
Letters in Mathematical Physics manuscript No.
(will be inserted by the editor)

Degenerate Band Edges in Periodic Quantum

Graphs

Gregory Berkolaiko · Minh Kha �

Received: date / Accepted: date

Abstract Edges of bands of continuous spectrum of periodic structures arise
as maxima and minima of the dispersion relation of their Floquet–Bloch trans-
form. It is often assumed that the extrema generating the band edges are
non-degenerate.

This paper constructs a family of examples of Z3-periodic quantum graphs
where the non-degeneracy assumption fails: the maximum of the first band
is achieved along an algebraic curve of co-dimension 2. The example is ro-
bust with respect to perturbations of edge lengths, vertex conditions and edge
potentials. The simple idea behind the construction allows generalizations to
more complicated graphs and lattice dimensions. The curves along which ex-
trema are achieved have a natural interpretation as moduli spaces of planar
polygons.
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1 Introduction

Periodic media play a prominent role in many fields including mathematical
physics and material sciences. A classical instance is the study of crystals, one
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of the most stable form of all solids that can be found throughout nature.
In a perfectly ordered crystal, the atoms are placed in a periodic order and
this order is responsible for many properties particular to this material. On
the mathematical level, the stationary Schrödinger operator −∆ + V with a
periodic potential V is used to describe the one-electron model of solid state
physics [1]; here V represents the field created by the lattice of ions in the
crystal. The resulting differential operator with periodic coefficients has been
studied intensively in mathematics and physics literature for almost a century.
A standard technique in spectral analysis of periodic operators is called the
Floquet-Bloch theory (see e.g., [26,27]). This technique is applicable not only
to the above model example of periodic Schrödinger operators on Euclidean
space, but also to a wide variety of elliptic periodic equations on manifolds
and branching structures (graphs). Periodic elliptic operators of mathemat-
ical physics as well as their periodic elliptic counterparts on manifolds and
quantum graphs do share an important feature of their spectra: the so-called
band-gap structure (see e.g., [10, 24, 26, 27]). Namely, the spectrum of a pe-
riodic elliptic operator can be represented in a natural way as the union of
finite closed intervals, called spectral bands, and sometimes they may leave
open intervals between them, called spectral gaps. An endpoint of a spectral
gap is called a gap edge. For each spectral band, there is also a corresponding
band function whose image is exactly that spectral band. The set consisting
of all graphs of band functions is called the dispersion relation. The analytical
and geometrical properties of dispersion relations encode significant informa-
tion about the spectral features of the operator.1 Hence studying structural
properties of the dispersion relation may reveal interesting results for periodic
differential operators. A well-known and widely believed conjecture in physics
literature says that generically (with respect to perturbations of the coefficients
of the operator) the extrema are attained by a single band of the dispersion
relation, are isolated, and have non-degenerate Hessian. The non-degeneracy
of extrema at the edges of the spectrum is often assumed to establish many
important results such as finding asymptotics of Green’s functions of a pe-
riodic elliptic operator near and at its gap edge [20, 21, 30], homogenization
[12–14], or counting dimensions of spaces of solutions with polynomial growth
[28,29], just to name a few.

In the continuous situation, the generic simplicity of spectral gap edges was
obtained in [23]. The well-known result in [22] established the validity of the full
conjecture for the bottom of the spectrum of a periodic Schrödinger operator
in Euclidean spaces, however the full conjecture still remains unproven for
internal edges. It is worth mentioning that in the two dimensional situation,
a “variable period” version of the non-degeneracy conjecture was found in
[34] and the isolated nature of extrema for a wide class of Z2-periodic elliptic
operators was recently established in [18]. In the discrete graph situation,
the statement of the conjecture fails for periodic Schrödinger operators on

1 These features are also called “threshold effects” [13] whenever they depend only on the
infinitesimal structure (e.g., a finite number of Taylor coefficients) of the dispersion relation
at the spectral edges.
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a diatomic lattice (see [18]). However, in the example of [18] there are only
2 free parameters to perturb the operator with and therefore the degeneracy
may be attributed to the paucity of available perturbations. To investigate this
question further, [15] considered a wider class of Z2-periodic discrete graphs
and it was found that the set of parameters of vertex and edge weights for
which the dispersion relation of the discrete Laplace-Beltrami operator has a
degenerate extremum is a semi-algebraic subset of co-dimension 1 in the space
of all parameters. These examples show that the non-degeneracy of gap edges
is a delicate issue even in the discrete setting.

In this paper, we propose two examples of periodic metric (or “quantum”)
graphs whose Schrödinger operator dispersion relation has a degenerate band
edge. Remarkably, this band edge remains degenerate under a continuum of
perturbations: one may vary edge lengths, vertex coupling constants and the
edge potentials. Our examples can be considered quantum-graph versions of
the counterexample in [18], and they clearly show that the main reason for
the degeneracy is not the small number of perturbation degrees of freedom,
but rather the drastic effect a suitably chosen rank-1 perturbation has on the
topology of the graph.

2 The main result

We now introduce the quantum graph of our main theorem and formulate the
result. The description of principal notions used in the main theorem, such as
quantum graphs, covers and periodicity, and the Floquet–Bloch transform, are
deferred to Sections 3.1, and 3.2 correspondingly. Expanded versions of these
descriptions are available in several sources, such as [6, 10, 27,35].

We will in fact describe two variants of our graph, X1 and X2; the main
theorem will apply equally to both. We start by describing one layer of the
graph, which looks like planar hexagonal lattice shown in Figure 1. It has
vertices of two types, type A and type B denoted by red filled and blue empty
circles correspondingly. The graph X1 will have δ-type conditions at vertices
A and B, with real coupling constants γA and γB , γA 6= γB . The graph X2

will have only Neumann–Kirchhoff (NK) conditions but the vertices of type A
are decorated by attaching a “tail”, i.e. an edge leading to a vertex of degree
one, shown as a smaller black circle in Figure 1(right). Either version is a
Z
2-periodic graph in R

2 and its period lattice is generated by the two brown
dashed vectors. The edges of the same color (parallel edges) are related by
Z
2-shifts. They are assumed to have the same length and to have the same

potential (if any) placed on them.
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Fig. 1 Two layers of graphs X1 (top) and X2 (bottom) respectively. These layers are Z2-
periodic with respect to the Bravais lattice generated by the two brown dashed. The only
difference between these two layers is the extra black tails added in the right layer.

The Z
3-periodic graphs X1 and X2 are obtained by stacking the corre-

sponding layers infinitely many times in both directions of the height axis, see
Figure 2. The layers are connected in a periodic fashion by edges (shown in
green) between vertices of type B in a lower level and vertices of type A in
the upper level. Roughly speaking, one may think of the result as an infinite
sheeted cover of the layers in Figure 1. In particular, X1 is a 3-dimensional
topological diamond lattice, see [35]. In Figure 3 we sketch a choice of the
fundamental domain of the graph X1 with respect to the Z

3-periodic lattice.

The graphs X1 and X2 we defined above are actually the maximal abelian
covers of finite graphs (see e.g., [2, 35] for more details on maximal abelian
covers of graphs). Taking the quotient of X with respect to the periodic lattice
we obtain the respective graphs in Figure 4. The graph Γ1 = X1/Z

3 has two
vertices, A and B, which are the images of the vertices of type A and B in X1

under the canonical covering map from X1 to Γ1. The four edges of Γ1 are the
images of the sets of parallel edges in X1. The graph Γ2 = X2/Z

3 has three
vertices and five edges. For either graph Γ , the first integral homology group is
H1(Γ,Z) ∼= Z

3. We will be using notation X when a statement applies equally
to both X1 and X2; similarly we use Γ to refer to both graphs Γ1 and Γ2.

The graphs X are metric graphs: each edge e in X is identified with the
interval [0, ℓ(e)], where ℓ(e) is the length of the edge e. The lengths of edges
related by a periodic shift (i.e. belonging to the same Z

3-equivalence class
or having the same color) are the same. We denote by ℓj , j ∈ {1, . . . , 4} the
distinct lengths of edges in the graphX1; the graphX2 has an additional length
— the length of the tail — which we denote by ℓ0. This metric information
on X can be viewed as a pull-back of the metric on Γ via the covering map
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Fig. 2 The graph X1 is generated by stacking together infinitely many copies of the layer
graph along the height axis. A layer is connected to the next layer by certain green edges.
To get the graph X2, one just simply adds black tails at the red filled vertices of X1.

π : X → Γ . Notice that unlike the periodic realization of graphene and its
multi-layer variants, we do not assume that each hexagon in the layer graph
is regular, i.e. the lengths of edges with distinct colors may be different.

On the edges of the graph X we consider the Laplacian −∆X = − d2

dx2 or,
more generally, the Schrödinger operator −∆X + qe(x) with piecewise contin-
uous potential qe(x). The potential is assumed to be the same on the edges
of the same equivalence class (color), taking into account the edge’s orienta-
tion. This ensures the potential is Z3-periodic like the rest of the graph; we do
not impose any other symmetry conditions on qe. Regularity of the potential
also plays no role in our examples, the same results can be extended to L1

potentials with minor modifications.

At every vertex of the graphX2, we impose the standard Neumann-Kirchhoff
boundary condition; we impose δ-type conditions with distinct coupling con-
stants γA and γB (one of them may be zero) on the corresponding vertices
of the graph X1. For the precise definition of vertex conditions, the reader is
referred to Section 3.1. The graphs X are non-compact, Z3-periodic quantum
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Fig. 3 A fundamental domain for the graph X1. Here the three gray vertices are not
included in the fundamental domain. The graph X1 can be obtained by shifting this funda-
mental domain along the three dashed directions, which are its periods.

A B

e4

e2

e1

e3

e0

AC B

e4

e2

e1

e3

Fig. 4 The graph Γ1 (left) and the graph Γ2 (right). In both graphs, the vertices A, B
correspond to red-filled and blue-empty type vertices in X, while the vertex C corresponds
to the decorated vertices in the black tails in X2. Here e0 is the line CA and ej , 1 ≤ j ≤ 4
are the corresponding edges between the two vertices A and B.

graphs. According to the Floquet-Bloch theory, the spectrum of the operator
−∆X is the union of the ranges of the band functions λj = λj(k), j ≥ 1, where

the quasimomentum k ranges over the torus T3 := (R/2πZ)
3
= (−π, π]3 and

λ1(k) ≤ λ2(k) ≤ · · · for any k ∈ T
3. (1)

Now we state our main result.

Theorem 2.1 (a) The spectrum of the operator −∆X has an open gap between
the first and the second band functions, i.e.

max
k

λ1(k) < min
k

λ2(k).

(b) If the lengths ℓj (1 ≤ j ≤ 4) are approximately equal, then there exists a
non-trivial one-dimensional algebraic curve µ in T

3 such that λ1 attains
its maximum value on µ. Consequently, there exists a degenerate band

edge in the spectrum of −∆X .
(c) The degenerate band edge in the spectrum is persistent under a small per-

turbation of edge lengths, vertex coupling constants or edge potentials.
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Theorem 2.1 will be proved in Section 4 after reviewing relevant definitions
and tools in Section 3. It will become clear during the proof that the phe-
nomenon described in the Theorem is very robust. Informally speaking, the
extremum responsible for a band edge is frequently degenerate for any graph
where removing a single vertex (but not the edges incident to it) reduces the
rank of the fundamental group by 3 or more. In particular, the condition on
the edge lengths in part (b) of the Theorem serves only to insure a degenerate
band edge particularly for the first band. For almost all choices of edge lengths
one can show that a finite proportion of bands will have degenerate edges.2

The decorations introduced at vertices A and B (δ-type conditions in X1

and the tail edge inX2) serve to break symmetry in the periodic graph and thus
create a band gap. If the symmetry is not broken, one would expect the bands
to touch along the curve µ; see [7] for related results. Finally, the topology of
the degeneracy submanifold µ may be non-trivial in the higher-dimensional
analogues of our example. We touch upon it in in Section 5.

3 Some preliminaries and notations

3.1 Quantum graphs and vertex conditions

In this section we recall some notations and basic notions of quantum graphs;
for more details the reader is encouraged to consult [10,33]. Consider a graph
G = (V, E) where V and E are the sets of vertices and edges of G, respectively.
For each vertex v ∈ V , let Ev be the set of edges e incident to the vertex v.
The degree dv of the vertex v is the cardinality of the set Ev. The graph G is
a metric graph if each edge e of the graph is give a length, ℓe and can thus be
identified with the interval [0, ℓe]. A function f on the graph G is henceforth
a collection of functions {fe}e∈E , each defined on the corresponding interval.

Let us denote by L2(G) (correspondingly H2(G)) the space of functions
on the graph G such that on each edge e in E , fe belongs to L2(e) (corresp.
H2(e)) and, moreover,

∑

e∈E

‖f‖2L2(e) < ∞

(
corresp.

∑

e∈E

‖f‖2H2(e) < ∞

)
.

G is called a quantum graph if it is a metric graph equipped with a self-
adjoint differential operator H of the Schrödinger type acting in L2(G). We
will take H to act as −∆G + qe(x) on the edge e, where qe are assumed to be
piecewise continuous. The domain of the operator will be the Sobolev space
H2(G) further restricted by a set of vertex conditions which involve the values
of fe(v) and the derivatives dfe

dx (v) calculated at the vertices. We list some
commonly used vertex conditions below.

2 This is a consequence of Barra–Gaspard ergodicity of quantum graphs: informally, what
happens once for one choice of lengths will happen with finite frequency for almost all choices
of lengths. For more precise statements, see [3, 5, 11, 16]
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– Dirichlet condition at a vertex v ∈ V requires that the function f vanishes
at the vertex,

f(v) = 0.

This is an example of a decoupling condition. Namely, if the Dirichlet condi-
tion is imposed at a vertex of degree d > 1, it is equivalent to disconnecting
the edges incident to the vertex and imposing Dirichlet conditions at the
resulting d vertices of degree 1.

– δ-type condition at a vertex v ∈ V requires the function to be continuous
at v in addition to the condition

∑

e∈Ev

dfe
dx

(v) = γvf(v), γv ∈ R, (2)

where dfe
dx (v) is the derivative of the function fe taken in the direction into

the edge. We note that the value f(v) is well-defined because of the assumed
continuity. The real parameter γv is called the vertex coupling constant. The
special case of the δ-type condition with γv = 0 is the Neumann-Kirchhoff
(NK) or “standard” condition. The Dirichlet condition defined above can
be naturally interpreted as γv = +∞.

– quasi-NK or magnetic condition at a vertex v ∈ V: Assume that the degree
of the vertex v is dv, Ev = {1, . . . , dv} and we are given dv unit complex
scalars z1, . . . , zdv

∈ S
1. We impose the following two conditions:

{
z1f1(v) = z2f2(v) = . . . = zdv

fdv
(v)∑dv

j=1 zj
dfj
dx (v) = 0,

(3)

Of course, the NK condition is a special case of (3) when all zj are equal.

If every vertex of the graph G is equipped with one of the above conditions,
the operator H is self-adjoint (see [10, Theorem 1.4.4] and references therein.
The last set of conditions allow one to introduce magnetic field on the graph
without modifying the operator (see [25] and also [32, 33] for more recent ap-
pearances). They also arise as a result of Floquet–Bloch reduction reviewed in
the next section.

3.2 Floquet-Bloch reduction

Let us now return to our periodic graph X. Recall that the δ-type conditions
are imposed at all vertices of X and hence the operator −∆X is self-adjoint.
A standard Floquet-Bloch reduction (see e.g., [10, 26, 27]) allows us to reduce
the consideration of the spectrum of −∆X to a family of spectral problems
on a compact quantum graph (a fundamental domain). More precisely, denote
by g1, g2, g3 some choice of generators of the shift lattice Z

3. For each k =

(k1, k2, k3) ∈ (−π, π]3 =: T
3, let −∆

(k)
X be the Laplacian that acts on the
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domain consisting of functions u ∈ H2
loc(X) that satisfy the δ-type conditions

at vertices along with the following Floquet conditions,

ug1e(x) = eik1ue(x), ug2e(x) = eik2ue(x), ug3e(x) = eik3ue(x), (4)

for all x ∈ X and n = (n1, n2, n3) ∈ Z
3. Then −∆X is the direct integral of

−∆
(k)
X and therefore,

σ(−∆X) =
⋃

k∈T3

σ(−∆
(k)
X ). (5)

The operator −∆
(k)
X has discrete spectrum σ(−∆

(k)
X ) = {λj(k)}

∞
j=1 where

we assume that λj is increasing in j, see (1). The dispersion relation of the
operator −∆X is the multivalued function k 7→ {λj(k)} and the spectrum
of −∆X is the range of the dispersion relation for quasimomentum k in T

3.

Hence, it suffices to focus on solving the eigenvalue problems −∆
(k)
X u = λu

where λ ∈ R for u in the domain of −∆
(k)
X . This problem is unitarily equivalent

to the eigenvalue problem on the compact graph Γ ,

−
d2

dx2
u = λu, λ ∈ R, (6)

where u satisfies the respective vertex conditions at the vertices A and C and
the quasi-NK conditions at the vertex B:

{
eik1u1(B) = eik2u2(B) = eik3u3(B) = u4(B)

eik1u′
1(B) + eik2u′

2(B) + eik3u′
3(B) + u′

4(B) = γBu(B),
(7)

where γB is taken to be 0 for the graph Γ2 and uj are the restrictions of the
function u to the edges ej . We will use the notation Γk

1 and Γk

2 (or Γk if
the distinction between the two graphs is irrelevant) to denote the eigenvalue
problem with condition (7) at the vertex B.

From now on, we shall emphasize the vertex conditions pictorially by re-
placing the names of the vertices by their corresponding boundary conditions,
see Fig. 5. We will use γA,NK,D andQk,γB

to indicate the δ-type, Neumann–
Kirchhoff, Dirichlet and quasi-NK vertex conditions respectively. We will also
occasionally use this convention in the text, e.g., the vertex B in the above
graph Γk will be mentioned as the Qk-vertex. Finally, we will use the symbol
λj(Γ

k) for the jth-eigenvalue of the quantum graph Γk. In particular, we have

σ(−∆X) =
⋃

j≥1,k∈T3

{
λj(Γ

k)
}
. (8)
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γA

A B
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e2
Qk,γBe1

e3

NK e0
NK

AC B

e4

e2
Qk,0e1

e3

Fig. 5 The quantum graphs Γk
1

(top) and Γk
2

(bottom) and their vertex conditions. In the
figures, the types of the boundary conditions are bold letters while the labels of the vertices
are regular letters.

3.3 Eigenvalue comparison under some surgery transformations

In this section we list some eigenvalue comparison results that will be useful
to prove the existence of a gap in the dispersion relation in Theorem 2.1(a).

The following interlacing inequality is often useful when variation of a
coupling constant is used to interpolate between different δ-type conditions
and also the Dirichlet condition (which is interpreted as the δ-type condition
with coupling +∞).

Theorem 3.1 (A special case of [8, Theorem 3.4]) If the graph Ĝ is ob-
tained from G by changing the coefficient of the δ-type condition at a single
vertex v from γv to γ̂v ∈ (γv,∞]. Then their eigenvalues satisfy the interlacing
inequalities

λk(G) ≤ λk(Ĝ) ≤ λk+1(G) ≤ λk+1(Ĝ), k ≥ 1. (9)

If a given value Λ has multiplicities m and m̃ in the spectra of G and Ĝ
respectively, then the Λ-eigenspaces of G and Ĝ intersect along a subspace of
dimension min(m, m̃). Note that by (9), m̃ must be equal to m−1, m or m+1.

For simplicity, from now on, if the graph G1 is obtained from G2 by chang-
ing the δ-type conditions to Dirichlet conditions at a single vertex, we will say
that G1 is a rank one Dirichlet perturbation of the graph G2.

We now consider the effect on the eigenvalue of the enlargement of a graph,
which is realized by attaching a subgraph at a designated vertex. The following
theorem is quoted in the narrowest form that is sufficient for our needs.

Theorem 3.2 (A special case of [8, Theorem 3.10]) Suppose that Ĝ is formed
from graphs G and H by identifying or “gluing” two Neumann–Kirchhoff ver-
tices v0 ∈ G and w0 ∈ H. If λ1(H) < λ1(G) and the eigenvalue λ1(G) has an

eigenfunction which does not vanish at v0 then λ1(Ĝ) < λ1(G).
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Fig. 6 Quadrangle corresponding to equation (10).

3.4 Topology of moduli spaces of polygons

Given n positive real numbers {aj} one can ask what is the topology of the
space of all planar polygons whose side lengths are {aj}. Two polygons are
identified if they can be mapped into each other by a composition of rota-
tion and translation. The resulting spaces may not be smooth and their full
classification is surprisingly rich, see [17] and references therein. These spaces
make an appearance in our question as the degenerate curves on which the
dispersion relation has an extremum.

For our example we will only require the following simple lemma (which fol-
lows from the results of [17]) addressing the topology of the set of quadrangles
with given four edge lengths, see Figure 6.

Lemma 3.3 The curve µ of solutions k = (k1, k2, k3) ∈ T
3 of

∑

1≤j≤3

eikjaj + a4 = 0 (10)

is an algebraic curve of co-dimension 2 if and only if

am <
∑

j 6=m

aj (11)

for every m = 1, . . . , 4.
If there is an m with the inequality reversed, the set of solutions µ is empty.

If there is an m with inequality turning into equality, the set of solutions is a
single point.

The topology of µ in this particular case has been described, for example,
in [19, Sec 12]. The curve is smooth unless there is a linear combination of
{aj} with coefficients ±1 that is equal to zero. If the curve µ is smooth it is
either a circle or a disjoint union of two circles. The non-generic cases when
µ is not a smooth manifold are of the following types: two circles intersecting
at a point, two circles intersecting at two points and three circles with one
intersection among each pair.
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Fig. 7 The set of roots of (10) for two choices of {aj}; two views of the same plot are
shown. The ranges are adjusted to k1 ∈ (0, 2π] and k2, k3 ∈ (−π, π] for a smoother plot.
Straight red lines correspond to aj = 1 for all j; Black stars (appear as a thick fuzzy line)
are produced using a1 = 1.1, a2 = 0.95, a3 = 0.9 and a4 = 1.

The latter case arises when all aj are equal. It is shown in red solid line in
Figure 7. Note that the plot is on a torus, therefore each pair of parallel lines
is actually a single line forming a circle. A smooth curve µ for a generic choice
of aj ≈ 1 is also shown.

4 Proof of the main result

In this section, we present the details of the proof of Theorem 2.1. Without
loss of generality, for the graph Γ1 we will make the assumption

γA < γB . (12)

Starting with the graph Γ1, we introduce two of its modifications. The
graph ΓA

1 is obtained by changing the condition at the vertex A to Dirichlet;
the graph ΓB

1 is obtained similarly by placing a Dirichlet condition at the
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vertex B. Remembering that a Dirichlet condition is decoupling, we can picture
the result as shown in Fig. 8.

γB

D

D

D

D

γA

D

D

D

D

Fig. 8 The two “star” graphs ΓA
1

(left) and ΓB
1

(right) after disconnecting the correspond-
ing Dirichlet vertices (D).

By placing Dirichlet conditions at vertices A or B of the graph Γ2, we
analogously construct the two graphs ΓA

2 and ΓB
2 . We remark that the graph

ΓA
2 has two connected components, see Fig. 9 and Fig. 10. Using the tools

introduced in Section 3.3 we establish the following comparison result, which
compares the first eigenvalue ΓA

j with the first eigenvalue of ΓB
j , where j is

either 1 or 2.

DNK

NK

D

D

D

D

Fig. 9 The quantum graphs Γ
A,1
2

(left) and Γ
A,2
2

after disconnecting from the Dirichlet
vertex of their union ΓA

2
.

NK NK

D

D

D

D

Fig. 10 The quantum graph ΓB
2
.

Lemma 4.1 The first eigenvalue of ΓB is always strictly less than than the
first eigenvalue of ΓA,

λ1(Γ
B) < λ1(Γ

A) (13)

Proof The graphs ΓB
1 and ΓA

1 differ only in the coefficient of the δ-type con-
dition at the vertex of degree 4 (we are in the situation of pure Laplacian,
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with no potential). Since the coefficient of ΓB
1 (which is γA) is smaller than

the coefficient of ΓA
1 , see equation (12), we immediately get from Theorem 3.1

that λ1(Γ
B
1 ) ≤ λ1(Γ

A
1 ). The case of equality is excluded because the ground

state must be non-zero on the vertex of degree 4 which means it cannot satisfy
δ-type conditions with two different constants (hence it cannot be a common
eigenfunction).

For the graph Γ2 we establish two inequalities, λ1(Γ
B
2 ) < λ1(Γ

A,1
2 ) and

λ1(Γ
B
2 ) < λ1(Γ

A,2
2 ). The first follows by changing the condition at vertex A

of the graph ΓB
2 from NK to Dirichlet: the eigenvalue strictly increases (since

the eigenfunction of ΓB
2 is non-zero at A) and the graph decouples into several

disjoint parts one of which coincides with ΓA,1
2 .

To prove the second inequality, we start with λ1(Γ
A,2
2 ) > 0 whose eigen-

function does not vanish on vertex B, and attach to B a Neumann interval of
length ℓ0 whose first eigenvalue is 0 < λ1(Γ

A,2
2 ). The strict inequality follows

from Theorem 3.2.

In our terminology, the graphs ΓA and ΓB are the rank one Dirichlet per-
turbations of the corresponding graph Γ . The next important observation is
that they are also, in fact, the rank one Dirichlet perturbations of the corre-
sponding graph Γk for any k.

Lemma 4.2 The rank one Dirichlet perturbation of the graph Γk at the vertex
A (corresp. B) is unitarily equivalent to ΓA (corresp. ΓB) for any k ∈ T

3.

Proof Since the Dirichlet perturbation is decoupling, the resulting graphs have
no cycles and therefore any quasi-momenta can be removed by a gauge trans-
form, see [10, Thm 2.6.1]. To put it another way, replacing the vertex condi-
tion (7) at B with Dirichlet removes all dependence on the quasi-momenta k.
Similarly, the quasi-NK conditions could be equivalently imposed at the vertex
A, where replacing them with Dirichlet also removes all dependence on k.

Lemma 4.3 The first eigenvalue λ1 of −∆ on ΓB is simple. If ℓ1 = ℓ2 =
ℓ3 = ℓ4, the eigenfunction corresponding to λ1 is identical on these four edges,
φ1 ≡ φ2 ≡ φ3 ≡ φ4, and non-zero except at B.

Proof The proof is identical for ΓB
1 and ΓB

2 . Simplicity of the eigenvalue fol-
lows from general variational principles [32] (or can be deduced from the secu-
lar equation for the corresponding graphs, see also the proof of Proposition 4.4
below). The first eigenfunction is known to be positive, except where a Dirich-
let condition is enforced, for a large family of vertex conditions [32]. Symmetry
can be deduced by, for example, restricting −∆ to the symmetric subspace of
the operator’s domain [4], observing that the first eigenfunction of the re-
stricted operator is positive and concluding that it corresponds to a positive
eigenfunction of the full operator and therefore must be the ground state.

Proof (Proof of Theorem 2.1) Since by Lemma 4.2 ΓA and ΓB are obtained
by a rank-1 Dirichlet perturbation from the quantum graph Γk for any k,
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Theorem 3.1 yields the inequalities

λ1(Γ
k) ≤ λ1(Γ

B) ≤ λ2(Γ
k), (14)

and
λ1(Γ

k) ≤ λ1(Γ
A) ≤ λ2(Γ

k), (15)

which hold of all k ∈ T
3. Adding the result of Lemma 4.1, we get

λ1(Γ
k) ≤ λ1(Γ

B) < λ1(Γ
A) ≤ λ2(Γ

k), (16)

obtaining part (a) of Theorem 2.1.
We will now show that the first inequality in (16) turns into equality

λ1(Γ
k) = λ1(Γ

B) (17)

for k in a one-dimensional curve γ in T
3.

Let ϕ be the λ1(Γ
B)-eigenfunction of ΓB . By Theorem 3.1, equality (17)

holds if and only if ϕ is also an eigenfunction of Γk. We denote by ϕj the
restriction of ϕ on ej for 0 ≤ j ≤ 4. Obviously, ϕ satisfies the first con-
dition in (7) at the vertex B. Therefore, equality (17) holds if and only if
k = (k1, k2, k3) ∈ [−π, π)3 is such that

∑

1≤j≤3

eikjϕ′
j(B) + ϕ′

4(B) = 0. (18)

By Lemma 3.3, the set of solutions of (18) is a non-trivial algebraic curve of
co-dimension 2 if

2max
j

∣∣ϕ′
j(B)

∣∣ <
∑

1≤j≤4

∣∣ϕ′
j(B)

∣∣ . (19)

If the lengths ℓj (1 ≤ j ≤ 4) are approximately equal then (by eigenfunction
continuity and Lemma 4.3) all

∣∣ϕ′
j(B)

∣∣ are approximately equal and condition
(19) is satisfied. This completes the proof of part (b).

Finally, the robustness of the degenerate gap edge under a small pertur-
bation of edge lengths or edge potentials follows directly from continuity of
eigenvalue and eigenfunction data [9, 31] and the fact that conditions for the
degenerate gap edge are inequalities (13) and (19).

With a little extra effort we can provide a quantitative condition on the
lengths ℓj to ensure the validity of the quadrangle inequalities (19) whenever
all of the derivatives ϕ′

1(B), . . . , ϕ′
4(B) are not zero.

Proposition 4.4 Let ρ0 be the unique solution in (2, 3) to the equation

ρ2 −
ρ3

3
=

π2

24
,

and assume further that

min

{(
ρ0 · min

1≤j≤4
ℓj

)
, ℓ0

}
≥ max

1≤j≤4
ℓj

Then 2 · |ϕ′
j(B)| < |ϕ′

1(B)|+ |ϕ′
2(B)|+ |ϕ′

3(B)|+ |ϕ′
4(B)| for each 1 ≤ j ≤ 4.

As a consequence, the same conclusion in part (b) of Theorem 2.1 holds.
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Proof Without loss of generality, assume that ℓ4 ≥ ℓ3 ≥ ℓ2 ≥ ℓ1. On the edge
ej where 1 ≤ j ≤ 4, we write ϕj(x) = αj sin(βx), where 0 ≤ x ≤ ℓj , αj ∈ R

and β =
(
λ1(Γ

B)
)1/2

. Here we identify the vertex B as x = 0 on each edge
ej . Observe that

0 < β = λ1(Γ
B)1/2 ≤ min

1≤j≤4

{
π

2ℓ0
,
π

ℓj

}
=

π

2ℓ0
(20)

This implies that βℓj ∈ (0, π/2] for each j. So min1≤j≤4 | sin(βℓj)| = sin(βℓ1).
Moreover, from the fact that ϕj(ℓj) 6= 0 and the continuity of ϕ at the vertex
A, we have

β−1ϕ′
j(B) = αj = α4 ·

sin(βℓ4)

sin(βℓj)

Therefore, it is enough to show

sin(βℓ1) ·
4∑

i=2

1

sin(βℓi)
> 1 (21)

Put ρ :=
ℓ4
ℓ1

∈ [1, ρ0] then we get

1−
π2

24ρ2
>

ρ

3

From (20), βℓ1 < πℓ1
2ℓ0

≤ π
2ρ and so it implies

1−
(βℓ1)

2

6
>

ℓ4
3ℓ1

(22)

Since sin(βℓ1) ≥ βℓ1 − (βℓ1)
3/6 and sin(βℓj) ≤ (βℓ4), (21) follows from (22).

5 Discussion

Our Theorem 2.1 provides a quantum graph counterexample to the men-
tioned conjecture at the beginning of the paper, about the genericity of non-
degenerate spectral edges in spectra of Zd-periodic quantum graphs, where
d > 2. Note that this construction can also be modified to provide an exam-
ple of a Z

d-discrete graph whose dispersion relation of the discrete Laplacian
operator contains a degenerate band edge. Indeed, let Γd be the graph with
two vertices such that there are exactly d+1 - edges between them and there-
fore, its maximal abelian covering Xd is a d-dimensional topological diamond.
One can write down explicitly the dispersion relation ofXd and then proceed
a similar calculation as in [18] to derive the degeneracy of the extrema of the
band functions.

Our construction of the graphs Γ required that the dimension of the dual
torus of quasimomenta k be of dimension at least three. The same method
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and proof will still work if we increase the number of edges connecting the two
vertices A and B (at least four edges). In fact, the entire mechanism of the
proof is extremely robust: two rank-one perturbations that reduce the number
of cycles by 3 or more help create the gaps between conductivity bands, while a
continuum of solutions to an equation similar to (18) will make the band edge
degenerate. The degeneracy curve thus still has a natural interpretation as the
set of possible (n − 1)-tuples of angles in a planar n-gon with the given edge
lengths; here n is the number of cycles broken by the rank one perturbation.
For n > 3 the topology of such objects becomes increasingly complicated.
Their homology groups were studied by many authors, see [17] and references
therein.

A heuristic reason for the degeneracy may be put forward using the classical
idea of Wigner and von Neumann: a family of complex Hermitian matrices
depending on 3 parameters is expected to have isolated point degeneracies
(where a pair of eigenvalues meet). This is what the eigenvalues want to do
here, but there are hard bounds (14) and (15) from the rank one perturbations,
so the eigenvalues instead accumulate at the bound.
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