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ABSTRACT. We construct and quantify asymptotically in the limit of large mass a variety of edge-
localized stationary states of the focusing nonlinear Schrédinger equation on a quantum graph. The
method is applicable to general bounded and unbounded graphs. The solutions are constructed
by matching a localized large amplitude elliptic function on a single edge with an exponentially
smaller remainder on the rest of the graph. This is done by studying the intersections of Dirichlet-
to-Neumann manifolds (nonlinear analogues of Dirichlet-to-Neumann maps) corresponding to the
two parts of the graph. For the quantum graph with a given set of pendant, looping, and internal
edges, we find the edge on which the state of smallest energy at fixed mass is localized. Numerical
studies of several examples are used to illustrate the analytical results.

1. INTRODUCTION

Here we study stationary states of the focusing cubic nonlinear Schrodinger (NLS) equation on
a quantum graph I'. The cubic NLS equation can be written in the normalized form:

(1.1) iUy + AU + 2|UPU = 0,

where U(xz,t) : T' x R — C is the wave function and A is the Laplacian operator on the quantum
graph I'. We assume that the graph I' has finitely many vertex points and finitely many edges
(which are either line segments or half-lines). Neumann—Kirchhoff (sometimes called “standard”
or “natural”) boundary conditions are used at the vertices of the graph: at each vertex the wave
function is continuous and the sum of its outgoing derivatives is zero. For general terminology
concerning differential operators on graphs the reader is invited to consult [12, 20].

The NLS equation is used to describe two distinct physical phenomena that are studied on
networks of nano-wires: propagation of optical (electromagnetic) pulses and Bose-Einstein con-
densation. A thorough discussion of the physics literature from mathematical point of view can
be found in [35]. The most important class of solutions for applications are the stationary states
which are characterized by solutions of the following elliptic problem:

(1.2) — AD —2(|9|°® = AD,
where A € R is the spectral parameter and the Laplacian A is extended to a self-adjoint operator
in L?(T") with the domain

Hf ={U € H*(') : Neumann — Kirchhoff conditions at vertices} .

Since —A is positive, localized states of the focusing cubic NLS equation on the line exist for
negative values of A and the limit of large mass corresponds to the limit of large negative A. Thus,
for the purpose of this work we restrict the range of A in (1.2) to negative values, A < 0.

The stationary NLS equation (1.2) is the Euler-Lagrange equation of the action functional
HA(U) :=E&(U) — AQ(U), where Q(U) and E(U) are the conserved mass and energy of the cubic
NLS equation:

(13) W) = [ wPde. &) = [ (0UF - UT") do.
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The conserved quantities £(U) and Q(U) are defined in the weaker space
Hl ={U € H'(T'): U is continuous at vertices} .

We use consistently notations H*(I') with & = 1,2 to denote Sobolev spaces of component-wise
H* functions and HE to include vertex boundary conditions for component-wise H* functions.

Among stationary states, we single out the standing wave of smallest energy at fixed mass which,
if it exists, coincides with a solution of the following constrained minimization problem:

(14) E, = inf {EU): QU)=q}.

In the variational setting, A is the Lagrange multiplier of the constrained minimization problem
(1.4). Applying the Gagliardo-Nirenberg inequality on the graph I' (see Proposition 2.1 in [6]),

(15) 10y < CollUa Uy, U € HE,

the infimum in (1.4) is bounded from below, hence E, > —oc.

If the infimum in (1.4) is attained, the global minimizer is called the ground state of the cubic
NLS equation (1.1) and it coincides with the stationary state of the Euler-Lagrange equation (1.2)
with the smallest energy F, at fixed mass ¢. The infimum is always attained in the case of bounded
graphs. However, the infimum may not be attained in the case of unbounded graphs due to the lack
of compactness: £, could be approached by a minimizing sequence “escaping” to infinity along
one of the unbounded edge of the quantum graph [5, 6]. See [1] for a review of various techniques
used to analyze the existence and non-existence of the ground state.

In this work, we study existence and properties of the stationary states that localize exponentially
on a single edge of a graph in the limit of large mass q. We call such states the edge-localized
states. The relevant asymptotic approach was pioneered in [33] for a particular bounded graph, the
dumbbell graph. Here we generalize and formalize this approach for any bounded and unbounded
graph. We summarize the properties of these states below.

Theorem 1.1. Let I' be a graph with finitely many edges and Neumann—Kirchhoff conditions at
vertices. Then for any edge e of finite length ¢ and for large enough pu := /—A there exists a
solution U with the following properties
(1) U is positive,
(2) U has a single local mazimum on T'; this mazimum is located on e; W monotone between
its maximum and the end-vertices of e,
(3) U concentrates on e in the following sense,

”\PHLQ(e) >1_ 06_2M€,

(1.6) >
I 2y

where the constant C' is independent of .

Full description of solutions ¥, including the location of the maximum, uniqueness properties
and asymptotics of £(¥) and Q(¥) can be found in Theorems 3.1, 3.3, and 3.5. To construct
the solutions ¥ with the properties described in Theorem 1.1, we glue a suitable elliptic function
solution on the edge e to a small solution in the rest of the graph. The gluing or, more precisely,
matching the values and the derivatives at the endpoints of the edge, is achieved by defining a
nonlinear analogue of the well-known Dirichlet-to-Neumann (DtN) map, an object we call the DtN
manifold. We obtain a nonlinear gluing condition which is analyzed, in the asymptotic regime
A — —o0, using the implicit function theorem. It yields the type and the parameter values of the
elliptic function that describes the solution on the edge e, thereby leading to the concentration
estimate (1.6) as well as the estimates for the energy £ and mass Q of the entire solution.
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FIGURE 1. A single edge of a finite length can be connected to the remainder of the
graph (shown in dashed lines) in three different ways.

These asymptotics allow us to compare solutions localized on different edges and to choose (in
most cases) the edge-localized solution of the smallest energy £(¥) for a given mass Q(V) = q.
Since edge-localized solutions are good candidates for the role of the ground state (see Proposi-
tion 4.1 for a description of known properties of a ground state), this comparison is an important
step towards the ultimate goal of fully describing the ground state for any graph.

To summarize the answers to the question of comparison, we introduce the necessary terminology.
We distinguish three types of edges, illustrated in Fig. 1: a pendant edge (or simply a “pendant”)
is an edge with one vertex of degree one, a looping edge (or simply a “loop”) is an edge whose
end-vertices coincide, and an internal edge is an edge not belonging to the above classes — one
with distinct end-vertices, each of degree greater than one. When we say an edge is incident to
N other edges (at an end-vertex), the number N counts the edges in the remainder of the graph
connected to the end-vertex. In Fig. 1 the pendant edge is incident to N = 3 edges at vertex v,
the looping edge is incident to N = 1 edge at vertex v, and the internal edge is incident to N_ = 2
and N, = 3 edges at its end-vertices v_ and v, correspondingly. The following theorem gives
comparison between the energy levels at a fixed (large) mass among the edge-localized states of
Theorem 1.1.

Theorem 1.2. Let I' be a compact graph (a graph with finitely many edges, all of finite length) and
Neumann—Kirchhoff conditions at vertices. Among the edge-localized states of Theorem 1.1 with a
given sufficiently large Q(V) = q, the state with the smallest energy localizes on the following edge
of the graph T':
(i) The longest among pendants; in the case of a tie, the pendant incident to fewest edges.
(i) If (i) is void, the shortest among loops incident to a single edge.
(iii) If (i)-(ii) are void, a loop incident to two edges.

(iv) If (i)—(iii) are void, the longest edge among the following: loops incident to N > 3 edges,
or internal edges incident to N_ > 2 and Ny > 2 other edges; in the case of two edges of
the same length, the edge for which the quantity

M
NT2

(N_—D(N;—1)
(N_+D) (N4 +1)

for a loop

for an internal edge

18 the smallest.

In the case of unbounded graph, we can enlarge the class of graphs for which we guarantee the
existence of a ground state. This result builds upon [6, Cor. 3.4 and Prop. 4.1].

Corollary 1.3. Consider an unbounded graph I' with Neumann—Kirchhoff conditions and with
finitely many edges (and thus at least one edge as a half-line). The ground state of the constrained
minimization problem (1.4) exists for sufficiently large q if T' has at least one pendant or a loop
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FIGURE 2. Plots of stationary states from Theorem 1.2 on a graph with two loops
and three internal edges, shown on top of the graph itself (thinner lines). We demon-
strate edge-centered states (left) and loop-centered states (right) on graphs with
relatively long loops (top) and relatively short loops (bottom). The lengths of all
internal edges were taken to be the same in each graph, we have just drawn some
edges as semi-circles for visualization.

incident to a single edge. If the graph I' has no pendants and no loops incident to one or two edges,
the ground state does not exist among the edge-localized states of Theorem 1.1.

Remark 1.4. If the graph I" has a loop connected to two edges, the existence of the ground state
is inconclusive and needs separate consideration. For the same reasons, there is no “tie-breaker”
in case (iii) of Theorem 1.2. This issue has been pointed out before, in [5, Theorem 2.5].

Remark 1.5. To illustrate Theorem 1.2 (iv), in Figure 2 we show relevant states for a graph I'
with two loops and three internal edges with the states visualized 3-dimensionally on top of the
graph itself. For the states plotted on the top of the figure, the internal edges are short relative to
the loops, and the loop state (top right) has smaller energy at large mass. For the states plotted
on the bottom of the figure, the internal edges are long relative to the loops, and hence the edge
state (bottom left) has smaller energy at larger mass.

The main results of this work are comparable and complementary to the recent work [7] on
existence of stationary states for the subcritical NLS equation (which includes, as a particular
case, the cubic NLS equation). In [7, Theorem 3.3], the existence of local energy minimizers in the
limit of large fixed mass was proven in the restricted space of functions that attain their maximum
on a given edge. Because we are using elliptic functions, our results are only limited to the cubic
NLS equation compared to the subcritical NLS equation in [7]. On the other hand, our work
extends to both bounded and unbounded graphs. Moreover, we are computing the exponentially
small corrections to the mass of each edge-localized state in terms of large negative Lagrange
multiplier A. With the help of the main comparison result (Lemma 4.2), this tool allows us to
compare different edge-localized states and identify the state of minimal energy in the limit of
large fixed mass. One important result which follows from [7] is that every edge-localized state
constructed in our work is a local minimizer of energy (at least in the case of unbounded graphs
considered in [7]), hence it is orbitally stable in the time evolution of the cubic NLS equation (1.1).

Existence and stability of stationary states in the NLS equation defined on a metric graph
have been recently investigated in great detail [35]. Existence and variational characterization
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of standing waves was developed for star graphs [2, 3, 4, 9, 8, 27, 29, 30, 31] and for general
metric graphs [5, 6, 15, 17]. Bifurcations and stability of standing waves were further explored
for tadpole graphs [19, 36, 37], flower graphs [28], dumbbell graphs [23, 33], double-bridge graphs
[38], and periodic ring graphs [18, 21, 40, 41]. A variational characterization of standing waves
was developed for graphs with compact nonlinear core [44, 45, 46]. Some of these examples will
be reviewed in the limit of large mass as applications of our general results.

The paper is organized as follows. The properties of the previously mentioned DtN manifold are
described in Section 2, first in the linear theory and then for the stationary NLS equation in the
limit of large mass. Edge-localized states are constructed by matching a localized large-amplitude
elliptic function constructed on a single edge of the graph with a small amplitude solution on the
rest of the graph and the matching is done by finding an intersection of two relevant DtN manifolds.
This is performed in Section 3 for the three types of edges (a pendant, a loop, and an internal
edge). In Section 4 we prove the comparison lemma and apply it to the proof of Theorem 1.2
and Corollary 1.3. In Section 5, we present numerical studies of generalized dumbbell graphs,
generalized tadpole graph, and a periodic graph.

Appendix A contains a proof of the asymptotic representation of the Dirichlet—to—-Neumann
map in the linear theory. Appendix B quotes a maximum principle that is useful to understanding
the behavior of solutions in the region where they are small. Appendix C collects together the
well-known results on the contraction mapping principle and the implicit function theorem used
in our work. Appendix D reports on useful asymptotic expansions for the elliptic functions and
gives a “reverse Sobolev inequality”: an estimate of the H? norm of an a priori bounded solution
of the stationary NLS in terms of its small L® norm.

ACKNOWLEDGMENTS. The first author was supported in part by National Science Foundation
under Grants DMS-1815075 and DMS-1410657. The second author was supported in part by
U.S. NSF Grant DMS-1312874 and NSF CAREER Grant DMS-1352353. The third author was
supported by the NSERC Discovery Grant.
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sations that led to the development of this work. In particular, this article corrects a computational
error that occurred in the final proof of [33] and was discovered thanks to an observation of R.
Adami and E. Serra.

2. GRAPHS INSIDE-OUT: DIRICHLET-TO-NEUMANN MAP

The main idea for constructing the edge-localized state satisfying the stationary NLS equation
(1.2) is to match a large solution of the known form on a single edge of the graph I with a small
solution on the rest of the graph denoted by I'°. The “feedback” from the small solution on I'°
to the large solution on the single edge is encoded via the nonlinear analogue of the Dirichlet-to-
Neumann (DtN) map which is developed in this section. For simplicity of notations in this section,
we use the same notation I' instead of I'°.

2.1. Linear DtN map; asymptotics below spectrum. We start by reviewing the linear DtN
map. Consider a graph I' with a finite number of vertices and a finite number of edges. We impose
Neumann—Kirchhoff (NK) conditions at every vertex. Declare a subset B of the graph’s vertices
to be the boundary. We are interested in the asymptotics of the DtN map on the boundary B for
the operator —A + p? as pu — oo.

Before we give a precise definition, a couple of remarks are in order. The operator —A on L?(T")
with NK conditions on the vertices is well known to be non-negative and therefore we are looking
at asymptotics far away from its spectrum. By using a scaling transformation, the same question
can be interpreted as asymptotics for the operator —A +1 on L*(T",) as u — oo, where the graph
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F1GURE 3. Left: a graph I' with boundary vertices B marked as empty squares.
Arrows indicate the outgoing derivatives of the eigenfunction in the Neumann data.
Right: a simple graph from Example 2.2.

I',, is obtained from I' by scaling all the edge lengths by a large parameter p. This is the point of
view we will use in most of the manuscript.

Let the boundary vertices be denoted vy,..., v, b = |B|, and let p = (py,...,p)T € R® be a
vector of “Dirichlet values” on the vertices. Figure 3 (left) gives a schematic representation of the
graph I' with boundary vertices. The graph I', is obtained from I' by multiplying all edge lengths
by the same value u. The infinite edges of the graph I' are unaffected by this transformation.

Let u € H*(T',) be a solution of the following boundary-value problem:

(—A+1)u=0, on every e € I',
(2.1) u satisfies NK conditions for every v € V' \ B,
u(v;) = py, for every v; € B.

Existence and uniqueness of the solution u follows from invertibility of the operator (—A + 1) with
homogeneous vertex conditions; see, for example, [12, Section 3.5.2]. Note that u is not required
to satisfy the current conservation conditions at v; € B. Let

(2.2) g =N(u); = Z Que(v;),

be the Neumann data of the function u at the vertex v; € B, where 0 denotes the outward
derivative from the vertex v;. The map M(u) : p+— q := (q1,...,¢)" is called the DtN map. The
following theorem (proved in Appendix A) provides its asymptotics as y — oc.

Theorem 2.1. The unique solution uw € H*(T',) to the boundary value problem (2.1) satisfies
asymptotically, as p — oo,

(2.3) lullZrem,y ~ lullze,) < C (1 +O(ue™)) ||p||?
and
(2.4) M(u) = diag(dj)g’-zl + O (e’“ém‘“) ,

where d; is the degree of the j-th boundary vertex and ly;y ts the minimal edge length of the original
graph T'.

Example 2.2. In the simplest case, the graph I" is one edge of length ¢ with the boundary vertex
at © = ¢ and the other vertex at x = 0 under the Neumann condition, as is shown on Fig. 3 (right).
It is straightforward to obtain the following solution of the boundary-value problem (2.1):
cosh(z)
2.5 =—p— 7
The DtN map M (u) : p +— g is one-dimensional with ¢ = /(uf) and
(2.6) M(p) = tanh(uf),

z € [0, ul].
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and the solution (2.5) satisfies

1
(2.7) ||U||i2(07uz) = §p2 [tanh(ul) + pulsech® (pl)] .

The latter quantities are expanded as u — oo, in agreement with (2.3) and (2.4). Note that the
error bound O(e™#) in (2.3) and (2.4) is larger compared to the error bound O(e~2*) following
from (2.6) and (2.7), due to cancellations specific to this simple example.

For future use we now establish a related estimate for the following non-homogeneous boundary—
value problem:

(—A+1—W)f:g, on every e € I'y,
(2.8) f satisfies NK conditions for every v € V'\ B,
f(v;) = pj, for every v; € B,

where g € L*(T',) and W € L>(T,) are given and f € H*(T,) is to be found.

Lemma 2.3. For every p > 0, g € L*(T',) and W € L>(T,) satisfying |W || e, < a < 1,
there exists a unique solution f € H*(T',) to the boundary value problem (2.8). Asymptotically in
pw— oo (assuming that « is independent of ) we have

(2.9) 1 fllz2ey < Ca (Pl + gl z2r,)) -

with the Neumann data of f on B satisfying

(2.10) INHI < Ca (lIpll + gl z2r,) -
where the constant C,, is independent of .

Proof. Represent f = u + &, where u is the solution to the boundary-value problem (2.1). Let us
define the operator

(2.11) —A+1-W: Dom(I'7) C L*T,)— L*(T,),

where Dom(I'))) € H?(T',,) is the domain of the Laplacian —A on the graph I', with homogeneous
Dirichlet conditions at the boundary B (the rest of the vertices retain their NK conditions). Since
1 —W(z) > 1—«a > 0 the operator (2.11) is invertible which implies that there cannot be more
than one solution f. Since ( — A+ 1)u = 0 and u takes care of the non-homogeneous boundary
values, the remainder term & is given by

(2.12) E=(=A+1-W)""(g+ Wu).

The inverse operator (—A+1— W)_l is bounded as an operator from L*(T",) to H*(T',,) uniformly
in > pg. Therefore, the L?(T',) norm of £ and the Neumann trace N(£) are estimated from (2.12)
as follows:

1€l 2,y + IV < Callg + Wl 2,y < Co (llgllrzr, + ellullzr,))

where we have implicitly used the Sobolev embedding ||dul| o) < C||u||g2(ry. The L*(T,) norm
of u and the Neumann data A (u) is bounded by C||p|| due to (2.3) and (2.4) respectively. Using
f=u+E&and N(f) = N(u) + N(&) we obtain (2.9) and (2.10). O
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2.2. Definition of nonlinear DtN manifold. The analogue of DtN map for the stationary NLS
equation is what we call a “nonlinear DtN manifold.” The name is chosen because in most cases of
interest (such as in the example we consider in Section 2.3) this object turns out to be a geometric
manifold. It is also not a “map” due to lack of uniqueness of the solution to the stationary NLS
equation.

Definition 2.4. Consider a p-scaled graph I', with a boundary B. The DtN manifold is the set
N C RIBI x RIBI of (p,q) such that there is a solution ¥ € H2(T',) of the following nonlinear
boundary value problem:

(—A+1)¥ = 2|27, on every e € I'y,

(2.13) U satisfies NK conditions  for every v € V '\ B,
' U(v;) = py, for every v; € B,
Do OV (v5) = ¢;, for every v; € B,

where 0 denotes the outward derivative at the vertex v; € B.

In the same way that linear DtN map is intricately related to the scattering matrix, the DtN
manifold is related to the nonlinear scattering map defined in [22]. Exploring this connection
further lies outside the scope of this article.

2.3. An example of DtN manifold. We will now describe the nonlinear analogue of Exam-
ple 2.2. To do so, let us briefly recall the structure of the solutions of the stationary NLS equation
on the line given by

(2.14) — U+ U =2V |*D,

Equation (2.14) is translation- and phase-invariant. We will impose, for definiteness, the condition
U’(0) = 0 and ¥(0) € R, obtaining a list of real-valued solutions of the differential equation (2.14).
All other real-valued solutions may be obtained from the listed ones by translations. More general
complex-valued solutions also exist but they are beyond the scope of this work.

There are three constant solutions to (2.14): ¥ = 0 and ¥ = i%. There exists a H*(R)

75
solution called the NLS soliton:
(2.15) U(z) =sech(z), ze€R.

This solution separates two families of periodic wave solutions expressible in terms of Jacobian
elliptic functions (see 8.14 in [25]). These are the sign-indefinite cnoidal waves

(2.16) Uy (2) = #Cn (ﬁ;ﬁ) . ke (% 1)

and the sign-definite dnoidal waves

1 z
2.17 Ugn(2) = ——=dn | ——=;k ), ke (0,1),
247 w2 = (m > o
where k (corresp. k) is the elliptic modulus. These solutions are illustrated in Fig. 4.
The Jacobi real transformation implies that letting x = 1/k in equation (2.16) transforms it into
equation (2.17) with k£ > 1 (see 8.153.5-6 in [25]). We will thus use the single analytic expression

(2.18) U, (2) = Q%de (ﬁ k) . ke (0,V2)

to describe the solutions (letter “n” can be interpreted as “noidal” or as referring to the Neumann-
type condition ¥'(0) = 0). In particular, setting k = 1 reproduces the NLS soliton (2.15).
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Psi

FIGURE 4. Top: phase portrait for the second-order equation —¥"” + ¥ — 2¥3 = (.
Bottom: typical solutions with initial conditions ¥/(0) = 0 and, from left to right,
U(0) = 0.98 (“dnoidal wave”), W(0) = 1 (“NLS soliton”) and ¥(0) = 1.02 (“cnoidal
wave”).

Example 2.5. Consider the simple graph of Example 2.2. The DtN manifold can be obtained by
going through all real solutions of the second-order equation (2.14) on the interval [0, u¢] with zero
derivative and variable initial value at z = 0. In other words, denoting L = uf, we set

(2.19) N, = {(\I/(L), V(L)) : —W 40— 203 =0, W(0) =0, ¥(0) € R}.

The DtN manifold is shown in Fig. 5 for L = 4. There are many peculiar and complex features,
but we will concentrate on the three nearly straight parallel curves in the neighborhood of (0,0).
The middle curve is tangential to the corresponding linear DtN map; the other two curves will
allow us to construct stationary states localized on a single edge of the graph.

2.4. Nonlinear DtN manifold in the almost linear regime. Consider the nonlinear boundary
value problem on a p-scaled graph I',, with a boundary B,

(A +1)0 = 2|77, on every e € I,
(2.20) U satisfies NK conditions  for every v € V' \ B,
U(v;) = py, for every v; € B.

We will establish the existence and uniqueness of small solutions of this boundary value problem
in the limit ¢ — oo and for small boundary data p = (p1,...,p;p) in Theorem 2.9 below. But
first we discuss some helpful properties of such small solutions.
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FIGURE 5. Nonlinear DtN manifold (thicker line) for (2.19) with L = 4 plotted on
top of the phase portrait from Fig. 4 (dashed and dotted lines).

Lemma 2.6. Suppose ¥ € H*(T,) is a solution to the boundary-value problem (2.20) satisfying
the uniform bound

1
2.21 U(z)| < — orall ze€T,.
(2.:21) [V (2)] 7 f y
Then |¥| has no internal local mazima in I'), \ B and the mazimum of |V| is attained on B. If,
additionally, all p; > 0, then ¥(z) >0 for all z € T,.
Conversely, if the boundary values p; of a function U satisfy |p;| < \/Li and |V| has no internal
local mazima in ', \ B, the global bound (2.21) is satisfied.

Remark 2.7. The upper bound in (2.21) comes from the location of the rightmost fixed point in
the phase portrait in Fig. 4.

Proof. If |¥| has no internal local maxima on I', \ B, the maximum of || is attained on the
boundary B, since |¥(z)| — 0 along the unbounded edges of T',,.

Since ¥ satisfies (2.20), we can view it as a solution to (—A + V)¥ = 0 with V =1 — 2|¥|%
By assumption, V' > 0 and we can use a maximum principle in the form quoted in Appendix B,
Lemma B.1 to conclude that max(¥, 0) has no local maxima in I', \ B. Similarly, max(—V, 0) has
no local maxima.

If, additionally, all boundary values p; are non-negative and ¥(z) < 0 is achieved for some
z € T, the function ¥ must have a negative internal local minimum. Therefore |¥| would have
an internal local maximum, a possibility that we just ruled out. Hence, ¥(2) > 0 for all z € I',, if
p; > 0 for all j. 0

We also prove a useful “reverse Sobolev estimate” which is so called because it goes in the
reverse direction to the usual Sobolev-type estimates of L* norm in terms of a Sobolev norm.
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The “reverse” inequality becomes possible if we assume a priori that the function satisfies the
stationary NLS equation and is sufficiently small.

Lemma 2.8. There exist co, j1o and C (which may depend on the graph I',), such that every real
solution ¥ € H*(T',) of the stationary NLS equation —0" + U = 2|U|*¥ satisfying

(2.22) W(2)| <co, z€Tl,, p>po
also satisfies
(2.23) 1V, < CHler,)-

Lemma 2.8 follows from the corresponding inequality on every edge of the graph I',, see Propo-
sition D.2. The proof of Proposition D.2 is rather technical and is postponed to Appendix D.
We now formulate and prove the main result of this section.

Theorem 2.9. There are Cy > 0, po > 0 and jiy > 0 such that for every p = (p1,...,pp|) with
Ipll < po and every u > po, there exists a solution ¥ € H*(T',) to the boundary-value problem
(2.20) which is unique among functions satisfying the uniform bound (2.21).

The solution VU satisfies the estimate

(2.24) 1N 2,y < Collpl,
while its Neumann data q = (q1, ..., qp)) = N (V) satisfies
(2:25) |45 — djps| < Co ([lplle™ =+ [[plI®),  1<j<|B]

where d; is the degree of the j-th boundary vertex and (i 1s the length of the shortest edge in I'.
The Neumann data q is C* with respect to p and p. The partial derivatives satisfy the following
estimates:

8 .
(2.26) ‘ag-—dﬁg < Cp (e +Ip||?), 1<4,j<|B|,
and
0q; _ .
(2.27) gij%uwmw 1<j<|B]

Furthermore, if p; > 0 for every j, then WU(z) > 0 for all z € T.

Proof. For the nonlinear boundary value problem (2.20) we decompose

(2.28) U=y + b

where u € H*(T',,) satisfies the linear boundary value problem (2.1) and ¢ € H*(T',,) satisfies
(A + 1)y =2)u+ V> (u+ ), on every e € I',,

(2.29) 1 satisfies NK conditions for every v € V'\ B,
YP(v;) =0, for every v; € B.

Let us denote by Dom(I'?) € H?*(T,,) the domain of the Laplacian —A on the graph T, with
Dirichlet conditions at the boundary B (the rest of the vertices retain their NK conditions). This
is a self-adjoint positive operator, therefore —A + 1 is invertible with (—=A + 1)~! bounded as an
operator from L*(T",) to H*(T',,).

Since H?*(I',) is a Banach algebra by an application of the Sobolev inequality (see Lemma 3.1
in [21] for the periodic graphs setting), the mapping 7' : Dom(I'}) — Dom(T'?) defined by

(2.30) Tt 2(=A+ 1) u+P(u+v)
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satisfies the estimates

(2.31) IT W) 2w,y < Cillu+ ¢l ),
and
(232) T — Tl < Co (lut dalBiaqe,y + lu+ ealifing,) ) lr = all s,

The latter estimate follows from the elementary inequality
3
la® — 0| = |a — b||a® + ab + V?| < é\a —bl(a® +b?)

as all functions in (2.30) are real.
It follows from Theorem 2.1 that [jul|,

obtain that T satisfies the conditions of the Contraction Mapping Principle (see Theorem C.1 in
Appendix C) in the ball [|¢)]| g2(r,) < po. Using (C.2), this yields a unique solution ¢ € Dom(I'})
as a fixed point of T satisfying the following estimate:

(2.33) [l < Cullullzer,) < Csllpll”,

for some p-independent Cy,C5 > 0. These estimates, together with Theorem 2.1, immediately
yield estimate (2.24) for U = u + 1.

In order to confirm that W satisfies the uniform bound (2.21), we use the classical Sobolev’s
inequality (see, for example, [12, Lemma 1.3.8])

[z 0,2) < Cl ¥ 52(0,1)
where C' is independent of L as long as L > Ly. Hence
W] zoe(ry < ClI¥ | E2(r,),

< Cs|lp|| < Cspo, hence, taking py small enough we

where constant C' is independent of p. Then, the bound (2.24) implies estimate (2.21).
In order to show that the small solution ¥ with the given small boundary data p is unique, we
use Lemma 2.6 to conclude that

¥z, < maxp; < po.

and then use Lemma 2.8 to get a bound on small || ¥||g2r,). We conclude that ¢ := ¥ — u is
H?-small which puts it into the domain of contraction of 7. Uniqueness of 1) and hence of ¥ then
follows from uniqueness in the Contraction Mapping Principle.

The Neumann data for W is the sum of the Neumann data for v and the Neumann data for ).
The former is bounded by (2.4). The latter is estimated using (2.33) and the continuity in H?(T,)
of the Neumann trace. Combining the two estimates, we obtain (2.25).

We now apply Corollary C.4 to the mapping T' defined in (2.30) to conclude that the fixed point
Y is C'inw e H*(T',). In turn, u € H*(T',) is C! in p because the boundary value problem (2.1)
is linear in p. The derivative dp,u satisfies equation (2.1) with p = (6;;)5_,. By Theorem 2.1, we
have

(2.34) |Op,ull 2,y < Cs and 9N (u); =N (9pu); = d;jé;; + O (e7#min) |

To estimate the derivative of (1) we differentiate equation (2.29) in p; (allowed since we already
established smoothness in p;), to obtain

(=A+1—0692)9,1Y =6V20,,u, oneveryecl,,
(2.35) 0,0 satisfies NK conditions for every v € V'\ B,
Op,h(v) =0, for every v € B.
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Taking small enough py we can ensure, see (2.24), that ¥ is uniformly bounded on I', by, say,
1/4/12 and therefore
(2.36) 120%(2) < 1, z€el,.
We can now apply Lemma 2.3 with ||p|| = 0, W = 6¥? and g = 6¥20,,u to estimate
IN @)l < Co| W20y

using our bounds on ¥ and d,,u, see (2.24) and (2.34). Combining this estimate with the derivative
of N(u) in (2.34) we obtain (2.26).

To establish smoothness of q in ¢ we have to overcome a technical difficulty. The Banach spaces
H?*(T',) and Dom(T'}?) containing u and 1 depend on the parameter p. To circumvent this problem,
we rescale

(2.37) O(x) = pW(ux), rzel,

2,y < Cqllpll%,

and obtain the boundary value problem on the original graph I':

(—A + p?) @ = 2|9)?P, on every e € I,
(2.38) & satisfies NK conditions, for every v € V' \ B,
O (v;) = upj, for every v; € B.

We already established that there exists a unique solution ® € H2 to the boundary-value problem
(2.38) for every pu > pg. Moreover, bound (2.36) on ¥ translates into the similar bound on &,
namely

(2.39) 120%(2) < p?,  xel.

We will now fix g and reformulate (2.38) in a form where we can apply the Implicit Function
Theorem (see Theorem C.3). In particular, to get a mapping smooth in ® (the Jacobian must be
a bounded operator) we need to invert (—A + p?) which means that we have to fix the boundary
conditions first. Similarly to previous decomposition ¥ = u + ¢, we decompose ® = w + ¢, where
w(x) = pu(px) satisfies the inhomogeneous boundary-value problem:

(—A+ p*)w =0, on every e € T,
(2.40) w satisfies NK conditions for every v € V' \ B,
w(vj) = pupj, for every v; € B.

The remainder ¢ belongs to H?(T') with Dirichlet conditions at B and NK conditions elsewhere;
we denote this space by Dom(I'?) ¢ H*(T'). Let F be the following mapping from X x Y :=
R! x Dom(I'P) to Z := Dom(I'P):

-1
(2.41) Fi(p, o) ¢ —=2(=A+p%) " Jw+ o (w+ ¢).
Note that the map F' in (2.41) can be derived from the map (2.30) after rescaling (2.37) and
rewriting the fixed-point problem as the root-finding problem.

There exists a solution ¢ € Dom(I'P) given by ¢(z) = up(uz), where ¢» € H*(T,) is the fixed
point of 7" in (2.30). We check that the Jacobian DyF'(ju, ¢) has a bounded inverse. The Jacobian
applied to h € Dom(I'?) is given by
(2.42) DyF(p, ¢)h = h —6 (=A+ p2) ™" |w + ¢|?h,
and solving DyF (i, ¢)h = g results in

(2.43) h=g+6(—A+ —6|w+q25|2)71 lw + 6°g.
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The right-hand side is a bounded operator from Dom(I'?) to Dom(I'”) because of the bound
(2.39). In addition, since w is C* in u as follows from (2.40), we have that F'(u,¢) is C' in p. By
the Implicit Function Theorem (Theorem C.3), ¢ is C! in u, so that ® = w + ¢ € HE is also C*
in p.

Having proved smoothness of ® € H2 in u, we can now differentiate equation (2.38) in u,
resulting in the following equation for ® := 0,®:

(—A + p2 — 6|D2) D + 21D = 0 on every e € T,
(2.44) d satisfies NK conditions for every v € V'\ B,
d(v;) = p; for every v; € B,

We undo the rescaling (2.37) and introduce ®(z) = ¥(uz) satisfying

(—A+1—6|T2) ¥+ 20 =0, on every e € I'y,
(2.45) U satisfies NK conditions for every v € V'\ B,
\if(vj) = p;, for every v; € B.

We are again in a position to apply Lemma 2.3, with W = 6|¥|> and g = —2¥, obtaining from
(2.10):
(2.46) [NV ()] < Csllp-
We unwind all rescalings, first @ = N (¥) = 2N (®) and then

dq 1 2 1 .

91 Zq= L (V(#) - 2a).

o p2 Nt (¥)
Both terms in the brackets are bounded by ||p||, due to (2.46) and (2.25), resulting in (2.27). O
Remark 2.10. Applying Lemma 2.3 to (2.35) yields

10,0l 22,y < CNIP*0p,ull 2,y < CllipII*.

Combining this with (2.34), we get for ¥ = u + 1 and its rescaled version ®,

(2.47) 105 Y| L2(r,) < C, 18y, L2y < Cp'/?.
Similarly, it follows from (2.45) that
(2.48) 1Wllz2,y < Cllpll, 10,222y < Cu I,

where the constant C' > 0 is independent of p as p — oo.

Remark 2.11. The back-and-forth rescaling in the proof of Theorem 2.9 may seem superfluous,
but there are limitations to each setting. For example, we cannot differentiate ¥ with respect to
p since the domain I', of ¥ depends on p. On the other hand, the Jacobian (2.42) may not be
bounded uniformly in H?(T') as u — oo since the H*(T') norm of ® grows fast in p.

2.5. Single bump part of the DtN manifold of a Neumann edge. We now describe the part
of the DtN manifold for the single edge of Example 2.5 that corresponds to single bump solutions.

Lemma 2.12. Consider the DtN manifold in (2.19) for the graph ', consisting of a single edge
[0, L] with L = pf under the Neumann condition at z = 0 and the boundary vertexr at z = L.

Parameterize ¥(0) € (\/Li, oo) by

1

(2.49) U(0) = ﬁ’
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FIGURE 6. Nonlinear DtN manifold for a single interval of length L = 4 (blue curve)
superimposed with the asymptotic approximations provided by equation (2.25) of
Theorem 2.9 (solid straight line) and equations (2.52) of Lemma 2.12 (dotted straight
line). Thick segment highlights the part of the dotted line corresponding to k €
(k—, k) in equation (2.51).

where k € (0,4/2) is a parameter. There is an interval (k_, k) such that a solution ¥ in (2.18)
satisfies

(2.50) U(z) >0, ¥(z)<0, z€(0,L]

if and only if k € (k_,ky). The boundaries ki have the asymptotic expansion
(2.51) ky =148 +0 (Le™™) as L— o0,

while the boundary values of ¥ are given asymptotically as L — oo by

{ pr=U(L)=2e"F - 1(k—1)el + O (Le7?F),

1
qp =V (L) = —2e7" — %(k — e+ 0 (Le*3L) ;

(2.52)

where the correction terms denoted by O (Le*3L) are bounded in absolute value by CLe™3L for
some constant C' which is independent of L and of k, provided k € (k_,ky). Furthermore, the
boundary values are C* functions with respect to k and their derivatives are given asymptotically
as L — oo by

apL aQL 1 L _L
2. —_— = = —= L .
(2.53) o Ok 1 + O (Le™")
Remark 2.13. By definition of the interval (k_, k) as the maximal set satisfying conditions (2.50),
it is monotone in L, namely

(k_(L'), k(L)) C (k_(L), ki (L)) i L>1L.

Remark 2.14. Because k is exponentially close to 1 in (2.51), the two terms in the expansion of p
and ¢ in (2.52) are of the same order. These equations give a parametric description (the parameter
being k) of a piece of DtN manifold as a line plus smaller order corrections. This line is shown
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in Fig. 6 by dotted line together with the “linear approximation” ¢ = p from Theorem 2.9 shown
on Fig. 6 by solid straight line. The part of the dotted line which corresponds to k € (k_, k) is
shown on Fig. 6 by thick solid line.

Proof of Lemma 2.12. By using the exact solution (2.18) satisfying the initial condition (2.49), we
obtain

(2.54) L4 ( L k;)
. - n ; )
= rt Ve

and

(2.55) i s ( L k:) c ( L k)
=" 2"\ Ve r V2 k2

Let us consider the case k£ < 1. It follows from the single-bump condition (2.50) that ¢, < 0 if and

only if

L <V2—-KkK(k),
where K (k) is the complete elliptic integral of the first kind. We will give a brief review of elliptic
integrals in Appendix D. By using the asymptotic expansion (see 8.113 in [25])

(2.56) K(k) = log (\/%;@)

we verify that k- = 1 — 872l + O(Le™*F) is an asymptotic solution to L = /2 — k2K (k) in
the limit L — oo and that the condition L < /2 — k2K (k) is satisfied for all £ € (k_,1). By
Proposition D.1, the asymptotic expansions (2.52) follow from expansion of (2.54) and (2.55) as
k — 1 uniformly in k € [k_,1].

The case k > 1 is obtained similarly but the condition k € [1, k] appears from the requirement
that pr > 0 in the single-bump condition (2.50).

The asymptotic expansions for derivatives (2.53) follow from differentiation of (2.54) and (2.55)
with respect to k£ and substitution of the asymptotic results of Proposition D.1. O

+0((1-k)|log(1 —k?)]) as k—1,

3. CONSTRUCTING THE EDGE-LOCALIZED STATIONARY SOLUTIONS

We now prove the existence of edge-localized solutions of the stationary NLS equation (1.2) in
the limit A — —oo. We will match the single-bump parts of the DtN manifold on a single edge
of the graph I' with the almost linear parts of the DtN manifold on the remainder of the graph,
henceforth denoted I'. The solution will then be small on I'* while it will be large and localized
on the single edge of I'.

The scaling transformation (2.37) transforms the stationary NLS equation (1.2) with A = —p? <
0 on the graph I to the stationary NLS equation on the p-scaled graph I',,

(3.1) (—A+ 1)U = 2|V|*V.

® € Hf is a solution of (1.2) if and only if ¥ € HY is a solution of (3.1). Throughout, we will
use consistently that ® (and V) are real valued. We shall now develop the asymptotic solution for
v e H%H separately for the three types of edges on Fig. 1.

3.1. Pendant edge.

Theorem 3.1. Let I'), be a graph with ji-scaled edge lengths and with a pendant edge of length
L = ul attached to the remainder of the graph, T, by a vertex v of degree N + 1, see Fig. 1(a).
Then, for large enough u, there is a unique solution ¥ € HIZM to the stationary NLS equation (3.1)
with the following properties:
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e the solution s strictly positive on the pendant edge and decreases monotonically from its
mazximum at the vertex of degree one to the attachment vertex v,
e it 15 positive and has no internal local mazima on the remainder graph I';,.

On the pendant edge, the solution is described by (2.18) with
N—1 ou — 2l 1lmin
(32) k:1+8N——|—16 “—i—@(e HEmH ),

where lyin 1 the length of the shortest edge in T°. The corresponding solution ® € HE to the
stationary NLS equation (1.2) with A = —u? on the original graph T concentrates on the pendant
edge, so that

(3.3) 10122 ey < Cpie ",

whereas the mass and energy integrals Q := Q(®) and € := E(P) in (1.3) are expanded asymptot-
1cally by

N -1
(3.4) Q=u— 8N—+1p2€e_2”£ +0O (,ue_z’w)
and
1
(3.5) &= —g,u?’ + O (p'e ™).

The mass integral Q is a C' increasing function of . when p is large.

Remark 3.2. Unless the graph I', which we assume to be connected, is a single interval, the
degree of the attachment vertex v is N + 1 > 2, that is, N > 1. It is well-known that a vertex of
degree 2 with NK conditions can be absorbed into the edge without affecting any solutions, while
increasing effective edge length ¢ and thus making our estimates sharper. Therefore, the result
above is only useful with N > 2. Still, it is valid for N = 1.

Proof. Let L = pl be the length of the pendant edge on the p-scaled graph I',. All solutions ¥
satisfying the desired properties in the pendant edge are described by Lemma 2.12 with k£ in the
allowed region (k_,k;). On the other hand, given a small boundary value p on the attachment
vertex v, there is a unique solution in ¥ € H?(I'®), which is described by Lemma 2.6 and Theo-
rem 2.9. Matching two DtN manifolds in Theorem 2.9 and Lemma 2.12 at the attachment vertex
v between the pendant edge and the graph I'}, we get

(3.6) p=DrL, 4= —4qr.
The above discussion shows that the solutions ¥ with the desired properties are in one-to-one
correspondence with the roots k of equation (3.6), where p;, and ¢, are functions of k£ by Lemma
2.12 and ¢ is a function of p via Theorem 2.9.

Since, by Lemma 2.12; the value p; at the vertex v of the pendant edge is exponentially small
in the large parameter L, we are indeed justified in using Theorem 2.9 to conclude that ¢ =~ Np =
Npr, where N is the degree of the attachment vertex v in the graph I'“. More precisely, we have

(37) — 4L = NpL + R(pLu M)a

where by (2.25), (2.26) and (2.27), the remainder function R satisfies the bounds
[R(p, )| < C(pebmn +p?),

(38) O R(p, )| < CeHmm +p?),
|0, R(p, )| < Cp'p,

for some C' > 0 independently of large p and small p. Here /¢, is the minimal edge length in
', but naturally the estimate remains valid if we take ¢,;, to be the minimal edge length in the
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whole of T'. For large enough p and any k in the allowed region (k_, k, ), it follows from (2.52)
that 0 < p;, < ce™™ for some ¢ > 0. Therefore, the absolute value of R(pz) (which depends on k)
is uniformly bounded by C/(e=#(+fmin) 4 e=316) < CemrltHtmin) hecause £ > L.
For convenience we rescale the parameter k by substituting
(3.9) k—1=8e 2y, x € (v_,xy)
with zy = £1+ O (pe=?*). Using the expansion (2.52) with L = ¢ and the scaling (3.9), we can
write
(3.10) pr =2 M1 — 2+ Ry(x, 1)),
where the remainder function R, satisfies the bounds
1Ry (i )] < Cue=".
(3.11) 0, Ry (. )| < Cpue=1,
0, Ry(z, )| < Cre2,
for some C' > 0 independently of large p and x € (x_,2z4). In order to derive (3.11) for the
derivatives of R,(x, i), we use the chain rule and the estimates (2.52) and (2.53):

dpL 0 ODL _ _ _
% = 8e QMKW = —2e ne [1 + O(,ue ZME)} = 2e nt [—1 + 8967?,1,(1’,/1)]
and
opr, opr, 0,00PL dpr ) —2ul
— = {— — 16/ W —— = flq; — 2W0x—— = —20e " |1 — a
o R T L 1=t Oue™)]

= 21 -2+ Ry(z, 1) — Rz, 1)) .
Similarly, we can write
(3.12) qr = =2 "1+ 2+ Ry(z, 1),

where the remainder function R, satisfies the same bounds (3.11) as R,. Upon substituting (3.9),
(3.10), and (3.12) into equation (3.7), we obtain

(3.13) L4 @+ Ry, 1) = N1 = 2+ Ry(, )] + Rl ),
where R(pr, jt) = 2¢ R (x, 1) and the new remainder term R satisfies the bounds
Rz, )| < Cemn,

(3.14) |0 R, )] < Cehin,
0, R(, )] < O (u=" + em#bmin) |

for some C' > 0 independently of large p and = € (x_,xy). In order to derive (3.14), we have used
the fact that ue 3 <« e~ HE+tmin) hecause ¢ > Lo, as well as the chain rule

92 1 9RO OR
L RO

or  2° Opr, Ox @

and

OoR . 1 ,0R 1 ,0R dps

—— = (R 4 —eM = e

ol + 2° ol * 2° Opr, Ou
Rearranging (3.13), we get

N-1 <~

(3.15) v =——7+R(=mn),

N+1
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where the remainder R :=

(R4 NR, — R,) satisfies the bounds

s
Rz, )] < C (eom 4+ pe2nt)
(3.16) |0R(w, )| < C (embmin 4 pre=20t) |

R (2, 1)] < C (™ + e Homin 1 =204

for some C' > 0 independently of large u and x € (z_, z, ). For large enough p, the right-hand side
of (3.15) maps the interval (x_,z) into a subset of (x_,z, ), moreover, the map is contractive in
(x_,zy). By the Contraction Mapping Principle (see Theorem C.1), there exists a unique solution
of the scalar equation (3.15) satisfying the estimate

N -1
N+1
where the constant C' > 0 is independent of u for large p. Since p = py is expanded by (3.10),

the estimate (3.2) follows from (3.9) and (3.17). Since the scalar equation (3.15) is C* in p,
Corollary C.4 implies that the root x in (3.17) is C! in u satisfying the estimate

dz
dp
where the constant C' > 0 is independent of p for large p.

The estimate (3.3) follows from (2.24) with p = p, given by (3.10) and (3.17) and the scaling
transformation (2.37).

We now turn to the expansion (3.4) for the mass Q := Q(®). Thanks to the scaling transfor-
mation (2.37) and the estimate (3.3), we can split the mass Q as follows:

(3.19) Q = [|2l[720,0) + 1@ Z2(re) = 1l ¥l Z2(0 ) + Oue™),

where the first term is needed to be computed up to the accuracy of the remainder term of the
O(ue=2#) error. The first term in the splitting (3.19) is estimated from the explicit expression
(2.18):

(3.17)

<C (e"wmin + ue_Q‘w)

(3.18) <O (pt 4 e tmin 4 pem) |

191220, = ﬁ/ dn(€: k)*de
1 &o o
(3.20) m / n(€; k)2de + ——— = /K . dn(€; k)2de,

where & .= 24 < K (k) and K (k) is the complete elliptic integral of the first kind, see Appendix

V2—k?
D. The second term of the decomposition (3.20) is estimated by
o
(3.21) dn(¢; k)ng‘ = O(e ),
K(k)

since & = pul + O(pue ), k = 1 + O(e %) by using (3.2) and dn(&; k)2 = O(e ) for every
¢ € (&, K(k)) by applying Proposition D.1. By virtue of the estimate (3.21), the second term in
(3.20) is comparable with the remainder term in (3.19) and is much smaller than the first term in
(3.20). To estimate the first term in (3.20), we consider the case k < 1 (computations for k£ > 1
are similar). It follows from 8.114 in [25] for £ < 1 and k — 1 that

K(k)
Bk) = /0 dn(&: k)2de
1

1 4
=1+4=(1-k) |log —— — =
+ 5l )[Og =7 3

} + O ((1 = k*)?|log(1 — k%)])
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where E(k) is a complete elliptic integral of the second kind, see Appendix D. Therefore, we have

1 _
1Pz, = 1—5(1=k)log(1—k)+OCe )

_ _ N -1 —2ul —2ul
(3.22) =1 8—N+ 1u€e + O(e "),
where the estimate (3.2) has been used. Combining (3.19), (3.20), (3.21), and (3.22) yields the
expansion (3.4).

The differentiability of ® € H2 and k in p implies that the map p +— Q is C'. In order to prove
monotonicity of @ with respect to p, we differentiate (3.19) in p keeping in mind that the solution
U (or its rescaled form ®) depends on p both directly and indirectly, via the parameters p and k,
correspondingly. We have from (3.19):

dQ d
(3.23) i = 1911220, +ud 1N Z2 0,0 + @H@Hizm)-

The first term in (3.23) yields 1+ O(ue=2*) due to the estimate (3.22). The second term in (3.23)
is estimated from the chain rule:

d J Ok 0 b0
3.24 — || W3, ==+ == ) ——

where & := \/—2% It follows from (3.9) and (3.18) that

dn(&; k)*d¢,

’ < Ce 2,

Furthermore, recall that since §, = \/7 = pl+ O(pue ), k =1+ O(e20), |dn(&; k)| < Ce¢,
and |Opdn(&; k)| < Ceb. As a result, we obtain from (3.24) that

< C,ue’Q“e.

W0
The last term in (3.23) is estimated from another chain rule:

d 0P  dp 0P
3.25 — P22 ey = — + —— ) ®d,
(3.25) 8l /Fc(8u+du8p) .

so that
S CMB—Q,U,E

poli

by applying the estimates (2.47), (2.48), (3.3), (3.10), and (3.17). Combining all estimates together
in (3.23), we obtain that

dQ

dp

hence Q is monotonically increasing in .

Finally, we establish the expansion (3.5) for the energy £ := £(®). By using the scaling (2.37),
we split the energy £ into two parts:

£ = 9200 — 19750, + 12172 re) = (PN Zacre)

(3.26) = 1 (1920, = @100, ) + 0(1);

=1+ O(pPe ),
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where o(1) denote terms vanishing in the limit of 1 — oo by applying the estimate (2.24) with
lp| < Ce#t. Using the exact solution (2.18), we estimate the expression in the bracket in (3.26):

1 £o
(3.27) 19112200 0) — N1 2 00,0y = m/o [k*sn(&; k)?en(&; k) — dn(&; k)] de,
where &, := \/2“787 = pl + O(ue=2#%). The estimate in Proposition D.1 with & = 1+ O(e~ ) from

(3.2) gives that the remainder terms to the limiting hyperbolic functions in (D.5), (D.6), and (D.7)
are as small as O(e ) in the L>(0, &) norm, hence we obtain from (3.27) that

&o
H\II’H%Q(O,M) - ||\Il|]‘i4(07ug) = /0 [sech(§)? tanh(€)* — sech(£)*] d€ + o(1)
- /OO [sech(€)? tanh(£)* — sech(£)*] d€ + o(1)
0

(3.28) = —% +o(1).

Combining (3.26) and (3.28) yields £ = —34° 4 o(1). Since @ is a critical point of the augmented
energy Sy(U) :=E(U) — AQ(U), it follows that Q and & satisfy the differential equation:

d& AdQ g ,dQ

(3.29)

P T M P
Since Q is C' in pu, then &€ is C' in p. It follows from the balance of exponential terms in (3.4)
and (3.29) that the remainder o(1) is given by O(ute=2#), which completes the proof of (3.5). O

3.2. Looping edge.

Theorem 3.3. Let I'), be a graph with p-scaled edge lengths and with a looping edge of length
2L = 2ul attached to the remainder of the graph T'y, by a vertex v of degree N + 2, see Fig. 1(b).
Then, for large enough ., there is a unique solution ¥ & H%H to the stationary NLS equation (3.1)
with the following properties:

e the solution is strictly positive on the looping edge and decreases monotonically from its
mazimum at the midpoint towards the attachment vertex v,

e it is positive and has no internal local mazima on the remainder graph I',.
On the looping edge, the solution is described by (2.18) with the origin (mazimum) located at the
midpoint and with

N -2

3.30 k=1+48——=e 4 O (e 2 Hhmin
(3.30) +85e HO(e )

where Ly is the length of the shortest edge in T°. The corresponding solution ® € HE to the
stationary NLS equation (1.2) with A = —u? satisfies the concentration estimate

(3:31) |32y < Cpe 2,

whereas the mass and energy integrals Q := Q(P) and € := E(P) in (1.3) are expanded asymptot-
cally by

N -2
.32 = — 16— 2021t —2ul)
(3.32) Q=2u 6N+2,u e+ O (pe™)
and
2
(3.33) &= _§“3 + O (pte ).

The mass integral Q is a C' increasing function of u when p is large.
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FIGURE 7. A localized solution localized on a internal edge for N_ = 3 and N, = 2.
The maximum of the solution is shifted to the right of the edge midpoint at the
displacement a.

Remark 3.4. The wave on the looping edge is dnoidal for N = 1 (since k£ < 1) and cnoidal for
N > 3 (since k > 1). Its character in the case N = 2 is undetermined since the first correction
vanishes and our results do not provide higher order corrections. However, since neither solution
changes sign on the edge due to the constraints (2.50) in Lemma 2.12, the difference between the
cnoidal and dnoidal waves is largely irrelevant.

Similar issues have been observed in studies of both linear (for example, [16]) and nonlinear
(for instance, [5, Example 2.4] or [30]) problems on graphs. In a vertex of degree 4 (or, more
generally, a “balanced” vertex of even degree [16, 30]), there is a possibility to form a solution by
superposition of identical solutions, each living on a pair of edges, and attaining the same value
on the vertex. Such a solution would not be affected if we cut through the vertex [13, Sec 3.1],
separating it into two vertices of degree 2 and thus making the edge lengths effectively longer. This
consideration affects resonance statistics of [16] and our asymptotic results in a very similar way.

Proof. Continuity of the solution at the attachment vertex v coupled with its single-bump character
implies that we can restrict our search to the solutions symmetric on the looping edge. From the
midpoint to the attachment vertex v, possible solutions are described by Lemma 2.12; all of them
are exponentially small in L at v. Given a small boundary value p on the attachment vertex
v, there is a unique solution ¥ € H?(I'°), which is described by Lemma 2.6 and Theorem 2.9.
Therefore, all solutions in the prescribed class of functions are in one-to-one correspondence with
solutions of the following equation from the NK conditions:

(334) —2q;, = Npp + R(pL, /L).

This equation should be interpreted as an equation on k (through p;, and ¢; that depends on
k). This equation replaces equation (3.7) in the proof of Theorem 3.1. The rest of the proof is
identical to the previous one with the change N — N/2 and the double factor in (3.32) and (3.33)
compared to (3.4) and (3.5) because of the splitting

(3.35) L*(T,) = L*(-=L,0) ® L*(0, L) & L*(T°).
Monotonicity of Q is established by a similar expansion of the derivative resulting in % =2+
O(u2e=218). O

3.3. Internal edge. We finally arrive to the “generic” type of edge: an edge which connects two
distinct vertices of degree larger than two. We call such edges internal.

Theorem 3.5. Let I'), be a graph with pi-scaled edge lengths and with a internal edge e connecting
vertices v_ and vy of degrees N_ + 1> 3 and N. + 1 > 3 correspondingly, see Fig. 1(c). Identify
the edge e with the interval [—ul, pl), so that the length of e is 2ul. Introduce the notation

1 N_—N
. .= —tanh ' [ — 1T
(3.36) a 2tzm <N+N — 1) :
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and let (—ag, ag) be an arbitrary interval containing a..
Then, for large enough p, there is a unique solution ¥V & ngu to the stationary NLS equation

(3.1) with the following properties:
e on the internal edge e the solution is strictly positive and achieves its mazximum in the
interval [—ag, ap; it decreases monotonically from its mazimum towards the attachment

vertexr v,
e on the remainder graph I}, the solution is positive and has no internal local mazima.

On the internal edge, the solution is described by

(3.37) U(z) = \/Ql_wdn(\/%;k), 2 € [—pl, ],

where

(3.38) a=a,+ O (e Hmin),

and

3.39 k=148 —2ul 4 @) (= 2ml=1bmin

(3:39) * \/N +1\/N++1 +O(e )

where lyin i the length of the shortest edge in T°. The corresponding solution ® € HE to the
stationary NLS equation (1.2) with A = —u® on the original graph T concentrates on the internal
edge, so that

(3.40) 3y < Cpe,

whereas the mass and energy integrals Q := Q(P) and € := E(P) in (1.3) are expanded asymptot-
wcally by

Ny =1 o o —ou
41 Q=2u—1 le H HEY
(3.41) : 6\/N_+1\/N++1“ e+ O (ue)
and
2
(3.42) &= _§M3 +0 (u4e_2“€) :

The mass integral Q is a C increasing function of u when u is large.

Remark 3.6. Similar to Remark 3.2, estimate (3.41) should also remain valid in the case N_ =1
(or Ny =1). Of course, if N_ =1, then v_ is a “spurious” vertex which can be absorbed into the
edge thus increasing the length ¢ and producing a better estimate.

Proof. Denote by a the location of the maximum of the solution on the internal edge [—u/l, uf] as
in Fig. 7. The distance from the vertex v_ to the maximum is pf 4+ a and from the maximum to
vertex vy is ul — a. Assume that a is defined in an p-independent interval [—ay, ag] for a large
ag > 0. Assume the degree of v_ is N_ + 1 and degree of v, is N, + 1, with Ny > 2 and, without
loss of generality, N_ > N,.

We will now find a and k such that there is a solution of the form ¥, (z — a) on the marked
edge, see equation (2.18). The distance from the maximum at a to either vertex is of order .
Therefore the solution on both sides of the maximum satisfies the setting of Lemma 2.12 with the
shared value of % in the smaller of the two allowed regions, see Remark 2.13. Solution values p,¢+,
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on the vertices are exponentially small, 0 < p, 4, < Cie ™ for a € (—ag,ap) with p-independent
constants Cy > (0. Therefore we can apply Theorem 2.9 resulting in the matching conditions

—Qutta = pru@ra + R (puEJraa ,U)a
—Qut—a = N+pu€—a + R* (puﬁ—aa ,u)a

where the remainder terms satisfy the bounds

(3.43)

|R (p;wimﬂﬂ < C((p,uZ:I:a6 'M;m "‘p;wia)
(3.44) Iamia *(Putar )] < C (6 Hhmin D20,
|8 R (puf:ta7l’b)| S C:LL Pueta,

for some C' > 0 independently of large 1 and small p, similarly to the estimates (3.8). As before,
solutions to (3.43) are in one-to-one correspondence with solutions ¥ of the NLS with the desired
properties.

For convenience we rescale parameter £ by substituting

(3.45) F—1=8e My o€ (r,my) 2= e 204+ O (ue ).
Using equations (2.52) with L = pf £ a and scaling (3.45), we can write

%Wﬂ_%”“”ﬂ—mﬂkwﬁuﬂwﬂ

3.46
( ) Quita = _26—(u€:|:a) [1 + $€i2a + R;t(xa a, M)] )

where R;t(x, a, p) and qu(x, a, i) satisfy the same estimates as in (3.11) for every a € (—ag, ag)
and z € (z_,xy) and an additional estimate due to the additional parameter a:

—2ul
(3.47) 0.R, (1) < Cpe >,

for some C' > 0 independently of large  with a € (—ag, ag) and x € (x_, z, ). This estimate comes
from

apuéia
==
Oa Que+ta
and (3.46), which gives
ORE
+ +
aap :i(RP _Rq)

and thus gives (3.47). Substituting (3.45) and (3.46) into (3.43) yields

{(1 — N_)e ™+ z(1+ N_)e* =R (2,a, 1),

3.48 N
(348) (1= No)et + (1 + Ny)e = R (2, 0,p).

which is similar to (3.15) and where the remainder terms ﬁi@, a, i) and their derivatives in z, a,

and 1 satisfy estimates similar to the bounds (3.16) with |8, R%| < C|R*|.
Next, we prove that there is a solution to the system (3.48) in the neighborhood of the point

1 N_—N. N_—-1 [N, -1
3.49 ., = = tanh™’ = =
(3.49) @ = o tan <N+N—1 \/N +1\/N++1’
Wthh are the solutions of system (3.48) with R*(z,a, ) = 0. It can be easily seen that both
tanh ™! and square roots are well-defined for Ny > 2. Also, a, € (—ap, ap) for a sufficiently large

fixed ap > 0, whereas a neighborhood of z, belongs to the allowed region (z_,xy) for large enough
[t because

> T,.

ﬂw_wN DOV-+1)
(N_ —1)(Ny +1)



EDGE-LOCALIZED STATES IN THE LIMIT OF LARGE MASS 25

Applying the inverse of the (nonlinear) left-hand side of (3.48) to the right-hand side turns the
system into a fixed-point problem. The map of the fixed-point problem is contractive in (x_,z) X
(—ag, ag). By the Contraction Mapping Principle (see Theorem C.1), there exists a unique solution
of the system of two nonlinear equations (3.48) satisfying the estimate

(3.50) a=a,+0O (e ) g=g,40 (e Hmn),

thus obtaining (3.38) and (3.39). Since 0 < pusq < Cre # for a € (—ag,a9) and = € (z_, ),
the estimate (3.40) follows from (2.24) and the scaling transformation (2.37). In order to prove
the expansion (3.41), we partition

(3.51) 1Nz, = 19122 ptay + 1N 20y + 1N T2 re)-

Each of the two leading-order integrals in (3.51) is expanded similarly to (3.20), after which the
expansion (3.22) with (3.39) yields (3.41). The expansion (3.42) is derived from a decomposition
similar to (3.51). Furthermore, in a similar fashion, the derivative of Q may be estimated as
% = 2 + O(pu2e2) establishing monotonicity of Q. O

4. SEARCH FOR THE EDGE-LOCALIZED STATE WITH SMALLEST ENERGY

The ground state of the constrained minimization problem (1.4) with fixed mass ¢, when it
exists, has the following properties

Proposition 4.1. Let ® € H} be the ground state of the constrained minimization problem (1.4).
Then

(1) @ is real and positive (up to a non-zero factor),

(2) ® € HZ and is a solution to the stationary NLS equation (1.2) with some A € R,

(3) ® is “non-oscillatory” on every edge e of the graph: the number of preimages of any value
¢ € R in the open edge e does not exceed 2,

(4.1) #{rxee: O(x) =09} <2

Proof. The first two properties are established in [5, Proposition 3.3]. The last property is a
consequence of the Polya—Szeg6 inequality (see [5, Proposition 3.1]). Informally, if (4.1) is violated,
we can rearrange the function ® € H{ in a way that lowers energy while conserving the mass.

To give full details, if (4.1) is violated, one can find an interval (¢_, ¢, ) of values with 3 or more
preimages. Starting with ¢, we can easily show this by considering three cases: all preimages of ¢
are local extrema, none of preimages of ¢ are local extrema, and at least one is a local extremum
and at least one is not.

Without loss of generality (and passing to a smaller interval if necessary) we can assume that
O(u) < ¢p_ and ®(v) & (p_, ¢4 ), where e = (u,v). There are now two cases to consider, (v) > ¢,
and ®(v) < ¢_, shown on the top left and bottom left panels of Fig. 8 respectively.

In the former case, we rearrange the function ® on the edge e by first collecting together all
open intervals where ® < ¢_ (preserving their relative order in the edge e¢). Then we collect all
pre-images of the interval (¢_, ¢, ) and, finally, all open intervals where & > ¢, see Fig. 8 (top
right). It is easy to see that the resulting function is continuous (in particular, its values on the
vertices u and v are unchanged) and piecewise differentiable, thus an admissible H} test function.
Applying monotone rearrangement to the middle part (pre-images of the interval (¢_, ¢4 )) we
obtain an equimeasurable with ¢ function with a smaller derivative and therefore strictly smaller
energy for the same mass.

In the latter case (both ®(u) < ¢_ and ®(v) < ¢_), we retain the first interval of ®~!(—o0, ¢_),
then place all preimages of (¢_,o0), then all remaining preimages of (—oo,¢_). As before, we
obtain an admissible H*(T") function, see Fig. 8 (bottom right). We apply symmetric rearrangement
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FIGURE 8. Two cases of the function ® (left column) and their corresponding pre-
liminary rearrangements (right column) described in the proof of Proposition 4.1.

to its middle part (preimages of (¢_,00)) which has at least 2 preimages for all values and at least
3 for values in (¢_, ¢ ). Therefore the energy becomes strictly smaller. ([l

The edge-localized states constructed in Theorems 3.1, 3.3, and 3.5 satisfy the properties listed in
Proposition 4.1 and are therefore good candidates for the ground state. Moreover, by an application
of Lemma 2.6, each edge-localized state has a unique maximum, which is also suggestive of a ground
state. (There is currently no proof that a ground state must have unique maximum on the whole
graph.)

It is therefore relevant to ask what characterizes an edge that would support a localized solution
® € HE with the smallest energy E, for a given mass g. This is not straightforward since we have
expressions for both energy and mass as functions of the Lagrange multiplier A = —;2, which now
needs to be eliminated. Additionally, in many cases the asymptotic representations of Q and &£ as
1 — oo differ only in the exponentially-small correction to the leading term.

Section 4.1 provides a tool that will enable comparison of the energy £ = £(®) for a given mass
Q(®) = g based on comparison of mass and energy for given Lagrange multiplier A. Section 4.2
applies the tool to distinguish between the pendant, looping, and internal edges of different lengths
and to provide the proof of Theorem 1.2 in the case of bounded graphs. Corollary 1.3 is proven
in Section 4.3 for the case of unbounded graphs. Section 4.4 discusses the relevance of the edge-
localized states in the search for the ground state.

4.1. Comparison lemma. Let ® € H2 be a solution to the stationary NLS equation (1.2) with
the Lagrange multiplier A and define Q := Q(®) and £ := £(P) by (1.3). Since P is a critical
point of the augmented energy Sy (U) := E(U) — AQ(U), it follows that that Q and & satisfy the
differential equation

€ do

(4.2) = A
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provided they are C' in A. The following comparison lemma is deduced from analysis of the
differential equation (4.2).

Lemma 4.2. Assume that there are two solution branches with the C* maps A — Q;2(A) and
A — &1 2(N), where A € (—o0, Ag) for some Ay < 0, satisfying

(13) i JAJ]Q5(A) — Qi(A) =0
and
(4.4) Jim [E(A) = &(A)] =0,

If Q1(A) < Qa(A) for every A € (—o0,Ny), then E(A) > &E(A). If, additionally, Q12 are
decreasing on (—oo,Ng) and the values Ay, Ay € (—00,Ag) are such that Qa2(A2) = Q1(Ay) = g,
then gl(AI) > SQ(AQ)

Proof. Integrating equation (4.2) by parts we get

EL(A) — E(A) = / D 1e,(s) — &x(s)] ds

o ds

Aod
— [ i (@) - us)lds

—00

A

(4.5) — A[Qi(A) — Qu(A)] — / (Qu(s) — Quls)]ds,

— 00

where the boundary terms as A — —oo vanish due to (4.3) and (4.4). If Q;(A) < Qa(A) for
every A € (—oo,Ag) with negative Ag, then the right-hand side of (4.5) is strictly positive and
E1(A) > E(A) for every A € (—o0, Ag).

In order to prove the second assertion, we observe the following. It follows from Q;(A) < Qy(A)
for every A € (—o0,Ag) that if Qs(A2) = Q1(A1) = ¢, then Ay < Ay, see Fig. 9. We can now
expand

E1(A1) — E(A2) = E1(A1) — E2(A1) + E2(A1) — E2(Ay).

Using (4.5) we can estimate

E1(A1) — E(A1) > A [Q1(Ar) — Qa(Ay)]
We also have

A de
52(/\1) — gQ(AQ) = —/ —ZdS

A1 ds

Ao
=N Qa(A1) — A2 Qa(Ag) + Qs (s)ds.

Ay
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Ay As
FIGURE 9. Schematic diagram of the maps A — Q; 5 in Lemma 4.2.

Combining the two expressions and denoting Qs(As) = Q1(Ay) = ¢ we get

Ao
EL(A)) — Ex(As) > A Q1 (Ay) — AsOs(As) + / 0s(s)ds
A1
Ao
=—(Ay = Ay)g + Qs(s)ds
Aq

Ao
:/ (Qa(s) — q)ds.
Ay
Since Qs is decreasing on (—o00, Ag), we have Qs(A) > Qs(Ag) = ¢ for every A € (A, Ay), see
Fig. 9, so that the previous expression implies that & (A;) — E(Ag) > 0. O

Remark 4.3. Lemma 4.2 presents a surprising fact that if two C' monotonic maps A — Q; 5 for
the two branches of the edge-localized states converge to each other, then the stationary state with
the minimal Q for fixed (large negative) Lagrange multiplier A corresponds to the maximal & for
fixed (large positive) mass ¢q. Because of a trivial sign error, the swap between the two branches
of stationary solutions on the (A, Q) and (Q, ) diagrams was overlooked in [33] for the particular
case of the dumbbell graph.

4.2. Proof of Theorem 1.2. Consider a compact graph I, i.e. a graph with finitely many edges,
each of finite length. We will deduce which edge of the graph I' gives an edge-localized state of
smallest energy £ for a given (large) mass Q providing the proof of Theorem 1.2.

The first comparison is between a pendant and a non-pendant (looping or internal) edge. For a
pendant edge, Theorem 3.1 gives, to the leading term,

1 1
(46) Q ~ L, E ~ _§M37 = gp ~ _§Q3,
whereas for a non-pendant edge, Theorems 3.3 and 3.5 give, to the leading term,

2 1
(47) Q ~ 20, E ~ —gﬂg, = gnp ~ —EQB > Sp.
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Therefore, for a given mass Q, localizing on a pendant edge of any length is preferable to localizing
on a non-pendant edge.

For comparing similar edges, we can apply Lemma 4.2 where the assumptions (4.3), (4.4), and
the monotonicity of the map A — Q have been verified in Theorems 3.1, 3.3, and 3.5.

Comparing two pendant edges via equation (3.4), we see from the exponentially small term that
the state localized on a longer pendant edge has larger mass Q for fixed . Hence, by Lemma 4.2,
it has smaller £ at fixed mass Q. If two edges have the same length, the pendant edge incident to
fewer edges is more energetically optimal.

Comparing two non-pendant edges via equations (3.32) and (3.41) we see that the looping edges
incident to N =1 or 2 edges are energetically favorable since Q@ > 2u for N =1 or Q ~ 2u for
N = 2, whereas Q < 2u for a looping edge with NV > 3 or an internal edge. Moreover, the shorter
looping edge with N = 1 has smaller energy £ at fixed mass Q. No conclusion on the lengths can
be drawn for the looping edge with N = 2 unless the higher-order exponentially small correction
is computed and analyzed.

For the looping edge incident to N > 3 edges and for the internal edges, we can see from
equations (3.32) and (3.41) that the length of the edge is the primary factor (the longer the edge,
the lower the energy). To break a tie in the case of two edges of the same length the energy is
lowest on the edge with the smaller

N -2 N -1 [N, -1
48 i .
(48) Ny2 & \/N_+1 N, +1

Combining all comparisons together provides the proof of Theorem 1.2.

4.3. Proof of Corollary 1.3. Consider an unbounded graph I' with finitely many edges and
finitely many vertices such that at least one edge as a half-line. By [6, Corollary 3.4}, if there
exists a stationary state with energy & satisfying

1 3
(4.9) 5§_EQ

for a given mass, then there exists a ground state in the constrained minimization problem (1.4).
The energy level £ = —:50Q% is the energy of the NLS soliton (2.15) after scaling (2.37) on the
infinite line.

In the case of a pendant, the criterion (4.9) is always satisfied thanks to the estimate (4.6), in
agreement with [6, Proposition 4.1]. If no pendant edges are present in the graph T', the criterion
(4.9) can be restated with the help of the comparison lemma (Lemma 4.2) as follows. If there
exists an edge-localized state with mass Q satisfying

(4.10) Q>2u

for a given Lagrange multiplier A = —p?, then there exists a ground state on the graph T'.

By virtue of the estimates (3.32) and (3.41), the criterion (4.10) is satisfied for the edge-localized
state on the looping edge incident to N = 1 edge since Q > 2u and is definitely not satisfied for
the edge-localized states on the looping edge incident to N > 3 edges or on the internal edge since
Q < 2u. The case of the looping edge incident to N = 2 edges is borderline since Q &~ 2u and no
conclusion can be drawn without further estimates.

Comparison between masses of edge-localized states on the pendant edges of different lengths
or on the looping edges incident to N = 1 edge of different lengths is the same as in the case of
bounded graphs.
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4.4. Searching for the ground state. In this section we outline some heuristic arguments
why the edge-localized states should be the only candidates for the ground state. Making these
arguments mathematically precise remains a challenging open question of high priority.

The condition of being positive and non-oscillatory (see Proposition 4.1) on a long edge of the
rescaled graph I', imposes restrictions on the solutions ¥ to equation (2.14). On every edge e they
must be either identically constant or to be close to a portion of the shifted sech-solution (2.15)
on every interval between a local maximum and a local minimum on the edge e.

Considering only the second possibility, and ignoring all parts of the graph where the solution
falls below the small value py from Theorem 2.9, we can break the solution into M portions of
half-sech solutions. The mass and energy of these portions are given at the leading-order by

M
(4.11) Q~Mpu, E~ _?“3’
so that
1
(4.12) Ey~ VP Q°.

We conclude that any value of M above 2 results in a worse energy than that achievable by any
edge-localized state, see equations (4.6) and (4.7). But the value M = 1 is only possible when
the maximum is achieved on a vertex of degree 1 (i.e. a pendant edge) and the value M = 2
corresponds to a single point of maximum. This means that the solution localizes on a single edge.
(A solution localizing on two pendant edges would also result in M = 2, but they have larger
energy compared to the solution localizing on one of the pendants.)

5. NUMERICAL EXAMPLES

We now discuss in detail the graph I' of Fig. 2 and its edge-localized states. The graph I' consists
of two identical side loops and three identical internal edges connected at a single vertex of each
loop. This corresponds to the case (iv) of Theorem 1.2.

Let us generalize the graph I' with two side loops and K internal edges. For any stationary state
® € H? of the stationary NLS equation (1.2) centered on one of the K internal edges, Theorem
3.5 with N_ = N, = K + 1 implies that the mass integral Q;, := Q(®) in (1.3) is expanded
asymptotically as y — oo in the form:

16K
(5.1) Qint — 2:“ _ ? 2606_%(0 +0 (Me—QuZo) 7

where p := |A|'/? and ¢, is the half-length of each internal edge. On the other hand, for any
stationary state ® € HZ centered at one of the two side loops, Theorem 3.3 with N = K implies
that the mass integral Qj,op 1= Q(®P) in (1.3) is expanded asymptotically as y — oo in the form:
16(K — 2
(52) Qloop = Z,U - %
where /, is the half-length of the side loop.

It is clear from comparing (5.1) and (5.2) with K = 3 that the lengths ¢, and ¢, determine the
state with smaller energy. The loop-centered state has smaller energy for large mass when the
the internal edges are short relative to the loops and the internal edge-centered state has smaller
energy for large mass when the the internal edges are long relative to the loops. The former case
is illustrated in Fig. 10 (with 2¢y = 7 and 2/, = 27) and the latter case is shown in Fig. 11 (with
20y = 4m and 20, = 27).

In addition to plotting the branches of loop-localized and edge-localized states we also show the
branches of other states bifurcating off the constant solution. The edge-localized states were found
for large mass by using Petviashvili’s method, see [42] and [39], then continued to small mass. The

[1,26*6_2“(* +0 <u6—2u€*) ’
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FI1GURE 10. Stationary states for the dumbbell graph with two loops and three
internal edges shown on Fig. 2, where the internal edges are shorter relative to the
loops (edge length is 7 and loop lengths is 27). We plot (top left) Mass Q vs A; (top
right) Energy € vs A; (bottom left) € versus Q; and (bottom right) the blow-up of the
previous graph around mass 4.8. The black (—) (color online) line shows the loop-
centered state, the green dashed (——) (color online) line shows the edge-centered
state, and the dashed blue — solid line (color online) shows the constant state from
which the loop-centered state bifurcates. The dashed red (——) lines show the state
bifurcating off the constant state along the second eigenfunction (concentrated on
two edges) and undergoing a pitchfork bifurcation as in [23].

constant solution and its bifurcations were constructed by using an arclength parametrization,
see [23] based on [34]. In both cases, the constant state is the ground state for small mass [15]
which undertakes two bifurcations considered in [33] and [23]. After the first bifurcation, the loop-
centered state becomes the state with smaller energy and it remains such for every larger mass if
the loop is long relative to the internal edge (Fig. 10). On the other hand, for long internal edges
relative to the loops, the edge-centered state has the smaller energy for very large mass (Fig. 11).

Figures 2, 10 and 11 all solve the stationary NLS equation (1.2) approximated numerically using
the quantum graphs software package by R. Goodman [24].

5.1. Other examples of dumbbell graphs. The case on one internal edge corresponds to the
canonical dumbbell graph considered in [33] and [23]. It corresponds to the case (ii) of Theorem 1.2.
It follows from (5.1) and (5.2) with K = 1 that Qi < 2|A[*? < Qleop- By the comparison lemma
(Lemma 4.2), the loop-centered state has a smaller energy £ at a fixed large mass Q independently
of lengths of the edges and loops. We reiterate here that the opposite incorrect conclusion was
reported in [33] because of a trivial sign error, however, the fact that the edge-localized state cannot
be the ground state for the dumbbell graph can be shown with the technique of energy-decreasing
symmetric rearrangements from [5].
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FIGURE 11. The same as Fig. 10 but such that the three internal edges are now
longer relative to the loops (edge length is 47 and loop lengths is 27). A switch has
occurred so that the edge-centered state has smaller energy in the large mass limit.
The dashed red (——) line shows the state undertaking the pitchfork bifurcation with
the edge-centered state. In this case, the edge-centered state bifurcates directly from
the constant state.

The same conclusion holds for the dumbbell graph with two internal edges, since expansions
(5.1) and (5.2) with K = 2 imply Qin < 2|A|'? = Qoep- This example corresponds to the case
(iii) of Theorem 1.2. Hence the loop-centered state has a smaller energy at a fixed large mass
independently of lengths of the loops and the edges.

For the dumbbell graphs with more than three internal edges, K > 3, the comparison is similar
to Figs. 10 and 11 for K = 3. The longest of the internal edges or loops is selected for the edge-
localized state of smaller energy at fixed large mass. The dumbbell graphs with K > 3 corresponds
to the case (iv) of Theorem 1.2.

5.2. Example of the tadpole graphs. As a particular unbounded graph, we consider a tadpole
graph with a single loop connected at one vertex point with K > 1 half-lines, see Fig. 12(a) for an
example. There is only one edge of a finite length with reflection symmetry.

The case K = 1 corresponds to the canonical tadpole graph considered in [37] and in [6]. Since
Qloop > 24t in this case, Corollary 1.3 states that there exists a ground state. The loop-centered
state is a proper candidate for the ground state. Indeed, it was proven in [6], see Corollary 3.4 and
Fig. 4 of [6], by using energy-decreasing symmetry rearrangements that the loop-centered states if
the ground state of the tadpole graph.

For the case K = 2, Corollary 1.3 is inconclusive because Qjoop ~ 24 However, this is an
exceptional case, for which the tadpole graph with two half-lines can be unfolded to an infinite
line, for which the NLS soliton is a valid stationary state with Qj,o, = 2u. This loop-centered
state is the ground state for any value of Q, see Example 2.4 and Fig. 3 of [5] and Fig. 1 of [6].



EDGE-LOCALIZED STATES IN THE LIMIT OF LARGE MASS 33

20

e 20, 20,
<>}<‘ 2 O 26y O

FIGURE 12. Example graphs considered in Sections 5.2 (a) and 5.3 (b).

For K > 3, we have Qjoop < 21 and the loop-centered state is not a proper candidate for the
ground state by Corollary 1.3. Indeed, there is no ground state according to Theorem 2.5 of [5].

5.3. Example of a periodic graph. Here we consider the periodic graphs [18, 21, 40, 41], the
basic cell of which consists of one internal edge and one loop repeated periodically, see Fig. 12(b).
We will use the convention that a connecting edge is of length 2¢y and the loop components of
length 2/, (for a total loop length of 4/,). Existence of stationary states pinned to the symmetry
points of the internal edge and the two halves of the loop was proven in the small-mass limit in
Theorem 1.1 in [41]. Characterization of stationary states as critical points of a certain variational
problem was developed in Theorem 3.1 in [40]. Existence of the ground state at every mass was
proven for the periodic graph in [18] without elaborating the symmetry of the ground state.

This example of the periodic graph is beyond validity of the variational theory in [6, 7] or the
comparison theory in our Corollary 1.3. However, the estimates of Section 3, in particular equation
(3.41), hold without any changes and this allows us to compare the energy of different edge-localized
states on the internal edge and the half-loop. It follows from (3.41) that the edge-localized state
at the internal edge has the mass Q;,; given by

16

where (; is the half-length of the internal edge, whereas the edge-localized state at the half-loop
has the mass Qjoqp given by

(5.4) Qloop = 24t — ?uQK*e_Q‘M* +0 (ue‘Q‘w*) ,

where ¢, is the quarter-length of the loop. Comparing (5.3) and (5.4) yields that Qi < Qioop if
by < Ly and Qi > Qioop if lo > L.. By the Comparison Lemma (Lemma 4.2), the loop-centered
state has smaller energy if ¢y < ¢, and the edge-centered state has larger energy if ¢, > ¢, hence the
state of smaller energy localizes at the longer edge. The symmetric case ¢, = ¢; is not conclusive
because Qiny ~ Qloop and computations of the higher-order exponentially small terms are needed.

Figure 13 shows results of numerical computations of stationary states on the periodic graph
with a loop of length 4/, = 7 and a horizontal edge of length 2¢y. If ¢y = 47 > /,, the state
of smaller energy is centered at the horizontal edge (top panels). If ¢y = 7/8 < £, the state of
smaller energy is centered at the half-loop, as predicted above.

In order to compute the stationary solutions on a periodic graph, we returned to the finite
difference scheme discussed in [33] and implemented an approximation to the graph by truncating
the periodic system after a small number of cells in the middle of the internal edges and connecting
the two endpoints with periodic boundary conditions. For large i1 we observed that the predicted
asymptotics are verified numerically even in the case of one cell.



34 G. BERKOLAIKO, J.L. MARZUOLA, AND D.E. PELINOVSKY

e s
~ s
5r \\.\ 2 SR
\\\\ g .
L N,
45t Sa ] -4 N
. S
X .,
X . N,
g2 4 AN % -6 .
K \~§\ § \\
= \\} & \\
35¢ N -8| AN
., N
Q. N\,
N N
N ™\,
3r ¥ 10| N
N \‘
AN \
RS hY
25t ‘ ‘ ‘ ‘ .Y 2k ‘ ‘ ‘ ‘ LY
-6 -5 -4 -3 -2 25 3 3.5 4 4.5 5
A Mass
s
\“:~\ N :\~\ ‘
S 50 F >
NS ~ N
16 2 1 RN
RS STl
SN -200 | NN
N DN
NN N
\\: N N :\'\
14 + ~\:.\ ] -250 N ;\\
@ SO > A
E NN 2 v '\\\
= s 2-300 .
12 DR . Ny
NS N
AN -350 N
NN .,
NN \\\\
101 RN -400 - RN
RN Y
RN i
N\ ™
‘ ‘ ‘ ‘ ‘ ‘ 450, ‘ ‘ ‘ ‘ LM
-80 -70 -60 -50 -40 -30 -20 12 13 14 15 16 17
A Mass

FIGURE 13. Stationary states in the stationary NLS equation (1.2) for a periodic
graph showing the mass Q vs Lagrange multiplier A (left panels) and the energy £
versus the mass Q (right panels). Top panels show computations for ¢, = 47 and
¢, = m/4. Bottom panels show computations for ¢, = 7/8 and ¢, = 7/4. The black
dot-dash (—-) (color online) line shows the edge-centered state, the blue dashed (——)
(color online) line shows the loop-centered state.

APPENDIX A. PROOF OF THEOREM 2.1

Consider a graph I" with a finite number of vertices and a finite number of edges, which either
connect a pair of vertices and have finite length or have only one vertex and are identified with the
half-line. We impose Neumann-Kirchhoff (NK) conditions at every vertex. Declare a subset B of
the graph’s vertices to be the boundary. We are interested in the asymptotics of the DtN map on
the boundary B for the operator —A + p? as  — co. The parameter p is treated as the spectral
parameter \ := —pu? for the spectrum of —A.

Let the boundary vertices be denoted by, ..., b, and let p = (py, ... ,p|B|)T € RIBl be a vector
of “Dirichlet values” on the vertices. Assume p > 0 and consider a function f € H?(T") satisfying

(—A+p?) f=0, on every e € I,
(A.1) f satisfies NK conditions for every v € V '\ B,
f(v;) = pj, for every v; € B.

Let N(f); = Xeny, 0f(v)) be the Neumann data of the function f at the vertex v; € B, where
0 denotes the outward derivative from the vertex v;. Note that f is not required to satisfy the
current conservation conditions at v; € B.
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The map Mp(u) : p — N(f) € RIPl s called the DtN map at the spectral level A = —p2. This

is connected to the DtN map defined in Theorem 2.1 by a scaling, M = 1 Mp. We will derive its

asymptotics as g — 0o by investigating the scattering solutions in the sa/;ne regime. We refer to
[12, Sec 3.5] for more information on DtN map on a compact quantum graph. We remark that
in the presence of infinite edges all definitions work when A = —pu? < 0 is below the absolutely
continuous spectrum of —A but cease to work (in general) when A > 0.

Closely related to the DtN map is the scattering matrix 3 (u), see [12, Sec 5.4], defined on a
compact graph. Attaching an infinite edge (a lead) to each boundary vertex (a single edge per
vertex), we look for f solving (—A + u?) f' = 0 on the augmented graph and satisfying NK vertex
conditions at every vertex. The space of such solutions is b-dimensional; writing the solution on
the lead e in the form

(42) Flawe) = cinerse + cgrteree,

the space of solutions may be parametrized by the vectors ¢ = (ci",...,c")T. The scattering
matrix X(u) describes the scattering on incoming waves into the outgoing ones,

(A.3) ct = Y(p)c™.

For the graph with NK vertex conditions, there is a fairly explicit formula for the scattering matrix
Y(p), derived in [32, 11, 12],

~ —1
(A4) S(pu) = R+ Tye ™ (1 . Ue_“L> T,

where, informally speaking, R governs reflection of waves from a lead back into a lead, T; transmits
incoming waves into the interior of the graph, T, transmits interior waves into the outgoing lead
waves and U describes scattering of waves in the interior. For a graph with scale-invariant vertex
conditions (such as NK), all these matrices have constant entries. The dependence on u enters
through the diagonal matrix e #* where L is the diagonal matrix of internal edge lengths.

We can also obtain a formula for the solution in the interior by writing the solution on the edge
e as

(A.5) fe(fﬁ) = q.e M 4 age_“(fe—f)'
The vector a of the coefficients a, and ag satisfies (see [11, Thm. 2.1])

(A.6) a= (I — Ue“L>_1 Tic™.

Theorem A.l. The scattering matriz at A\ = —u? of a compact graph I' with the boundary set B
has the asymptotic expansion

(A.7) Y(p) = diag (

_ —Mlmin
R 1)beB+O(e ), = oo,

where d, 1s the degree of the boundary vertex b not counting the lead, l;, s the length of the
shortest edge and the remainder term is a matriz with the norm bounded by Ce™Homin
In the same asymptotic regime, the vector a of interior coefficients has the expansion

where the correction is a matriz with the specified norm bound.

Proof. In our setting — all vertex conditions are Neumann-Kirchhoff, there are |B| leads with
at most one lead per vertex — the matrix R in equation (A.4) is the |B| x |B| diagonal matrix
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with entries 2/(d, + 1) — 1; this matrix provides the leading order term in (A.7). To estimate the
remainder, we note that

(A.9) e #E|| < e #min,

in the operator sense from R2Z to R2E, where F is the number of edges of I'. Since the matrix U
is sub-unitary (it is a submatrix of a unitary matrix), we have

- - —1 1
_ e ML - -
(A.10) ( U( <1, (1 Ue ) <
and, overall,
~ —1 é _)U‘Zmin
T,e M- (] _ Ue_“L> T < 167 < Qe Mmin,
— e min

The asymptotic expansion for a is obtained from equation (A.6), expansion
- -1 - - -1
(A.11) (I - Ue*ﬂL> = [+ Ue (I - Ue*#L) ,
and estimates (A.9) and (A.10). O

In order to prove Theorem 2.1, we establish asymptotics of the DtN map defined by problem
(A.1) and then use the scaling transformation. The following theorem presents the asymptotic
estimates for the boundary-value problem (A.1).

Theorem A.2. There exists a unique solution f € H?(T') to the boundary-value problem (A.1)
which satisfies asymptotically, as p — oo,

1 s
(A.12) 1Al z20y < C (@ + O(lmine ‘“‘“‘“)) Ip|l*
and
(A.13) My (1) = pdiag(dy)oep + O (pe ),

where dy is the degree of the boundary vertex b € B, l;, 1S the length of the shortest edge in T' and
the remainder term is a matriz with the norm bounded by C e min,

Proof. We intend to use the asymptotics we derived for the scattering matrix and a formula linking
it to the DtN map Mr(u) (see, for example, [12, Sec. 5.4]). However, we allow our graph to have
infinite edges, a situation which is not covered in the results for the scattering matrix. To overcome
this limitation, we covert infinite edges into leads. To avoid a situation when two leads join the
same boundary vertex, we create, on each infinite edge, a dummy vertex w of degree 2, see Fig.
14. The resulting graph we still denote by I'; by W we denote the set of the newly created vertices
and by I'* the compact graph containing all finite edges of the graph I'. We also attach leads to
the boundary vertices b € B and define the scattering matrix ¥¢(u) of the compact graph ' with
respect to all infinite edges.

The matrix 3¢(;1) maps a vector ¢™ of incoming wave coefficients to the vector c®* of outgoing
ones. The coefficients will be labeled by the attachment vertices of the corresponding lead, namely
by B U W. Denote by P the operator from CZI*WI to CIBl acting as the orthogonal projection
followed by restriction.

Since we are looking for an H?(T") solution of the boundary-value problem (A.1), on the infinite
edges of I' the solution must have the purely radiating form

(A.14) f(my) = cotteHow,
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FIGURE 14. Left: a graph I' with boundary vertices B marked as empty squares.
Right: after introducing dummy vertices w; and wy we obtain a compact graph I'®
(solid edges only). The graph I' combines solid and dash-dotted edges. Dashed edges
correspond to “true” leads corresponding to the boundary vertices B.

We now need to solve a “mixed” problem: on the vertices w € W we are prescribing the purely
radiating condition ¢} = 0 while on the vertices b € B of I'* we are prescribing the solution values
p;j. The latter condition may be expressed as

(A.15) A 4 e = f(vy) =
by substituting z. = 0 in (A.2). Splitting the vectors c into two parts corresponding to B and W,

we get
ARG
)50 ()
In particular,
(A.16) et = Y(p)cy, where X (u) := PX¢(u)P*.

We note that X(u) is a |B| x |B] block of the matrix X¢(u). It is an analogue of the scattering
matrix for the graph I'.
Combining (A.16) and (A.15) we have

(A.17) ¢ =(I+%(u) "p. and  a= (T;4+ O(e ")) (I + S(1) ' p,
which, together with expansion (A.7) for 3¢(u), implies
(A.18) lall < Cpll-

We note that coefficients a give the expansion of the solution on all edges of the graph I', including
the infinite edges (the same value of the coefficients applies on the finite and infinite portion,
because the connecting vertex w has degree 2). We can now estimate the norm of the solution f.
From expansion (A.5) on the finite edges, we have

1 — e 2t 1+ 20 pe=Hee
2 —\ —phe e
||fe”L2(F) = T (|ae|2 + |CLE|2) + 2 Re (acaz) e "l < T

On an infinite edge the solution has the form (A.14) with 2 equal to a. on the finite edge ending

w
in w. Therefore, on the infinite edge together with the corresponding finite part,

1
2
”waL?(F) = ﬂ’ae

(lacl* + |azl?) -

i

On the whole of I', the norm of the function f satisfies the bound

1 ol
(A.19) 11r) < (55 + O™ )
Here we used that
Eeue_Me < uﬁmme_’“‘emi" if gl > 1.
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Combining (A.19) with (A.18) yields the desired estimate on f, equation (A.12).
We now express the DtN map from the matrix ¥(u). From the expansion (A.2) we get
N(f) = n (el = cg’) = n(l = X(p))ck.
Combining this with (A.17) we obtain
I —%(p)
A.20 My () = pe—t
( ) r(p) = p T+ 50

were the fraction notation can be used because two matrices commute. This is the same expression
as in [12, Eq. (5.4.8)] only now I' is allowed to have infinite edges and 3 is defined via (A.16).

We recall that Y(u) is the B-block of the matrix ¥¢(u) to which Theorem A.1 applies. We
denote X(u) = R+ S(u), where R is the diagonal matrix and S(u) is the remainder term in the
asymptotic expansion of 3(u), equation (A.7). Using the formula (A.20) we write

- R
Factoring out the inverse matrices, we estimate the norm of @) as
QI < |+ R)THIT+R)(I~R~8)~(I—R)(I+R+9)|||(I+R+S)"|

<28 ||(T+R) 7 ||(T+ R+ S)7!-

(A21)  Mr(y)

We have
maxdy + 1

2 )
and, combining with the estimate on ||S|| from (A.7), we get ||Q|| < Cpue #min, The first term in
the expansion (A.21) can be evaluated explicitly,

|T+R+S)7Y| = |[T+R) <

I—R _ diag(Q—ﬁ
I+R
+ diag (52+)

yielding (A.13). O

) = diag (dp) ,

We will now rescale the problem by p to obtain the results of Theorem 2.1.

Proof of Theorem 2.1. The solution to problem (2.1) is obtained from the solution f of the boundary-
value problem (A.1) by the rescaling

(A.22) u(px) = f(z).

This rescaling has the following effect on the Neumann data, the DtN map and the L? norm:
1 1

(A.23) N(u) = ;N(f), M= ;MF, ullZzr,) = sl fIZ2m),

where M denotes the DtN map of I',. Asymptotics in Theorem 2.1 now immediately follow from
the corresponding asymptotics in Theorem A.2. Finally, we observe that u satisfies the differential
equation Au = u and we can use the estimate (see [14, Ch. 4, Eq. (4.40)])

(A.24) i3,y < Nl < € (lulZae, + 1013, ) = 201 ulsqr,),

where C' is uniform in edge lengths as long as they are bounded away from 0 (which is clearly the
case as [ — 00). O
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APPENDIX B. MAXIMUM PRINCIPLE FOR QUANTUM GRAPHS

There are several results in the quantum graphs literature establishing different versions of
“maximum principle”, see [43, 2.4.3, Cor 2] and [10, Thm 2]. For our purposes, the most convenient
form is that given in [26, Lem 2.1] which we cite verbatim below.

Lemma B.1 (Lemma 2.1 in [26]). Let V(z) > 0 on an open subset S of . Suppose that w € C*,
and let Hw := —w" 4+ V(z)w (in the weak sense) on edges, with “super—Kirchhoff” conditions at
the vertices, namely,

Zwé(v) >0, v e S,
1.e., the sum of the outgoing derivatives of w at every vertex is nonnegative. If Hw < 0 on the
edges contained in S, then max(w,0) does not have a strict local mazximum on S.

Remark B.2. In our setting, we have Kirchhoff conditions ) w.(v) = 0 and the homogeneous
equation Hw = 0. Thus, Lemma B.1 is directly applicable except we would like to exclude non-
strict maxima as well. This is almost automatic if we impose the strict positivity V' > 0 on S.
Indeed, let a maximum be achieved at point x and w(z) > 0. If the maximum is non-strict, there
is a sequence of points converging to = where w takes the same value as w(x), therefore (possibly
one-sided) derivative of w at x is zero and Hw > 0 (in the weak sense) close to .

APPENDIX C. CONTRACTION MAPPING PRINCIPLE

In this section we collect classical results of nonlinear functional analysis (see, for example [47])
in the setting most immediately applicable to our problem.

Theorem C.1 (Contraction Mapping Principle). Let T' be a map on a Banach space Y with the
norm || -|| mapping a ball Br = {y € Y : ||y|| < R} to itself. If T is a contraction with a parameter
A <1, ie

(C.1) IT() = T(w)ll < Mlyr —w2ll,  Vy1,42 € Br,

then there exists a fized point y* = T(y*), which is unique in Bgr. The fized point satisfies the
estimate

(©2) Iy*ll < = ITO)|

In the case when the contraction mapping 7" smoothly depends on a parameter z, the fixed
point will also depend on the parameter smoothly. We remind some standard facts and definitions
leading to this result.

Definition C.2. Themap f: U C X — Z, with X and Z Banach spaces is Fréchet-differentiable
at x € U if there exists a bounded linear operator which we denote D, f : X — Z such that

(C.3) f@+h) = f(x) = fi(z)h+o([hl), h—0,

for all A in some neighborhood of 0.
If U is open and the derivative D, f(z) exists for all x € U and depends continuously (in the
operator norm) on x, the map f is called C*.

The partial Fréchet derivatives for a mapping F': X x Y — Z are defined analogously. A map
Fis C'in an open U C X x Y if and only if the partial derivatives D, F and DyF are continuous
in U.

Theorem C.3 (Smooth Implicit Function Theorem). Suppose that the mapping F : U C X XY —
Z, where U s open and X, Y and Z are Banach spaces over R or C, is such that
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(1) there is a point (zo,yo) € U satisfying F(xo,yo) =0,

(2) FisC' in U,

(3) the partial deriwative DyF(xo,yo) : Y — Z is bijective.
Then there is a positive number ro and a C* map y(+) : Byy(zo) C X — Y such that F(x,y(z)) =0
and y(zo) = yo. Furthermore, there is a number r > 0 such that for any x € B, (xo), y(z) is the
only solution of F(x,y) = 0 satisfying ||y — yol| < .

Combining the above two theorems gives a smooth dependence of the fixed point on a parameter.

Corollary C.4 (Contraction Mapping with a Parameter). Let T : X x Y — Y be a C' mapping
on an open set U C X x Y. Suppose for some xg € X and V CY such that {xo} x V C U, the
mapping T(xo,y) : Y — Y is a contraction which maps V into itself.

Then there is a positive number ro and a C* map y(-) : By (zo) C X — Y such that

7(w,y(@)) = y(a).

Proof. We first apply Theorem C.1 to T(zg,y) obtaining a fixed point yo € V. Then we apply
Theorem C.3 with F(x,y) =y — T(z,y). The partial derivative F,(xo,yo) is bijective because it
is identity minus an operator which strictly smaller than 1: ||7),(zo,y0)|| < A < 1 since T'(xg, y) is
a contraction. U

APPENDIX D. USEFUL ESTIMATES ON ELLIPTIC FUNCTIONS

We introduce the elliptic integrals of the first and second kind, respectively:
# de v
(D.1) F(p; k) = / . B k) = / V1 — k2sin® §d6.
0 1 — k2sin®0 0

From this definition, the complete elliptic integrals of the first and second kind are given by
T

(D.2) K(k):=F (5; k) and E(k):=E (g k)

respectively. In addition, Jacobi’s elliptic functions are given by

(D.3) sn(u; k) = sing, cn(u;k) =cosp, dn(u;k) = /1 — kZsin®p,
where u is related to the elliptic integrals by
(D.4) F(o;k)=u, E(p;k)= / dn?(s; k)ds.

0

Many properties of elliptic integrals and Jacobi’s elliptic functions are collected together in [25].
The following technical result was proven in Appendix of [33].

Proposition D.1. For every £ € R, it is true that

(D.5) sn(&; 1) = tanh(§), Oksn(&;1) = —% [sinh(¢) cosh(&) — €] sech?(€),
(D.6) cn(§; 1) = sech(€), Oken(&;1) = % [sinh(&) cosh(§) — £] tanh(&)sech(§),
(D.7) dn(&;1) = sech(€), Okdn(§;1) = —% [sinh (&) cosh(€) 4 &] tanh(&)sech(§).

Moreover, for sufficiently large &y, there is a positive constant C' such that
(D.8)  |Oksn(&; k) — Fpsn(&; 1) + [Fken (&5 k) — Fpen(§; 1)| + [9pdn (&5 k) — dpdn(&;1)] < Coe™®,
holds for every & € (&, K(k)) and every k € (k.,1) with k, =1 — O(e %%0).
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We can now address the “reverse Sobolev estimate” on the real line (see also Lemma 2.8).

Proposition D.2. There exist positive Ly, co, and C such that every real positive solution ¥ &
H?(0,L) of the stationary NLS equation —0" + U = 2|V >V satisfying

(D.9) W) < 2e0,L,
for every c € (0, ¢p) and every L € (Ly, 00), also satisfies the bound
(DlO) ||\Ij||H2(07L) S C||q]||L°°(O,L)-

Proof. 1t is sufficient to obtain the estimates on ||\I/||%2(07L) since the stationary NLS equation
implies that
19" 20,0y < (1 + 2@ 0.) W 22000y < (142619 220,1)-

It follows from the phase portrait for —U” + & — 203 = (), see Fig. 4, that the solutions
U € H?*(0, L) satisfying (D.9) for small ¢ > 0 and large L > 0 have at most one local minimum
and no internal maxima on [0, L]. Moreover, either U is sign-definite on [0, L] or ¥’ is sign-
definite on [0, L]. Without loss of generality, we give the proof for sign-definite (positive) solutions
expressed by the dn-elliptic functions (2.17). The proof for sign-indefinite solutions expressed by
the cn-elliptic functions (2.16) is similar.

We partition [0, L] into [0, L;] and [Ly, L], where L, is the point of minimum of ¥, such that
U'(z) < 0 for z € [0,L;) and ¥'(2) > 0 for z € (L1, L]. Without loss of generality, assume
L, € [é,L] so that

1902200y < 209 2000y

We use the exact solution (2.17) and write for some Ly > 0:

1 z+ LQ )

dn k), ze€l0, L],

V2= &2 (\/2 — &2 0, 1]

where — Ly < 0 is the location of the maximum of WU(z) to the left of the interval [0, L;]. Since
U'(z) <0 for z € [0, Ly), we have

U(z) =

1 Lo
W|| 100 = dn ik
1¥l~o00 = o= (\/m )

and since U'(Ly) = 0, we have

Li+ Ly = V2 — k2K (k).
This implies that if ¢ € (0,¢q) for some small ¢y > 0, then L, > 0 is sufficiently large and if
L € (Ly, 00) for some large Lo > 0, then L; > 0 is also sufficiently large, whereas k € (k_, 1) with
k_ satisfying |[k_ — 1| < Aje~2(Fa+l2) where a positive constant A; is independent on L; and Ls.
We obtain by direct substitution for k € (k_, 1) that

W0y = 5o | (m@ *

1 L+ Ly Ly
= |E(e| X2 k) —E (| 22— :k)],
e P Lael) - (e )]
where @[u] is the inverse of the map F'(¢;k) = w in (D.4). Hence, we have
11220,y < Ck; Ly, Lo) 19 Foe 0,1,

e (el ) (e [t )
o dn? (A2 k)

where
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We need to show that C'(k; Ly, Ls) is bounded uniformly for large L, and L, and for k € (k_, 1)
with [k_ — 1| < Aje 2F1+L2) Tt follows from (D.7) and (D.8) of Proposition D.1 that

E([¢]; k) = tanh(&) + (1 — k)§ + Rp(&; k),

where Ry is the remainder term satisfying ||Rg(-; k)| e,k k) = O(k — 1) as k — 1. In addition,
we use the lower bounds:

dn?(& k) > 1 — k2

to estimate the remainder term Rg and

dn®(Ly; k) > sech®(Ls)

to estimate the other two terms, where the latter bound holds for sufficiently large Ls. Thus, it
follows for every k € (k_,1) with |k_ — 1| < Aje~2(F1+L2) that

tanh(L1 + Lg) - tanh(Lg) Ll(l - k)
C(k; Ly, L) < + A
(k; Ln, L) sech?(Ls) sech?(Ls) 2
sinh(L1) cosh(Ly)

Li(1 — k) cosh?(L A
cosh(L; + L) + L ) cosh™(Lg) + A

< (1 — e 2E1)(1 + e282)
= (1 e 2Litla))
< 1 + A1L16_2L1 + Ag,

+ Li(1 — k)e*2 4 A,y

where a positive constant A, is independent on L; and Ly. Hence, C(k; Ly, Ly) is bounded uni-
formly for sufficiently large L; and Ly, which proves the estimate for ||¥||;2( r,) and hence the
estimate (D.10). O
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