis, the
ranking of the critical forces for dislocation slipping from
the most influential to the least is as follows:
(110){111}, (100){011}, and (100){001}. The difference
in F values between (110){111}, (100){011} is quite
small and both values are orders of magnitude greater than
the F value corresponding to (100){001}, which is a small
value (< 1), i.e., the influence of the (100){001} on the
overall deformation response is negligible.
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Summary

Bayesian inference has been employed in order to obtain a
quantitative insight into the inelastic deformation response
of NiTi single crystals from a limited set of macroscopic
uniaxial loading experiments via a phenomenological
constitutive response, which is formulated by incorporating
crystallographic information into a local continuum for-
mulation. The model accounts for reversible phase trans-
formation from austenite to HPVs, dislocation slipping in
the austenite state, and anisotropy in the elastic properties
of the two phases, which are considered to be the dominant
deformation mechanisms active during the experiments.
Using the classical additive error model, a probabilistic
calibration of model parameter values is carried out and
their mean values and uncertainty are obtained. The
Bayesian methodology is appropriate for forward propa-
gation of quantified uncertainty onto performance predic-
tions. Through Bayesian model selection and Analysis of
Variance by Design Of Experiment approach, (i) a ranking
of the inelastic deformation mechanisms in terms of their
relative influence on the overall deformation response, and
(i) a quantitative evaluation of the importance of the
nucleation and build-up of slip in austenite to accommo-
date the high transformation strains upon traversing
austenite—martensite interphases, are provided, conditional
on the adopted constitutive response.
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