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Numerically Stable Polynomially Coded Computing

Mohammad Fahim“', Student Member, IEEE, and Viveck R. Cadambe

Abstract— We study the numerical stability of polynomial
based encoding methods, which has emerged to be a powerful
class of techniques for providing straggler and fault tolerance in
the area of coded computing. Our contributions are as follows:

1) We construct new codes for matrix multiplication that
achieve the same fault/straggler tolerance as the previously
constructed MatDot Codes and Polynomial Codes.

2) We show that the condition number of every m x m sub-
matrix of an m X n,n > m Chebyshev-Vandermonde
matrix, evaluated on the n-point Chebyshev grid, grows as
O(n2™=m) for n > m.

3) By specializing our orthogonal polynomial based construc-
tions to Chebyshev polynomials, and using our condi-
tion number bound for Chebyshev-Vandermonde matrices,
we construct new numerically stable techniques for coded
matrix multiplication. We empirically demonstrate that
our constructions have significantly lower numerical errors
compared to previous approaches which involve inversion of
Vandermonde matrices. We generalize our constructions to
explore the trade-off between computation/communication
and fault-tolerance.

4) We propose a numerically stable specialization of Lagrange
coded computing. Our approach involves the choice of
evaluation points and a suitable decoding procedure. Our
approach is demonstrated empirically to have lower numer-
ical errors as compared to standard methods.

Index Terms— Distributed computing, coded computing, fault
tolerance, stragglers, numerical stability.

I. INTRODUCTION

HE recently emerging area of “coded computing” focuses

on incorporating redundancy based on coding-theory-
inspired strategies to tackle central challenges in distributed
computing, including stragglers, failures, processing errors,
communication bottlenecks and security issues. Such ideas
have been applied to different large scale distributed computa-
tions such as matrix multiplication [1]-[6], gradient methods
[71, [8], linear solvers [9]-[11] and multi-variate polynomial
evaluation [12]. An important idea that has emerged from
this body of the work is the use of novel, Reed-Solomon
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like polynomial based methods for encoding data. In polyno-
mial based methods, each computation node stores a linearly
encoded combination of the data partitions, where data stored
at different worker nodes can be interpreted as evaluation of
an appropriate polynomial at different points. The nodes then
perform computation on these encoded versions of the data,
and a central master/fusion node aggregates the outputs of
these computations to recover the overall result via a decod-
ing process that inevitably involves polynomial interpolation.
Much like Reed-Solomon Codes, if the number of nodes
performing the computation is higher than the number of eval-
uation points required for accurate interpolation, the overall
computation is tolerant to faults and stragglers.

Perhaps the most striking application of polynomial based
methods comes in the context of matrix multiplication. To mul-
tiply two N x N matrices A, B, assuming that each node stores
1/m fraction of each matrix, classical work in algorithm based
fault tolerance [13] outlines a coding based method which has
been analyzed in [14].

Reference [6] showed through polynomial based encoding
methods that the result of just m? nodes can be used by the
master node to recover the matrix-product. Remarkably, this
means that polynomial based codes ensure that the recovery
threshold - the worst case number of nodes whose computation
suffices to recover the overall matrix-product - does not grow
with P, the number of the distributed system’s worker nodes,
unlike the approaches of [13], [14]. The recovery threshold
for matrix multiplication has been improved to 2m — 1 via
a code construction called MatDot Codes in [3], albeit at
a higher communication/computation cost than codes in [6].
A second prominent application of polynomial based methods
is the idea of Lagrange coded computing [12], where coding
is applied for multi-variate polynomial computing with guar-
antees of straggler resilience, security and privacy. In addition,
polynomial-based methods are also useful for communication-
efficient approaches for inverse problems and gradient methods
(8], [10], [15].

Despite the enormous success, the scalability of polynomial
based methods in practice are often limited by an “inconve-
nient truth”, their numerical instability. The decoding methods
for polynomial based methods require interpolating a degree
K — 1 polynomial using K evaluation points. While this
is numerically stable for classical error correcting codes for
communication and storage which are implemented over finite
fields, we are concerned here for data processing applications
where the operations are typically real-valued. A common
reason for the instability is that either implicitly or explicitly,
interpolation often solves a linear system whose transform
is characterized by a Vandermonde matrix. It is well known
that the condition number of Vandermonde matrices with real-
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valued nodes grows exponentially in the dimension of the
matrix [16]-[19]. The large condition number means that small
perturbations of the Vandermonde matrix due to numerical pre-
cision errors can result in singular matrices [20], [21]. In prac-
tice, this can translate to large numerical errors even when the
coded computation is distributed among few tens of nodes'.
Engineering intuition dictates that the main scalability bottle-
necks in distributed computing include computation cost per
worker, communication bottlenecks, and stragglers. However,
for polynomially coded computing, it turns out that numerically
stability can constitute a critical bottleneck for scalability of
such codes. Indeed, a polynomially coded computing scheme
that achieves the minimum recovery threshold, and that is
optimal in terms of computation/commununication, may incur
large numerical errors when implemented on beyond tens of
computing nodes. For example, our experiments show that
applying MatDot codes [3] for distributed matrix multiplica-
tion on systems with a number of worker nodes larger than
30 yields huge numerical errors”.

Remark 1.1: In this paper, we are only interested in real-
valued code constructions that are implemented on systems
that use floating point representation for numbers. Moreover,
to the best of our knowledge, this is the first work to study the
conditioning of such polynomially coded computing problem.

II. SUMMARY OF CONTRIBUTIONS

In this paper, we develop a new, numerically stable,
approach for polynomially coded computing. Our proposed
approach is relevant to several coded computing code con-
structions that use polynomials expanded in the monomial
basis, which result in inherently ill-conditioned Vandermonde-
matrices. Using techniques from numerical approximation
theory [20], [21], our paper provides recipes that replace the
monomial basis with well-conditioned alternatives that lead to
code constructions that are provably more stable. Additionally,
our contributions also include recipes for provably stable
approaches for existing code constructions that use polyno-
mials expanded in the Lagrange basis. We demonstrate our
approach through two important applications of polynomially
coded computing: matrix multiplication and Lagrange coded
computing.

To illustrate our results, consider the coded matrix multipli-
cation problem, where the goal is to multiply two matrices
A B over P computation nodes where each node stores
1/m fraction of each of the two matrices. A master node
encodes A, B into P matrices each, and sends these matrices
respectively to each worker node. Each worker node multiplies
the received encoded matrices, and sends the product back to
the fusion node®, which aims to recover AB from a subset
of the worker nodes. The recovery threshold is defined as a

IFor example, reference [22] reports that “In our experiments we observed
large floating point errors when inverting high degree Vandermonde matrices
for polynomial interpolation™.

It is possible to reduce the numerical errors further for MatDot and other
similar codes under some circumstances (See Remark 3.2).

3The master and fusion nodes are logical entities; in practice, they may
be the same node, or may be emulated in a decentralized manner by the
computation nodes.
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Fig. 1. Example of MatDot Codes [3], with a recovery threshold of 3.
The matrix product AB is the coefficient of x in pa (z)pg(z). and can be
recovered at the fusion node upon receiving the output of any 3 worker nodes
and interpolating pa (z)pg(z).

number K such that the computation of any set of K worker
nodes suffices to recover the product AB. The MatDot scheme
of [3] achieves the best known recovery threshold of 2m — 1.
We begin with an example of MatDot Codes for m = 2.

Example 1 (MatDot Codes [3], Recovery Threshold = 3):

Consider two N x N matrices

A=[A; Ay, B= [gj
where A, Ay are N x N/2 matrices and By, B are N/2x N
matrices. Define pa (z) = A1 + Agr and pr(z) = Biz +
By, and let z1,--- ,zp be distinct real values. Notice that
AB = A;B; + A3B; is the coefficient of x in polynomial
pa(z)ps(z). In MatDot Codes, as illustrated in Fig. 1, worker
node ¢ computes pa (z;)ps(z:), i = 1,2,... P, so that from
any 3 of the P nodes, the polynomial p(z) = A;Bs +
(A1B; + A3B3)z + AyB; 22 can be interpolated. Having
interpolated the polynomial, the product AB is simply the
coefficient of x.

A generalization of the above example leads to a recovery
threshold of 2m — 1, with a decoding process that involves
effectively inverting a (2m — 1) x (2m — 1) Vandermonde
matrix. It has been shown that the condition number of the n x
n Vandermonde matrix grows exponentially in n with both £,
and ¢3 norms [16], [17]. The intuition behind the inherent poor
conditioning of the monomial basis {1,z,z2,..., 2™ "1} is
demonstrated in Fig. 2 and Fig. 3.

Motivated by Fig. 3, in this paper, we aim to choose
polynomials that are orthonormal. However, it is not imme-
diately clear whether orthonormal polynomials are applicable
for matrix multiplications. We demonstrate the applicability of
orthonormal codes for matrix multiplication. For the example
below, let go(x),q1(z) denote two orthonormal polynomials
such that

! 0 ifi=j
/_1 ¢(z)g;(x)dr = { 1 0therwi§e
where ¢;(z),7 = 0,1 has degree i.

Example 2 (OrthoMatDot Codes [This paper], Recov-

ery Threshold = 3): For two N x N matrices A =

[Ar ALB = [B] 1 ;@) = (o) + Asan(o)

and pg(z) = Bigo(z) + Bagi(z). Notice that because of (1),
we have

1)

1
AB = LlpA(I)pB(I)da:.

Authonzed licensed use limited to: Viveck Cadambe. Downloaded on July 27,2021 at 17:45:31 UTC from |IEEE Xplore. Restrictions apply.



2760

-1 0 1
Fig. 2. Plot of monomials 1,z,22, 23, 24, 210, 219 220 versus « for x €
[—1,1]. Note that for a large degree d, small changes in z can lead to large
changes in x?; this leads to significant numerical errors when working with

the monomial basis.
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z7

Fig. 3. Note that {1,z,...,2%} forms a basis for the vector space of d-
degree polynomials, with the inner-product (f,g) = fil flz)g(z)dz. We
have plotted the vectors 27 and 1. The small angle between the two vectors
leads to numerical errors.
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Fig. 4. Plot of Chebyshev polynomials To(x), T1(z), T2(z), T3(z), T20(z)
versus ¢ for ¢ € [—1,1].

This leads to the following coded computing scheme: worker
node i computes pa(z;)ps(z;), ¢ = 1,2,...P, where
T1,--- ,Tp are distinct real values, so that from any 3 of the
P nodes, the fusion node can interpolate p(x) = pa (z)ps(zx).
Having interpolated the polynomial, the fusion node obtains
the product AB by performing f_llpA(;c)pB(;c)d:c. This
example is illustrated in Fig. 5.

A simple generalization of the above example, described
in Construction 1 in Section IV, leads to a class of codes,
we refer to it as OrthoMatDot Codes, with recovery threshold
of 2m — 1, the same recovery threshold as MatDot Codes.
In general, orthonormal polynomials are defined over arbitrary
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weight measure f_ll w(x)dr; some well known classes of
polynomials corresponding to different weight measures w(x)
include Legendre, Chebyshev, Jacobi and Laguerre Polyno-
mials [20], [21]. Our OrthoMatDot Codes in Section IV can
use any weight measure, and therefore can be used with
different classes of orthonormal polynomials. Of particular
interest to our paper are the Chebyshev polynomials (Fig. 4)
whose numerical properties (discussed in Section III) lead
to developing numerically stable code constructions, in this
paper, for the polynomially coded computing problem.

With our basic template, the task of developing numerically
stable codes boils down to (A) interpolating pa (z)pg(z) in a
numerically stable manner, and (B) integrating this polynomial
in a numerically stable manner. For task (B), we use a
decoding procedure via Gauss Quadrature [20], [21], [23]
to recover the integral. Task (A) is particularly challenging
in the coding setting, because our goal is to interpolate
the coefficients of pa (z)pe(z) - expanded over a series of
orthonormal polynomials - from any 2m — 1 points among a
set of P points.

In Section V, we provide a specialization to the class of
OrthoMatDot Codes, a numerically stable matrix multiplica-
tion code construction that has the same recovery threshold
and communication/computation cost per worker as MatDot
codes. The construction specializes the class of OrthoMatDot
Codes via the use of Chebyshev polynomials, which are a class
of orthogonal polynomials that are ubiquitous in numerical
methods and approximation theory [21]. Construction 2 also
specifies the choice of evaluation points =, s, ..., Tp.

The decoding procedure outlined for the specialization
of OrthoMatDot Codes in Section V involves the effective
inversion of some (2m — 1) x (2m — 1) sub-matrix of a
(2m — 1) x P Chebyshev-Vandermonde matrix [19], where
each of the i-th column contains evaluations of the first 2m —1
Chebyshev polynomials at z;,7 = 1,2, ..., P. A key technical
result of our paper shows that, with our choice of evaluation
points zy,z2,...,zp, every (2m — 1) x (2m — 1) square
sub-matrix of the (2m — 1) x P Chebyshev-Vandermonde
matrix is well-conditioned. More precisely, we show that,
with our choice of z1,z3,...,zp, the condition number of
any (2m — 1) x (2m — 1) sub-matrix of the Chebyshev-
Vandermonde matrix grows at most polynomially in P when
the number of redundant parity nodes A = P — (2m — 1)
is fixed. Our condition number bound may be viewed as a
result of independent interest in the area of numerical methods,
and requires nontrivial use of techniques from numerical
approximation theory. This result is in contrast with the well
known exponential growth for Vandermonde systems. We also
show the significant improvement in stability via numerical
experiments in Section V-C. We also provide a preview of
the results here in Table I, whose results demonstrate that
remarkably, our Chebyshev-Vandermonde construction with
even P = 150 nodes has a smaller relative error than the
Vandermonde-based MatDot Codes* with P = 30 nodes.

“We note that the numerical error depends not only on the condition number
of the matrix, but also the algorithm used for solving the linear system.
However, we are not aware of any approach that can accurately solve, say,
a 150 x 150 linear system with a Vandermonde matrix (See e.g., [24], [25]).
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Fig. 5. Example of our proposed orthonormal polynomials based codes, with a recovery threshold of 3. The matrix product AB is fil Pa (z)pp(z)dr,
and can be recovered at the fusion node upon receiving the output of any 3 worker nodes, then interpolating pa (z)pr(z), and computing the integral

[1, pa(z)pe(z)de.

TABLE I
A TABLE DEPICTING THE RELATIVE ERRORS OF VARIOUS SCHEMES FOR A = P — (2m — 1) = 3 REDUNDANT NODES. THE ERROR IS MEASURED

IAB—C||x

VIA THE FROBENIUS NORM, LE.,
I[AB]| ¢

. THE MATRICES A, B ARE CHOSEN WITH ENTRIES N(0, 1). THE AVERAGE RELATIVE ERROR

AVERAGED OVER ALL POSSIBLE 3 NODE FAILURES, 1.E., OVER EVERY SET OF 2m — 1 NODES AMONG THE P = 2m + 2 NODES; THE
WORST CASE RELATIVE ERROR INVOLVES THE WORST SET OF 2m — 1 NODES. SEE SECTION V-C FOR MORE DETAILS.

Number MatDot OrthoMatDot MatDot OrthoMatDot
of Workers | worst case worst case average average

(P) relative error | relative error | relative error | relative error

30 154 x107% [ 514 x 10711 | 1.36 x 10~7 | 1.36 x 10~ 3

50 8.6 x 103 1.27 x 1079 2.00 x 102 | 2.04 x 10713

80 2.45 x 106 1.98 x 1078 2.19 x 102 | 3.08 x 10712

150 3.87x107 | 7.84x 1077 8.73 x 102 | 2.03 x 10711

While MatDot Codes [3] have an optimal recovery threshold
of 2m — 1, they have relatively higher computation cost
per worker (O(N3/m)) and worker node to fusion node
communication cost (O(N?2)) as compared to Polynomial
Codes [6] which have a computation cost per worker of
O(N?3/m?) and worker node to fusion node communication
cost of O(N?/m?). In particular, each worker in MatDot
Codes performs an “outer” product of an N x N/m matrix
with an N/m x N matrix, whereas each worker in Polynomial
Codes performs an “inner” product of an N/m x N matrix with
an N x N/m matrix. The reduced computation/communication
comes at the cost of weaker fault-tolerance - Polynomial
Codes have a higher recovery threshold of m? as compared
with MatDot Codes (2m — 1). In Section VI, we develop
numerically stable codes for matrix multiplication, again via
orthogonal polynomials, that achieve the same low computa-
tion/communication costs as Polynomial Codes as well as the
same recovery threshold; we refer to these codes as OrthoPoly
Codes.

The trade-off between computation/communication cost and
recovery threshold imposed by MatDot Codes and Polynomial
Codes has motivated general code constructions that interpo-
lates both of them [3], [5], [26], albeit using the monomial
basis. In Section VII, we extend our approach to a general
matrix multiplication code construction, referred to as Gener-
alized OrthoMatDot, that offers a computation/communication
cost vs recovery threshold trade-off, following the research
thread of [3], [5], [26], [27], however we also target numerical

stability in our proposed construction. While our General-
ized OrthoMatDot Codes specialize to OrthoMatDot Codes,
i.e., they achieve the same optimal recovery threshold as
OrthoMatDot Codes when allowing for the same compu-
tation/communication cost as OrthoMatDot Codes, they do
not specialize to OrthoPoly Codes. Specifically, General-
ized OrthoMatDot codes have higher recovery threshold than
OrthoPoly Codes when allowing for the same computa-
tion/communication cost as OrthoPoly Codes. In Section VIII,
we exploit the result obtained in Theorem 5.1 on the condition
number of the square K x K sub-matrices of the K x P
Chebyshev-Vandermonde matrices to propose a numerically
stable algorithm for Lagrange coded computing. In Section IX,
we conclude with a discussion on other related problems such
as matrix-vector multiplication [13], [28], and describe some
related open questions.

III. PRELIMINARIES ON NUMERICAL ANALYSIS AND
NOTATION

We discuss, in this section, the problem of finite precision
in representing real numbers on digital machines and how
it may horribly affect the output of computation problems
performed on these machines. In addition, we also introduce
some basic definitions and results from the area of numerical
approximation theory that will be used in this paper [23], [29].
Next, we describe the computation environment adopted in
running the numerical experiments of this paper. Finally, at the
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end of this section, we provide most of the common notation
that will be used in this paper.

A. Preliminaries on Numerical Analysis

Since digital machines have finite memory, real numbers
are digitally stored using a finite number of bits, i.e., finite
precision. However, storing real numbers using a finite number
of bits leads to inevitable errors since a finite number of bits
can only represent a finite number of real numbers with no
errors. On the other hand, real numbers that cannot be directly
represented using the specified finite number of bits have to be
either truncated or rounded-off in order to fit in the memory.
Although such perturbation (e.g., truncation/round-off error)
of real numbers due to the finite precision of digital machines
can be negligibly small, the perturbation of the output of
any computation, that uses such “small" perturbed stored real
numbers as input, is not necessarily small as well. In fact,
a very small perturbation to the input of some computation
may lead to an output that is totally wrong and irrelevant to
the correct output. The condition number of a computation
problem captures/measures this observation.

Definition 3.1 (Condition Number): Let f be a function
R™ — R™ m,n € NT, representing a computation problem
with input x, and let dz be a small perturbation of x, and
define 6 f(z) = f(zr + dx) — f(z) to be the perturbation of f
at = due to dx, the condition number of the problem at = with
respect to some norm || - || is

(Ilc?f(:ﬂ)ll |I5II|)
WF @I/ el )

Given the above definition of condition number, a problem
is said to be “ill-conditioned" if small perturbations in the
input lead to large perturbation in the output (i.e., the condition
number is large). On the other hand, a problem is said to be
“well-conditioned" if small perturbations in the input lead to
small perturbations in the output (i.e., the condition number is
small).

In what follows, we discuss the condition number of two
computation problems: the matrix-vector multiplication and
solving a system of linear equations. For both problems,
consider the system of linear equations represented in the
matrix form Ax = y, where A € R™" and nonsingular,
and x,y € R", and let || - || be some matrix norm. Then,
let A be fixed, the condition number of this matrix-vector
multiplication problem with y as its output given small per-
turbations in the input x is x(x) < ||Al|||[A~!||, for any
x € R™. Also, for the problem of solving the system of linear
equations Ax =y, with A still fixed, the condition number of
the problem of solving this system of linear equations, given
small perturbations in the input y, where x is the output,
is k(y) < ||A[[[|A~Y]], for any y € R".

Definition 3.2 (Matrix Condition Number): For any non-
singular matrix A, the term ||A||[|A~1|| is defined as the
condition number of A with respect to the norm || - || and is
denoted by x(A), i.e., s(A) = [|A]|[|A7Y]].

Definition 3.3 (Relative Error): Let f be a function R™ —
R"™ m,n € NT with input «, and let 4z be a small perturbation

2

k(z) = sup
dx

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 5, MAY 2021

of z, and define df(z) = f(zr + dz) — f(z) to be the
perturbation of f at = due to dz, the relative error at = with

respect to some norm || - || is defined as
16 ()l _ [ (= + dx) — f(z)l| 3)
17 ) I1F )l '

Next, we introduce some basic tools of numerical approxi-
mation theory that will be used throughout this paper. Notice
that, in the following, C[a,b] denotes the vector space of
continuous integrable functions defined on the interval [a, b].

Definition 3.4 (Inner Products on C[a,b]): For any f,g €
Cla, b], and given a nonnegative integrable weight function w,

b
(f,q) = / F(2)g(e)w(z)dz

defines an inner product on C|a, b] relative to w.

Definition 3.5 (Orthogonal Polynomials): Consider a non-
negative integrable weight function w, the polynomials
{gi}i>0 in C[a,b] where g;(x) has degree i and

(gi, ;) :{

for some nonzero values c;, where the inner product is relative
to w, are called orthogonal polynomials relative to w.
Definition 3.6 (Orthonormal Polynomials): Consider a
nonnegative integrable weight function w, the polynomials
{qi}i>0, where g;(x) has degree 7, in Cl[a, b] such that

c ifi=j,
0 otherwise,

“)

1 ifi=yj,
0 otherwise,

(9i,95) = { (&)
where the inner product is relative to w, are called orthonormal
polynomials relative to w.

Note that based on the above definitions, if the polyno-
mials {g;};>o are orthogonal (or orthonormal), then gn(z)
is orthogonal to all polynomials of degree < n — 1,
i.e., (pn_1(x), gn(x)) = 0, for any polynomial p, 1 € C|[a, b]
with degree strictly less than n. It’s also worth noting that for
w(r) = 1,a = —1,b = 1, the orthogonal polynomials are
Legendre polynomials, which are derived via Gram-Schmidt
procedure applied to {1, z,z2, ..., } sequentially. In addition,
the following is an important class of orthogonal polynomials
in our paper.

Example 3.1 (Chebyshev Polynomials of the First Kind):
The following recurrence relation defines the Chebyshev
polynomials of the first kind:

Tn(z) =22T5_1(x) — Th2(x),

where, Ty(z) = 1,Ti(z) = z. These Chebyshev polynomi-
als are the cornerstone of modern numerical approximation
theory and practice with applications to numerical integration,
and least-square approximations of continuous functions [23],
[29]. JLETO: T1,T5, - - are orthonormal relative to the weight
function ﬁ In general, Chebyshev polynomials are
defined over = € R. However, for = € [—1,1], Ty(z) =
cos(n arccos(x)), for any n € N. For the rest of this paper,
unless otherwise is stated, whenever Chebyshev polynomials
are used, they are restricted only to the range [—1, 1].
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We state, next, two results from [29] in Theorems 3.1 and
3.2.

Theorem 3.1: Let w be a weight function on the range [a, b],
i.e., w is a nonnegative integrable function on [a, b], and let

T1,--- ,Iy be distinct real numbers such thata < z; < --- <
zn < b, there exist unique weights a1, - - - , a, such that
b n
/ f@)w(z)de = a;f(z:),
a i=1

for all polynomials f with degree less than n.

Theorem 3.1 is not surprising - the left hand side of the
equation stated in the theorem is a linear operator on the vector
space of n — 1l-degree polynomials. Because of Lagrange-
interpolation, the space of n — 1-degree polynomials is itself a
linear transformation on its evaluation at n points. Therefore,
the left hand side can be expressed as an inner product of the
functions evaluations at n points. We next state a remarkable
result by Gauss which states conditions under which the
expression of Theorem 3.1 is exact for polynomials of degree
up to 2n — 1, even though the number of evaluation points is
just n.

Theorem 3.2 (Gauss Quadrature): Fix a weight function
w, and let {g;};>0 be a set of orthonormal polynomials in
Cla, b] relative to w. Given n, let iy, - - - , n, be the roots of g,
such thata < m < 12 < -+- < np < b, and choose real values
ay,--- ,an such that 37 a; f(n;) = [ f(z)w(z)dz, for any
f € Cla,b] with degree less than n. Then, Y i a;f(m:) =
f{f f(x)w(z)dzr, for any polynomial f with degree less than
2n.

Remark 3.1:

1) Consider any orthonormal polynomials {g; };>0. For any
n € N, the set {go,q1, - ,gn_1} forms a basis for the
vector space of polynomials with degree less than n.

2) In Theorem 3.2, aq,--- ,a, can be chosen as

ai:Lb( I @)w(x)dz, ien]. (6)

jEm)—i i — My

Notice that although the computation of the parameters
ai,--- ,ay can be nontrivial in general, as we see next,
their computation is simple when the set of orthonormal
polynomials is restricted to Chebyshev polynomials.

3) In Theorem 3.2, the roots of g, ie., n1,--- ,n, are,
in fact, real and distinct. Moreover, the Chebyshev poly-
nomial of the first kind T}, has the following roots

(n) _ cos 21 —1
Pi = 2n

:rr) , 1 € [n]. (7
The set {p\™,---,p{™} is often called the n-point
Chebyshev grid, and its elements p\™, .-, p{" are
called “Chebyshev nodes” of degree n. We here discard
the term “node” and use the term “Chebyshev points” to
avoid confusion with computation nodes. We also denote
by p(™ the vector (p{™,---, pi™). It is useful to note
that 7, (x) can be written as

Tu(z) = 2" (= - ™), ®)

i=1
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and for T7,(x), the parameters a; in (6) are all equal to
2/n when w(z) = m/% [29, Chapter 9].

Remark 3.2: Note that an ill-conditioned problem does not
always mean that the numerical errors are large. In particular,
for the codes studied in previous works that use the monomial
basis, it is possible to improve numerical accuracy of decod-
ing over naive interpolation, especially if inputs and outputs
have a limited range. For instance, reference [30] quantizes
real values to finite fields where exact calculations can be
performed; this can sometimes reduce numerical errors as
compared with naive methods (see also [6]). Since performing
arithmetic operations over a finite field Fo» (or even IF, where
p is the largest prime number that is less than 2") requires
representing each element as an n bit vector, this solution
applies when the input ranges can be used in fixed point
representation of n bits without losing too much accuracy.
Recall that floating point represents a much greater range as
compared with fixed point representation for the same memory
(e.g., n bits). It must be noted that much care is required to
make the approach of [30] work correctly. Not only must the
quantization error be small enough in representing the input,
but also the value of n must be large enough so that no
wrapping-around happens when computations are performed
in the finite field. For instance, when 64-bit computing is
applied, for reasons described in [30], n can be chosen to be
24. As a simple example, assume that matrix multiplication is
performed between two matrices of the same range, to prevent
wrapping around, at most 12 bits can be used for each mul-
tiplicand, which lower bounds the overall error to a fraction
of 1/212 ~ 0.25 x 103 the range of the input. The error
can be even larger depending on the dimension of the matrix
and the number of nodes. Such an approach would be partic-
ularly handicapped in exploiting the power of floating point
computations, where, for example in the 64-bit IEEE Standard
for Floating Point Arithmetic 754, inputs ranging from 10318
to 10318 (in absolute value) are represented. Indeed, for this
reason, it is standard practice in numerical analysis [20],
as well as our paper, to study the condition number as a
mathematical formulation that is algorithm/implementation-
independent. A second drawback of the approach of [30] is
that it requires control of the matrix multiplication algorithm
used in the worker nodes, our approach is universal; we
only require control of the encoding and decoding, and the
worker nodes can use any black-box matrix multiplication
algorithm.

We show novel code constructions and show that they
are numerically stable (i.e., lead to small numerical errors)
in an algorithm independent manner. Specifically, we prove
formal bounds for condition numbers. Building on the con-
dition number bounds, we conduct a full, formal, forward
error analysis of our entire system (including encoding and
decoding) in Appendix D, showing that applying the proposed
code construction with the well-conditioned decoding matrix
(specifically when the condition number of the decoding
matrix is much smaller than the inverse of the machine
precision) yields an output with relatively small numerical
EerTors.
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B. Computation Environment

All the numerical experiments in this paper were conducted
using MATLAB [31] with double precision floating point
numbers system with machine epsilon ~ 10~'® according
to the IEEE Standard for Floating Point Arithmetic 754. The
programs used for testing our code constructions are accessible
through the repository in [32].

C. Notation

Throughout this paper, we use lowercase bold letters to
denote vectors and uppercase bold letters to denote matrices.
In addition, for any positive integers k,n, and given a set
of orthogonal polynomials gp,q1,--- ,gx—1 on the interval
[a,B], let x = (x1,--- ,z,) be a vector with entries in [a, b],
we define the k x n matrix Q%™ (x) as:

go(z1) go(zn)

Q"™ (x) = ; ©)
ak—1(z1) @r—1(zn)

For any subset S = {s1,---,s,} C [n], we denote by

Q%™ (x) the sub-matrix of Q*™)(x) formed by concate-
nating columns with indices in S, i.e.,

qo(zs,) qo(zs,)

QY™ (x) = : : (10)
qr—1(s,) gr—1(zs,)

For the special case where the orthogonal polynomials are

the Chebyshev polynomials of the first kind Tp, 7%, - - - , Tk —1,
we define the k x n matrix G*™ (x) as:
T{)(.’El) T{)(.’En)
G (x) = : : . (D
Ty_1(x1) Ty_1(xn)

we denote by G&"™ (x) the sub-matrix of G(*™)(x) formed

by concatenating columns with indices in S, i.e.,
To(zs,) To(zs,)

GEM = : (12)

Tr—1(zs,) Ty—1(zs,.)

Also, for the case where the orthogonal polynomials are the

“orthonormal” Chebyshev polynomials %Tg,Tl, coo Tr_1,

we define the k x n matrix G %) (x) as:

To(z1)/V2 -+ To(zn)/V2
&k ) T (:331) Tl(:In) o a3)
Ti1(21) Te1(zn)

and we denote by G&™(x) the sub-matrix of G*™)(x)
formed by concatenating columns with indices in S, i.e.,

o)V - To(wa) /3
demy< | T T
Tr—1(zs,) Ty—1(zs,.)
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Fig. 6. The distributed system framework.

Wherever there is no ambiguity on x, it may be dropped from
the notation.

In the next section, we show that orthonormal polynomials
can be used for designing codes for the distributed large scale
matrix multiplication problem.

IV. ORTHOMATDOT: ORTHONORMAL POLYNOMIALS
BASED CODES FOR DISTRIBUTED MATRIX
MULTIPLICATION

In this section, we present a new orthonormal-polynomials-
based class of codes for matrix multiplication called
OrthoMatDot. These codes achieve the same recovery thresh-
old as MatDot Codes, and have similar computational com-
plexity as MatDot. The main advantage of the proposed codes
is that they avoid dealing with the ill-conditioned monomial
basis used in previous work (e.g., in [3], [5], [6], [26]).
In Section V, OrthoMatDot Codes will be specialized and
demonstrated to have higher numerical stability as compared
with the state of the art. We begin with a formal prob-
lem formulation in Section IV-A, and describe our codes in
Section IV-B.

A. System Model and Problem Formulation

1) System Model: We consider the distributed framework
depicted in Fig. 6 that consists of a master node, P worker
nodes, and a fusion node where the only communication
allowed is from the master node to the different worker nodes
and from the worker nodes to the fusion node. It can happen
that the fusion node and the master node be represented by the
same node. In this case, the only communication allowed is
the communication between the master node and every worker
node.

2) Problem Formulation: The master node possesses two
real-valued input matrices A, B with dimensions N; x Na,
N> x N3, respectively. Every worker node receives from the
master node an encoded matrix of A of dimension N1 x Na/m
and an encoded matrix of B of dimension N3/m x N3, and
performs matrix multiplication of these two received inputs.
Upon performing the matrix multiplication, each worker node
sends the result to the fusion node. The fusion node needs
to recover the matrix multiplication AB once it receives the
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results of any K worker nodes, where K < P. In this case,
K is denoted by the recovery threshold of the distributed
computing scheme.

B. OrthoMatDot Code Construction

Our result regarding the existence of achievable codes
solving the distributed matrix multiplication problem using
orthonormal polynomials is stated in the following theorem.

Theorem 4.1: For the matrix multiplication problem
described in Section IV-A2 computed on the system defined
in Section IV-A1, a recovery threshold of 2m —1 is achievable
using any set of orthonormal polynomials {g; };>o relative to
some weight polynomial w and defined on a range [a, b].

Before proving this theorem, we first present OrthoMatDot,
a code construction that achieves the recovery threshold of
2m — 1 given any set {g;};>o of orthonormal polynomials
relative to a weight polynomial w(x) and defined on a range
[a, b]. In our code construction, we assume that matrix A is
split vertically into m equal sub-matrices, of dimension Ny x
N3 /m each, and matrix B is split horizontally into m equal
sub-matrices, of dimension N2/m x N3 each, as follows:

Bg
B,
A=(ApAy ... A1), B= . , (15
Bm—l
we also define a set of P distinct real numbers xq,--- ,zp

in the range [a,b], and define two encoding polynomials
pa(z) = E:i_ﬂlAEQi(fB) and ps(z) = ;7 Bigi(z), and
let pc(z) = pa(z)ps(z).

In the following, we briefly describe the OrthoMatDot
construction. First, for every r € [P], the master node sends to
the r-th worker node evaluations of pa (z),ps(z) at = = =,
that is, it sends pa (z,) and pg(z,) to the r-th worker node.
Next, for every r € [P], the r-th worker node computes the
matrix product pc(zr) = pa(z,)ps(z,) and sends the result
to the fusion node. Once the fusion node receives the output
of any 2m — 1 worker nodes, it interpolates the polynomial
pc(z) = pa(z)ps(z) with respect to the orthonormal basis
{gi}i>o0 (recall the first point in Remark 3.1) and evaluates
pc(z) at m1, -+ ,pm, where n1, -+ ,mm are the roots of
gm. Then, it performs the summation Z:"‘:l ar pc(nr), where
ai, - ,am are as in (6).

We formally present OrthoMatDot code in Construction 1.
Construction 1 uses the following notation: The output of the
computation system is the N; x N3 matrix C. The (i, j)-
th entries of the matrix polynomial pc(z) and the matrix C
are respectively denoted as pg’j )(:::) and C(i, j). The reader
may also recall the definition of matrices Q(?™~1¥)(x) and
Q%m_l"m(x), for any subset R = {ry, - ,mom_1} C [P].
7= (m, - ,Mm) is the vector of the roots of g,,. Based on
Construction 1, we state the following claim.

Claim 4.2: AB=Y"" a,pc(ns).

The proof of Claim 4.2 is provided in Appendix A.

Now, we can prove Theorem 4.1.

Proof of Theorem 4.1: In order to prove the theorem,
it suffices to show that Construction 1 is a valid construction
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Construction 1 OrthoMatDot: Inputs: A, B, Output: C

1: procedure MASTERNODE(A,B)  r The master node’s

procedure

2 re—1

3:  while r#= P+ 1 do

& paler) = L) Avgi(er)

5. pe(er) = Citg Bugi(er)

6 send pa (z,),pe(z,) to worker node r

7 re—r+1

8 end while

9: end procedure

10:

11: procedure WORKERNODE(pa (), pB(zr)) > The
procedure of worker node r

12: pC(Ir) — PA (Ir)pB(Ir)

13:  send pc(z,) to the fusion node

14: end procedure

15:

16: procedure FUSIONNODE({pc(zr, ), - , Pc(Tryn 4 )}) B

The fusion node’s procedure, r;’s are distinct

-1
17: Qinv*_ ng_l,P))

18:  for i € [N{] do

19: for j € [N3] do

20: (c{(;’j), e ,cg;f)_2) —

((_pﬁ)_i;’” (r,) - D& (Eran2)) Qiny
1‘.3

21 SO m), - pE? () —
(67, i 9) Q™1 ()
22: é(z‘,j_) —

P& (m),- -+ P& ()Y (@1, -+ am)T o
a;’s are as defined in (6)

23: end for

24:  end for

25: return C

26: end procedure

with a recovery threshold of 2m — 1. Therefore, in the
following, we prove that Construction 1 can recover AB after
the fusion node receives the output of at most 2m — 1 worker
nodes. Assume that the fusion node has already received
the results of any 2m — 1 worker nodes. Now, because the
polynomial pc(x) has degree 2m—2, the evaluations of pc(x)
at any 2m — 1 distinct points is sufficient to interpolate the
polynomial, and since 1, - - - , Tp are distinct, the fusion node
can interpolate pc(x) once it receives the output of any 2m—1
worker nodes. Afterwards, given that AB =" a, pc(nr)

(Claim 4.2), the fusion node can evaluate pc(m1), - - - , pc(7m)
and perform the scaled summation """ | a, pc(n) to recover
AB. O

Remark 4.1: In Construction 1, setting =i,--- , Ty to be
the roots of g,, leads to a faster decoding for the scenarios in
which the first m worker nodes send their results but only less
than 2m — 1 workers succeed to send their outputs. For such
scenarios, we have Y " arpc(zry) = Yooy arpe(ne) =
AB, where the last equality follows from Claim 4.2.
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Next, we study the computational and communication costs
of OrthoMatDot.

1) Complexity Analyses of OrthoMatDot:

Encoding Complexity: Encoding for each worker requires
performing two additions, each adding m scaled matrices
of size Ny Nz/m and Ny N3/m, for an overall encoding
complexity for each worker of O(Ny N2 + N3N3). There-
fore, the overall computational complexity of encoding for P
workers is O(N1NaP + NaN3P).

Computational Cost per Worker: Each worker multiplies
two matrices of dimensions N; x Na/m and Na/m x Njs,
requiring O(N1N2N3/m) operations.

Decoding Complexity: Since pc(z) has degree 2m — 2,
the interpolation of pc(x) requires the inversion of a (2m —
1) x (2m—1) matrix, with complexity O(m?), and performing
N1 N3 matrix-vector multiplications, each of them is between
the inverted matrix and a column vector of length 2m—1 of the
received evaluations of the matrix polynomial pc(x) at some
position (i, j) € [N1] x [Ns], with complexity O(NyN3m?).
Next, the evaluation of the polynomial pc(x) at n1,- -+, 7m
requires a complexity of O(N;N3m?). Finally, performing
the summation 7" arpc(nr) requires a complexity of
O(N1N3m). Thus, assuming that m < Ni, N3, the overall
decoding complexity is O(m> + 2N;Nsm? + NiN3m) =

0] ( N 1 N. 3m 2 ) .
Communication Cost: The master node sends
O(N1N2P/m + N2N3P/m) symbols, and the fusion

node receives O(N; N3 m) symbols from the successful
worker nodes.

Remark 4.2: With the reasonable assumption that the
dimensions of the input matrices A, B are large enough
such that N1, Ny, N3 > m, P, we can conclude that the
encoding and decoding costs at the master and fusion nodes,
respectively, are negligible compared to the computation cost
at each worker node.

V. NUMERICALLY STABLE CODES FOR MATRIX
MULTIPLICATION VIA ORTHOMATDOT CODES WITH
CHEBYSHEV POLYNOMIALS

In this section, we specialize OrthoMatDot Codes by
restricting the orthonormal polynomials to be Chebyshev poly-
nomials of the first kind {7;};>o with the evaluation points
chosen to be the P-dimensional Chebyshev grid, i.e., z; =
pgp )i  [P]. Our specialized OrthoMatDot, described in Con-
struction 2 in Section V-A, develops a decoding that involves
inversion of a (2m—1) x (2m—1) sub-matrix of a (2m—1)x P
Chebyshev-Vandermonde matrix. One of the main technical
results of this section (and paper), presented in Theorem 5.1
in Section V-B, is an upper bound to the worst case condition
number over all possible (2m — 1) x (2m — 1) sub-matrices of
the (2m—1) x P Chebeshev-Vandermonde matrix for the case
where the distinct evaluation points i, - - - , Tp are chosen as
the Chebyshev points of degree P, i.e., ; = pg ) ,ie [P
In fact, the derived bound shows that the worst case condltmn
number grows at most polynomially in P at a fixed number
of straggler/parity worker nodes. This is in contrast with the
monomial basis codes where the condition number grows
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exponentially in P, even when there is no redundancy [16]—
[19]. For a fair comparison, we compare our OrthoMatDot
Codes with the current codes with the same input partitioning,
i.e., MatDot Codes [3], through numerical experiments in
Section V-C. We show through the numerical experiments
that our proposed codes provide significantly lower numerical
errors as compared to MatDot Codes.

A. Chebyshev Polynomials Based OrthoMatDot Code
Construction

Recalling from Example 3.1 that %Tu,Tl,Tg,--- form
an orthonormal polynomial set relative to the weight func-
tion w(z) = — 1 in Construction 2, we explain the
application of ebyshev polynomials of the first kind to
Construction 1. Note that, in Construction 2, we assume
that the input matrices A and B are also split as in (15),
and let =i, T9,...,Tp be distinct real numbers in the range
[-1,1], and define the encoding functions pa (z),ps(z) as
pa(z) = Vl,_Au TD(JS) + E:n_ll A;Ti(x) and pg(x)
TBO To(z)+ 31, ' BiTi(x), and let pc(z) = pa(z)ps(z).

The idea of our Chebyshev polynomials based OrthoMatDot
code is as follows: First, for every r e [P] the master
node sends to the r-th worker node pA(pT ) and pB(pT ).
Next, for every r € [P], the r-th worker node computes
the matrix product pc(pﬁp)) = pA(p,gP) )pB(,a&P)) and sends
the result to the fusion node. Once the fusion node receives
the output of any 2m — 1 worker nodes, it interpolates
pc(z). Note that this interpolation is performed with respect
to the Chebyshev basis 1 /\/_ To,T1,T5,-- -, that is, coeffi-
cients ¢, ¢{t9) | ,cg;’,;f)z (in Construction 2) are found
such that p ’J)(z) S To(z) + 22 DTy ()
for (z,7) € [N1] x [Ng] Then, it evaluates pc(z) at
plm),--- ,pm~, where p,""’s are as defined in (7), and
computes > a; pc(p(™), where a; = 2/m, i € [m] based
on 3) in Remark 3.1.

A formal description of our Chebyshev polynomials based
OrthoMatDot code is provided in Construction 2. Construction
2 uses the following notation. We let the (i,7)-th entry
of the matrix polynomlal pc(_r:) be denoted pgj’j (r) and
written as p\?(z) = Ll Ty(z) + L2 T ().
Also, following the notatlon in Section III- C we define
the Chebyshev-Vandermonde matrices G (?™~1.¥ ) (p'7)), and
GE™ 1) (p®), for any subset R = {ry, -+ ,Tom_1} C
[P], we also define the matrix G®™~1™)(p(™)) Finally,
we assume that our construction returns an Ny x N3 matrix C
representing the result of the product AB, where the (3, j)-th
entry of C is C(z, 7).

1) Complexity Analyses: The different encoding complexity,
computational complexity per worker, decoding complexity
and communication cost for Chebyshev polynomials based
OrthoMatDot are the same as their counterparts of OrthoMat-
Dot stated in Section IV-B1.

B. Evaluation Points and Condition Number Bound

When there is no redundancy, i.e., n = 2m — 1, it is well
known that the n x n decoding matrix G (™™ has condition

Authonzed licensed use limited to: Viveck Cadambe. Downloaded on July 27,2021 at 17:45:31 UTC from |IEEE Xplore. Restrictions apply.



FAHIM AND CADAMBE: NUMERICALLY STABLE POLYNOMIALLY CODED COMPUTING

2767

P =30

: g

g :

= = ——max. condition number, Construction 2

= = ——max. condition number, MatDot codes
R 2 1wt - - - avg. condition number, Construction 2
% :é - — = avg. condition number, MatDot codes
=] =]

=} Q

o] @]

10°
[ 65 7 75 8 12 125 13 135 14 145 15
Partitioning Factor (m) Partitioning Factor (m)
P =280
1025 T T T T 103

I = \ b

o 5] o
B T S =

g g g

= = = 10?0
=4 Z 10 =

= =] =]

=} S o)
= = 10 .=
= b= R=fpTal)
= g= 5=

<] g . &

<} S 0L 5]
@] [ e @]

IUU L L L 100 L L s L 100 L L L s
28 285 29 295 30 39 392 394 396 398 40 49 492 494 496 498 50

Partitioning Factor (m)

Fig. 7.

Partitioning Factor (m)

Partitioning Factor (m)

Comparison between the condition number of the interpolating matrix of the Chebyshev polynomials based OrthoMatDot Codes and MatDot Codes,

both with Chebyshev points as evaluation points, in five different distributed systems with 16, 30, 60, 80, and 100 worker nodes, respectively.

number n with the £, as well as the Frobenius norms [17].
Note the remarkable contrast with the Vandermonde matrix,
whose condition number for real-valued evaluation points
grows exponentially in n, no matter how the nodes are chosen
[16], [17]. Our problem differs from the standard problem in
numerical methods, since we have to choose a rectangular
“generator” matrix where every square sub-matrix is well-
conditioned. In particular, even for Chebyshev-Vandermonde
matrix, if the evaluation points are not chosen carefully, they
are poorly conditioned [19] (also see Fig. 8). Here, we show
that choosing =; = pgn) leads to a well-conditioned system
with s redundant nodes. Our goal is to choose vector x
such that £k™**(G("—*")(x)) is sufficiently small, where
k™% (G(=4")(x)) denotes the worst case condition number
over all possible (n—s)x (n—s) sub-matrices of G("~*™)(x).
Theorem 5.1: For any s € [n — 1],

REeS(G (p)) =0 ((n—s)v/ns(n — ) (2n2)")

where 2 denotes the worst case condition number over all
possible (n — s) x (n — s) sub-matrices of G"~*™)(x) with
respect to the Frobenius norm, p™ = (p{™, p{™, ... pi™)
are the roots of the Chebyshev polynomial T, i.e., pgn) =
cos (2=17) i € [n].

Since ||.||2 < ||.||r, the above bound applies to the standard
{3 matrix norm as well. The proof uses techniques from
numerical methods, and is provided in Appendix B.

Remark 5.1: Although the bound in Theorem 5.1 is
derived for G(»—=7)(p(n)  the theorem also applies for
G(n—=:n)(p(n)) This is because it can be shown using simple
matrix operations that for any G ™, for a subset R C [n]
such that |R| = n — s, kp(GE ™) < V2 kp(GlR ™).

C. Numerical Results

Our experiments were performed on the computation envi-
ronment described in Section III-B, and the codes used in
our experiments can be obtained from [32]. The numerical
stability of our codes is determined by the condition number
of (2m — 1) x (2m — 1) sub-matrices of G(?™~1F)_ The
natural comparison is with MatDot Codes where the decoding
depends on effectively inverting (2m — 1) x (2m — 1) square
sub-matrices of

T I Irp
M= (16)
I%w'a—z xgn'z—z o xin'z—z

Based on the result of Theorem 5.1, we choose =; = pgp).

In our experiments, we consider systems with various number
of worker nodes, namely, P = 16, 30, 60, 80, 100. We compare
kT2 (G(m-1.P)) with £**® (M) with the Chebyshev points
p'F) as evaluation points on each. We also compare the
average /> condition number of all (2m — 1) x (2m — 1)
sub-matrices of G(2™~1.F) and all (2m — 1) x (2m — 1)
sub-matrices of M. The results, in Fig. 7, show that, for
every examined system, the maximum and average condition
numbers of the (2m—1) x (2m—1) sub-matrices of G 2m—1.F)
are less than its MatDot Codes counterparts, especially for
larger systems with 60,80, and 100 worker nodes. In fact,
for these specific systems, the improvement in the condition
number is around a scaling of 10'°. Due to the direct relation
between the partitioning factor m and the maximum number of
stragglers s to be tolerated at any fixed total number of workers
P,ie., s = P—2m+1, Fig. 7 also shows the relation between
the condition number and the maximum number of stragglers
to be tolerated at each system, e.g., for the system with 60
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Construction 2 Chebyshev Polynomials Based OrthoMatDot:

Inputs: A, B, Output: C

1: procedure MASTERNODE(A, B)
procedure

2 e 1

3:  while r #= P+ 1 do

4 pA(pr”)) — A0+ 0 AT(p")

pe(p”) — %sz::“fB Ti(pr”)

> The master node’s

5

6 send pA(pr )):pB(pT )) to worker node r
7: r—r+1

8:  end while

9: end procedure

)y b The

11: procedure WORKERNODE@A(pr )) pe(p
procedu)re of work?r )node :r( )
P P
12 polpr”) —palerps(er”)
13:  send pc(pr ) to the fusion node
14: end procedure

16: procedure FUSIONNODE({pC(ng)), e ,pc(p,(»‘zl_l)})b
The fusion node’s procedure, r;’s are distinct

17: Giny +— Ggm_l’P))_

18:  for i € [N4] do
19: for j € [N3] do
20: ( (.9) . (MJ) 2) —

g ?’“( 5{’)) P& (P 2) G
21: 1.7 (m))’ - (13)('?%“))) —

. (D, ) ) Glam1m) ptm)
22: O(a‘
(p(”)(p(””) L& (PR, )T e

a;’s are all 2/m

23: end for

24:  end for
25:  return C
26: end procedure

workers, the partitioning factors m = 30,29, 28 correspond to
s = 1,3, 5, respectively, and for the system with 100 workers,
the partitioning factors m = 50,49 correspond to s = 1,3,
respectively.

The growth of the condition number, for both Chebyshev polynomials based OrthoMatDot and MatDot Codes, with the system size given a fixed

Fig. 8 compares the maximum/average condition num-
ber of the (2m — 1) x (2m — 1) sub-matrices of three
decoding matrices G(2m—1P)(p(P)) (ie., Construction 2),
G(@m-1LP)(u(F)) where u is a P-length vector of equi-
spaced points from —1 to 1 (i.e., Construction 2 but using
the uniformly spaced points in u®) as evaluation points
instead of p(‘o )) and M (i.e., MatDot Codes) in two cases,
the first where (z1,---,zp) = p*) and the other where
(z1,---,zp) = u'P). The figure shows that while MatDot
Codes provide a reasonable condition number (~ 10'9) to
distributed systems with sizes up to only 25 worker nodes,
Construction 2 with Chebyshev points as evaluation points
can afford distributed systems with sizes up to 150 worker
nodes for the same condition number bound ~ 10'°. Another
observation from Fig. 8, that shows the effect of choosing
the evaluation points on the condition number, is comparing
the condition number of Construction 2 with two different
choices of evaluation points. Specifically, Fig. 8 shows that,
for the same construction, i.e., Construction 2, choosing the
evaluation points as the entries of p(P ) yields well-conditioned
matrices compared to choosing the entries of u as evaluation
points, even with the fact that these polynomial roots are
computed. The reason behind this is that the computation
of the Chebyshev polynomials’ roots does not involve any
polynomial solving procedures; however, they are computed
using the closed form expression in (7).

As a reflection to the significant higher stability of Cheby-
shev polynomials based OrthoMatDot compared to MatDot
Codes, Fig. 9 shows that Chebyshev polynomials based
OrthoMatDot provides much more accurate outputs compared
to MatDot Codes. For the experiments whose results are shown
in Fig. 9, the entries of the input matrices A, B are chosen
independently according to the standard Gaussian distribution
N(0,1). In addition, for any two input matrices A, B, let C be
the output of the distributed system (which is not necessarily
equal to the correct answer AB), we define the relative error
between AB and C to be

|AB — C|r
|IAB||r

Fig. 9 shows how the maximum relative error (the worst case

relative error given a fixed number of parity workers s among

all the P — s successful nodes scenarios) grows with the size
of the distributed system. In Fig. 9, we plot the average result

E.(AB,C) = (17)
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Fig. 9. The growth of the relative error, for both Chebyshev polynomials based OrthoMatDot and MatDot Codes, both using Chebyshev points, with the

system size given a fixed number of redundant worker nodes.

of five different realizations of the system at each system size
P. The figure shows that MatDot Codes crushes after the size
of the system exceeds 50 workers, providing a relative error of
around 10°. On the other hand, our OrthoMatDot construction
can support systems with sizes up to 150 worker nodes only
allowing for a relative error < 1075, It is also worth mention-
ing that in our experiments, we use the MATLAB command
inv() [31] for matrix inversion. We have also tried matrices
inversion through the Bjorck-Pereyra algorithm [33], however,
its results were much less accurate than inv(), especially for
large systems with a number of worker nodes > 50. The fact
that the Bjorck-Pereyra algorithm is not accurate, in our case,
was already observed in [34]. The reason is that the Bjorck-
Pereyra algorithm is essentially based on Newton’s formula for
polynomial interpolation, and hence is not applicable, since we
compare here with a set of powers (i.e., the monomial basis
1,z,z2,---) which are not“in line”.

VI. OrRTHOPOLY: LOW COMMUNICATION/COMPUTATION
NUMERICALLY STABLE CODES FOR DISTRIBUTED MARIX
MULTIPLICATION

While MatDot Codes [3] have an optimal recovery threshold
of 2m — 1, they have relatively higher computation cost
per worker and worker node to fusion node communication
cost as compared to Polynomial Codes [6]. In this section,
motivated by the condition number bound in Theorem 5.1,
we use the idea of using Chebyshev polynomials to provide a
numerically stable code construction for matrix multiplication
that has the same low communication/computation costs as
Polynomial Codes, as well as the same recovery threshold.
However, as will be shown in this section, our proposed
codes, denoted by OrthoPoly, provides lower numerical errors
than Polynomial Codes. In this section, we follow the same
system model as in Section IV-Al, and solve the problem
statement formulated in Section VI-A. We provide a moti-
vating example in Section VI-B, then we provide the general
code construction in Section VI-C. For a fair comparison,
we compare our OrthoPoly Codes with the current codes
with the same input partitioning, i.e., Polynomial Codes [6],
through numerical experiments in Section VI-D. We show
through the numerical experiments that our proposed codes
achieve lower numerical errors as compared to Polynomial
Codes.

A. Problem Formulation

The master node possesses two real-valued input matrices
A, B with dimensions N; x Na, Ny x N3, respectively.
Every worker node receives from the master node an encoded
matrix of A of dimension Ni/m x N3 and an encoded
matrix of B of dimension N2 x N3/n, and performs matrix
multiplication of these two received inputs. Upon performing
the matrix multiplication, each worker node sends the result to
the fusion node. The fusion node needs to recover the matrix
multiplication AB once it receives the results of any mn
worker nodes.

B. Example (m =n = 3)

Consider computing the matrix multiplication AB, for some
two real matrices A, B of dimensions N; x Ny and N3 x N3,
respectively, over a distributed system of P > 9 workers such
that:

1) Each worker receives an encoded matrix of A of dimen-
sion N1/3 x N3, and an encoded matrix of B of dimen-
sion N2 x N3/3.

2) The product AB can be recovered by the fusion node
given the results of any 9 worker nodes.

A solution can be as follows: First, matrices A, B can be
partitioned as

Ap

A,
Ay

A= , B=(Bo By By), (13

where, for any i € {0,1,2}, A; has dimension N;/3 x N3,
and B, has dimension N3 x N3/3. Next, let

pa(z) = AoTo(x) + A1 Ti(x) + AxTa(x),
B (.E) = BUTD(IE) —+ Bng(I) —+ BQTG(I).

Now, pa (z)ps(z) can be written as

PA (:L‘)pB(I) = (A{)TD(I) —+ AlTl (.L‘) —+ A2TQ(I)) *
(BuT{)(I) + Bng(I) + B2T5(I))

1
=AoBo + (A1Bo + §A2B1)T1($)+

1
(A2B0 —+ §A1B1)TQ(I) + ApB4 Tg(:l.')
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| =

+t3 (A1By + AsB2)Ty(z)

1
+ §(A1B2 + AyB1)Ts(z) + AoB; Tg(z)

1 1
+ -A B2T7(I) —+ EAZBQTS(I). (19)

2

Since pa (z)ps(x) is a degree 8 polynomial, once the fusion
node receives the output of any 9 workers, it can interpo-
late pa (z)ps(x), i.e., obtain its matrix coefficients, let such
matrix coefficients be Cr,,---,Cr,. Specifically, for any
i € {0,---,8}, let Cq, be the matrix coefficient of T in
pa(z)ps(z). Now, recalling (18), the product AB can be
written as

AoBy AgB: AgB»
AB=| AiBy AiB: A:B; (20)

A>Bo AsB: A3B,
While the obtained set of matrix coefficients {Cr, : i €
{0,---,8}} is not equal to {A,-Bj 14,5 € {0,1,2}}, Cr,’s

are linear combinations of A;B;’s. Specifically, for any Cr,,
i€{0,---,8}, let C('rc ) be its (k,1)-th entry, and, for any
i,j € {0,1,2}, let (A B;)*) be the (k,1)-th entry of the
product A;B;. Also, let

/1000 0 0 0 0 0
0100 0 1/20 0 0
0010 1/2 0 0 0
0001 0 0 0 0 0

D=|0o00 0 1/2 0 0 1/2 2D
0000 O 1/2 0 1/2 0
0000 O O 1 0 O
0000 O 0 1/2 0

\0 000 o0 0 0 1/2)

‘We can write

(k1)

() e y
Cg{ ) (AIBO)(k A1)
ngcz,n (ABg)*D
C%’” (AgB;)*D
ckd | =D | (AB)®D | (22)
) AoB, ) (kD
ct (AsB1)
c kD (AoB2)*h
Ts (k,I)
kD (A1B)™
T

\ (k) \ (A2B2)®D
Cr.
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for any (k,l) € [N1/3] x [N3/3]. Thus, the products
A;Bj,i,j € {0,1,2} can be obtained by computing

[ CEY
( (ADBO)U“-” \ Cgf?’n
(A1By)*:H) C“:’”
(AgBy)*:D Cr,
(A;B)*®) | =D [ ¢ |, (23
(A2B;)*RD Cg‘:,l)
(AgBy)*H )
(A]Bg)(k"” CT.3
\ (AZBZ)U:"I) ) C%’”
\ ¢’/

for all (k,l) € [N1/3] x [N3/3]. In the following, we provide
the general code construction.

C. OrthoPoly Code Construction

We assume that matrix A is split horizontally into m equal
sub-matrices, of dimension N /m x N3 each, and matrix B is
split vertically into n equal sub-matrices, of dimension Na x
N3 /n each, as follows:

Ao
Ay

A= , B=(BoB: ... Bh_1), (24
Am—l

and define two encoding polynomials pa(x) =

Yo VA T(2) and pe(z) = Y1) BiTim(z), and let
pcl(z) = pa(z)ps(z). We describe, next, the idea of
the general code construction. First, for all + < [P],
the master node sends to the r-th worker evaluations
of pAgI) and pBE 2 at T = p,(»P), that is, it sends
pA(p ) and pB(pw- ) to the r-th worker. Next, for every
s [Pl, the r-th worker node computes the matrix product
pc(p£P ) = pa (pgp))pg(pgp)) and sends the result to the
fusion node. Once the fusion node receives the output of any
mn worker nodes, it interpolates pc(z) with respect to the
Chebyshev basis {T; };>o0. Next, the fusion node recovers the
products A;B;,i € {0,---,m —1},5 € {0,---,n — 1},
from the matrix coefficients of pc(x) using a low complexity
matrix-vector multiplication, specified in Construction 3. We
formally present our OrthoPoly Codes in Construction 3. In
the following, we explain the notation used in Construction
3: The output of the system is defined as the Ny x N3 matrix
C, where the (k,[)-th block of C is the Ni/m x N3/n
matrix Ck ;, and the (Z,j)-th entry of any matrix C“

is ég’f). The (i,j)-th entry of the matrix polynomial

pc(z) is denoted as pg":")(a:), and Section III-C defines
matrices G ™) (p(P)) and GE™F) (p(®)), for any subset
R = {r1, - ,7mn} C [P]. In addition, H is an mn x mn
matrix of the following form H = ( Ho H; H.:),
where Hy is an mn x m matrix with ones on the main
diagonal and zeros elsewhere, and forany 7 € {1,--- ,n—1},
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Construction 3 OrthoPoly: Inputs: A, B, Output: C

1: procedure MASTERNODE(A,B)  r The master node’s
procedure
re—1

while r £ P + 1 do

2

3

4 Palpr)) — Lo ATi(p")

5: pB(Pﬁg'P)) — E?:{)l BiTim (Prp))

6 send pA(pgp)),pB(pgp)) to worker node r

7 re—r+1

8:  end while

9: end procedure

10:

11: procedure WORKERNODE@A(pr )) pe(p
procedure of worker node r

122 pe(p”) — pa(p”)pe(p")

13:  send pc(prp ) to the fusion node

14: end procedure

"))y & The

16: procedure FUSIONNODE({pC(pr;D)) ,pc(pgil)}) >
The fusion node’s procedure r;’s are distinct

170 Gigy — G(m”‘ P)

18:  forie | 1/m]d0

19: for j € [N3/n] do

20: ( {(),J) (%,J) D) —
(p ,j)(Pf'r ) ,pc’j)(pgi))(}‘_mv

21 (A(M) : A'E::,,il 0" h(g,;f) 17 55:1)1,73_1) -
(e, ) ()T

22: end for

23:  end for
24:  return C
25: end procedure

H; is an mn x m matrix of the following structure

[0 0 0 0
0 0 0 0
1/2
0 0 0 0
0 0 1/2
0 1/2 0 0
Hi=|1 0 0 o |,
0 1/2 0 0
0 1/2
0 0 0 0
1/2
0 0 0 0
\0 0 0 0 )

21

where the value 1 in the first column is at the (i + 1)-th row
of H;.

1) Complexity Analyses of OrthoPoly:

Encoding Complexity: Encoding for each worker requires
performing two additions, the first one adds m scaled matrices
of size N1 N2/m and the other adds n scaled matrices of size
N3 N3 /n, for an overall encoding complexity for each worker
of O(N1 Nz + N3N3). Therefore, the overall computational
complexity of encoding for P workers is O(N1 N3P +
NyN3 P).

Computational Cost per Worker: Each worker multiplies
two matrices of dimensions Nj/m x Ny and N3y x N3z/n,
requiring O(N1N2N3/mn) operations.

Decoding Complexity: Since pa (z)pg (z) has degree mn—
1, the interpolation of pc(x) requires the inversion of a
mn x mn matrix, with complexity O(m>n?), and performing
N1N3/mn matrix-vector multiplications, each of them is
between the inverted matrix and a column vector of length
mn of the received evaluations of the matrix polynomial
pc(z) at some position (¢,5) € [Ni/m] x [N3/n], with
complexity O(N;N3m?n?/(mn)) = O(N;Nsmn). Thus,
assuming that mn < Ny, N3, the overall decoding complexity
is O(N1N3 mn).

Communication Cost: The master node sends
O(N1N2P/m + N3N3P/n) symbols, and the fusion
node receives O(N1 N3) symbols from the successful worker
nodes.

Remark 6.1: With the reasonable assumption that the
dimensions of the input matrices A, B are large enough
such that Ny, N3, N3 > m,n, P, we can conclude that the
encoding and decoding costs at the master and fusion nodes,
respectively, are negligible compared to the computation cost
at each worker node.

D. Numerical Results

Our experiments were performed on the computation envi-
ronment described in Section III-B, and the codes used in our
experiments can be obtained from [32]. In our experiments,
the entries of the input matrices A, B are chosen indepen-
dently according to the standard Gaussian distribution \/(0, 1).
In addition, for any two input matrices A, B, let C be the
output of the distributed system, we define the relative error
between AB and C to be

|IAB — CJ|r
|AB||r

Fig. 10 shows how the maximum relative error (the worst
case relative error given a fixed number of parity workers s
among all the P — s successful nodes scenarios) grows with
the size of the distributed system for both Construction 3 and
Polynomial Codes. In Fig. 10, we plot the average result of
five different realizations of the system at each system size P.
The figure shows that Polynomial Codes have unacceptable
relative errors after the size of the system exceeds 50 workers,
providing a relative error of around 10°. On the other hand,
OrthoPoly can support systems with sizes up to 170 worker
nodes only allowing for a relative error < 10~5.

E.(AB,C) =
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Fig. 10. The growth of the relative error, for both OrthoPoly and Polynomial Codes, both using Chebyshev points, with the system size given a fixed number

of redundant worker nodes.

VII. GENERALIZED ORTHOMATDOT: NUMERICALLY
STABLE CODES FOR MATRIX MULTIPLICATION WITH
COMMUNICATION/COMPUTATION-RECOVERY THRESHOLD
TRADE-OFF

Although MatDot Codes [3] have a low recovery threshold
of 2m — 1 as compared with Polynomial Codes [6] which
have a recovery threshold of mn, MatDot Codes’ worker
to fusion nodes communication cost and computation cost
per worker are higher than Polynomial Codes. Codes pro-
posed in [4], [5], [26], [27] offer a trade-off between the
communication/computation cost and the recovery threshold.
In this section, we offer an alternative, numerically stable code
construction, denoted by Generalized OrthoMatDot, that offers
a trade-off between communication/computation costs and
recovery threshold. We provide in Section VII-A the formal
problem statement considered in this section. We describe an
example of our construction in Section VII-B, provide the
general code construction in Section VII-C, conduct a full
forward error analysis for the computation system under a
specification of the general code construction in Section VII-
D, and describe our numerical experiments in Section VII-E.

A note on the recovery threshold achievable by Generalized
OrthoMatDot: Generalized PolyDot Codes [5] and the Entan-
gled Polynomial Codes [26] are monomial based codes that
achieve similar communication/computation-recovery thresh-
old trade-offs. Specifically, they achieve a recovery threshold
of mymaoms + ms — 1. The Generalized OrthoMatDot Codes
we provide here have a recovery threshold of 4mimaoms —
Q(mlmg —l—mgmg—l—m]mg) +mq+2mg+ms—1 and are Sig-
nificantly more stable. Note that the recovery threshold of our
construction is higher by a factor of at most 4 as compared to
the monomials-based codes of [5], [26], for the same commu-
nication/computation cost. This increased recovery threshold is
due to the fact that Generalized OrthoMatDot Codes are based
on Chebyshev polynomials which have the following property:
For any i,j € N, Ty(2)Tj(z) = 1/2 (Tirs(z) + Tji_y)())-
This property allows for a higher number of undesired terms in
the multiplication of the encoding polynomials pa (z), pg(z).
In order to avoid combining undesired and desired terms at
the same degree, higher degree Chebyshev polynomials have
to be used in pg(z), yielding a higher recovery threshold. It is

still an open question whether the recovery thresholds in [5],
[26] can be achieved using orthonormal polynomials.

Notably, [26] develops an improved version of the Entan-
gled Polynomial Code that can achieve a smaller recovery
threshold by possibly using polynomials expanded/evaluated
using non-monomial basis. Specifically, the Improved Entan-
gled Polynomial Codes develop a recovery threshold based
on the matrix multiplication’s bilinear complexity, and our
code constructions can have a larger gap in terms of recovery
threshold with respect to these code constructions.

To summarize, Table II compares the recovery threshold of
our proposed Generalized OrthoMatDot Codes to the General-
ized PolyDot Codes [5], the Entangled Polynomial Codes [26],
and the Improved Entangled Polynomial Codes [26], where
R(m, ms, m3) is the bilinear complexity of multiplying two
m1 X me matrix and ms x mg matrices [26].

A. System Model and Problem Formulation

We consider the same system model and problem formula-
tion as in Section IV-A with the following change: We assume
that the master node is allowed to send an encoded 1/m
fraction of matrix A, and an encoded 1/n fraction of matrix
B, where m and n are not necessarily equal, and A and B
are split as follows

Aop Aom,1
A= : :
An—ip A 1ma—t
Bo,o Bo,ms—1
B= : (25)
Bm,—10 Br,—1ma-1

where m1, ma, mg divide N1, N3, N3, respectively, and m =
mymsa, n = mamg. In addition, we assume that each worker
node receives a linear combination of sub-matrices A, ;, and
another linear combination of sub-matrices B, ;.

B. Example (m; = my = m3z = 2)

Consider computing the matrix multiplication AB, for some
two real matrices A, B of dimensions N; x Ny and N3 x N3,
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TABLE II

A RECOVERY THRESHOLDS  COMPARISON BETWEEN OUR PROPOSED GENERALIZED ORTHOMATDOT CODES, AND THE MONOMIALS-BASED CODES IN
[5], [26], NAMELY, THE GENERALIZED POLYDOT CODES [5] AND THE ENTANGLED POLYNOMIAL CODES [26], RESPECTIVELY, AS WELL AS THE
NON-MONOMIALS-BASED IMPROVED ENTANGLED POLYNOMIAL CODES [26].

Monomials-Based Codes

Non-Monomials-Based Codes

Generalized Entangled
PolyDot Codes [5] Polynomial Codes [26]

Generalized OrthoMatDot

Improved Entangled

Codes [This section] Polynomial Codes [26]

mimams +mg — 1 mimams +my — 1

4mymgmg — 2(mimg + mama+
mami) +my + 2mg +mz — 1

2R(m1, ma, 'I’n3) -1

respectively, over a distributed system of P > 15 workers such
that:

1) Each worker receives an encoded matrix of A of dimen-
sion N1/2 x N3/2, and an encoded matrix of B of
dimension N3/2 x N3/2.

2) The product AB can be recovered by the fusion node
given the results of any 15 worker nodes.

A solution can be as follows: First, matrices A, B can be

partitioned as
Au‘(] AO 1 BD,O BD,l
A=( oo Sor) g_ ( Boo o 26
( Ao Ay )’ ( Bio A )’ (26)

where, for 7,7 € {0,1}, A;; has dimension N1/2 x Ny/2,
and B; ; has dimension N3/2 x N3/2. Next, let
pa(z) =AooTi(z) + %Au,,lTu(I)
+A 1 0Tar1(z) + A1 Ta(x),
pB(T) :%BO,DTO(JS) + B1,0Ti(x)
+Bo,1Ts(z) + B11Ts41(x),

where a, 3 to be specified next, and define P distinct real
numbers T, T2, - - ,zp in the range [—1, 1]. For each worker
node r € [P], the master node sends pa (z,)ps(zr).

Now, in order to specify the best values for «, 3, we expand
the polynomial pa (z)pg(z) in the Chebyshev basis, and then
point out some observations.

1 1
pa(z)pB(T) = ZAo,lBu,,o + EAo,oBu,,u’ﬂ(I)
1
+ EAD,.lBl,.DTl(fB) + AgoB1,0Ti ()T (x)
1
+ §A111Bu1uTa(I) —+ A1,1B110T1(:1:)Ta(:1:)

1
+ §A11oBu1uTa+1(I)
+ A1,0B1,0T1(2)Tay1(x)
1
+ EAU‘IlBD:lTﬁ(fF) + Ao,0Bo,1T1(x)Ts(x)

1
+ 5A011B111Tﬁ+1($)

+ Ao,0B11T1(x)Ta41(x)
+ A0,1B11T1(x)Tg41(x)
+ A1 0Bo,1Tay1(z)Ts(x)
+A11B11To(z)T+1(x)

+ A10B11T0r1(x)Ta41(x). (27

Using the property of the Chebyshev polynomials that for any
i, € N, Ty(2)T;(z) = 1/2 (Titj(2) + Tji—j)(2)), (27) can
be rewritten as

1 1
pa(z)pe(z) = ZAD,,lBO,O + EAO,DBLO
1
+ 3 (Ao,0Boo+ Ap,1B1,o) Ti(x)

1 1
+ §A0,DBLUT2(I) + §A1,1B1,0Ta—1(-'1:)

1
+3 (A11Boo+A10B1o) Ta(z)

1
+3 (A1,0Boo+A1,1B1o) Tati(z)
1
2

1
+3 (A11Bo1 +A10B11) Ts—alz)

1 1
+ §A1,1B111Tﬁ—a+1($) + §A0,OBU,1Tﬁ—1(I)

1
+3 (Ao,1Bo,1 + Ao oB1,1) Ts(x)

1
+ 3 (Aoo0Bo1 + Ap,1B1,1) Ts11(x)

1 1
+ §A0,DB111T;5+2(I) + §A1,1BD11T,8+Q(55)

1
+3 (A1,0Bo1+A11B1,1)Ts1a+1(x)

1
+ A1 0B1,0Tay2(z) + §A1,0Bu,1Tﬁ—a—1(I)

1
+ §A1,0B111Tﬁ+a+2($)- (28)

Now, note the following regrading pa (z)pg(z) in (28):
(i) 2 (A0,0Bo,0+ Ao 1B1,) is the coefficient of T (x),
(i) 5 (A1,0Bo,0+ A1,1B1,) is the coefficient of T, 1(z),
(iii) 5 (Ao,0Bo,1 + Ap,1B1,1) is the coefficient of Tz 1(x),
(iv) 5 (A1,0Bo1+A1,1B11) is the coefficient of
Tstat1(z).

Since pa (z)ps(z) has degree 5 + o + 2, and this poly-
nomial is evaluated at distinct value at each worker node,
once the fusion node receives the output of any 5+ o + 3
worker nodes, it can interpolate pa (z)pg(z) and extract the
product AB (i.e., the matrix coefficients of T1(x), Tat1(x),
Ts+1(z), Ts+a+1(x)). Now, we aim for picking values for
o, 3 such that the degree of pa(z)ps(z) is minimal; and
hence, the recovery threshold is minimal as well. These
minimal values for «, § must be chosen such that the desired
coefficients in (i)-(iv) are separate. That is, each of them is
neither combined with another desired nor undesired term.

Authonzed licensed use limited to: Viveck Cadambe. Downloaded on July 27,2021 at 17:45:31 UTC from |IEEE Xplore. Restrictions apply.



2774

This constraint leads to the following two inequalities:
a—1>1,anda+1<f—a—1,

which implies that o = 3, 5 = 9. Next, we provide our general
code construction for the Generalized OrthoMatDot Codes.

C. Generalized OrthoMatDot Code Construction

Theorem 7.1: For the matrix multiplication problem
described in Section VII-A computed on the system defined
in Section VII-A, there exists a coding strategy with recovery
threshold

dmymams — 2(myima + mams + mamy)

+mi +2mg +ma — 1. (29)

Notice that the problem specified in Section VII-A restricts
the output matrix of each worker node to be of dimension
Ni/mq x N3/mg, for some positive integers mq,mg that
divide Nj, N3, respectively. This is smaller than the dimen-
sions of the output matrix of each worker node according to
the problem specified in Section IV-A2 (i.e., N1 x N3) by
a factor of m;ms. However, according to Theorem 7.1, this
communication advantage, when m; > 1 or my > 1, comes
at the expense of a higher recovery threshold compared to
OrthoMatDot Codes.

Remark 7.1 (Notation): For ease of exposition in the
remaining of this section, we use Ty, T}, Ty, - to denote
1To,T1,T>, - - -, respectively.

In order to prove Theorem 7.1, we first present a code
construction that achieves the recovery threshold in (29), then
we prove that the presented code construction is valid. First,
note that in the Generalized OrthoMatDot code construction,
we assume that the two input matrices A, B are split as in
(25). Also, note that given this partitioning of input matrices,
we can write C = AB, where C is written as

Cg,u CD,.m;;—l

C= ; (30)

Cmi—10 Cmi—1,ms—1

and each of C,;; has dimension Ni/m; x N3/ms and can
be expressed as C;; Z;.’Zo_lAiJBL;, for any i €
{0,1,--- ,mqy — 1}, and I € {0,1,--- ,m3 — 1}. Also, let
x1,- -+ ,Tp be distinct real numbers in the range [—1, 1], and
define encoding polynomials

ml—lmz—l

pA(I): Z Z A“'JTmz—l—j+i(2m2—1)(I)a
i=0 =0
m;—lm;;—l

pB(z) = Z Z Bk,lTkH(zml—1)(2m2_1)(33)a

k=0 I=0

(3D

and let pc(z) = pa(z)ps(z). Notice that pc(z) is a polyno-
mial matrix of degree equals degq := 4dmymamz—2(mima+
mama + mami) +my + 2ma + ma — 2.

Claim 7.2: For any 7« € {0,1,---,m; — 1} and [ €
{0,1,--- ,mg — 1}, %Cg,g is the matrix coefficient of
Ty —14i(2ma—1)+1(2m1—1)(2m,—1) 0 pc(T),

The proof of this claim is in Appendix C.
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We describe, next, the idea of our proposed Generalized
OrthoMatDot code construction. First, for all € [P], the mas-
ter node sends to the r-th worker evaluations of pa (z) and
pe(z) atz = p,(ﬂp), that is, it sends pA(p,(np)) and pB(p,fﬁp)) to
the 7-th worker. Next, for every r € [P], the r-th worker node
computes the matrix product pc(p,(np)) = pa (pgp))pg(pgp))
and sends the result to the fusion node. Once the fusion
node receives the output of any dego+1 worker nodes,
it interpolates pc(x) with respect to the Chebyshev basis
{Ti}io-

We formally present our Generalized OrthoMatDot code
construction in Construction 4. In the following, we explain
the notation used in Construction 4. The output of the system
is the Ny x N3 matrix C, where the (k,I)-th block of C
is the N1/mq x N3/ms matrix Ck‘.h and the (i, j)-th entry
of any matrix Cy; is aﬁ;‘,f ). The (i, j)-th entry of the matrix
polynomial pc(z) is denoted as pg"ﬂ (z), and Section III-C
defines matrices G(9°2c +1.P) (p(P)) and Gige +1-F) (p(P)),
for any subset R = {r1,--- ,7aege +1} C [P]-

Now, we prove Theorem 7.1.

Proof of Theorem 7.1: To prove the theorem, it suffices
to prove that Construction 4 is valid. Noting that pa (z)pg(z)
has degree 4dmimaoms — 2(m1m2 + maoms + mgml) +mq +
2mg + m3 — 2 and every worker node sends an evaluation of
pa(z)ps(x) at a distinct point, once the fusion node receives
the output of any 4dmimaoms — Q(mlmg + mams —|—m3m1) +
mi+2ma+mz—1 worker node, it can interpolate pa (z)pg (z)
(i.e., obtain all its matrix coefficients). This includes the
coefficients of Tmz_lﬂ(gmz_1)+;(2m1_1)(2m2_1) for all 7
{0,1,---,m;—1},andl € {0,1,--- ,m3 — 1}, ie., C;;, for
allz € {0,1,--- ,m;—1},andl € {0,1,--- ,m3—1} (Claim
7.2), which completes the proof. O

Next, we provide the different complexity analyses of the
Generalized OrthoMatDot Codes.

1) Complexity Analyses of Generalized OrthoMatDot:

Encoding Complexity: Encoding for each worker requires
performing two additions, the first one adds mjms scaled
matrices of size Ny N3/(mima2) and the other adds mo ms3
scaled matrices of size N2 N3/(mamsg), for an overall encod-
ing complexity for each worker of O(N; Nz + NaNj).
Therefore, the overall computational complexity of encoding
for P workers is O(Ny NoP + N2 N3 P).

Computational Cost per Worker: Each worker multiplies
two matrices of dimensions Ny/my x Na/ms and Na/ma x
N3 /ms, requiring O(N1N3N3/(mqmams3)) operations.

Decoding Complexity: Since pa (z)pg(z) has degree k —
1 := dmimamsa — 2(mima +mams +msm1) +my + 2ma +
mg — 2, the interpolation of pc(x) requires the inversion of a
K x k matrix, with complexity O(k3) = O(m3m3m3), and per-
forming N1 N3 /(mqm3) matrix-vector multiplications, each of
them is between the inverted matrix and a column vector of
length £ of the received evaluations of the matrix polynomial
pc(z) at some position (i,7) € [N1/m1] x [N3/ms], with
complexity O(NlNgkz/(mlmg)) = O(NlNgmlm%mg).
Thus, assuming that m;, ms < Ny, N3, the overall decoding
complexity is O(N;Nym;m3ms) = O(N1N3 mn).
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Construction 4 Generalized OrthoMatDot: Inputs: A, B,
Output: C
1: procedure MASTERNODE(A, B)

> The master node’s

procedure

e 1

while = P + 1 do

P)
palpr)) =
Eml 1 Zmz 1 A T a1 ji(2ma 1)(P(P))
5: pB(Pr );_ 3y
;cn=20 ma B, lT k41(2my—1)(2ma— 1)(»0'" )

6: send pA(p,(» )):pB(p«r ) to worker node r
T: re—r+1
8:  end while
9: end procedure
10:
11: procedure WORKERNODE(pA(pr )) pB(p(p))) > The

procedure of worker node r
122 pe(pt”) — pa(pt”)pe(pt?)
13:  send pg(pg- )) to the fusion node
14: end procedure
15:
16: procedure FUSIONNODE({pc(pg-};)),- - ,pc(&fgc 2D

> The fusion node’s procedure, r;’s are distinct

17: Giny +— (Ggegc +LP))
18:  for i € [N1/m4] do
19: for j € [N3/ms] do
20: ( (“‘sj) (3,]) )
1 ) P
(P ”(pn Yoo B (D) 1)) G

21: for k € [m4] do
22: for [ € [m3] do
23: albd)

: &,

2 C(“s.ﬂ')
Mz —14(k—1)(2mz—1)H{1-1)(2m1—1)(2mz—1)

24: end for
25: end for
26: end for

27:  end for
28:  return C
29: end procedure

Communication Cost: The master node sends
O(N1N2P/(m1mg) —+ NQNgP/(QOg)) symbols, and
the fusion node receives O(Ny N3 mg) symbols from the
successful worker nodes.

Remark 7.2: With the reasonable assumption that the
dimensions of the input matrices A, B are large enough such
that Ny, N, N3 > mq,mg, ms, P, we can conclude that the
encoding and decoding costs at the master and fusion nodes,
respectively, are negligible compared to the computation cost
at each worker node.

D. Forward Error Analysis

Following the standard approach in numerical analysis,
we conduct a forward error analysis for the entire computation
system in Appendix D for the Generalized OrthoMatDot
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Codes. The analysis provides an upper bound on the forward
error at each stage of the computation system separately (i.e.,
encoding/worker computation/decoding). In Theorem D.1,
we compose these error analyses to develop an upper bound on
the end-to-end error of the overall system, including encoding
and decoding, in terms of the machine precision. The result
formulated in Theorem D.1 implies that given a machine
epsilon® of ¢, and assuming inputs’ relative errors of O(e),
and letting the norms of the inputs be O(1/¢), the error is
shown to be O ( & M) where « is the condition number (note
that this is not surprising, e.g., see Theorem 3.1 in [20]).
This implies that if k < 1/e, then the relative error at the
output is O(ex). Indeed, this formally shows that minimizing
the condition number of the decoding matrices is the crucial
factor in the numerical accuracy of the output.

E. Numerical Results

Our experiments were performed on the computation envi-
ronment described in Section III-B, and the codes used in the
experiments can be obtained from [32]. In our experiments
on Construction 4, we considered distributed systems with
P = 16,25 worker nodes. Fig. 11 shows that, for every
examined system, the condition number of the interpolation
matrix using the Generalized OrthoMatDot Codes is less than
its counterpart codes in [5], [26]. The results in Fig. 11 also
show that, for the same system, as the partitioning factor m,
decreases (i.e., as the redundancy in worker nodes increases),
the stability of the Generalized OrthoMatDot code construc-
tion decreases; however, it is still better than the monomial-
basis based codes in [5], [26]. Specifically, due to the direct
relation between the partitioning factor m; and the maximum
number of stragglers s to be tolerated at any fixed total number
of workers P, and fixed factors mo = 2,m3 = 1, i.e., in
this case s = P — 3mq, Fig. 11 shows the relation between
the condition number and the maximum number of stragglers
to be tolerated at each system, e.g., for the system with 16
workers, the partitioning factors m; = 5,4,3 correspond to
s = 1,4, 7, respectively, and for the system with 25 workers,
the partitioning factors m = 8, 7,6 correspond to s = 1,4,7,
respectively.

VIII. NUMERICALLY STABLE LAGRANGE CODED
COMPUTING

In this section, we study the numerical stability of Lagrange
coded computing [12] that lifts coded computing beyond
matrix-vector and matrix-matrix multiplications, to multi-
variate polynomial computations. As shown in [12], Lagrange
coded computing has applications in gradient coding, privacy
and secrecy. Our main contribution here is to develop a numer-
ically stable approach towards Lagrange coded computing
inspired by our result of Theorem 5.1. In particular, our con-
tribution involves (a) careful choice of evaluation points, and
(b) a careful decoding algorithm that involves inversion of the

5The machine epsilon of a floating point system is an upper bound on
the relative error due to roundmg real numbers to the closest floating point
number in the system, e.g., in the IEEE Standard for Floatm§ Point Arithmetic
754 with double precision, the machine epsilon € =~ 10!
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Condition Number
Condition Number

—max. condition number, Construction 4
——max. condition number, monomials-based codes in [5,26]
— - —avg. condition number, Construction 4
— — —avg. condition number, monomials-based codes in [5,26)]

3

4 5 [ 7
Partitioning Factor (m)

Partitioning Factor (m;)

Fig. 11. Comparison between the condition number of the interpolating matrix of the Generalized OrthoMatDot Codes and the monomials-based codes in [5],
[26] in two distributed systems, one with 16 worker nodes and the other with 25 worker nodes, at different partitioning factors m, and fixed mg = 2, mg = 1.

appropriate Chebyshev Vandermonde matrix. We describe the
system model in Section VIII-A. We overview the Lagrange
coded computing technique of [12] in Section VIII-B.
We describe our numerically stable approach in Section VIII-
C, and present the results of our numerical experiments in
Section VIII-D.

A. System Model and Problem Formulation

We consider, for this section, the distributed computing
framework depicted in Fig. 12, that is used in [12] and consists
of a master node, P worker nodes, and a fusion node where
the only communication allowed is from the master node to
the different worker nodes and from the worker nodes to
the fusion node. The worker nodes have a prior knowledge
of a polynomial function of interest f : RY — RY of
degree deg(f), where d,v € N*. In addition, the master
node possesses a set of data points X' = {Xq,---, X},
where X; € R9, i € [m]. For every worker node i € [P],
the master node is allowed to send some encoded vector
X,-(Xl, e X)) € R9. Once a worker node receives the
encoded vector on its input, it evaluates f at this encoded
vector and sends the evaluation to the fusion node. That is,
for 7 € [P], worker node i receives X; on its input, evaluates
f(X;), then it sends the result to the fusion node. Finally,
the fusion node is expected to numerically stably decode the
set of evaluations F = {f(X1), -+, f(Xm)} after it receives
the output of any K worker nodes.

B. Background on Lagrange Coded Computing

In this section, we review the baseline Lagrange coded com-
puting method introduced in [12] considering the framework
in Section VIII-A. Notice that although the method in [12] is
more general, here, for simplicity, we limit our discussion to
the systematic Lagrange coded computing. That is, we assume
that for 7 € [m], worker node 7 receives the i-th data point from
the master node. In other words, we assume that X i=X;,1€
[m]. Now, the encoding procedure goes as follows: First, let

T1, -+ ,zp be distinct real values, an encoding function g(z)
is defined as:
" I — Iq
gz =>_X: [ —= (32)
— .  Li — Ij
i=1 j€[m]—i

X] ‘Worker f(Xl)

1
Master X2 |worker|/ (X2) |Fusion
node 2 node
X ={Xy,-|', X} - needs fo recover
. {f(Xl} o :f(Xm)}
XP_Worker f(XP)
1 P

Fig. 12. The Lagrange coded computing system framework.

Given this encoding function, the master node sends the
encoded vector X; = g(z;) to the worker node 7, for every
i € [P]. Notice that the encoding function g(x) indeed leads
to a systematic encoding since X; = g(z;) = X;, for all
i € [m]. Every worker node i computes f(X;) upon the
reception of X,-, and sends the result to the fusion node.
The fusion node waits till receiving the output of any K :=
(m—1)deg(f)+1. Since f(g(x)) has degree (m — 1) deg(f)
in z, the fusion node is able to interpolate f(g(r)) after
receiving the outputs of any (m—1) deg(f)+1, i.e., K, worker
nodes. Since g(z;) = X;,7 € [m], the fusion nodes evaluates

{f(g(x1)), -+, F(g(xm))} to obtain {f(X1),---, f(Xm)}-

C. Numerically Stable Lagrange Coded Computing

Lagrange coded computing requires performing an interpo-
lation at the fusion node to recover the polynomial f(g(x)).
Performing the interpolation by obtaining the coefficients of
the polynomial in a monomial basis requires inverting a square
Vandermonde matrix which is numerically unstable. Noting
that the first £ Cheybshev polynomials also forms a basis for
degree £ — 1 polynomials, we provide an alternative decoding
procedure whose key idea is to find the coefficients of polyno-
mial f(g(x)) in the basis of Chebyshev polynomials. Thereby,
our decoding procedure involves inverting the Chebyshev-
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Number of Parity Workers = 2

—max. rel. error, Construction §
——max. rel, error, monomial basis interp,
== =avg. rel, ervor, Construction 5
- - -avg. rel. error, monomial basis interp.

Relative Error

W@ I 40 B 60 TO 80 S0 00

Number of Workers (P)

Fig. 13. The growth of the relative error, for Construction 5, using both
Chebyshev basis interpolation and monomial basis interpolation, both using
Chebyshev points, with the system size given a fixed number of redundant
worker nodes equals 2.

Vandermonde matrix®. Guided by Theorem 5.1, we choose
the evaluation points to be the P-point Chebyshev grid p(¥)
to obtain a decoding procedure that is more stable than one
that uses the monomial basis.

Our numerically stable algorithm for Lagrange coded com-
puting is formally described in Construction 5. In the follow-
ing, we explain the notation used in Construction 5. We let the
polynomial at the i-th entry of f(g(_::)) be denoted f(?)(z) and
written as f(V(z) = {{01 Cz( Ti(z). Following the notation
in Section III-C, we use the Chebyshev-Vandermonde matri-
ces GEP)(pP)) and GHF)(p®), for any subset R =
{r1,--- ,rx } C [P], we also define the matrix GEK]P)( ).
Finally, we assume that our construction returns as output the
set of evaluations F={f (X1), - A f (Xom)}, where for each
F(X,i € [m], we have F(X) = (O (zay--- , ().
where for every i € [m], j € [v], f@(z;) and _;f(ﬂT (z;) would
be the same if the machine had infinite precision.

In the following, we show through numerical experiments
the stability of our proposed Construction 5.

D. Numerical Results

Our experiments were performed on the computation envi-
ronment described in Section III-B, and the codes used in our
experiments can be obtained from [32]. In our experiments,
we assume that we have a distributed system of P worker
nodes, m = P — 2 data points/input vectors Xy,--- , X,
each of them is of dimension d = 10, where each entry
of every input vector is picked independently, according
to the standard Gaussian distribution N(0,1). The function
of interest in this system is f(X) = YTX, where YV is
some d-dimensional vector with entries picked independently
according to the standard Gaussian distribution A/(0, 1). In our
experiments, we compare between Construction 5, where the
Chebyshev basis is used for interpolation, and the case where
the monomial basis is used for interpolation instead. Let

6Since both systematic and non-systematic Lagrange coded computing
require the inversion of the same Chebyshev-Vandermonde matrix, our numer-
ically stable decoding procedure in Construction 5 naturally extends to non-
systematic Lagrange coded computing, with the only difference is in the last
step of evaluating f(g(z)) at z1,--- , Zm. where in the non-systematic case,
f(g(x)) is instead evaluated at some predefined values y1, - - - , Ym such that
g(y;) = X; for all i € [m].
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Construction 5 Numerically Stable Lagrange Coded Com-

puting Inputs X = {X1,---,Xm} , Output: £ =

{F(X1),-, f(Xm)}

1: procedure MASTERNODE(AX) > The master node’s
procedure

2 r—1

3:  while r#= P+ 1 do

4 if € [m] then

5: er — Xi

6: E]SEN AP

7: X <_Ef:ll Xi Hje[m] g_'(_—'F}__;(t'F)'

s: end if_ S

9: send X, to worker node r

10: r—r+1

11:  end while

12: end procedure

13:

14: procedure WORKERNODE(f, X,.)
worker node r

15 Out, — f(X,)

16:  send Out, to the fusion node

17: end procedure

> The procedure of

19: procedure FUSIONNODE(OuL,l, >
node’s procedure, T; s are dlstmcl

200 Gigy — (G(K P))
21:  foric€ [v ]do

, Out,.,. )> The fusion

2 (e, el y) — (Outl, -, 0ut)Giny
23: (fm((gl), SO m))
(c§), ek 1) Gimi

24:  end for
25:  return F
26: end procedure

= (f(X1)--- f(Xmm)) be the system’s output vector, and
f = (f(X1)--- f(Xm)) be the correct output vector, we define
the relative error between f and f to be
E,(f,f) = If — £l (33)
|[£]]2

The results, shown in Fig. 13, illustrates that using the Cheby-
shev basis for interpolation provides less relative error/higher
stability than the monomial basis at every system size. Fig. 13
also shows that under a certain relative error constraint,
Construction 5 provides higher scalability than the monomial
basis case. Specifically, let us assume that a relative error up
to 0.1 can be tolerated, Fig. 13 shows that the monomial-basis
interpolation construction can support systems with a number
of worker nodes only less than 40. However, for the same
relative error constraint, Construction 5 can support systems
with a number of worker nodes up to 100.

Remark 8.1: The Improved Entangled Polynomial Codes
[26] are based on Lagrange polynomials and, consequently,
avoid the monomial basis. Because these Improved Entangled
Polynomial Codes use the Lagrange basis, the evaluation
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points prescribed by Construction 5 can be applied for an
improved numerical stability at the decoding.

IX. CONCLUDING REMARKS

In this paper, we developed numerically stable codes for
matrix-matrix multiplication and Lagrange coded computing.
A distinctive character of our work is the infusion of principles
of numerical approximation theory into coded computing
towards the end goal of numerical stability. In particular, our
work is marked by the use of orthogonal polynomials for
encoding, Gauss quadrature techniques for decoding and new
bounds on the condition number of Chebyshev Vandermonde
matrices. Notably, our constructions obtain the same recovery
threshold as MatDot Codes and Polynomial Codes for matrix
multiplication as well as for Lagrange Coded Computing.
However, our construction in Section VII obtains a weaker
(higher) recovery threshold than previous constructions [5],
[26] for the problem of coded matrix multiplication when the
computation/communication cost is constrained to be lower
than that of MatDot Codes. The study of numerically stable
codes for this application with the same recovery threshold as
[5], [26] remains open.

While our paper focuses on applications where polynomial
based encoding are particularly useful, our results might be
useful for other applications as well. For instance, for the
simple matrix multiplication problem Ax performed in a
distributed setting over P worker nodes, where the goal is
to encode A such that each worker stores a partition 1/m of
matrix A, it is well known that MDS type codes can be used

Ay

[13], [28]. Specifically, let A = and let H = (h;;) be
Am

an m x P matrix where every m x m submatrix of H has a
full rank of m. Then the p-th worker forp € {1,2,..., P} can
compute (37", hipA;) x; the product Ax can be recovered
from any m of the P nodes. The instinctual, Reed-Solomon
inspired solution of choosing H to be a Vandermode matrix is
ill-conditioned over real numbers. Note however that, unlike
the matrix multiplication problem, the matrix H does not need
to have a polynomial structure. Indeed, choosing H to be a
random Gaussian matrix leads to well-conditioned solutions
with high probability. In particular, the following result follows
from elementary arguments that build on [35].

Theorem 9.1: Let H be an m x P matrix, P > m > 3, and
let the entries of H be independent and identically distributed
standard Gaussian random variables. Then,

Pr (kg2 (H) > mPXF-m) ) < 713(‘:’,‘?@.

The theorem which is proved in Appendix E, formally
demonstrates that for a fixed number of redundant workers s =
P — m, the worst case condition number grows as O(mP?*)
with high probability, that is, it is linear in the dimension
m. However, the random Gaussian matrix approach has two
drawbacks: (i) for a given realization of the random variables,
it is difficult to verify whether it is well-conditioned, and (ii)
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the lack of structure could lead to more complex decoding.
Our result of Theorem 5.1 also indicates that choosing H =
G(m:P)(p(P)) ie., to be a Chebyshev Vandermonde matrix,
naturally provides a well-conditioned solution to this problem.
Another solution for the matrix-vector multiplication problem
is provided in [25] via universally decodable matrices [36]; in
this work numerical stability is demonstrated empirically.

It is, however, important to note that the problems resolved
in our paper here are more restrictive since matrix multi-
plication codes - where both matrices are to be encoded
so that the product can be recovered - require much more
structure than matrix multiplication where only one matrix
is to be encoded. For instance, random Gaussian encoding
does not naturally work for matrix multiplication to get a
recovery threshold of 2m — 1, and it is not clear whether the
solution of [25] is applicable either. The utility of Chebyshev-
Vandermonde matrices for a variety of coded computing
problems including matrix-vector multiplication, matrix mul-
tiplication and Lagrange coded computing motivates the study
of low-complexity decoding and error correction mechanisms
for these systems.

APPENDIX A
PROOF OF CLAIM 4.2
We have,
b
/ pa(z)pe(z)w(z)ds
a

p fm—1 m—1
_ / (Z qus(:j::)) Y Bygj(x) | w(z)ds
@ \i=0 j=0

bm—1m—1
:/ Z Z A;Bjqi(r)gj(z)w(z)dx
@ =0 j=0

m—1m—1

= Z Z AB; / i(z)g;(z)w(z)dz

=0 j=

e,

-1
A!,B (q“ QJ

3
S

3 =

.

D
e,
Il
=

A,B;

=
Il
=}

>
w

(34)

In addition, noting that pa (z)pg(z) (i.e., pc(x)) is of degree
2m — 2 (less than 2m), Theorem 3.2 implies that

b
/ pa(@)p(@uw@)dz =3 arpa()pn ()

r= 1

= Z arPC(nr‘)'
r=1

Finally, combining (34) and (35) completes the proof. O

(33)

APPENDIX B
PROOF OF THEOREM 5.1

We use the following trigonometric identity in our proof.
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Lemma B.1: For n = 0, ltle,E x; be chosen as (7). Then
Hj?‘_-i('si ;) = (— 1)~ 1sm(2mﬁ

Proof: Note that 2" ' [[_,(z — z;) = Tu(x)
cos(ncos~(x)). Therefore,

gn—1 o —x;) =T 1:1—7
Jl;[g( .?) ( ) \/——.L'?
where T (z) denotes the derivative of T, (x). Using z; =
((21 UT) above we get the desired result. O
Proof of Theorem 5.1: We show that any square sub-
matrix of G("~%™(p(™)) formed by any n — s columns of
G(m==m)(p(n)) satisfies the bound stated in the theorem. Let
S be a subset of [;rr,] such that |S| = s, for some s < n,
and define Gf:]__il“ (p™) to be the square (n — s) x (n — s)
submatrix of G (™™ (p(™)) after removing the columns with
indices in S. Recalling the structure of G(™—*™)(p(™) from
(13), we can write it as

H(z4))

sin(n cos™

Cos

To(p") To(pr”)
G(ﬂ—s‘.ﬂ)(p(ﬂ)) -
Tacecs(f) -+ Taaa ()
Moreover, for any S C [r] such that |S| = s, we can write
G(’n s'n)(p(-n)) (n—s,n)
To(m) To(yn—s)
Tn—s—l('}'l) Tﬂ—s—l(’)”n—s)
where I' = (11,72, ,Yn—s) = (05, 05,52,
where {gz}ae[n s = =[] -Sand g1 < g2 < --- < gns-
Now, notice that ||G{"™*™|[2 = 1= S0 [Ti_1(v;) I,

and |T;(v;)| <1 for any 2,5 € [n — s]. Therefore we have
IGE ™} < (n—s)*. (36)

In the following, we obtain an wupper bound on
|[(GT==™)=1||. Let L x be the k-th Lagrange polynomial
associated with I', that is,

I1 oM

Lrk(z) = —
icin_s—{k} &
Since Lr x(x) has a degree of n — s — 1, it can be written in
terms of the Chebyshev basis Tp(z), -+ ,Th_s—1(x) as

(37)

n—s—1

Z ai,kT‘i(I)a

i=0

L[‘,k(:ﬂ) = (38)

for some real coefficients ag g, - - - , @n—g—1,5- Now, from (37),
note the following property regarding Lr x(z):
1, ifx ="

Lri(z) = . -
r(z) { 0, if x € {7i}icn—s—&-
Using this property and observmg (38), we conclude that, for

any j € [n—s|, Y08 aixTi(v;) = 6(k — j). Therefore,
ao,1 an—s—1,1
. Gsm 1,
aon—s An—s—1n—s
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where I,,_. is the n — s x n — s identity matrix. That is,

ap,1 : p_—5—1,1
(G = - : (39)
r N “. M ]
A0 n—s Qp_5—1,n—s
Therefore,

(n sn) Mmn—en—a
ZZlaa % (0

=1 j=1

In addition, we have that

n—a 1
Z / lL%‘Ik(I)w(I)da:
k=1""

1 n—s—1n—s—1
—Z / Z Z ai ka1 Ti(z)Tj(z)w(z)de
n—sn—s—1ln—sa— 1

—Z Z Z aika?k/ ()T (2)w(z)dz
n—8n—8— ln g—1

=3 Y D a1 Ty)
k=1 1i=0 j=0

n—sn—s—1

=2 2 el
k=1 i=0

From (40) and (41), we conclude that ||(G{"~*™)=1||2, =
Zk 1 L% g(z)w(z)dz. Now, we express the integral

(41)

f L2 k(x)w(x)d_c in the Gauss quadrature form using the
n roots of Tp(z) : p{™, -+, pi”. Note that this is a “trick”

we use in the proof - it is possible to use the Gauss quadrature
formula over n — s nodes to express the integral of the degree
2(n—s—1) polynomial L% , (). However, the use of n nodes
instead of » — s nodes leads to simple tractable bound for

I(GE=*™)=1|12,_ Now, we can write

/ L@@ =3 el ™), @)

i=1
for some constants ¢y, - - -, c,. Moreover, ¢1,--- , e, for the
Chebyshev polynomials of the first kind are, in fact, all equal
to m/n with respect to the weight function w(z) = —-=2

[29, Chapter 9]. Therefore, we have e
too T2 ()
| Ba@ueis =TS k"), @)
- i=1
and, consequently,
[ (a7 = ZZL A7) @

=1 i=1

Now, from (37), note that Lr k() has the following evalua-
tions
1, if i = g
Ln::(ﬂ&"‘)) = 0, o if i € {gi}icin—s—k
[ B
Hje[n_g]_{k} ﬁ, ifi e S.
(45)
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Therefore, (44) can be written as where the last equality follows from Lemma B.1. Now, sub-
H (Gl(q“_‘g’“))_l Hg stituting from (48) in (47) yields
F o™ 2
T A =\ 11 ( %)
=22ty I (ﬁ) setn=al-(e} \ T
k=1 1ES g€n—c]—{k} ’ sin( (22U 2 0 () _ pm
( ) s (n) 2 _ jes \ Par
m(n—s — V5 =
7+_ZZ 1 Pi_ T (46) (sm(m r )2 N ( (m) _ (n))
" k=1ies j€[n—s]—{k} Ve — i jesU{gr}—{i} Pj
2
(29:: 1)17 (n) _ (n)
In order to obtain our upper bound on ||[(G"™™)=1|2, B (Sm( )) [es- (,ng P )
in the following, we get an upper bound on the - 2i—1 2
oy 2 _ (sm(( - )ﬁ ) [Ties— {i} (P&n) P;(,-n))
term Hje[ﬂ_s]_{k} %—,YJ) in (46). Notice that 9 g s—1
(Sm((ZQk 1)77)) ( (n) _ (ﬂ))
o™, 2 _ - maXjes—{i} \ Por — Pj
Ijem—a-1x | 3o, ) can be written as (2: 1)17 2 ( )y ()2
sin(~—5— minjes_ {4} Py
(n) 2 s—1
H Pe — i B 1 4
- k— i RN Ty 3my)?2
jeln—s]~(k} (sin(250m)) " Lleos(57) — cos(3r)
_ H Pgﬂ) P.?:) 45-1
- p(n) - p(ﬂ) = 2 2(s—1)
j€[n—s]—{k} f(}:) f;) (SID( (20— 1)”)) (cos(%) _ COS(%—g)) s—
= I (7’0'@) pf;)) = 04" Tn?HemD), (49)
j€n—s]—{k} \P9x — Py; : :
Using (49) in (46), we conclude that
()
. iesuon- @ (A" _P: )

-1 2
| (c=m) || = 0@~ s)sn D). (s0)

m)?
[esutan- 0 i = p; . -
Finally, combining (36) and (50), we conclude that

etn-s— (pfg,) pé’;”) KR (GO0 (p™)) =0 ((n—s)v/ns(n—s) (2n%)"").
(n) (n)
em—a) (Ps: —p; ) =
(n) (n)
HjESU{gk}—{i} (Pg- - P ) APPENDIX C
_ 1 PROOF OF CLAIM 7.2
|| P (pg; pg;)) Let @ = 2mz — 1,7 = a(2my — 1). pa(z) in (31) can be
(21—“n/3'm( (25—1)w))2 written as
% 2n (4?) mi—1mz—1
m _ (™ pa(r) = A;, 1-j+ia(T)
[esutgn-m ( P ) Z Z ilma1jia
where the last equality follows from Lemma B.1. Moreover, M2 ZA T 19 A T
the pl'OdllCt H_;.'e ]k} (p_gk) Pgl'_,)) in (4?) can be writ- - j;u 0.7 ﬂ’i.z—l—j(-f) + / 0,mz—1 D(-E)

ten as mi—1ma—1

I (w-) = T (-e) t 2 2 ATl eb

jetn—si—{k} jetn—si—{k}
H;es (pg:) _ pgn)) Similarly, pg(z) in (31) can be written as
ma—1ma—1
Mes (o~ )" 2 pe(@) =3 Y BuTh, (@)
_ (21—""Msirl(i(zg'“_1)1T )) 1 =1/2 By oTo(z)
[jes (’Og:) B pg")) 4s) + mil By,oTk(z) + mijl mil BTty (z) (52)
k=0 =1
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Now, the product pa (x)pg(z) can be written as

1
pa(z)pe(T) = (Pl(—!:) + pa(x)) (53)
where,
mo—2
pi(z) = Z Ap,;BooTm,—1—j(z) + Ao ,m2—1Bo,0T0(z)
j=0

mp—1ma—1
+ Z Z A; ;BooTm,—1—jtialz)
i=1 j=0
mg—?ﬂ’lz—l
+ Z Z Ao jBroTim,—1-j1k(T)
j=0 k=1
m;—].
+ Z Ao m,—1BroTk(z)
k=1
mi—1mz—1ma—1
+ Z Z Z A; B oTm,—1—jriatk(T)
i=1 =0 k=1
mz—2ma—1ma—1
+ Z Z Z Ao iBiiTm,—1-jikiiy(T)
j=0 k=0 I=1
mMaz— 1m3 1
+ Z Z Avmy—1BriThtiy ()
k=0 I=1
myp—1me—1ma—1mg—1

+ Z Z Z Z A,JBk;Tmz 1— 3+m+k+h(-ﬂ)

i=1 j=0 k=0 I=1
(54)
and,
m;—sz—l
pa(x) = Y D AoiBroTim,-1-j-(2)

i=0 k=1
m1—1m2—1m2—1
+ 20 > D AiBioTim, 1 jria—k (@)
i=1 j=0 k=1
ma— ‘Zmz 1)’?13 1
+ E E E Ao iBriTjm,—1—j—k—1y|(T)+
j=0 k=0 I=1
Mo — 1m3 1

mi1—1ma—1
Z Z Z Z A,JBkiTlmz 1—jtia—k— hfl(-ﬂ)
j=0 k=0

i=1 =

(33)

Now, in order to prove the claim, it suffices to prove the
following two statements:

1) Forany z € {0,--- ,my —1},1 € {0,--- ,mg — 1}, Cy;
is the matrix coefficient of T, —14ia+tiy in p1(z).

2) For any ¢ € {0,---,my — 1},1 € {0,---,m3 —
1}, the matrix coefficient of T, 11iat1y in pa(z) is
ONl/mlxNg/m;p where ONl/ml % Na/ma is the Nl/ml X
N3 /mg all zeros matrix.

In the following, we prove that statement 1) is true. In order to
find the coefficient of T}, —14ia+iy in pi(z), we find the set
S ={(, 7, K. U) :mg—1—j +ia+k +l'y = ma—1+ia+
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lv}. Rewriting mo —1— 5" +i'a+k +1'y = ma— 1+ia+1y,
we have

(K =) + @ —i)a+ I~y =0.

(56) implies that I’ = . Suppose I’ # [, this means that (k' —
j') + (i — i)a = ey for some integer c. However, this is a
contradiction since |(k'—j')4(i'—7)a| < «, for any 4,7’, j', k'.
Now, (56) can be written as

(56)

(K —j)+ (@' —i)a =0. (57)

Again, (57) implies ¢’ = i. Suppose i’ # 4, this means k' —j’ =
ca, for some integer c. However, this is a contradiction since
|k — 7’| < a. Now, since i’ = i, (57) implies 7' = k’. Thus,
S = {(G,45,3',k) : 3/ € {0,--- ,mg — 1}}. That is, for
any 7 € {0,---,mq — 1},5 € {0,--- ,mg — 1}, the matrix
coefficient of T, _14ia+1y in pi(x) is Z 0 ! A; By =
Cg,g.

Now, it remains to prove statement 2). That is, for any i €
{0,--- ,m;—1},1 € {0,--- ,m3—1}, the matrix coefficient of
Tny—11iasry in pa(x) iS O, /m, x Na/my - In Order to find the
coefﬁc1ent of Thy,— Ltiactly in p(z), we find the sets 8(1)
{7, K U") :me—1—j'"+i'a—K—U'y = mg—l—i—za—l—h},
and 852) ={(@,§" K, U): —ma+1+j —da+k +U'y=
mg — 1 +ia+ 1y}

First, for the set Sm, rewriting mp —1—j'+i'a—k'—1'y =
mg — 1+ ia + Iy, we get

(=" =K)+ (@ —i)a+ (@ +1)y=0.

From (58), we conclude that [ + I’ = 0. Otherwise, (—j" —
k') + (¢ —i)a = ¢, for some integer ¢, a contradiction since
[(—j" — k) + (¢ —i)a| < 4. Since | + 1’ = 0 and both I, '
are nonnegative, we conclude that I’ = [ = 0. Moreover, now
(58) reduces to

(—3' = K)+ (@ —i)a=0

Again, since | — j' — k'| < a, we conclude that " = ¢, which
implies that j* + &' = 0. Since j' + k'’ = 0 and both j', k¥’
are nonnegative, we conclude that 5 = k&’ = 0. Thus, 8%1) =
{(#,0,0,0)}. Now, noticing from (55) that A; oBo o does not
contribute to any term in ps(z), we conclude that the matrix
coefficient of Tin,_11ia+ty in pa(z) is only due to the set
S Recall that 82 = {(i’, 7', k', l') : —ma+1+j —ia+
E + Uy =mg — 1+ ia+ vy}, we rewrite —mg + 1+ j' —
ia+k +1'vy=mg — 1+ia+lyas
('+K—-2me+2)— (' +d)a+(l"-1)y=0
From (60), we conclude that | = [I’. Otherwise, (' + k' —
2mg +2) — (i’ +1)a = ¢, for some integer ¢, a contradiction

since |(j' + k' — 2mg + 2) — (¢ + i)a| < 7. Moreover, now
(60) reduces to

(58)

(39)

(60)

(5" + K —2ma+2)+ (i +i)a=0. (61)

Again, since |7’ +k’ —2ma+2| < a, we conclude that i’ +7 =
0. Since ¢’ +1 = 0 and both 7,3’ are nonnegative, we conclude
that 7/ = 7 = 0, which implies that ;' + k' = 2mg2 — 2. Since
j' +k"=2my—2 and bothﬁ; k" < mg — 1, we conclude that
j' = K = mg—1. Thus, S = {(0,ma—1,mz—1,1)}. Now,
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noting from (55) that Ag m,—1Bm,—1, does not contribute to
any term in py(x), thus the matrix coefficient of T, —14ia+1y
in pz(:{:) is ONl/m1><N3/'m3‘

APPENDIX D
THE COMPUTATIONAL SYSTEM'S FORWARD ERROR
ANALYSIS

In the following, we conduct a forward error analysis for
the Generalized OrthoMatDot codes when m; = 1,mgy =
m, m3 = 1, for some positive integer m, and obtain an upper
bound to the overall system’s error at the output. In doing this,
we follow the notation described in Section VII. In addition,
the u-th row of Ag;, forany : € {0,--- ,m—1}, is denoted by
A{gt'?, and the v-th column of B, o, forany z € {0,--- ,m—1},

is denoted by B(U) Moreover, let the vertical concatenation

of A&‘,)n_l, . A(u) be denoted A(u) and the horizontal
concatenation of Bff,}, ., B .0 be denoted B\, ie.,
Afm
4,
A{()u)_ ,Tn_ , B(U) (B(U) B(U) B‘E:)_l,u) ,
AS)

(62)

for any u € [N1] and v € [Ng] Similarly, for every worker
r € [P], the u-th row of pA(pr )Y is denoted by p(u)(p('p))
and the v-th column of pB(p )) is denoted by p(v)(pr )),
ie.,

8 e
pa(pP) = (pr7) ,
(Nl)(p(P))
pe(e”) = (o (07 2 () ... P (7).
(63)

Also, for any x = (z1, -,
matrix G (%7 (x) as:

zpn) € R™, we define the k x n

To(z1)/2 To(zn)/2

Qom < | ) el
Toa(er) - Too1(ea)

and, letting S = (31, -+« ,87) C [n] such that sy < --- < sy,

we denote by G g (ksm) (x) the sub-matrix of G % “)(x) formed
by concatenatmg columns with indices in S, i.e.,

To(zs,)/2 To(zs,)/2
s T :531 T Isr
G- | P T
Tr—1(zs,) Ty-1(zs,.)
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A. Encoding Stage (Master Node)

Given the encoding polynomials in (31), at m; = m3 =
1, m9 = m, the master node sends

pa (") = ZA(‘” (A7)
= (Gsm'-”(p(”))TAé“), and
m—1
p () = 7 BLaTu(p")
k=0

=B G,(™P)(pP) (66)

to worker node r, for all w,v € [Ny], [N3], respectively, for
each r € [P]. Consider a norm || - ||, we have

PR (o)1 = 11(G ™D (p )T AL

< |G P (o) [|AS]. (67)

Let §A(u),§B(U),§G;(m"P) I',_.’,(P) é'p(u) (P) 1§p(‘4‘) g‘P)
0 0 pr B \P

be infinitesimal perturbations in A,(Ju) B(”) G, ™) (p(P),

)(p(P)) p(v)(p(P)) respectively, we have

PR (o) + 0 (o)
= (G ™D (p®) +6G ™) (p)(AT” + 6ATY).
(68)

Given (66), we conclude that

PP (pP)) = G™P) (pPNSALY + 6G P (pP) AL
+6G, ™) (pP)sASY. (69)

Therefore,

169" (o)1 = 11G,™P) (p*)5 A5
+8G, ™) (p7) Ag?
+8G, ™) (pP))5ALY|
< [IG™P) (p®)|| [|5AS")|
+ 116G, ™ P (pP))]| [|ASY]]

+[[6G, D) (pP))|| [|SASY). (70)

Similarly,

P8 (o{7)1| = IBE G, (p )|

< IBP| |G (pP))l, (1)

and
1695 (p$P))]] < [|G™P) (pP)]] [16BS)|
+ 116G, P (o™ IBY|

+16G D) ()| 16BS”].  (72)
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B. Computation Stage (Worker Nodes)

For every r € [P], worker node r receives pA(p,(»P))
and pB(pf erforms the matrix multiplication pc(prp )=
pA(p(P))pB P)) Let pg U)(pgp)) be the (u,v)-th entry of
pc(p7(~ )). Recalling (63), for any u,v € [Ny], [N3], respec-
tively, we can express p%“'”(p? ) in the inner product form:

e (") =2 (") 5 (A7) %)
Consider a norm || - ||, we have
12 (6PN = 11682 (68F)) b3 (o))
<1 NN D (pP)]. - (75)

Let 513"(:’0)(;)1(?)) Jp(u V(i) Jp(“ (ptF)) be infinitesi-

mal perturbations in p‘(;“" (P, p Pl ) (pt)), plv) (o)),

respectively, we have
P& (o") + 8™ ()
= (PR2() + 09 (o7 ) (P (667) + 8255 (o))
(76)
Given (74), we conclude that

oS () = B (”)dps (o)

+3px (p”)pg (")

+ 5 (0 P)epd (pF)). (17)

Therefore,

168 ()l = 1P (A7) ép” (p47)
+ 5pA)(p(P)) (U)(p(P))
+3p” (p)dps (7))
< (1P (6PN 18P (o)
+ 11657 (oI 1IpS ()|

+ 16052 N 116p% (o)) (78)

C. Decoding Stage (Fusion Node)

Let R = {ry,72, - ,72m_1} be the set of indices of the
first 2m — 1 worker nodes to send their output to the fusion
node. Thus, for all u,v e [N 1] [Ng], respectively, the fusion

(uv)

node receives p, (p,»l ) (Pg.l_l)- Define the
. P
wecor o) © D) - oD )

Next, the fusion node is requlred to solve the systems of
linear equations: c(#¥)GE™ 1P (p(P)) = plv?) (pF)) for

all u € ENl] v € [Na], where the vector c(” v) is defined
as (co? ™)), Consider a norm || - ||, by [20,

Theorem 3.1], we conclude (73), shown at the bottom of the
page.
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D. The Overall System’s Forward Error Bound

Here, we obtain an upper bound on the forward error of the
overall computational system for the Generalized OrthoMat-
Dot codes, when m; = 1,mgy = m,m3 = 1,m € Nt.
The result is formulated in Theorem D.1 and implies that
given a machine epsilon e, and assuming inputs’ relative errors
of O(e), and letting the norms of the inputs be O(1/e),
if k < 1/€, where & is the condition number of the appropriate
decoding matrix, then relative error at the output is O(ek).
Such observation confirms the fact that the conditioning at
the decoding stage, i.e., minimizing the condition number of
the possible decoding matrices is indeed the crucial factor in
obtaining accurate outputs. We describe such implication in a
more technical way after presenting our result in Theorem D.1.

Theorem D.1: Consider the matrix multiplication prob-
lem described in Section VII-A and computed using Con-
struction 4, when my = 1,me = m,ms3 = 1,m €
NT, on the system deﬁned in section VII-A. Define € €
R*, and assume ||SASY[| < €l|A(Y||, [I6BS”]| g
AIBYIL [5G (pP)| < dIGP pP)]) a
IBGE™ P ()| < | GE™H (), Tor any u
[N41],v € [N3],r € [P], and R C [P] such that |R| = 2m—1,
we have

2m—1,P
15|, < 2GR P (p"))
T 1 ery(GE™THP (pP))

(2+€)(2+2e+€2)m
X ( 1ALl [IBS|1,

v2m —1
+ ||c(“"”||z) : (79)
Proof:  Since |[6A{”|lx <  €|AM|]2 and

< €|G ™) (pP))|5, substituting

r ,.P
16G™ ) (pP))]|
in (70) yields

18052 (PP |2 < €(2 + €)[|G ™ P (pP)[2 ||AS |2
(80)

16B" 2 < €elB{’ll2  and
< €|G ™) (p®)||5, substituting

Similarly, since

116G ™) (pP))]|

in (72) yields

1698 (pE)) 2 < e(2+ €)[|1G, ™) (pP) |2 |IBS] 2.

(81)

Now, recalling (67), (71), along with (80), (81), and substitut-

ing in (78), we conclude

16p& (o) l2 < €2+ €)(2+ 2 + €2)
x (|G (pP)12 | A5 |IBS” ]2

(82)

llget™|| <

~(GE™ ) (p®N)([15p% (0% )] + G2 (pP))||]|c2]))

IGR™ P (pP)]| = s(GE™ P (p)] 8GR (pP)|

(73)
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since [[§GR™ ) (pP)| | < |G (pP)||p, (73)
can be bounded as

Ka(GE™ P (pP))
1— ena(GR™ 0 (p(P)))
s P
) ( 15p& (PR )2
1GE™ ) (o))
+ e||c(“"”||z).
Also, substituting from (82) in (83) yields
era(GR™ M (pP)))
1-— Emz(G%m_l‘-P)(p(P)))

X ((2 +6)(2+2+€)

16c)]j5 <

(83)

[6¢)|; <

"(m,P
G PN B IAG Iz IBE” 2
G(Zm—],lp) (P)
IGR™ 7 (0™l

4 ||c(“’“)||z).

Noting that 2m—1 < ||G%m_l"P)(P(P))||F and
IGA™ P (p®)][o < v/m, we have
era(G™ " (pP)))
1 — erz(GE™ 1P (p(P)))
5 ((2+E)(2+2E+€2)m
Vv2m —1

+ ||c<“"”||z).

(84)

6¢)|; <

NASl2 [IBS]12

(85)

O

E. Implication of Theorem D.1

As the parameter € in Theorem D.1 represents the
machine epsilon, a well conditioning of the decoding matrix
r2(GE™ ) (p(P)) such that ky(GE™ 1P (p(P))) <
1/e yields an acceptable relative error at the output

15042/ max(—pme |G llz 1B [z, lc¥)]l2) that

is O(era(GR™ P (p™®)))) when [|AS”||2, ||BS”|2 are
O(1/e).

APPENDIX E
UPPER BOUND ON THE CONDITION NUMBER OF
GAUSSIAN MATRICES

We first introduce the following theorem from [35].

Theorem E.1: Let A be an m x m matrix, m > 3, and
let the entries of A be independent and identically distributed
standard Gaussian random variables. Then, for all o > 1,

5.6
Pr(k2(A) > ma) < =

where k2(A) is the condition number of A with respect to
the matrix norm induced by /5.

As a consequence, in the following, we extend the result in
Theorem E.1 to bound the condition number of every m x m

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 5, MAY 2021

sub-matrix of a random m x P matrix with ¢.7.d standard
Gaussian entries, P > m.

Proof of Theorem 9.1: For any subset S C {1,2,..., P},
let Hs denote the |S| x m sub-matrix of H containing the
columns H corresponding to S, and let s = P — m. Then we
have

Pr(ng"“(H) > mph)
=Pr( U (es)>mP™)

S'c[P],|8 |=m
(1)

>

S'c[P],|8 |=m

@ ( P ) Pr (ka(Hs') > mP%)

L]

Pr (r3(Hs') > mP*)

(3) 5.6
< P¢ poe

56

= T
where (1) follows from the union bound, (2) is for any &' C
[P] such that |S’| = m, and (3) follows from the fact that

< P? and Theorem E.1. O
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