A Two-Stage Cascaded Hybrid Switched Capacitor DC-DC Converter With 96.9% Peak Efficiency

Tolerating 0.6V/us Input Slew Rate During Startup

Efficient high-conversion-ratio power delivery is needed for many portable computing applications which
require sub-volt supply rails but operate from batteries or USB power sources. Power management requires
small volume, area and height while providing fast transient response. Past work has shown favorable
performance of hybrid switched-capacitor (SC) converters to reduce the size of needed inductor(s), which
can soft-charge high-density SC networks while supporting efficient voltage regulation [1]-[5]. However,
challenges with the hybrid approach include flying capacitor voltage balance and achieving safe but fast
startup. Rapid supply transients, including startup, can cause voltage stress on power switches if flying
capacitors are not quickly regulated. Past approaches include precharge networks [3] or fast balancing
control [5], but previously demonstrated startup times are on the order of milliseconds. This paper presents
a two-stage cascaded hybrid SC converter that features fast nonlinear control with automatic flying capacitor
balancing for low-voltage applications (i.e. 5V:0.4-1.2V from a USB interface). The converter is nearly
standalone with all gate drive supplies generated internally. Measured results show peak efficiency of 96.9%,
<36mV under/overshoot for 1A/us load transients, and self-startup time on the order of 10us (over 100x

faster than previous work).

The powertrain and phase-wise equivalent circuits are shown in Fig. 1. The first stage uses a merged-
interleaved 2:1 SC architecture, using switches M1ajp-Maqg to effectively rotate the positions of capacitors Ce-
Cg. This provides a first 2:1 step down without charge sharing as Vcq and Vcg always sum to Viy; it also helps
reduce input bypass capacitance as one of Cq and Cg is always gnd-connected, providing low-impedance to
the second stage. By switching at fw/4, losses in the 5V devices are reduced. The second stage operates
like a 3-level Buck with 180nm (1.8 Vhom; 1.98Vmax) switches at fsw/2 except that the top power switch is

removed, its function replicated by turning off (high-Z) Mayg and Msap in phase ¢@3. Removing this switch



simplifies gate driving and reduces conduction loss. In phases ¢1 and ¢3 capacitor Cz is respectively charged
and discharged; in phases @2 and @4 the switching node is gnd-connected to provide regulation. Thus, there

are 8 phases in each period, with @s~@s being identical to ¢1~@4 except that C, and Cg swap connection.

Fig. 2 shows relevant portions of the gate drive circuit. Importantly, no external supplies are required for gate
drivers; all bootstrap capacitors and gate-drive supplies (even for gnd-referenced switches) are integrated on
chip. Gate drivers of Mag are directly supplied from flying capacitors Cajp. Devices Magg are bootstrapped
from Cup When they are turned on so that only a small (shared to reduce area) capacitor Cgs is needed to
maintain voltage in their off state. For switches not shown in Fig. 2, Ms is supplied directly (and M7
bootstrapped) from flying capacitor C2; M1 and Magg are bootstrapped from Vin and Cos respectively; Ms
bootstraps from Vimig. The level shifter uses a cascode-OTA structure which injects a current pulse by charging
the large Cas of a long-channel diode-connected stack; this current pulse is amplified and rectified in the
linear OTA. The linear OTA maintains fast and symmetric rise-fall propagation delays while the diode-
connected degeneration (reset between phases) provides a small hold-state current. The buffer chain uses

skewed delays to reduce cross-conduction in the last (gate drive) stage.

Output voltage regulation and flying capacitor balance are achieved by a variation on modified ripple injection
control (MRIC), proposed in [5]. MRIC is similar to hysteretic control (often used for buck converters) where
output voltage, added to a representation of inductor current ripple I.ac, is compared to a reference within a
hysteresis band. Shown in Fig. 3 the output of comparator cmp1 represents a conventional ripple-injection
control signal that in normal operation provides fast and accurate regulation: I ac is estimated by integrating
Vinom —Vout, which is added to Vout with hysteresis and compared to Vier by cmp1. A finite state machine is
used to control the switching sequence. For fine regulation of flying capacitor voltages, an added feedback
loop (cmp2) is used to regulate the 4th-order dynamics of the converter with a single sliding mode. The flying

capacitor balance information is captured by integrating the switching node Vi compared to its ideal reference



Vxnom (~Vin4); in a balanced state, the output of this integral is zero at the end of the switching state such
that it has no effect on regulation. However, if Vxis too low (i.e. a capacitor is discharging with too-low voltage;
or charging with too-high voltage), the integral will cause cmp2 to switch, reducing the state duration such
that less charge is drawn from the flying capacitor network, forcing the converter in the direction of balance.
Two added features improve the converter dynamics during transients and startup. Cmp3 compares the
switching node to a minimum reference, Vxmin to detect an extreme imbalance and stop the switching state
early. Cmp4 is used only during startup. Startup is identified when voltage on C: is significantly lower than its
nominal voltage, indicated by Vy being above a high threshold (Vxmax) during 1 or ¢s. In startup mode, the
finite state machine (FSM) which generates gate drive signals skips @3 and ¢7 so that C is only charged but
not discharged, accelerating balance. If startup is no longer detected, the converter automatically enters

regular mode in the next period.

Fig. 4 shows measured data for load and line transients. Full-range load transients (0A>1A->0A) were
applied with rise/fall time <1ps; respective under/overshoot were 32mV/36mV. Importantly, capacitor voltage
balance is maintained, even in the case when louit = 0A. For the line transient test, the input voltage rises from
4V to0 5.2V within 4ps with less than £10mV variation of Vout—Vier. Settling time of the flying capacitor voltage
is ~10ps. Fig. 5 shows converter startup with Vi, rising from OV to 5V in 8us (0.6V/us). Different stages in
the startup process are seen in the zoom of the Vx waveform. During 0~4us, Vin is rising but no switching
event happens as internal nodes and capacitors are charging. In 4~7ps, the converter is in startup mode
since no lower pulse of Vi (i.e. g3 and @7 where C; is connected between Vx and GND) is observed; as gate
drivers in the second stage wait for Cz to charge, switches Mgz are subject to body-diode conduction. In
7~12us, C2 is charged sufficiently close to nominal voltage and the converter is in regular mode, where the
control loop is regulating both output and flying capacitor voltage. The converter enters steady state at 12ps.

Vout tracks Vrer within 6mV (<1.1% SSE) for the entire output voltage range from 0.4V to 1.2V. The overall



peak efficiency of 96.9% is achieved at 150mA with 5V:1.2V step down. The converter maintains up to 85.5%

efficiency at 5V:0.4V (VCR = 12.5).

The converter prototype is fabricated in 180nm CMOS with 7.8mm? die area, dominated by bootstrap caps
and power devices, Fig. 7. Flying capacitors are die-attached using a custom gold-stud/solder process. A
240nH inductor and output cap are on the PCB back side. A 10nF on-die cap is used to filter Vout (remove
artifacts from bondwire inductance) in the control feedback path. Relative to work with comparable voltage
and current, this work achieves higher efficiency at higher conversion ratios with similar power density
(summing die + passive comp. area, thus trying to compare fairly by not counting the benefit of die-attached
or PCB-backside passives). The major advance here is faster load/line regulation and startup time over 100x

faster than the closest prior art.
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Fig. 1: Schematic, phase-wise equivalent circuits and example waveform of the proposed converter.
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