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Bayesian inference of network structure from unreliable data
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Most empirical studies of complex networks do not return direct, error-free measurements of network

structure. Instead, they typically rely on indirect measurements that are often error-prone and unreli-

able. A fundamental problem in empirical network science is how to make the best possible estimates

of network structure given such unreliable data. In this paper we describe a fully Bayesian method for

reconstructing networks from observational data in any format, even when the data contain substantial

measurement error and when the nature and magnitude of that error is unknown. The method is intro-

duced through pedagogical case studies using real-world example networks, and specifically tailored

to allow straightforward, computationally efficient implementation with a minimum of technical input.

Computer code implementing the method is publicly available.
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1. Introduction

Networks are widely used as a convenient mathematical representation of the relationships between ele-

ments of a complex system [43]. Network methods have been fruitfully applied to aid our understanding

of systems in physics, biology, computer and information sciences, the social sciences, and many other

areas. A typical empirical network study will first determine the structure of a network of interest, using

experiments, field observations, or archival data, then analyze that structure to reveal features of interest,

using any of the many quantitative analysis techniques developed for this purpose [32].

In this paper we focus on the first part of this process, on how we determine the structure of a

network from appropriate empirical observations. At first sight, this appears to be a straightforward

task. Most studies aim to measure the presence or absence of edges in a network, either singly or in

some collective fashion, and then assemble a picture of the complete network by aggregating many such

measurements. Upon further consideration, however, it is apparent that the situation is not so simple,

because most network measurements do not tell us unambiguously about the presence or absence of
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edges. At best, they give us a noisy indication, and in many cases they merely hint obliquely at the

network structure [45].

As an example, consider a protein-protein interaction network representing the pattern of physical

interactions between proteins in the cell. Such networks can be measured in a relatively direct manner.

Techniques such as affinity purification and two-hybrid screens can be used to determine whether a given

protein interacts with others [27, 33]. These techniques are notoriously unreliable, however, returning

high rates of both false positives and false negatives, so that individual measurements do not themselves

tell us the structure of the network [54]. Measurements may have to be repeated many times in order to

separate the signal from the noise [52].

A more complex example is the measurement of a social network such as a network of who is

friends with whom. Such networks can be measured by conducting surveys in which people are asked to

identify their friends [62]. Here, however, things can get complicated. For instance, it happens often that

person A identifies person B as a friend, but person B does not identify person A. In some communities

fully a half of all friendships are “one-way” friendships of this kind [2, 59]. Should two such people

be considered friends? Why do they disagree? Is one of the individuals mistaken, or forgetful, or not

telling the truth? Perhaps the two are using different definitions of friendship? Things become harder

still when we consider other data that are commonly gathered in such surveys, such as age, gender, race,

occupation, income, or educational level of participants. Friendships are well known to depend strongly

on such personal characteristics and in cases where we are uncertain about a hypothesized friendship

between two people we may be able to use their traits to make a better informed decision about whether

they are really friends [40]. The best estimate of whether two people are friends may thus be the result

of a complex calculation that combines many inputs.

Most empirical studies of network structure, however, do not take such an approach. Even though

network data are known to be noisy and imperfect [1, 25, 53, 54, 60, 63, 64], many experimenters

nonetheless rely on simple direct measurements of the presence of edges and effectively make the

assumption that the resulting data are the network. In a protein-protein interaction network they assume

an interaction to be present if, for example, it is observed to exist enough times when measured. In a

friendship network two people are assumed to be friends if one identifies the other as a friend. And yet

it is clear from the discussion above that the true situation is more complicated than this. In realistic

circumstances, we have a heterogeneous body of data, potentially of many different types, potentially

unreliable, and varying in its relationship to the actual network structure. In such circumstances, tradi-

tional methods for inferring network structure from data may be inadequate and in some cases outright

misleading.

In this paper we present a general framework for inferring network structure from measurements

using methods of Bayesian inference, along with a complete software pipeline implementing that frame-

work. The methods we describe take empirical measurements of a system and return a posterior distri-

bution over possible network structures, thereby telling us not only what the likely structure is but also

giving us an estimate of our certainty about that structure. Our approach requires a minimum of input

from the experimenter, the only information they need supply (other than the data) being a description

of how the measurements depend on the underlying network structure, which is specified at a high level

in the form of probability distributions—we give a number of examples in this paper. The rest of the

calculation, from data to posterior distribution and final network structure, is performed automatically.

Application of Bayesian inference methods often requires experimentation to find the best approach for

a particular application. The level of automation in our framework makes this a straightforward task,

allowing one to easily experiment with different strategies and quickly see the results [21].

The problem we address falls in the general area of network reconstruction, the challenge of deter-
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mining the structure of a network from the available data, though one might also think of it as simply

“network measurement,” akin to the experimental or observational determination of any quantity in the

natural and social sciences. There has been a considerable amount of previous work on network recon-

struction, much of it in the subject-specific literature and directed at the reconstruction of particular

types of networks or using particular types of data. Methods have been proposed, for example, for geo-

graphic co-location data [14–17], social networks [9], ecological networks [18], brain scans [34, 57, 61],

and biochemical networks [5, 28, 29, 33]. Perhaps the closest precursor to our work is that of Butts [9],

who developed Bayesian methods and Gibbs sampling techniques for estimating social network struc-

ture from unreliable social surveys. Priebe and collaborators [51] have developed similar ideas, incor-

porating structured priors over networks to improve inference, an approach that has been echoed in

statistics [34, 57, 61] and network science [47]. A key difference between these approaches and our

own, however, is that they were developed with particular measurement processes in mind, whereas

our methods can accommodate almost arbitrary ones. The approach we propose also differs from our

own related previous work [44, 45, 65] in putting forward an estimation algorithm that works essen-

tially automatically with arbitrary models, using ideas borrowed from the literature on finite mixture

models [39, 58].

Looking more broadly, there is also a considerable volume of work that tackles other problems

concerning the reliability of network data, many of which could also be addressed using variants or

extensions of the methods proposed here. The problem of link prediction, for instance, involves pre-

dicting missing edges in partially observed networks and a range of algorithms have been proposed

that achieve good performance [12, 24, 26, 31, 37]. The work of Guimerà and Sales-Pardo [24], for

instance, uses a model sampled from a marginal posterior distribution reminscent of our approach, but

does not explicitly include any mechanism for measurement error or attempt to reconstruct the network,

focusing instead on the link prediction problem. Also much studied is the problem of inferring network

structure from non-network data [8], such as time-series [36], gene expression data [3], the spread of

information or disease [23, 42], and various local network features and node properties [55, 66]. A

separate literature deals with problems of network sampling, addressing how choices such as which

nodes or edges we measure can affect our estimates of network properties and how best to make those

choices [32, 35, 46, 56]. Disambiguation or entity resolution is the process of accurately identifying

the nodes in a network in the presence of potential sources of error such as duplicate nodes or nodes

that have been inadvertently combined [10, 19, 60]. Some methods have also been proposed that aim

to perform more than one of these tasks at once, such as simultaneous link prediction and disambigua-

tion [41]. Finally, there is also a growing literature on making best estimates of derived network metrics

starting from probabilistic representations of network structure [6, 30, 38, 49, 50]. These methods use

the kinds of structural estimates we develop in this paper as input to calculations of further quantities of

interest, such as centrality measures, path lengths, correlations, community structure, or core decompo-

sitions [6, 38].

This manuscript is organized as follows. In Section 2 we first give an overview of the framework

we propose for inference of network structure from unreliable data. Then in Section 3 we describe in

depth two example applications, illustrating the construction of appropriate measurement models and

the practical implementation of the method. In Section 4 we give our conclusions and suggest some

directions for future work. An appendix gives technical details of the workings of our method.
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2. Description of the method

Suppose we have made some measurements of a networked system. They may include direct measure-

ments of network structure, such as measurements of the presence or absence or edges, but they may

also include other quantities that could have indirect bearing on network structure, such as measure-

ments of node properties or traits. Our objective is to make the best possible estimate of the structure

of the network from these measurements and to do so efficiently and almost automatically, requiring

a minimum of technical effort, so that practitioners can focus on making the measurements and inter-

preting the results. In this section we give a broad overview of the concepts and essential equations

underlying our method. A complete derivation and accompanying technical discussion can be found in

Appendix A.

In a nutshell, we posit that there exists some underlying network whose structure affects measure-

ments made on the system of interest. This network is represented by its adjacency matrix AAA, which is

initially unknown. Our goal is to estimate this matrix. We assume that the observational data depend

on the adjacency matrix but in a potentially noisy way: even exact repetition of the same experiment

could produce different observations. This means that, even though the network has a well-defined and

unambiguous structure, it will not in general be possible to tell exactly what that structure is from the

measurements. To accommodate this uncertainty, we adopt a Bayesian point of view. Instead of infer-

ring the exact network structure itself from measurements, we instead infer a probability distribution

over possible structures compatible with the observations.

Apart from the data themselves, the only input our method requires of the user is the specification

of a model that represents, in general terms, how the data depend on the network structure. This model

can take a variety of different forms: networks and the experiments used to measure them vary widely,

so no single model applies in all cases. Our method allows the user to specify the model that is most

appropriate to their situation. The model may contain parameters (sometimes many of them) but it is

not necessary to know the values of these parameters: our method automatically infers the best values

from the data.

For the sake of concreteness, we concentrate in this paper primarily on the most common situation

encountered in network studies, in which the network is simple, undirected, and unweighted, and the

data consist of individual measurements of the presence or absence of edges. The methods we describe

are applicable to other situations as well, but this one covers many cases of interest and will allow us to

use a more transparent and explicit notation. The measurements themselves can be as simple as observed

interactions between pairs of nodes, but can also take more complex forms, such as paths across the

network, time-series, tags associated with relationships, or any of a variety of other possibilities. We

encode the measurements in an array XXX , whose entry Xi j contains all the information we have about the

interaction of nodes i and j.

We also make a further crucial assumption about the model, namely that observations of different

node pairs are conditionally independent, which in this case means that the observations Xi j of the

interaction between i and j depend only on the adjacency matrix element Ai j and not on any other

elements. This assumption is not strictly necessary for the method work but, as shown in Appendix A,

it improves the computational efficiency substantially. And, since it is true of most commonly used

models anyway, it is in practice not a significant restriction. There are exceptions: in certain (“fixed

choice”) social network studies, for instance, participants are limited to naming a maximum number of

friends or contacts, such as ten. This means that every time a participant names a contact, contacts with

other individuals becomes less likely because the participant has fewer “slots” left to fill, and hence

contacts are (weakly) negatively correlated. In this paper we neglect such dependencies and assume



BAYESIAN INFERENCE OF NETWORK STRUCTURE FROM UNRELIABLE DATA 5 of 25

that contacts are independent. (However, see Refs. [44, 45] for a discussion of methods that can handle

dependencies.)

With these assumptions, selecting a model boils down to making three basic choices. The first

and most crucial of these is specifying how the pairwise measurements Xi j depend on the underlying

network, as represented by the adjacency matrix AAA. Specifically, for a given pair of nodes i, j we need to

specify the expected distribution of values Xi j for the case where i and j are connected by an edge and

for the case where they are not. We will write these two distributions respectively as

µi j(1,θ) = P(Xi j|Ai j = 1,θ) (2.1)

and

µi j(0,θ) = P(Xi j|Ai j = 0,θ), (2.2)

where θ denotes any parameters of the distribution. (We will in some cases drop θ from the notation

where it is clearly understood.) We will refer to Eqs. (2.1) and (2.2) as the data model.

The second modeling choice is the specification of the prior probability ascribed to the edge between

i and j. What is the probability that the edge exists before we make any measurements of it? Do all

edges have an equal chance of existing a priori, or are some more likely than others? Again we assume

that different edges are independent, although again this assumption, while computationally convenient,

is not strictly necessary. Mimicking the notation introduced for the data model, we write the prior

probability of an edge between i and j as

νi j(1,θ) = P(Ai j = 1|θ) (2.3)

and the probability of no edge is νi j(0,θ) = 1 − νi j(1,θ). Again θ collectively denotes the set of

parameters (if any). We call this second set of probabilities the network model.

The third and last modeling choice is the specification of the prior distribution on the parameters θ .

Our framework does not place any restriction on the possible form of the prior on θ . In many cases

a simple uniform prior works well, but the prior can also be chosen for example to encode specific

knowledge about the system or to rule out unphysical values of the parameters.

Once these three choices are made, the rest of the procedure is essentially automatic. Given the

model choices and a set of measurements, our method will generate a string of pairs (AAAr,θr) of networks

and parameters compatible with the measurements. By inspecting these networks and parameters we

can determine any other network properties we might care about. For example, if we want to determine

whether i and j are connected by an edge, we can inspect the matrix element A
(r)
i j for all r and compute

the fraction of the time that A
(r)
i j = 1, which gives us (a Monte Carlo estimate of) the posterior probability

of the edge’s existence.

More precisely, the sample networks and parameter sets returned by our algorithm are drawn from

the joint posterior distribution P(AAA,θ |XXX), which allows us to compute an estimate of the expected value

of any function f (AAA,θ) of the network and parameters thus:

〈 f (AAA,θ)〉= ∑
AAA

∫

f (AAA,θ)P(θ ,AAA|XXX) dθ

≃
1

N

N

∑
r=1

f (AAAr,θr), (2.4)

where N is the number of samples generated.
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Our computer code implementing these calculations is freely available online with accompanying

tutorials explaining its use.1

3. Examples

To demonstrate how our method operates in practice, we present two detailed case studies. The first

involves a network of animal interactions.

3.1 Network of dolphin companionship

Many animals form lasting social networks, including monkeys, deer, horses, cattle, dolphins, and kan-

garoos [63]. Here we analyze data from Connor et al. [13] of interactions among a small (n = 13) group

of male bottlenose dolphins as they swim in a shallow lagoon. This is a typical example of an animal

observational study that aims to determine social ties indirectly by observing behavior. Standard tech-

niques of social network analysis would typically be used to transform the observations into association

indices that quantify the level of interaction between pairs of individuals [7]. These indices, however,

can can be hard to interpret and their definition relies on somewhat ad hoc assumptions. Our methods

give us a more principled way to infer connections by interpreting the data as noisy measurements of an

underlying social network.

3.1.1 Basic model In this particular study the recorded data Xi j, shown in Fig. 1, represent the num-

ber of times each pair of dolphins is observed swimming in close proximity. We can use these data

to reconstruct the underlying network as follows. First, it is reasonable to assume that the number of

interactions between two dolphins will depend on whether they have a network connection or not. But

also we expect there to be some randomness in the numbers, both because of circumstances and because

of observational error. We thus model the number of interactions as a Poisson random variable with

mean λ1 or λ0 depending on whether there is or is not a network connection, respectively. That is,

µi j(0,λ0) =
λ

Xi j

0

Xi j!
e−λ0 , (3.1a)

µi j(1,λ1) =
λ

Xi j

1

Xi j!
e−λ1 . (3.1b)

We assume that λ1 > λ0, i.e., that individuals interact more often if they have a network connection than

if they do not.

We also need to choose our network model and prior on the model parameters. Having no prior

information about the probabilities of individual network edges, we assume that all edges are a priori

equally likely, which implies

νi j(0,ρ) = 1−ρ, (3.2a)

νi j(1,ρ) = ρ. (3.2b)

where ρ is the probability of an edge.

1The code can be downloaded from https://github.com/jg-you/noisy-networks-measurements.
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To more accurately quantify the performance of the model we can calculate a discrepancy [20]:

D(XXX ,θ) = ∑
i j

Xi j log
Xi j

〈X̃i j(θ)〉
, (3.4)

where 〈X̃i j(θ)〉 is the average of the synthetic data generated from the model, with parameter values θ .

The discrepancy is essentially a Kullback-Leibler divergence between the observed and synthetic data

for one sampled value of the parameters. It functions in this situation as a goodness-of-fit measure: the

smaller the discrepancy, the closer the synthetic data are to the input.

The discrepancy is not very informative by itself, however, since it is not clear what kind of values

we should expect to see. For example, even if the model is an excellent fit, we should not expect the

discrepancy to be zero, since the randomness of both the data and the model mean that they are unlikely

to agree exactly. To obtain a point of comparison, therefore, we compute discrepancies between a large

number of pairs of simulated data sets drawn from realizations of the model with the same parameter

values used for the observed data. If the model were correct, so that simulated and observed data

have the same distribution, then these values would tell us the typical magnitude we should expect the

discrepancy to have. If the values are mostly smaller than the observed discrepancy then it indicates

the model is unlikely to be correct; if they are larger then the model is not ruled out. The fraction of

generated discrepancy values that are larger than the observed discrepancy gives us the p-value for the

model, i.e., the probability that the observed discrepancy would have been generated if the model were

correct.

Note that the use of the p-value in this situation is different from the way it is used in traditional

frequentist statistics, where it represents the probability of getting a particular observed value if a null

hypothesis were true. In the traditional scenario a small p-value leads us to reject the null hypothesis,

and, since this is often the goal of an experiment, small p-values are “good.” In the present case, the

p-value is applied to the model we are fitting (there is no null/alternative hypothesis) and it just counts

the fraction of artificial data sets for which we find discrepancies more extreme than the value found

when fitting the model to the true data. So in this situation small p-values are “bad.”

Figure 4b shows values of the discrepancy for both artificial and real data, for 500 sampled values of

the model parameters. Instances where the artificial discrepancy is greater than the observed one appear

above the diagonal in the plot and the fraction of such points tells us the p-value. In this case we find

p = 0.136. While it is not appropriate to apply arbitrary cutoffs to this (or any) p-value [20], the value is

not as high as we would like it to be, and though we cannot completely rule out the model the evidence

suggests that the fit is not ideal.

3.1.3 Improved model What can we do to improve the fit? The standard approach is to adopt a more

elaborate model that is capable of representing a wider range of data distributions. In the model we have

used so far connections are binary: dolphin pairs either have a connection or they don’t. We can create

a more nuanced model by allowing three levels of connection, corresponding to no tie, a weak tie, or a

strong tie. Denoting the three levels by adjacency matrix elements Ai j = 0, 1, and 2, we introduce a new

distribution for Xi j when Ai j = 2 which is Poisson as before but with mean λ2:

µi j(2,λ2) =
λ

Xi j

2

Xi j!
e−λ2 (3.5)
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Study of Adolescent to Adult Health (the “AddHealth” study). Although the method proposed in this

paper is mathematically more complex than that of [44, 45], it is arguably easier to apply since our

analysis pipeline performs most of the calculation automatically. The most demanding step is the for-

mulation of the model, but once we have a plausible model the rest of the process is straightforward and

mechanical.

The AddHealth study is a large study of networks of social contact among students in schools across

the United States. Students in participating schools were asked to identify their friends and the basic

unit of resulting data is a friendship nomination: one student says they are friends with another. Our data

matrix XXX in this case is thus a non-symmetric one: Xi j = 1 if i names j as a friend and 0 otherwise. There

is no guarantee that j will also name i and in fact there are many instances in which reported friendships

only run in one direction. If we assume that friendship is fundamentally a bidirectional interaction then

this lack of symmetry indicates that the data are necessarily unreliable.

As is done in Refs. [9, 44, 45], we fit the data using a model in which each student i has an individual

true-positive rate αi and false-positive rate βi. The true-positive rate is the probability that i names as a

friend another student who is in fact a friend, as determined by the adjacency matrix. The false-positive

rate is the probability of naming someone who is not actually a friend. We explicitly allow for different

true- and false-positive rates for different individuals, since it is widely accepted that survey respondents

vary in the accuracy of their responses.

In the notation of this paper the equations for the model are:

µi j(1,αi,α j) = α
Xi j

i (1−αi)
1−Xi j α

X ji

j (1−α j)
1−X ji , (3.7a)

µi j(0,βi,β j) = β
Xi j

i (1−βi)
1−Xi j β

X ji

j (1−β j)
1−X ji . (3.7b)

For instance, supposing that i and j truly are friends, the probability of i saying that they are (Xi j = 1)

while j says they are not (X ji = 0) is µi j(1) = αi(1−α j). Conversely, if they are not in fact friends then

we instead get µi j(0) = βi(1−β j).
For the priors we again make the assumption of Eq. (3.2) that all edges are a priori equally likely,

and assume a uniform prior on the edge probability ρ and a uniform distribution over all values of αi

and βi that satisfy βi <
1
2
< αi. (One could simply assume a uniform prior on both αi and βi in the range

[0,1] but this leaves some ambiguity in the model because of the inherent symmetric between edges

and non-edges: if we exchange the values of all αi and all βi and set ρ to 1−ρ the model remains the

same. By making the reasonable assumption that αi > βi we break this symmetry. The assumption that

βi <
1
2
< αi is not strictly necessary, but turns out to be helpful for narrowing down the parameter space

and hence improving the speed and convergence of the calculation [9].)

Figures 6 and 7 show the results of fitting this model to the data for a single school from the

AddHealth data set. We use one of the smaller schools as our example, with 521 students who completed

a survey and 2182 declared ties, primarily in order to make visualization of the results easier. We find

that the Monte Carlo algorithm converges well and gives samples that appear to accurately characterize

the posterior distribution. Figure 6 shows discrepancy values in a manner analogous to Fig. 3b for the

dolphin network and all values are well above the diagonal, indicating a good fit to the data.

The inferred network structure is shown in Fig. 7a. By contrast with the dolphin network example,

the posterior probabilities of edges now vary more widely, as represented by the thickness of the edges in

the figure. Figure 7b shows the distribution of edge probabilities as a histogram and many probabilities

are again close to either 1 or 0, indicating a high degree of certainty that these edges either exist or do

not, but there are also a significant number of edges with intermediate probabilities, edges about which
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hyperparameters that are fit using Monte Carlo. This approach can reduce the chances of overfitting and

would be a good direction for future work.

4. Conclusions

In this paper we have introduced a general Bayesian framework for reconstructing networks from obser-

vational data in the case where the data are error prone, even when the magnitude of the errors is

unknown. Our methods work by fitting a suitable model of the measurement process to the data and

there is a large class of models that is both expressive enough to represent real data sets accurately and

yet simple enough to allow for easy and automatic statistical inference. The output of the fitting process

is a complete Bayesian posterior distribution over possible network structures and possible values of

model parameters. We have demonstrated our methods with two case studies showing how to formulate

suitable models, fit them, assess goodness of fit, and infer reliable estimates of network structure.

With this work, we hope to promote the adoption of more rigorous methods for handling measure-

ment error in network data in a principled manner. The methods we propose not only achieve this but do

so in a manner that is straightforward and requires a minimum of technical expertise on the part of the

user. Practitioners can use the framework we propose to apply appropriate, application-specific models

to their data and obtain estimates of network structure in a matter of minutes.
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A. Methods

In this appendix we describe the mathematical and statistical foundations of our method in detail.

A.1 Generative models of measurement

Consider an experimental setting in which we have measurements XXX of a network’s structure. The

measurements could be as simple as a number of observed interactions between pairs of nodes, but

could also incorporate time-series, vector measurements, etc. In general these measurements do not tell

us the exact structure of the network, but instead give us indirect and potentially noisy information. Our

goal is to make the best estimate we can of the true network structure given the measurements.

In the general framework we consider here, two nodes i and j can share connections of various types.

In the simplest case there are just two types: nodes can be either connected by an edge (type 1) or not

(type 0). In a more complex three-type case the connection could be absent (type 0), weak (type 1), or

strong (type 2), and so on. For a network of n nodes we encode these connections by an n×n adjacency

matrix AAA where the matrix element Ai j records the type of connection between nodes i and j. We can

also represent directed networks using an asymmetric adjacency matrix with Ai j being the type of the

directed connection from j to i and A ji being the type from i to j.

Our approach rests on the hypothesis that the matrix XXX of pairwise measurements is dependent,

in a probabilistic fashion, on the adjacency matrix AAA. Both AAA and XXX can be either symmetric (for

undirected networks) or asymmetric (for directed ones) and they need not be of the same type. In

friendship networks, for example, the symmetric relationship of being friends is commonly probed

using asymmetric measurements (person i says they are friends with person j).
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It is this dependence between network and measurement that we exploit to estimate AAA from XXX . We

formalize the relation using a generative model that specifies the probability P(XXX |AAA,θ) of making the

measurements given the network, plus optionally some additional parameters represented collectively

by θ . Then, applying Bayes’ rule, we can write the probability of the unknown quantities AAA and θ given

the measurements as

P(AAA,θ |XXX) =
P(XXX |AAA,θ)P(AAA|θ)P(θ)

P(XXX)
. (A.1)

Our goal is to use this equation to infer the network structure AAA from the measurements XXX and to quantify

the errors we might make in doing so.

A.2 A flexible class of models

To further simplify the discussion and improve the efficiency of the numerical calculations we make

some additional assumptions about the model, while keeping the approach as broad as possible to allow

users to easily adapt it to various types of data and experimental settings.

Of the four probabilities that appear on the right-hand side of Eq. (A.1) one of them P(XXX) is a

constant (since it depends only on XXX which is fixed by the experiment) and hence will play no part in

our calculations. The others must be specified to define our model. We refer to these three probabilities

as the data model P(XXX |AAA,θ), the network model P(AAA|θ), and the prior on the parameters P(θ). Let us

consider each of these in turn.

A.2.1 Data model The data model P(XXX |AAA,θ) specifies the probability of making a particular set

of measurements XXX given the network and the model parameters. In specifying this probability we

will make two key assumptions. First, we assume that the measurement Xi j is only influenced by the

corresponding element Ai j of the adjacency matrix and not by any other elements. Second, we assume

that, conditioned on the network structure AAA and parameters θ , the measurements Xi j for different node

pairs are independent. Thus, for instance,

P(Xi j,Xkl |AAA,θ) = P(Xi j|Ai j,θ)P(Xkl |Akl ,θ).

The notation here is a bit unwieldy, so for clarity we introduce the notation µi j(Ai j,θ) to denote the

probability P(Xi j|Ai j,θ) of making the measurement Xi j given the type Ai j of the connection between

nodes i and j and given the parameter values θ . (Where the meaning is clear we may drop the explicit

dependence on θ to simplify our expressions.) With this notation and our assumption of conditional

independence, the probability P(XXX |AAA,θ) for the data model is simply

P(XXX |AAA,θ) = ∏
(i, j)

µi j(Ai j,θ). (A.2)

The product ∏(i, j) is taken over all unordered pairs of nodes when the network is undirected and over

all ordered pairs when it is directed.

Table A.1 gives a selection of possible forms for the data model for networks with only a single edge

type. Generalization to multiple edge types is straightforward. (See also Ref. [44] for a discussion of a

range of models.)

A.2.2 Network model The network model P(AAA|θ) can be thought of as our prior expectation of what

the network should look like, before we make the measurements. By analogy with the factorized form
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Model Parameters Data probability

Binomial with

uniform errors

True positive rate α ∈ [0,1] µi j(1) = αXi j(1−α)Ni j−Xi j

False positive rate β ∈ [0,1] µi j(0) = β Xi j(1−β )Ni j−Xi j

Binomial with

node-dependent

errors

True positive rate αi ∈ [0,1] for node i µi j(1) = α
Xi j

i (1−αi)
Ni j−Xi j

False positive rate βi ∈ [0,1] for node i µi j(0) = β
Xi j

i (1−βi)
Ni j−Xi j

Poisson with

uniform errors
Means λ1, λ0 for edges and non-edges

µi j(1) = λ
Xi j

1 e−λ1/Xi j!

µi j(0) = λ
Xi j

0 e−λ0/Xi j!

Poisson with

node propensity

Normalized node propensity 0 < ηi < 1

(∑ηi = 1) and base rates λ1,λ0

µi j(1) = (λ1ηiη j)
Xi j e−λ1ηiη j/Xi j!

µi j(0) = (λ0ηiη j)
Xi j e−λ0ηiη j/Xi j!

Table A.1. Example data models for undirected networks with one edge type. Here Ni j represents the number of times the node

pair i, j was measured and Xi j represents how many of those times an edge was observed to exist.

Model Parameters Edge probability

Random graph Edge probability ρ νi j(1) = ρ

“Soft” configuration model Node pseudo-degree λi νi j(1) = 1/(1+ e−λiλ j)

Stochastic block model
Node i belongs to group gi and edge

probability between groups r and s is ωrs
νi j(1) = ωgig j

Random graph with

multiple edge types
Probability of type-k edge ρk νi j(k) = ρk

Poisson multigraph Mean edge number ω νi j(k) = ωke−ω/k!

Table A.2. Network models for the prior probability νi j of an edge between nodes i and j.

of the data model in Eq. (A.2), we consider network models with the factorized form

P(AAA|θ) = ∏
(i, j)

νi j(Ai j,θ), (A.3)

where we define νi j(Ai j,θ) in a similar manner to µi j(Ai j,θ), as the prior probability P(Ai j|θ) that

nodes i and j share a connection of type Ai j, given the parameters θ . Many standard network models

can be written in this form, including the Erdős–Rényi random graph, the configuration model, and the

stochastic block model. Some examples of network models are given in Table A.2 and Ref. [44].

A.2.3 Prior on the parameters The third component of our generative model, the prior P(θ) on the

parameters, is the simplest. Our method does not place any significant constraints on the form of this

probability, so one is free to choose almost any form appropriate to problem at hand, ranging from

simple flat priors or factorized forms to ones that incorporate complex correlations between parameters.

The only stipulation we make is that the parameters should be continuous-valued variables (not discrete-

valued), which allows for more efficient sampling procedures (see Section A.4).
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A.3 Inference in theory

Gathering the elements defined above and substituting them into Eq. (A.1) we obtain the complete joint

posterior distribution for the model:

P(AAA,θ |XXX) =
P(XXX |θ ,AAA)P(AAA|θ)P(θ)

P(XXX)
,

∝ P(θ)∏
(i, j)

µi j(Ai j)νi j(Ai j). (A.4)

This distribution tells us the probability of a network structure and a set of parameter values given

the observed measurements. From it we can derive a variety of further useful quantities, such as the

probability of the network structure independent of the parameters, which is given by

P(AAA|XXX) =
∫

P(AAA,θ |XXX)dθ . (A.5)

Even more useful, perhaps, is the probability of having an edge of a given type between two specific

nodes i, j:

P(Ai j = k|XXX) =
∫

P(Ai j = k,θ |XXX)dθ

∝

∫

µi j(k,θ)νi j(k,θ)P(θ)dθ , (A.6)

where we have used Eq. (A.4).

If we instead want to learn something about a parameter φ ∈ θ then we can compute its distribution

as

P(φ |XXX) = ∑
AAA

∫

P(θ ′,φ ,AAA|XXX)dθ ′, (A.7)

where θ ′ is the parameter set with φ excluded.

Each of these quantities can be considered a special case of the posterior average of a general func-

tion f (AAA,θ) of network structure and parameters, thus:

〈 f (AAA,θ)〉= ∑
AAA

∫

f (AAA,θ)P(θ ,AAA|XXX) dθ . (A.8)

There are a number of approaches we could take to computing expectations of this form [39]. One possi-

bility is to use an expectation–maximization (EM) algorithm to compute the distribution over potential

networks P(AAA|θ ,XXX) as well as a point estimate of θ [44, 45]. Alternatively, following [47, 48], we

can integrate out the parameters θ analytically to derive the marginal distribution P(AAA|XXX) over the net-

works alone. However, neither of these approaches is in line with our goal of providing near-automatic

inference for arbitrary models, the EM approach because it calls for the solution of (often non-linear)

equations specific to the model and the marginal-based approach because it works only for models

amenable to closed-form integration. The EM approach moreover gives only point estimates of θ and

therefore provides no estimate of parameter uncertainty.

Instead, therefore, we employ a generalization of a method introduced in [65], which harnesses stan-

dard mixture-modeling techniques, adapting them to the network context. The method can be viewed

as a general sampler for models in the family of Refs. [9, 44, 45, 47, 48].
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A.4 Inference in practice

The general idea behind our method is to compute expectations of the form (A.8) in two manageable

steps by factorizing the joint posterior as

P(AAA,θ |XXX) = P(AAA|θ ,XXX)P(θ |XXX). (A.9)

This factorization tells us that we can draw samples from the joint posterior by first sampling sets

of parameter values θ from the marginal distribution P(θ |XXX) and then sampling networks AAA from

P(AAA|θ ,XXX) with these parameter values. If we sample m different parameter sets and then n networks

for each set, we end up with mn network/parameter pairs, which we number r = 1 . . .mn. Then we can

estimate the average in Eq. (A.8) as

〈 f (AAA,θ)〉= ∑
AAA

∫

f (AAA,θ)P(AAA|θ ,XXX)P(θ |XXX)dθ

≃
1

mn

mn

∑
r=1

f (AAAr,θr). (A.10)

This expression is completely general and holds for any posterior, but for the class of models we consider

here there are, as we now show, particularly efficient methods that can help us quickly generate the

samples we need.

A.4.1 Generating parameter samples The first step of the sampling algorithm draws values of the

parameters θ from the marginal distribution

P(θ |XXX) = ∑
AAA

P(θ ,AAA|XXX), (A.11)

where the sum runs over all the possible matrices AAA. For models with the factorized form (A.4) we have

P(θ |XXX) ∝ P(θ)∑
AAA

∏
(i, j)

µi j(Ai j,θ)νi j(Ai j,θ)

∝ P(θ)∏
(i, j)

∑
k

µi j(k,θ)νi j(k,θ). (A.12)

Modern probabilistic programming languages make it easy to generate random samples from factorized

marginals of this kind. Our code is written in the probabilistic language Stan, which implements the

technique known as Hamiltonian Monte Carlo to generate samples automatically and efficiently—see

Refs. [4, 11] for an introduction. Evaluating P(θ |XXX) involves a product over pairs (i, j) of nodes, of

which there are O(n2), meaning that in general generating a sample takes O(n2) time. In many cases,

however, the time complexity can be reduced to O(n) by pooling terms in the product, as discussed in

Sec. A.6.2.

A.4.2 Generating network samples Given sampled values θ1, . . . ,θm of the parameters, the next step

is to generate samples of the network AAA from the distribution P(AAA|θ ,XXX) for these parameter values. This

is straightforward for the factorized model assumed here, since node pairs are independent and we can
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sample each one separately. Specifically, using Eqs. (A.4) and (A.12), we have

P(AAA|θ ,XXX) =
P(θ ,AAA|XXX)

P(θ |XXX)
=

∏(i, j) µi j(Ai j)νi j(Ai j)

∏(i, j) ∑k µi j(k)νi j(k)

= ∏
(i, j)

Qi j(Ai j,θ), (A.13)

where

Qi j(k,θ) =
µi j(k)νi j(k)

∑k′ µi j(k′)νi j(k′)
(A.14)

is the posterior probability that nodes i and j are joined by an edge of type k. Generating networks is

simply a matter of drawing a value Ai j = k for each node pair independently from the distribution over k

implied by Qi j(k). Again, naively this takes time O(n2) for all node pairs, but on a sparse network the

speed can be improved by sampling only those edges with k > 0 and assuming k = 0 for all others.

To estimate the average 〈 f (AAA,θ)〉, we generate a series of parameter sets θ using Eq. (A.12) and for

each of these a series of networks using Eq. (A.13), then evaluate the average with Eq. (A.10).

A.5 Assessing goodness of fit

The method described above is simple, efficient, and often gives good results. As described in the main

text, however, the method can fail if the model itself is faulty—if the model is a poor representation of

the system, failing to fit the data for any parameter values. It’s important therefore to verify that the fit

between model and data is good, which can be done with the standard technique of posterior-predictive

assessment. As described in the main text, this involves generating synthetic data X̃XX from the distribution

implied by the fitted model:

P(X̃XX |XXX) =
∫

∑
AAA

P(X̃XX |θ ,AAA)P(θ ,AAA|XXX)dθ . (A.15)

This distribution weights all the possible parameters θ and networks AAA with their appropriate posterior

probabilities and tells us the probability that a new data set X̃XX would have if it were truly generated

by the model with these inputs. The idea of the posterior-predictive assessment is to compare these

synthetic data with the original input XXX . If the two look alike then the model has captured the data well;

otherwise, it has not.

There are a number of ways to quantify the similarity of X̃XX and XXX . For instance, one can compute

the average

〈X̃i j〉= ∑
X̃XX

P(X̃XX |XXX)X̃i j, (A.16)

and compare the result with Xi j. Visualizing the matrix of residues 〈X̃XX〉−XXX , the distribution of these

residues, or how they depend on Xi j allows one to easily spot systematic issues with the model [21].

Such calculations are not costly in practice: the distribution (A.15) is just an average of a known function

of AAA,θ over the posterior distribution and has the same general form as Eq. (A.10), so it can be evaluated

numerically by the same methods. In this particular case, however, we can do even better, skipping the

network sampling step altogether and making an estimate directly from the parameter samples. To do
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this, we write the distribution of Eq. (A.15) in the form

P(X̃XX |XXX) =
∫

∑
AAA

P(X̃XX |θ ,AAA)P(AAA|θ ,XXX)P(θ |XXX)dθ

=
∫

P(θ |XXX)∑
AAA

∏
(i, j)

µ̃i j(Ai j,θ)Qi j(Ai j,θ)dθ

=
∫

P(θ |XXX)∏
(i, j)

∑
k

µ̃i j(k,θ)Qi j(k,θ)dθ , (A.17)

where have used Eqs. (A.2) and (A.13) in the second line, and µ̃i j(k,θ) is the probability of generating

a synthetic measurement X̃i j given that (i, j) is an edge of type k. This expression is now independent

of AAA and only requires an average over θ to evaluate.

Using this expression for P(X̃XX |XXX), we can write the average 〈X̃i j〉 in Eq. (A.16) as

〈X̃i j〉=
∫

P(θ |XXX)∑
k

〈

µ̃i j(k,θ)
〉

Qi j(k,θ)dθ , (A.18)

which we evaluate numerically as

〈X̃i j〉 ≃
1

m

m

∑
r=1

∑
k

〈

µ̃i j(k,θr)
〉

Qi j(k,θr). (A.19)

Note that
〈

µ̃i j(k,θr)
〉

usually has a simple closed form, since it is just the mean of X̃i j within the data

model with parameters θr.

A visual inspection of the residues between X̃XX and XXX is often enough to reveal issues with goodness

of fit, but one can carry out a more formal model assessment using any of a variety of discrepancy mea-

sures that quantify the distance between the synthetic data X̃XX and the original XXX [20]. The average value

of such a discrepancy will always be greater than zero, since one does not expect the synthetic and orig-

inal data to agree perfectly even with a perfect model. To obtain a baseline against which discrepancy

values can be compared, we therefore compute the discrepancy between synthetic measurements X̃XX and

their associated predictions, calculating a model-versus-model discrepancy distribution.

In the calculations presented here we make use of the log-likelihood ratio discrepancy:

D(XXX ,θr) = ∑
(i, j)

Xi j log
Xi j

〈X̃i j(θr)〉
, (A.20)

where 〈X̃i j(θr)〉 is evaluated using Eq. (A.19) with the sampled parameter values θr. This discrepancy

is reminiscent of a Kullback-Leibler divergence, with the primary difference being that it compares

unnormalized quantities rather than normalized probability distributions. That said, the norm of the two

sets of measurements should be similar, since the whole purpose of the calculation is to reproduce the

original observations. Hence, one can usually interpret the discrepancy in more or less the same way

as a divergence: the smaller the divergence the better the fit (although values slightly less than zero can

occur, which is not true of a true divergence).

We compute the distribution of the discrepancy and the reference distribution X̃XX simultaneously

using the method introduced in Ref. [20]. We go through each network/parameter sample AAAr,θr and

generate a single realization X̃XX of the synthetic data from the data model, then compute the two discrep-

ancies D(X̃XX ,θr) and D(XXX ,θr) using Eq. (A.19). From the resulting sets of discrepancy values one can
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then compute the p-value p = P[D(XXX ,θr) > D(X̃XX ,θr)], which is the fraction of artificial data sets with

discrepancy at least as large as the observed value. If the p-value is too small the model is rejected. If

the p-value is too large then there is a danger that it is overfitting the data, which can be treated by regu-

larizing the model using hierarchical priors or by changing the model entirely. This calculation does not

cost much computation time since we are merely reusing the samples already generated for estimation

purposes.

A.6 Implementation

In this section we discuss details of implementation, including a number of techniques for optimizing the

speed and numerical accuracy of the algorithm which can be useful with large data sets. Even without

such optimizations the algorithm should run reasonably quickly on typical hardware for networks with

up to a few hundred nodes. But with these optimiations—and with a suitable choice of models—the

method can scale to hundred of thousands of nodes or more.

A.6.1 Sampling networks One of the more computationally costly steps in the algorithm is the gen-

eration of sample networks from the conditional posterior distribution P(AAA|θ ,XXX). Naively generating

the network by flipping a biased coin for every node pair i, j takes time O(n2) on a network of n nodes.

For some models on sparse networks this time can be reduced by explicitly sampling only the edges

that exist. That is, all edges are assumed not to exist, except for a sparse sample that are generated in

accordance with the fitted model. For instance, with the simple “uniform error” model of Table A.1,

the posterior probabilities Qi j of edges are a unique function Q(X) of the number of observations Xi j

of the edge in question. With this in mind we define Σ = ∑(i, j) Qi j = ∑X n(X)Q(X) where n(X) =

∑(i, j) δ (X ,Xi j) is the number of node pairs with X observations and δ (x,y) is the Kronecker delta.

The value of Σ can be calculated rapidly once n(X) is known, then we can generate a sampled

network by first drawing an integer M ∼ Poisson(Σ) to represent the number of edges in the network,

and then generating M random edges with probabilities Qi j with standard “roulette wheel” proportional

sampling using binary search. The complete process takes time O(M logn), which on a sparse network

will be much faster than the O(n2) of the naive algorithm.

In other cases we may be able to skip the process of network sampling altogether, although at the

price of still having to perform O(n2) operations. Specifically, when we want to calculate the average

of a function f that factorizes over node pairs thus

f (AAA,θ) = ∏
(i, j)

gi j(Ai j,θ), (A.21)

we can write the average as

〈 f (AAA,θ)〉= ∑
AAA

∫

f (AAA,θ)P(AAA|θ ,XXX)P(θ |XXX)dθ

=
∫

P(θ |XXX)∏
(i, j)

∑
k

[gi j(k,θ)Qi j(k,θ)] dθ . (A.22)

Now we sample m sets of parameter values θr as usual, but generate no networks AAA, and the average we

want is given by

〈 f (AAA,θ)〉 ≃
1

m

m

∑
r=1

∏
(i, j)

∑
k

gi j(k,θr)Qi j(k,θr). (A.23)
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A.6.2 Sampling parameters Generating sample values of the parameters also takes time O(n2) in

general, because the right-hand side of Eq. (A.12) involves a product over pairs of nodes. For some

models, however, we may be able to evaluate this product more rapidly by methods similar to those

described for sampling networks above. Taking again the example of the “uniform error” model from

Table A.1, the probability µi j(k) is a function µ(X ,k,θ) only of the number of observations Xi j of the

corresponding edge (and k and θ ) and νi j(k) is a function of k and θ only. This means we can group

terms in the product and write

∏
(i, j)

∑
k

µi j(k,θ)νi j(k,θ) = ∏
X

[

∑
k

µ(X ,k,θ)ν(k,θ)

]n(X)

, (A.24)

which saves considerable time. REFERENCES
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