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Bayesian inference of network structure from unreliable data
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Most empirical studies of complex networks do not return direct, error-free measurements of network
structure. Instead, they typically rely on indirect measurements that are often error-prone and unreli-
able. A fundamental problem in empirical network science is how to make the best possible estimates
of network structure given such unreliable data. In this paper we describe a fully Bayesian method for
reconstructing networks from observational data in any format, even when the data contain substantial
measurement error and when the nature and magnitude of that error is unknown. The method is intro-
duced through pedagogical case studies using real-world example networks, and specifically tailored
to allow straightforward, computationally efficient implementation with a minimum of technical input.
Computer code implementing the method is publicly available.
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1. Introduction

Networks are widely used as a convenient mathematical representation of the relationships between ele-
ments of a complex system [43]. Network methods have been fruitfully applied to aid our understanding
of systems in physics, biology, computer and information sciences, the social sciences, and many other
areas. A typical empirical network study will first determine the structure of a network of interest, using
experiments, field observations, or archival data, then analyze that structure to reveal features of interest,
using any of the many quantitative analysis techniques developed for this purpose [32].

In this paper we focus on the first part of this process, on how we determine the structure of a
network from appropriate empirical observations. At first sight, this appears to be a straightforward
task. Most studies aim to measure the presence or absence of edges in a network, either singly or in
some collective fashion, and then assemble a picture of the complete network by aggregating many such
measurements. Upon further consideration, however, it is apparent that the situation is not so simple,
because most network measurements do not tell us unambiguously about the presence or absence of
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edges. At best, they give us a noisy indication, and in many cases they merely hint obliquely at the
network structure [45].

As an example, consider a protein-protein interaction network representing the pattern of physical
interactions between proteins in the cell. Such networks can be measured in a relatively direct manner.
Techniques such as affinity purification and two-hybrid screens can be used to determine whether a given
protein interacts with others [27, 33]. These techniques are notoriously unreliable, however, returning
high rates of both false positives and false negatives, so that individual measurements do not themselves
tell us the structure of the network [54]. Measurements may have to be repeated many times in order to
separate the signal from the noise [52].

A more complex example is the measurement of a social network such as a network of who is
friends with whom. Such networks can be measured by conducting surveys in which people are asked to
identify their friends [62]. Here, however, things can get complicated. For instance, it happens often that
person A identifies person B as a friend, but person B does not identify person A. In some communities
fully a half of all friendships are “one-way” friendships of this kind [2, 59]. Should two such people
be considered friends? Why do they disagree? Is one of the individuals mistaken, or forgetful, or not
telling the truth? Perhaps the two are using different definitions of friendship? Things become harder
still when we consider other data that are commonly gathered in such surveys, such as age, gender, race,
occupation, income, or educational level of participants. Friendships are well known to depend strongly
on such personal characteristics and in cases where we are uncertain about a hypothesized friendship
between two people we may be able to use their traits to make a better informed decision about whether
they are really friends [40]. The best estimate of whether two people are friends may thus be the result
of a complex calculation that combines many inputs.

Most empirical studies of network structure, however, do not take such an approach. Even though
network data are known to be noisy and imperfect [1, 25, 53, 54, 60, 63, 64], many experimenters
nonetheless rely on simple direct measurements of the presence of edges and effectively make the
assumption that the resulting data are the network. In a protein-protein interaction network they assume
an interaction to be present if, for example, it is observed to exist enough times when measured. In a
friendship network two people are assumed to be friends if one identifies the other as a friend. And yet
it is clear from the discussion above that the true situation is more complicated than this. In realistic
circumstances, we have a heterogeneous body of data, potentially of many different types, potentially
unreliable, and varying in its relationship to the actual network structure. In such circumstances, tradi-
tional methods for inferring network structure from data may be inadequate and in some cases outright
misleading.

In this paper we present a general framework for inferring network structure from measurements
using methods of Bayesian inference, along with a complete software pipeline implementing that frame-
work. The methods we describe take empirical measurements of a system and return a posterior distri-
bution over possible network structures, thereby telling us not only what the likely structure is but also
giving us an estimate of our certainty about that structure. Our approach requires a minimum of input
from the experimenter, the only information they need supply (other than the data) being a description
of how the measurements depend on the underlying network structure, which is specified at a high level
in the form of probability distributions—we give a number of examples in this paper. The rest of the
calculation, from data to posterior distribution and final network structure, is performed automatically.
Application of Bayesian inference methods often requires experimentation to find the best approach for
a particular application. The level of automation in our framework makes this a straightforward task,
allowing one to easily experiment with different strategies and quickly see the results [21].

The problem we address falls in the general area of network reconstruction, the challenge of deter-
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mining the structure of a network from the available data, though one might also think of it as simply
“network measurement,” akin to the experimental or observational determination of any quantity in the
natural and social sciences. There has been a considerable amount of previous work on network recon-
struction, much of it in the subject-specific literature and directed at the reconstruction of particular
types of networks or using particular types of data. Methods have been proposed, for example, for geo-
graphic co-location data [14—17], social networks [9], ecological networks [18], brain scans [34, 57, 61],
and biochemical networks [5, 28, 29, 33]. Perhaps the closest precursor to our work is that of Butts [9],
who developed Bayesian methods and Gibbs sampling techniques for estimating social network struc-
ture from unreliable social surveys. Priebe and collaborators [51] have developed similar ideas, incor-
porating structured priors over networks to improve inference, an approach that has been echoed in
statistics [34, 57, 61] and network science [47]. A key difference between these approaches and our
own, however, is that they were developed with particular measurement processes in mind, whereas
our methods can accommodate almost arbitrary ones. The approach we propose also differs from our
own related previous work [44, 45, 65] in putting forward an estimation algorithm that works essen-
tially automatically with arbitrary models, using ideas borrowed from the literature on finite mixture
models [39, 58].

Looking more broadly, there is also a considerable volume of work that tackles other problems
concerning the reliability of network data, many of which could also be addressed using variants or
extensions of the methods proposed here. The problem of link prediction, for instance, involves pre-
dicting missing edges in partially observed networks and a range of algorithms have been proposed
that achieve good performance [12, 24, 26, 31, 37]. The work of Guimera and Sales-Pardo [24], for
instance, uses a model sampled from a marginal posterior distribution reminscent of our approach, but
does not explicitly include any mechanism for measurement error or attempt to reconstruct the network,
focusing instead on the link prediction problem. Also much studied is the problem of inferring network
structure from non-network data [8], such as time-series [36], gene expression data [3], the spread of
information or disease [23, 42], and various local network features and node properties [55, 66]. A
separate literature deals with problems of network sampling, addressing how choices such as which
nodes or edges we measure can affect our estimates of network properties and how best to make those
choices [32, 35, 46, 56]. Disambiguation or entity resolution is the process of accurately identifying
the nodes in a network in the presence of potential sources of error such as duplicate nodes or nodes
that have been inadvertently combined [10, 19, 60]. Some methods have also been proposed that aim
to perform more than one of these tasks at once, such as simultaneous link prediction and disambigua-
tion [41]. Finally, there is also a growing literature on making best estimates of derived network metrics
starting from probabilistic representations of network structure [6, 30, 38, 49, 50]. These methods use
the kinds of structural estimates we develop in this paper as input to calculations of further quantities of
interest, such as centrality measures, path lengths, correlations, community structure, or core decompo-
sitions [6, 38].

This manuscript is organized as follows. In Section 2 we first give an overview of the framework
we propose for inference of network structure from unreliable data. Then in Section 3 we describe in
depth two example applications, illustrating the construction of appropriate measurement models and
the practical implementation of the method. In Section 4 we give our conclusions and suggest some
directions for future work. An appendix gives technical details of the workings of our method.
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2. Description of the method

Suppose we have made some measurements of a networked system. They may include direct measure-
ments of network structure, such as measurements of the presence or absence or edges, but they may
also include other quantities that could have indirect bearing on network structure, such as measure-
ments of node properties or traits. Our objective is to make the best possible estimate of the structure
of the network from these measurements and to do so efficiently and almost automatically, requiring
a minimum of technical effort, so that practitioners can focus on making the measurements and inter-
preting the results. In this section we give a broad overview of the concepts and essential equations
underlying our method. A complete derivation and accompanying technical discussion can be found in
Appendix A.

In a nutshell, we posit that there exists some underlying network whose structure affects measure-
ments made on the system of interest. This network is represented by its adjacency matrix A, which is
initially unknown. Our goal is to estimate this matrix. We assume that the observational data depend
on the adjacency matrix but in a potentially noisy way: even exact repetition of the same experiment
could produce different observations. This means that, even though the network has a well-defined and
unambiguous structure, it will not in general be possible to tell exactly what that structure is from the
measurements. To accommodate this uncertainty, we adopt a Bayesian point of view. Instead of infer-
ring the exact network structure itself from measurements, we instead infer a probability distribution
over possible structures compatible with the observations.

Apart from the data themselves, the only input our method requires of the user is the specification
of a model that represents, in general terms, how the data depend on the network structure. This model
can take a variety of different forms: networks and the experiments used to measure them vary widely,
so no single model applies in all cases. Our method allows the user to specify the model that is most
appropriate to their situation. The model may contain parameters (sometimes many of them) but it is
not necessary to know the values of these parameters: our method automatically infers the best values
from the data.

For the sake of concreteness, we concentrate in this paper primarily on the most common situation
encountered in network studies, in which the network is simple, undirected, and unweighted, and the
data consist of individual measurements of the presence or absence of edges. The methods we describe
are applicable to other situations as well, but this one covers many cases of interest and will allow us to
use a more transparent and explicit notation. The measurements themselves can be as simple as observed
interactions between pairs of nodes, but can also take more complex forms, such as paths across the
network, time-series, tags associated with relationships, or any of a variety of other possibilities. We
encode the measurements in an array X, whose entry X;; contains all the information we have about the
interaction of nodes i and j.

We also make a further crucial assumption about the model, namely that observations of different
node pairs are conditionally independent, which in this case means that the observations X;; of the
interaction between i and j depend only on the adjacency matrix element A;; and not on any other
elements. This assumption is not strictly necessary for the method work but, as shown in Appendix A,
it improves the computational efficiency substantially. And, since it is true of most commonly used
models anyway, it is in practice not a significant restriction. There are exceptions: in certain (“fixed
choice”) social network studies, for instance, participants are limited to naming a maximum number of
friends or contacts, such as ten. This means that every time a participant names a contact, contacts with
other individuals becomes less likely because the participant has fewer “slots” left to fill, and hence
contacts are (weakly) negatively correlated. In this paper we neglect such dependencies and assume
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that contacts are independent. (However, see Refs. [44, 45] for a discussion of methods that can handle
dependencies.)

With these assumptions, selecting a model boils down to making three basic choices. The first
and most crucial of these is specifying how the pairwise measurements X;; depend on the underlying
network, as represented by the adjacency matrix A. Specifically, for a given pair of nodes i, j we need to
specify the expected distribution of values X;; for the case where i and j are connected by an edge and
for the case where they are not. We will write these two distributions respectively as

wij(1,8) = P(X;;lAi; = 1,0) (2.1)

and
wi;(0,0) = P(X;j|A;; = 0,0), (2.2)

where 0 denotes any parameters of the distribution. (We will in some cases drop 6 from the notation
where it is clearly understood.) We will refer to Egs. (2.1) and (2.2) as the data model.

The second modeling choice is the specification of the prior probability ascribed to the edge between
i and j. What is the probability that the edge exists before we make any measurements of it? Do all
edges have an equal chance of existing a priori, or are some more likely than others? Again we assume
that different edges are independent, although again this assumption, while computationally convenient,
is not strictly necessary. Mimicking the notation introduced for the data model, we write the prior
probability of an edge between i and j as

vij(l,G):P(Aij:1|9) (23)

and the probability of no edge is v;;(0,0) = 1 —v;;(1,0). Again 6 collectively denotes the set of
parameters (if any). We call this second set of probabilities the network model.

The third and last modeling choice is the specification of the prior distribution on the parameters 6.
Our framework does not place any restriction on the possible form of the prior on 6. In many cases
a simple uniform prior works well, but the prior can also be chosen for example to encode specific
knowledge about the system or to rule out unphysical values of the parameters.

Once these three choices are made, the rest of the procedure is essentially automatic. Given the
model choices and a set of measurements, our method will generate a string of pairs (A, 6,) of networks
and parameters compatible with the measurements. By inspecting these networks and parameters we
can determine any other network properties we might care about. For example, if we want to determine
0
the fraction of the time thatAgy = 1, which gives us (a Monte Carlo estimate of) the posterior probability
of the edge’s existence.

More precisely, the sample networks and parameter sets returned by our algorithm are drawn from
the joint posterior distribution P(A, 8]X), which allows us to compute an estimate of the expected value
of any function f(A, ) of the network and parameters thus:

whether i and j are connected by an edge, we can inspect the matrix element A;.” for all » and compute

((4.6)) =¥ [ f(4.0)P(6.41%) do
A

1 N
~ L 4r0) (2.4)

where N is the number of samples generated.
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Our computer code implementing these calculations is freely available online with accompanying
tutorials explaining its use.'

3. Examples

To demonstrate how our method operates in practice, we present two detailed case studies. The first
involves a network of animal interactions.

3.1 Network of dolphin companionship

Many animals form lasting social networks, including monkeys, deer, horses, cattle, dolphins, and kan-
garoos [63]. Here we analyze data from Connor et al. [13] of interactions among a small (n = 13) group
of male bottlenose dolphins as they swim in a shallow lagoon. This is a typical example of an animal
observational study that aims to determine social ties indirectly by observing behavior. Standard tech-
niques of social network analysis would typically be used to transform the observations into association
indices that quantify the level of interaction between pairs of individuals [7]. These indices, however,
can can be hard to interpret and their definition relies on somewhat ad hoc assumptions. Our methods
give us a more principled way to infer connections by interpreting the data as noisy measurements of an
underlying social network.

3.1.1 Basic model In this particular study the recorded data X;;, shown in Fig. 1, represent the num-
ber of times each pair of dolphins is observed swimming in close proximity. We can use these data
to reconstruct the underlying network as follows. First, it is reasonable to assume that the number of
interactions between two dolphins will depend on whether they have a network connection or not. But
also we expect there to be some randomness in the numbers, both because of circumstances and because
of observational error. We thus model the number of interactions as a Poisson random variable with
mean A; or Ay depending on whether there is or is not a network connection, respectively. That is,

u,-j(O,AO) = X(l)J' 6_10, (31&)
i (1, A) = )éj!e"l. (3.1b)

We assume that A; > Ay, i.e., that individuals interact more often if they have a network connection than
if they do not.

We also need to choose our network model and prior on the model parameters. Having no prior
information about the probabilities of individual network edges, we assume that all edges are a priori
equally likely, which implies

vij(0,p) =1-p, (3.2a)
vij(1,p) = p. (3.2b)

where p is the probability of an edge.

IThe code can be downloaded from https://github.com/jg-you/noisy-networks-measurements.
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FIG. 1. Data on interactions among a group of dolphins, from Connor et al. [13]. Thirteen male dolphins were observed as they
swam in a shallow lagoon and tabulations were made of pairs that swam together. (a) Observed frequency of interaction for each
pair. (b) Histogram of frequencies.
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FIG. 2. Reconstruction of the network of dolphins from the data shown in Fig. 1. (a) Two examples of sampled network structures.
(b) Matrix of posterior edge probabilities, obtained by averaging over 4000 network samples. Entries in the matrix corresponding
to the edges highlighted in panel (a) are shown in matching colors.

For the priors on the parameters we make minimal assumptions. For p, which is a probability,
we assume a uniform prior on the interval [0, 1]. For Ay and A;, which have semi-infinite support, we
cannot use a uniform prior or the posterior distribution would become improper. So instead we assume a
slowly varying probability with a wide range of plausible values, specifically a semi-normal distribution
(i.e., the right half of a normal distribution centered on zero) with large variance:

P() o< e %/2, (3.3)
where 6 > 1 is a fixed hyperparameter and P(A;) = 0 if A; < 0. In our calculations we use ¢ = 100.

With the model specified, we now run the algorithm described in Appendix A and obtain a series
of samples (A,, 6,) from the joint distribution P(A,0|X), where 0 in this case collectively refers to
the parameters Ay, A1, and p, and 6, is one realization of these parameters. Two examples of sampled
network structures are shown in Fig. 2a, out of thousands generated. As the figure shows, the two
structures are similar but not identical. This is expected: we should see variability from sample to
sample. When looking over the entire sample set, for example, the edge between nodes 9 and 10,
highlighted in orange, appears almost always, whereas the edge between 1 and 8, in blue, appears only
rarely. To capture this variability, we average over samples and compute the posterior probability of
every edge as the fraction of samples in which the edge occurs. The result is shown in matrix form in
Fig. 2b. Comparing with Fig. 1, we see that these probabilities are quite different from the distribution
of number of interactions between dolphin pairs. Moreover, while the numbers of interactions span a
wide range of values, the probabilities of edges are clustered around zero and one. This is good news.
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FIG. 3. Statistics of samples drawn from the posterior distribution P(Ag, A1, p|X) for the data shown in Fig. 1 and the measurement
model given in Eqgs. (3.1)—(3.2) over four runs with randomly chosen initial conditions. Only 500 of the 4000 total samples taken
are shown for the sake of visual clarity. (a) Logarithm of the posterior probability, with different runs separated by vertical dotted
lines. The color of the points varies from left to right for easier comparison with panel (b). (b) Pair plot showing the relation
between sampled values of parameters, as well as the distribution of individual parameters. We highlight a subset of samples with
colors matching panel (a).

Edge probabilities near zero and one indicate edges about which we are relatively certain, either that
they exist or that they do not. Thus we have turned a data set with considerable variability into a network
structure about which we have high confidence. We discuss this point further below.

In conjunction with these estimates of the network’s structure, we also compute estimates of the
parameters 6, by averaging the parameter samples, just as we did with the network samples. For
instance, we find that g = 0.63 and A; = 14.4 (with 95% credible interval (CI) of [0.07.0.99] and
[10.97,16.85] respectively), meaning that dolphin pairs interacted an average of 14.4 times during the
experiment if they shared a network connection but only 0.63 times if they did not. In other words, the
effect of network connections is very pronounced and highly statistically significant. We also find that
p =0.26 (95% CI: [0.18,0.42]), indicating that the network is quite dense. (This would be an unusually
high value in human social networks, although the network in this example is small, which tends to
increase density.)

3.1.2  Sampling quality and goodness of fit  While these results are promising, there is further work to
be done if we are to be confident in them. In particular, as is standard with Bayesian calculations, there
are two specific things we need to check [22]. First, we need to be sure that the Monte Carlo algorithm
is sampling correctly from the posterior distribution and, second, we need to test whether our proposed
model is in fact a good fit to the data.

In Monte Carlo calculations of this kind the posterior probability distribution is typically rugged,
meaning it has multiple local optima, and the sampling algorithm can as a result get stuck for periods
of time in suboptimal portions of the sampling space. To test for this issue we plot in Fig. 3a the log
probability of our samples as a function of time over four different runs of the algorithm. The plot
shows that the distribution of values appears roughly consistent within each run and across different
runs, which we take as a sign that the samples have not failed in obvious ways. In Fig. 3b we compare
how the sampled values for the parameters Ay, A1, and p relate to one another. These plots, colloquially
known as pair plots, are conventional in Bayesian analysis. In addition to showing the distribution



BAYESIAN INFERENCE OF NETWORK STRUCTURE FROM UNRELIABLE DATA 9 of 25

—
)
-~

(b)

2

S 30

8 4000 -

820 . 4 >

£ <

- ] a3

2 10 *wo 8 Q i

£ 2000

3

D‘: 0 . T T

20 2000 4000

Observed interactions D(X; 6)

FIG. 4. Posterior-predictive tests of the model used for the dolphin network. (a) Average predicted number of interactions
between dolphin pairs as a function of the actual observed number of interactions, for five random data sets generated from the
model (R? = 0.50). Colors indicate the numbers of pairs of dolphins with each number of predicted/observed interactions across
five random replications of the data. (b) Scatter plot of discrepancy values. Each point in this plot corresponds to one of 500 sets
of parameter values, selected at random from a total of 4000 such sets drawn from the posterior distribution P(2g, 41,0 |X) during
the calculation. Sets having higher model-model discrepancy D(X, 4, A1,p) than data—model discrepancy D(X, Ao, A1,p) are
highlighted in blue, above the diagonal. The fraction of such sets gives us the p-value, which in this case is p = 0.136.

of values for the individual parameters on the diagonal (which are more informative than the simple
averages reported in the text above), these plots can help verify the quality of the samples and provide
some sanity checks. In our case, the plots reveal that all the samples come from approximately the same
region of parameter space regardless of the different initialization of the four runs, which tallies with
the uniform sample quality found in Fig. 3a and gives further evidence that the algorithm is sampling
consistently.

Another function of pair plots is to diagnose problems with the model specification. Models of the
kind we consider here can for instance possess symmetries, such as invariance under the interchange
of edges and non-edges, which can cause problems when averaging chains that break the symmetry
differently [39]. Such symmetries are easy to visualize in a pair plot, though we see none in Fig. 3b.
(We have imposed A; > Ay to avoid them.) A model can also suffer from parameters that are not
identifiable, for example when two or more parameters can be combined into one. The pair plot alerts
us to such issues because the parameter values will be perfectly correlated, but again we see no such
issues in Fig. 3b.

Having confirmed that the samples are plausibly drawn from a correctly specified posterior distribu-
tion, the other thing we need to check is whether our model is actually a good fit to the data. If the model
is a poor one, then even the best fit it provides may not actually be good fit. To test the goodness of fit
we use two Bayesian tests of the type known as posterior-predictive assessments. (See Appendix A and
Refs. [20, 21] for discussions.) In these tests we use the data model P(X|A, §) with parameter values A
and @ drawn from our Monte Carlo sample to generate new data X, as if we were making measurements
on a system that obeyed the fitted model exactly. Then we compare these new data to the original inputs.
If the model is a good fit, the two should look similar.

An example of such a comparison is shown in Fig. 4. Panel (a) in the figure shows the number of
times a pair of dolphins interacts in the simulated data as a function of the number of times they are
observed to interact in the original data, in five artificial data sets X generated as above. If data and
model agreed well, most of the points in this scatter plot would concentrate along the diagonal line, but
in this case they do not. This is our first indication that the fit we have found may not be as good as we
would like. We will see shortly how to make the fit much better, but let us proceed for the moment with
what we have as an illustration of our goodness-of-fit analysis.
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To more accurately quantify the performance of the model we can calculate a discrepancy [20]:

X
D(X,0)=Y X;ilog =~ (3.4
LXale 15 o)

where (X;;(6)) is the average of the synthetic data generated from the model, with parameter values 6.
The discrepancy is essentially a Kullback-Leibler divergence between the observed and synthetic data
for one sampled value of the parameters. It functions in this situation as a goodness-of-fit measure: the
smaller the discrepancy, the closer the synthetic data are to the input.

The discrepancy is not very informative by itself, however, since it is not clear what kind of values
we should expect to see. For example, even if the model is an excellent fit, we should not expect the
discrepancy to be zero, since the randomness of both the data and the model mean that they are unlikely
to agree exactly. To obtain a point of comparison, therefore, we compute discrepancies between a large
number of pairs of simulated data sets drawn from realizations of the model with the same parameter
values used for the observed data. If the model were correct, so that simulated and observed data
have the same distribution, then these values would tell us the typical magnitude we should expect the
discrepancy to have. If the values are mostly smaller than the observed discrepancy then it indicates
the model is unlikely to be correct; if they are larger then the model is not ruled out. The fraction of
generated discrepancy values that are larger than the observed discrepancy gives us the p-value for the
model, i.e., the probability that the observed discrepancy would have been generated if the model were
correct.

Note that the use of the p-value in this situation is different from the way it is used in traditional
frequentist statistics, where it represents the probability of getting a particular observed value if a null
hypothesis were true. In the traditional scenario a small p-value leads us to reject the null hypothesis,
and, since this is often the goal of an experiment, small p-values are “good.” In the present case, the
p-value is applied to the model we are fitting (there is no null/alternative hypothesis) and it just counts
the fraction of artificial data sets for which we find discrepancies more extreme than the value found
when fitting the model to the true data. So in this situation small p-values are “bad.”

Figure 4b shows values of the discrepancy for both artificial and real data, for 500 sampled values of
the model parameters. Instances where the artificial discrepancy is greater than the observed one appear
above the diagonal in the plot and the fraction of such points tells us the p-value. In this case we find
p = 0.136. While it is not appropriate to apply arbitrary cutoffs to this (or any) p-value [20], the value is
not as high as we would like it to be, and though we cannot completely rule out the model the evidence
suggests that the fit is not ideal.

3.1.3 Improved model What can we do to improve the fit? The standard approach is to adopt a more
elaborate model that is capable of representing a wider range of data distributions. In the model we have
used so far connections are binary: dolphin pairs either have a connection or they don’t. We can create
a more nuanced model by allowing three levels of connection, corresponding to no tie, a weak tie, or a
strong tie. Denoting the three levels by adjacency matrix elements A;; = 0, 1, and 2, we introduce a new
distribution for X;; when A;; = 2 which is Poisson as before but with mean A;:

—e R (3.5)
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(3.6). The estimated mean numbers of interactions are Ay ~ 0.02 when there is no edge between a pair of dolphins, A; = 5.13
when the pair shares a weak tie, and A = 21.97 when they share a strong one. The corresponding prior probabilities of edge
types are py = 0.58, p; = 0.28, and p, = 0.14. (a) Posterior predicted number of interactions between dolphins as a function
of observed number for five random data sets generated from the fitted model (R> = 0.82). The highlighted regions correspond,
from left to right, to dolphins having no tie, a weak tie, and a strong tie. (b) The inferred structure of the network, with weak ties
represented by thin gray edges and strong ties by thicker blue edges. (Nodes 1 and 2 are connected by a thin blue line to reflect
the fact that the calculation is ambiguous about the type of this tie.)

where A, > A1 > Ay, and the prior of Eq. (3.2) becomes

vij(0,p) = po = 1—p1 —p2, (3.6a)
vij(1,p) = p1, (3.6b)
vij(2.p) = p2. (3.6¢)

The fitting and model verification procedures follow the same lines as previously.

This modified model now fits the data significantly better, as shown in Fig. 5a. It divides the observed
numbers of pair interactions into three clear groups centered around values of about 0, 5, and 25, and the
p-value is now a very respectable (0.722, indicating that there is no statistical basis to reject this model at
all: the model truly captures the structure of the observed behavior. Indeed a p-value significantly larger
than this could be a sign of problems, indicating overfitting. Unless the distribution of the discrepancy
is strongly skewed, the expected p-value will normally be around 0.5 when the model is a perfect fit.

Having found a model that fits the data well, we examine the inferred network structure, which is
shown in Fig. 5b. The network has three disconnected subgroups of dolphins, two comprised of strong
connections only and one, the largest of the three, having a mix of strong and weak connections. The
posterior probabilities on all of the interaction types are close to one, indicating high confidence in
the structure of the network. For instance, the model predicts that nodes 8 and 9 are not connected
with probability 0.99(6), that nodes 7 and 8 share a strong connection with probability 0.99(9), and
that nodes 1 and 8 share a weak connection with probability 0.99(9). There is just one pair of nodes
(1 and 2) whose connection is hard to classify. The model indicates that the tie between these nodes is
either weak or strong, with probabilities 0.51(4) and 0.48(5), respectively. This pair of dolphins was
observed swimming together 12 times, a number that falls between the weak and strong domains in the
fitted model (see Fig. 5a).

3.2 Friendship network of school students

For our second example, we revisit a network analyzed previously using different methods in Refs. [44,
45], a network of friendships between high-school students taken from the US National Longitudinal
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Study of Adolescent to Adult Health (the “AddHealth” study). Although the method proposed in this
paper is mathematically more complex than that of [44, 45], it is arguably easier to apply since our
analysis pipeline performs most of the calculation automatically. The most demanding step is the for-
mulation of the model, but once we have a plausible model the rest of the process is straightforward and
mechanical.

The AddHealth study is a large study of networks of social contact among students in schools across
the United States. Students in participating schools were asked to identify their friends and the basic
unit of resulting data is a friendship nomination: one student says they are friends with another. Our data
matrix X in this case is thus a non-symmetric one: X;; = 1if i names j as a friend and 0 otherwise. There
is no guarantee that j will also name i and in fact there are many instances in which reported friendships
only run in one direction. If we assume that friendship is fundamentally a bidirectional interaction then
this lack of symmetry indicates that the data are necessarily unreliable.

As is done in Refs. [9, 44, 45], we fit the data using a model in which each student i has an individual
true-positive rate ¢; and false-positive rate ;. The true-positive rate is the probability that i names as a
friend another student who is in fact a friend, as determined by the adjacency matrix. The false-positive
rate is the probability of naming someone who is not actually a friend. We explicitly allow for different
true- and false-positive rates for different individuals, since it is widely accepted that survey respondents
vary in the accuracy of their responses.

In the notation of this paper the equations for the model are:

(1,06, 00) = o7 (1— a,-)l‘X"J'af""(l — ) i (3.7a)

i (0. B By) = B (1= BB (1= B) 0. (3.7b)
For instance, supposing that i and j truly are friends, the probability of i saying that they are (X;; = 1)
while j says they are not (X;; = 0) is ;;(1) = 0;(1 — ;). Conversely, if they are not in fact friends then
we instead get 1;;(0) = B;(1—B;).

For the priors we again make the assumption of Eq. (3.2) that all edges are a priori equally likely,
and assume a uniform prior on the edge probability p and a uniform distribution over all values of ¢;
and f3; that satisfy f3; < % < 0. (One could simply assume a uniform prior on both ¢; and f3; in the range
[0,1] but this leaves some ambiguity in the model because of the inherent symmetric between edges
and non-edges: if we exchange the values of all ¢; and all B; and set p to 1 — p the model remains the
same. By making the reasonable assumption that o; > 5; we break this symmetry. The assumption that
Bi < % < o is not strictly necessary, but turns out to be helpful for narrowing down the parameter space
and hence improving the speed and convergence of the calculation [9].)

Figures 6 and 7 show the results of fitting this model to the data for a single school from the
AddHealth data set. We use one of the smaller schools as our example, with 521 students who completed
a survey and 2182 declared ties, primarily in order to make visualization of the results easier. We find
that the Monte Carlo algorithm converges well and gives samples that appear to accurately characterize
the posterior distribution. Figure 6 shows discrepancy values in a manner analogous to Fig. 3b for the
dolphin network and all values are well above the diagonal, indicating a good fit to the data.

The inferred network structure is shown in Fig. 7a. By contrast with the dolphin network example,
the posterior probabilities of edges now vary more widely, as represented by the thickness of the edges in
the figure. Figure 7b shows the distribution of edge probabilities as a histogram and many probabilities
are again close to either 1 or 0, indicating a high degree of certainty that these edges either exist or do
not, but there are also a significant number of edges with intermediate probabilities, edges about which
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FIG. 6. Goodness of fit testing for the AddHealth model. Each point in this plot corresponds to a random parameter set drawn
from the posterior distribution P(a,3,p|X). Samples associated with a higher model-model discrepancy D(X,6) than data—
model discrepancy D(X, 0) appear above the dotted line, indicating a good fit between data and model.

we are less certain.

The fit also returns values of the true- and false-positive rates o; and J3; for each node, which allow
us to make quantitative statements about how accurately each individual reports his or her friendships.
The average value of ¢; over all individuals and all samples is 0.76, meaning that an estimated 24%
of friendships are going unreported. The average false-positive rate is 0.0065, which sounds small but
this result is somewhat misleading. The network is very sparse, meaning that almost all edges that
could exist do not. It takes only a small fraction of false-positives among these many non-edges to
generate a significant number of errors. Arguably a more informative measure of false positives is the
precision, which is the fraction of reported friendships that are actually present and is given in this
case by pa;/[pa; + (1 — p)Bi] [44]. The distribution of values of the precision is shown in Fig. 7¢ and
ranges from a little under 0.2 to a little over 0.75, indicating that in fact a significant fraction of reported
friendships—anywhere from 25% to 80%—are false positives.

These results are largely in agreement with previous work [44], although there are modest differ-
ences in estimated parameter values and network structure, due to the different methodology. We would
argue that the fully Bayesian methodology employed here is more correct in that it accounts for intrinsic
uncertainty in the parameter values. The methodology of [44], which makes use of an expectation-
maximization (EM) algorithm, might be described as “semi-Bayesian,” computing a full posterior dis-
tribution over the network structure but relying on point estimates of the parameters. Because the model
used here is a large one, having O(n) parameters, we expect there to be significant uncertainty in the
parameter values, which is captured by our Bayesian sampling method. That said, in practice the two
methods do lead to qualitatively consistent conclusions. The key benefits of the current approach in this
case are that it is simpler to implement using standard software, is formally more correct, and incorpo-
rates a natural means for checking the goodness of fit.

One potential issue with the results is the fact that the discrepancy values in Fig. 6 are all well above
the dotted line, indicating close fits of the model to the data and a p-value near 1. A p-value this large
can be a warning sign for overfitting, which is a possibility given the large number of parameters in the
model. Such an issue could not be diagnosed with the methods previously used in Refs. [44, 45], but
our approach makes this possible. One could address the problem by changing the model, say by using
a more complex model in which instead of fitting the true- and false-positive parameters we instead
draw them from a hyperprior distribution, such as a beta distribution, with an associated (small) set of
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F1G. 7. Inference of a school friendship network from noisy data. (a) The 521 nodes in this figure represent the students at a single
school in the AddHealth study and inferred friendships are shown as edges whose thickness indicates the estimated probability that
they exist. The size and color of the nodes indicates the estimated precision of friendship reports by the corresponding individual,
i.e., the fraction of their reported friendships that are inferred to actually exist. Darker shades indicated less precise individuals
and correspond to the shades in the histogram in panel (c). The average values of the parameters of the model are (@) ~ 0.7605,
(B) ~0.0065, and (p) ~ 0.004. (b) The distribution of the probability of existence of edges. Many values are close to zero or
one, indicating confidence that the corresponding edge does or does not exist, although a significant number fall at intermediate
values. (c) The distribution of estimated precision values for participants.
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hyperparameters that are fit using Monte Carlo. This approach can reduce the chances of overfitting and
would be a good direction for future work.

4. Conclusions

In this paper we have introduced a general Bayesian framework for reconstructing networks from obser-
vational data in the case where the data are error prone, even when the magnitude of the errors is
unknown. Our methods work by fitting a suitable model of the measurement process to the data and
there is a large class of models that is both expressive enough to represent real data sets accurately and
yet simple enough to allow for easy and automatic statistical inference. The output of the fitting process
is a complete Bayesian posterior distribution over possible network structures and possible values of
model parameters. We have demonstrated our methods with two case studies showing how to formulate
suitable models, fit them, assess goodness of fit, and infer reliable estimates of network structure.

With this work, we hope to promote the adoption of more rigorous methods for handling measure-
ment error in network data in a principled manner. The methods we propose not only achieve this but do
so in a manner that is straightforward and requires a minimum of technical expertise on the part of the
user. Practitioners can use the framework we propose to apply appropriate, application-specific models
to their data and obtain estimates of network structure in a matter of minutes.
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A. Methods

In this appendix we describe the mathematical and statistical foundations of our method in detail.

A.1 Generative models of measurement

Consider an experimental setting in which we have measurements X of a network’s structure. The
measurements could be as simple as a number of observed interactions between pairs of nodes, but
could also incorporate time-series, vector measurements, etc. In general these measurements do not tell
us the exact structure of the network, but instead give us indirect and potentially noisy information. Our
goal is to make the best estimate we can of the true network structure given the measurements.

In the general framework we consider here, two nodes i and j can share connections of various types.
In the simplest case there are just two types: nodes can be either connected by an edge (type 1) or not
(type 0). In a more complex three-type case the connection could be absent (type 0), weak (type 1), or
strong (type 2), and so on. For a network of n nodes we encode these connections by an n x n adjacency
matrix A where the matrix element A;; records the type of connection between nodes i and j. We can
also represent directed networks using an asymmetric adjacency matrix with A;; being the type of the
directed connection from j to i and A j; being the type from i to j.

Our approach rests on the hypothesis that the matrix X of pairwise measurements is dependent,
in a probabilistic fashion, on the adjacency matrix A. Both A and X can be either symmetric (for
undirected networks) or asymmetric (for directed ones) and they need not be of the same type. In
friendship networks, for example, the symmetric relationship of being friends is commonly probed
using asymmetric measurements (person i says they are friends with person j).



16 of 25 J.-G. YOUNG ET AL.

It is this dependence between network and measurement that we exploit to estimate A from X. We
formalize the relation using a generative model that specifies the probability P(X|A, 6) of making the
measurements given the network, plus optionally some additional parameters represented collectively
by 6. Then, applying Bayes’ rule, we can write the probability of the unknown quantities A and 8 given
the measurements as
P(X|A,0)P(A[6)P(6)

P(X) '

Our goal is to use this equation to infer the network structure A from the measurements X and to quantify
the errors we might make in doing so.

P(A,0X) =

(A1)

A2 A flexible class of models

To further simplify the discussion and improve the efficiency of the numerical calculations we make
some additional assumptions about the model, while keeping the approach as broad as possible to allow
users to easily adapt it to various types of data and experimental settings.

Of the four probabilities that appear on the right-hand side of Eq. (A.1) one of them P(X) is a
constant (since it depends only on X which is fixed by the experiment) and hence will play no part in
our calculations. The others must be specified to define our model. We refer to these three probabilities
as the data model P(X|A, 0), the network model P(A|6), and the prior on the parameters P(0). Let us
consider each of these in turn.

A.2.1 Data model The data model P(X|A,0) specifies the probability of making a particular set
of measurements X given the network and the model parameters. In specifying this probability we
will make two key assumptions. First, we assume that the measurement X;; is only influenced by the
corresponding element A;; of the adjacency matrix and not by any other elements. Second, we assume
that, conditioned on the network structure A and parameters 8, the measurements X;; for different node
pairs are independent. Thus, for instance,

P(X;;,Xu|A,0) = P(X;j|Aij, 0)P(Xui|Aw, 0).

The notation here is a bit unwieldy, so for clarity we introduce the notation y;;(A;;, ) to denote the
probability P(X;;|A;;,0) of making the measurement X;; given the type A;; of the connection between
nodes 7 and j and given the parameter values 6. (Where the meaning is clear we may drop the explicit
dependence on 6 to simplify our expressions.) With this notation and our assumption of conditional
independence, the probability P(X|A, 0) for the data model is simply

P(X|A,0) =[] mij(Aij,0). (A2)
(i)

The product []; ;) is taken over all unordered pairs of nodes when the network is undirected and over
all ordered pairs when it is directed.

Table A.1 gives a selection of possible forms for the data model for networks with only a single edge
type. Generalization to multiple edge types is straightforward. (See also Ref. [44] for a discussion of a
range of models.)

A.2.2  Network model The network model P(A|6) can be thought of as our prior expectation of what
the network should look like, before we make the measurements. By analogy with the factorized form
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Model Parameters Data probability
Binomial with True positive rate ¢ € [0, 1] wii(1) = a%ii(1— a)NirXij
uniform errors False positive rate 8 € [0, 1] i (0) = pXii (1 — B)Ni—Xij
Binomial with True positive rate o; € [0, 1] for node i wii(1) = Oc Y1 — o) Nii—Xij
node-dependent g6 positive rate B; € [0, 1] for node i Wi (0) = [5 T(1 = Bi)NiXii
errors

. . il =M !
PO}sson with Means A;, Ay for edges and non-edges Hij(1) = ;L X /%!
uniform errors i (0) = ’J e Mo /X!
Poisson with Normalized node propensity 0 < 1; < 1 wii(1) = (Mimim;)Xiie —Amin; /X!
node propensity (X n; = 1) and base rates 41,49 i (0) = (Aomin;)%ie A{m,n;/Xl]!

Table A.1. Example data models for undirected networks with one edge type. Here N;; represents the number of times the node
pair i, j was measured and X;; represents how many of those times an edge was observed to exist.

Model Parameters Edge probability
Random graph Edge probability p vii(1)=p
“Soft” configuration model Node pseudo-degree A; vii(1) = 1/(1+e4)

Node i belongs to group g; and edge

i Vii(l) = Wy
Stochastic block model probability between groups r and s is @y Y (1) 8ij
Random graph with o oy
multiple edge types Probability of type-k edge py vij(k) = pk
Poisson multigraph Mean edge number @ vij(k) = wfe=® /k!

Table A.2. Network models for the prior probability v;; of an edge between nodes i and j.

of the data model in Eq. (A.2), we consider network models with the factorized form

P(A|6) = Hv,, Aij,0), (A.3)

where we define v;;(A;;,0) in a similar manner to u;;(A;;,0), as the prior probability P(A;;|0) that
nodes i and j share a connection of type A;;, given the parameters 8. Many standard network models
can be written in this form, including the Erd6s—Rényi random graph, the configuration model, and the
stochastic block model. Some examples of network models are given in Table A.2 and Ref. [44].

A.2.3  Prior on the parameters The third component of our generative model, the prior P(0) on the
parameters, is the simplest. Our method does not place any significant constraints on the form of this
probability, so one is free to choose almost any form appropriate to problem at hand, ranging from
simple flat priors or factorized forms to ones that incorporate complex correlations between parameters.
The only stipulation we make is that the parameters should be continuous-valued variables (not discrete-
valued), which allows for more efficient sampling procedures (see Section A.4).
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A.3 Inference in theory

Gathering the elements defined above and substituting them into Eq. (A.1) we obtain the complete joint
posterior distribution for the model:

P(X|0,A)P(A|B)P(0)
P(X) ’

o< P(e)gﬂij(Aij)Vij(Aij)~ (A4
ij

P(A,0|X) =

This distribution tells us the probability of a network structure and a set of parameter values given
the observed measurements. From it we can derive a variety of further useful quantities, such as the
probability of the network structure independent of the parameters, which is given by

P(AIX) = / P(A,0]X)d6. (A5)

Even more useful, perhaps, is the probability of having an edge of a given type between two specific
nodes i, j:

P(Ai; = k|X) = / P(Ai; = k,0/X)d#
o< /“ij(k79)vij(k76>P(9)d67 (A.6)

where we have used Eq. (A.4).
If we instead want to learn something about a parameter ¢ € 6 then we can compute its distribution
as

POoX) =¥ [ P(6'.6.A) 40" (A7)
A

where 0’ is the parameter set with ¢ excluded.
Each of these quantities can be considered a special case of the posterior average of a general func-
tion f(A, ) of network structure and parameters, thus:

(f(A,0)) :Z/f(A,e)P(e,A\X) de. (A8)
A

There are a number of approaches we could take to computing expectations of this form [39]. One possi-
bility is to use an expectation—maximization (EM) algorithm to compute the distribution over potential
networks P(A|6,X) as well as a point estimate of 6 [44, 45]. Alternatively, following [47, 48], we
can integrate out the parameters 6 analytically to derive the marginal distribution P(A|X) over the net-
works alone. However, neither of these approaches is in line with our goal of providing near-automatic
inference for arbitrary models, the EM approach because it calls for the solution of (often non-linear)
equations specific to the model and the marginal-based approach because it works only for models
amenable to closed-form integration. The EM approach moreover gives only point estimates of 8 and
therefore provides no estimate of parameter uncertainty.

Instead, therefore, we employ a generalization of a method introduced in [65], which harnesses stan-
dard mixture-modeling techniques, adapting them to the network context. The method can be viewed
as a general sampler for models in the family of Refs. [9, 44, 45, 47, 48].
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A.4 Inference in practice

The general idea behind our method is to compute expectations of the form (A.8) in two manageable
steps by factorizing the joint posterior as

P(A,0|X) = P(A|0,X)P(0]X). (A9)

This factorization tells us that we can draw samples from the joint posterior by first sampling sets
of parameter values 6 from the marginal distribution P(6|X) and then sampling networks A from
P(A|6,X) with these parameter values. If we sample m different parameter sets and then n networks
for each set, we end up with mn network/parameter pairs, which we number » = 1...mn. Then we can
estimate the average in Eq. (A.8) as

(7(4,6)) =X [ F(A,0)P(AI0.X)P(6]X) d6
A
~ LY (40 (A.10)
r=I1

This expression is completely general and holds for any posterior, but for the class of models we consider
here there are, as we now show, particularly efficient methods that can help us quickly generate the
samples we need.

A.4.1 Generating parameter samples The first step of the sampling algorithm draws values of the
parameters 6 from the marginal distribution

P(8|X) :ZP(97A\X)7 (A.11)
A

where the sum runs over all the possible matrices A. For models with the factorized form (A.4) we have

P(0|X) < P(B)Z(I_I)y,-j(A,-j, Q)Vij(Aij,e)
A i)

o< P(6) [T wij(k, 0)vi;(k,6). (A.12)
i) %

Modern probabilistic programming languages make it easy to generate random samples from factorized
marginals of this kind. Our code is written in the probabilistic language Stan, which implements the
technique known as Hamiltonian Monte Carlo to generate samples automatically and efficiently—see
Refs. [4, 11] for an introduction. Evaluating P(6|X) involves a product over pairs (i, j) of nodes, of
which there are O(n?), meaning that in general generating a sample takes O(n?) time. In many cases,
however, the time complexity can be reduced to O(n) by pooling terms in the product, as discussed in
Sec. A.6.2.

A.4.2  Generating network samples ~ Given sampled values 6, ..., 8,, of the parameters, the next step
is to generate samples of the network A from the distribution P(A|6,X) for these parameter values. This
is straightforward for the factorized model assumed here, since node pairs are independent and we can
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sample each one separately. Specifically, using Egs. (A.4) and (A.12), we have

P(0,A1X)  Tlij tij(Aij)vij(Aij)

P(A|6.X) = =
(18X ="5061%) ~ T, Loty (B ()
=[] 2i4i.6), (A.13)
(i,J)
where
0,1(k,0) = Hij (k) vij (k) (A.14)

Y i (K)vi (k)

is the posterior probability that nodes i and j are joined by an edge of type k. Generating networks is
simply a matter of drawing a value A;; = k for each node pair independently from the distribution over k
implied by Q;;(k). Again, naively this takes time O(n?) for all node pairs, but on a sparse network the
speed can be improved by sampling only those edges with k > 0 and assuming k = O for all others.

To estimate the average (f (A, 0)), we generate a series of parameter sets 6 using Eq. (A.12) and for
each of these a series of networks using Eq. (A.13), then evaluate the average with Eq. (A.10).

A.5 Assessing goodness of fit

The method described above is simple, efficient, and often gives good results. As described in the main
text, however, the method can fail if the model itself is faulty—if the model is a poor representation of
the system, failing to fit the data for any parameter values. It’s important therefore to verify that the fit
between model and data is good, which can be done with the standard technique of posterior-predictive
assessment. As described in the main text, this involves generating synthetic data X from the distribution
implied by the fitted model:

P(X|X) = /ZP(X|0,A)P(9,A\X)d9. (A.15)
A

This distribution weights all the possible parameters 6 and networks A with their appropriate posterior
probabilities and tells us the probability that a new data set X would have if it were truly generated
by the model with these inputs. The idea of the posterior-predictive assessment is to compare these
synthetic data with the original input X. If the two look alike then the model has captured the data well;
otherwise, it has not.

There are a number of ways to quantify the similarity of X and X. For instance, one can compute
the average

(Xij) = Y P(X|X)Xij, (A.16)
X

and compare the result with X;;. Visualizing the matrix of residues (X) — X, the distribution of these
residues, or how they depend on X;; allows one to easily spot systematic issues with the model [21].
Such calculations are not costly in practice: the distribution (A.15) is just an average of a known function
of A, 0 over the posterior distribution and has the same general form as Eq. (A.10), so it can be evaluated
numerically by the same methods. In this particular case, however, we can do even better, skipping the
network sampling step altogether and making an estimate directly from the parameter samples. To do
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this, we write the distribution of Eq. (A.15) in the form

P(X|X) = /;P(X|9,A)P(A|9,X)P(9|X)d(—)

= /P(9|X)Znﬁij(z4ij, 0)Qij(Aij,0)do

:/P(9|X)HZﬂij(k»e)Qij(k»e)dQ (A.17)
(i,j) k

where have used Eqgs. (A.2) and (A.13) in the second line, and fi;;(k, 8) is the probability of generating
a synthetic measurement X; ; given that (i, j) is an edge of type k. This expression is now independent
of A and only requires an average over 6 to evaluate.

Using this expression for P(X|X), we can write the average (X;;) in Eq. (A.16) as

(Xij) = /P(e‘x>;<ﬂij(ka9)>Qij(ka9)d9, (A.18)

which we evaluate numerically as

(ngE

(Xij) =

1
m

Y (fij(k,6,)) Qij(k, 6,). (A.19)
k

r=I1

Note that < i (k, 6,)> usually has a simple closed form, since it is just the mean of X;; within the data
model with parameters 6,.

A visual inspection of the residues between X and X is often enough to reveal issues with goodness
of fit, but one can carry out a more formal model assessment using any of a variety of discrepancy mea-
sures that quantify the distance between the synthetic data X and the original X [20]. The average value
of such a discrepancy will always be greater than zero, since one does not expect the synthetic and orig-
inal data to agree perfectly even with a perfect model. To obtain a baseline against which discrepancy
values can be compared, we therefore compute the discrepancy between synthetic measurements X and
their associated predictions, calculating a model-versus-model discrepancy distribution.

In the calculations presented here we make use of the log-likelihood ratio discrepancy:

X..
D(X,6,) =Y X;ilog-—=——. (A.20)
(3.6 = L Klow 1 gy

where (X; i(6,)) is evaluated using Eq. (A.19) with the sampled parameter values 6,. This discrepancy
is reminiscent of a Kullback-Leibler divergence, with the primary difference being that it compares
unnormalized quantities rather than normalized probability distributions. That said, the norm of the two
sets of measurements should be similar, since the whole purpose of the calculation is to reproduce the
original observations. Hence, one can usually interpret the discrepancy in more or less the same way
as a divergence: the smaller the divergence the better the fit (although values slightly less than zero can
occur, which is not true of a true divergence).

We compute the distribution of the discrepancy and the reference distribution X simultaneously
using the method introduced in Ref. [20]. We go through each network/parameter sample A,, 6, and
generate a single realization X of the synthetic data from the data model, then compute the two discrep-
ancies D(X,6,) and D(X, 6,) using Eq. (A.19). From the resulting sets of discrepancy values one can
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then compute the p-value p = P[D(X,6,) > D(X,6,)], which is the fraction of artificial data sets with
discrepancy at least as large as the observed value. If the p-value is too small the model is rejected. If
the p-value is too large then there is a danger that it is overfitting the data, which can be treated by regu-
larizing the model using hierarchical priors or by changing the model entirely. This calculation does not
cost much computation time since we are merely reusing the samples already generated for estimation
purposes.

A.6 Implementation

In this section we discuss details of implementation, including a number of techniques for optimizing the
speed and numerical accuracy of the algorithm which can be useful with large data sets. Even without
such optimizations the algorithm should run reasonably quickly on typical hardware for networks with
up to a few hundred nodes. But with these optimiations—and with a suitable choice of models—the
method can scale to hundred of thousands of nodes or more.

A.6.1 Sampling networks One of the more computationally costly steps in the algorithm is the gen-
eration of sample networks from the conditional posterior distribution P(A|6,X). Naively generating
the network by flipping a biased coin for every node pair i, j takes time O(n?) on a network of 7 nodes.

For some models on sparse networks this time can be reduced by explicitly sampling only the edges
that exist. That is, all edges are assumed not to exist, except for a sparse sample that are generated in
accordance with the fitted model. For instance, with the simple “uniform error” model of Table A.1,
the posterior probabilities Q;; of edges are a unique function Q(X) of the number of observations X;;
of the edge in question. With this in mind we define £ =} ; ; Qij = Yxn(X)Q(X) where n(X) =
Y.(i,j) 0(X,Xi;) is the number of node pairs with X observations and 5 (x,y) is the Kronecker delta.

The value of X can be calculated rapidly once n(X) is known, then we can generate a sampled
network by first drawing an integer M ~ Poisson(X) to represent the number of edges in the network,
and then generating M random edges with probabilities Q;; with standard “roulette wheel” proportional
sampling using binary search. The complete process takes time O(M logn), which on a sparse network
will be much faster than the O(n?) of the naive algorithm.

In other cases we may be able to skip the process of network sampling altogether, although at the
price of still having to perform O(n?) operations. Specifically, when we want to calculate the average
of a function f that factorizes over node pairs thus

f(A,0)= (H)gij(Aija 0), (A21)
ij
we can write the average as
U4.0) =¥ [ 1A 0)pAle.X)P(EIX)d0
= /P(9|X) <l}]‘j[);[g,»j(k,e)Q,j(lc,(a)] de. (A.22)

Now we sample m sets of parameter values 0, as usual, but generate no networks A, and the average we

want is given by
m

Z Hzgi/’(k, 6,)0ij(k,6,). (A.23)
(i,j) k

1
m = &

(f(A,0)) =
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A.6.2 Sampling parameters Generating sample values of the parameters also takes time O(n?) in
general, because the right-hand side of Eq. (A.12) involves a product over pairs of nodes. For some
models, however, we may be able to evaluate this product more rapidly by methods similar to those
described for sampling networks above. Taking again the example of the “uniform error” model from
Table A.1, the probability ;;(k) is a function p(X,k, @) only of the number of observations X;; of the
corresponding edge (and k and 0) and v;;(k) is a function of k and 6 only. This means we can group
terms in the product and write

n(X)
T1) wij(k,0)vij(k,0) =T T| (X .k, 0)v(k,0)| (A.24)
(i,j) k X k
which saves considerable time. REFERENCES
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