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Tracking Control Using
Recurrent-Neural-Network-Based Inversion
Model: A Case Study on a Piezo Actuator

Shengwen Xie

Abstraci—This article is concerned with designing a
broadband, high accuracy, and computationally efficient
real-time controller for piezo actuators (PEAs). The es-
sential component proposed is a recurrent-neural-network
(RNN) based inversion model (RNNinv) used to compensate
for the PEA nonlinearities. However, the obtained RNNinv
may not efficiently model the low-frequency and/or time-
varying dynamics of the system due to the limited length
of the RNN training set. To address this issue, a linear
model embedded with an error term is used to model the
low-frequency dynamics in case it is not precisely modeled
by RNNinv, and a predictive controller based on this lin-
ear model is then designed for precise output tracking. To
validate the proposed control framework, the closed-loop
stability condition is derived, and the RNNinv stability in
unforced mode is investigated. To further improve the accu-
racy, a mechanism is proposed to separate the controlling
dynamics to achieve higher accuracy for applications that
cover broad and/or high-frequency ranges. The proposed
approach was implemented on a commercial PEA and its
performance was demonstrated through comparison with
other controllers.

Index Terms—Inversion model, Piezo actuator (PEA), pre-
dictive control, recurrent neural network (RNN).

[. INTRODUCTION

IEZO actuators (PEAs) have been widely used for nanopo-
P sitioning and are applied in various applications, such as
microforming [1], atomic force microscope [2], and vibration
control [3]. However, accurate trajectory tracking of PEAs over
large bandwidth is quite challenging due to the limited modeling
bandwidth of existing techniques [4].
Instead of modeling the nonlinear system dynamics, using
the inversion model to compensate for the system nonlinearity is
more computationally efficient and also eases the complexities
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on controller design. Combined with iterative learning control
(ILC), the inversion-based ILC can achieve precise output
tracking for repetitive tasks [5]. With the nonlinearities
compensated by the inversion model, repetitive controllers are
developed for trajectory tracking for both single and dual-stage
nanopositioning (PEA-based) [6]-[8]. However, both ILC and
repetitive controllers are limited to repetitive tasks, i.e., they
are not real-time controllers. For nonrepetitive tasks, real-time
controllers are needed. Inversion models have been proposed
in real-time control of PEAs. For example, the inversion model
based on Prandtl-Ishlinskii operators was used to remove the
hysteresis effect [9]-[11]. An inversion model based on the
ferromagnetic material hysteresis was developed to compensate
for the nonlinearities of the PEAs in [12]. However, the highest
control bandwidth achieved by the existing inversion models is
reported to be around 100 Hz [9]-[12]. Thus, existing inversion
models are limited for high-precision and broad-bandwidth
trajectory tracking of PEAs.

Neural networks have been used in system identification in
order to enlarge the modeling bandwidth. In [13], a dynamic
recurrent neural network (RNN) is proposed to compensate for
the hysteresis of magnetostrictive actuators, but no experiments
results are presented and the reported bandwidth in simulation is
less than 30 Hz. EIman Neural Networks have been proven to be
effective in modeling hysteresis, but effective controller based
on it is not available [14], [15]. In [16], a radial basis function
neural network has been proposed to model the input—output
relationship; however, the control bandwidth of the sliding mode
controller bandwidth is limited. In [17] and [18], two feedfor-
ward neural networks (FNN) are combined to model the PEA
dynamics. However, FNN is not robust enough to model the
dynamical systems in the circumstances where the measurement
data are noisy and/or data size is not large enough [19], [20]. In
such cases, either more parameters are needed, or the accuracy
of the obtained model is not satisfactory. In contrast, it has been
proven that the RNN, which considers the sequence of the input
and output time series, is effective in system identification [19].
Recently, RNN has been proposed to model the dynamics of
PEAs over a large bandwidth with high accuracy [21]. But
extra computation power is required when directly using the
RNN model in model-based controls, such as model predictive
control [21].

Therefore, in order to reduce the computation burden on
controller design, we proposed to use RNN to model the inverse
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dynamics and then compensate for the nonlinearities of PEAs.
Thus, the RNN inversion model (RNNinv) is not involved in
designing controllers for the real-time trajectory tracking task.
It is worth noting that the RNNinv may not be able to capture
the time-varying dynamics. Also, given the limited length of
the RNN training set for the sake of shortening training time,
the PEA low-frequency dynamics may not be adequately com-
pensated by the RNNinv. To address this issue, a linear model
embedded with an error term (LME) is proposed to deal with
the unmodeled low-frequency and/or time-varying dynamics of
PEAs, and then a predictive controller is designed based on the
LME for output tracking. Furthermore, in case the dynamics
of the LME will interfere with that of the RNNinv causing
downgraded performance at high-frequency region, a separation
mechanism is designed to ensure that the predictive controller
based on the LME is only effective at low frequencies.

The advantages of the proposed RNNinv and LME integrated
framework (RNNinv+LME) are threefold. First, compared to the
previous neural network approaches [17], [18], the computation
burden is greatly mitigated since the predictive controller is
based on a linear model—LME. Second, the bandwidth of the
RNNinv is much higher than existing inversion models. Another
advantage is that the modeling accuracy can be further improved
with more complex neural networks without worrying about the
computation issue, thus better controlling performance can be
achieved.

The contributions of this article include the following:

1) using RNN to model the inversion dynamics is proposed,
and the issue of RNNinv—Ilow modeling accuracy in low-
frequency region is addressed;

2) stability of the RNNinv in unforced mode is investigated
and the closed-loop stability condition of the predictive
controller is derived;

3) a mechanism of separating the controlling dynamics to
further improve the controller performance is designed.

For demonstration, the proposed RNNinv+LME framework
was implemented to control the displacement of a PEA stage,
and the control performance was compared with that of a PI con-
troller and even one ILC approach—modeling-free inversion-
based iterative feedforward control (MIIFC) to demonstrate that
the real-time control accuracy achieved by RNNinv+LME is
comparable or even better than that of the offline ILC approach.

Il. SYSTEM DYNAMICS MODELING
A. How the Inversion Model Works

For the following dynamical system (1), suppose U =
[ug, uk+1,--.] and Y = [yk, Yg+1, - - -] are the input and output
time series, respectively. The corresponding inversion model can
also be of state-space form (2). The difference is that if Y is fed
to the inversion model (2), the output of the inversion model
becomes U

Try1 = f(ar, ur)

yr = h(zg, ur) 1)
21 = finv(2k, Ur)
Wk = Riny (2, Uke)- 2

If the inversion model is linear, for instance, fi,, = Azr +
By, and hi,y = Cz + Dy, the parameters A, B, C, and D
can be determined with the linear system theories. However,
when finy () and hiyy () are nonlinear as is the case in this work,
one possible way to determine the parameters is to formulate and
solve an optimization problem [e.g., (4)] with the output—input
pair {Y, U} of the original system, which will be explained in
detail as follows.

B. RNN Inversion Model

It is clear that a system inversion model is supposed to map
one time series (i.e., output of the original system) to another
time series (i.e., input to the original system). In this sense, an
RNN is more suitable to generate the inversion model since the
training input is a time series, because an FNN is not trained
with time series as different samples in the training set are not
correlated.

In this article, the nonlinear inversion model is an RNN.
RNNSs have different structures, as an example, we choose the
one that has been used previously for modeling the system
dynamics [21]. The RNN can be represented using the following
nonlinear model:

Tht1 = tanh(Wm:k + By + 31U(T)7k)
Yeryk = Wazg + Bs. 3)

The RNNinv takes the PEA trajectory to be tracked as input
U(r),k» and outputs the desired input ¥, ; to the PEA system.
Suppose the output (i.e., trajectory) of the PEA system is Y/
subject to the drive input Uy, an ideal inversion model with
input Y{,) should output Y such as that ||Y ) — Upg)l| < €
for any € > 0. Therefore, the pair (Y{y), Us)) can be used to
train the RNNinv [i.e., to obtain the parameters Wy, By, B,
Ws,, and B3 in (3)].

To construct the training set (Y), Ups)), We need to de-
sign the time series Y(;;) and consider both the frequency- and
amplitude-dependent behavior of PEAs. In this work, the method
developed in our previous work [21] is used. However, since we
do not have a real inversion of the original system, one can use
ILC to find U(y). Specifically, we can apply ILC such that the
designed Y{y) is accurately tracked by the PEA output, therefore,
the corresponding converged ILC input to the PEA is Uy, [22],
[23].

Once the (Y(y), Uy ) pair is determined, the RNNinv param-
eters can be obtained through the training process by solving the
following optimization problem:

J = ||U(ts) - Yv(rts)”

Wi, Bgr,%ilr,lwg ,Bs3
subject to : x5 = tanh(Wixzy + Bs + Bly(ts),k)
Yeris),k = Wazk + Bs
zo=1[0,0,...,0/", k=1,2,3,....L (4)

where Uy = [t), 1, Us) 25 - > Uges),n) s Yis) = W) 1o
Yis),2s - Yas), )T and Yy = [Yrs) 15 Yires) 20 - - - » Y(rs) L]
L is the length of the time series.

Remark 1. Note that Y|) may contain sinusoidal signals with

different frequencies [21]. If the sampling frequency is fs =
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Fig. 1. Schematic block diagram of integrating RNNinv and LME

(called “RNNinv+LME”).

10 kHz, the number of points to represent a 1 Hz sinusoidal signal
in one period is 10 000. However, for a 20 Hz sinusoidal signal,
there are only 500 points. Therefore, if a lot of low-frequency
sinusoidal signals are included in Y{y), the length of Y/y) will be
very large, which will dramatically increase the training time.
On the other hand, with the large training set it is difficult for the
training algorithm to converge to a satisfactory local minimum
using the current RNN structure (3). Thus, the current RNN
cannot model the low-frequency dynamics accurately, this issue
will be addressed next through introducing a linear model.

C. Linear Model Embedded With an Error Term

The obtained RNNinv will be cascaded with the original
plant forming a new system H as shown in Fig. 1. Since it
is possible that the RNNinv may not accurately capture the
PEA low-frequency dynamics when the length of the training
setis limited for the concern of computation efficiency, the LME
represented by (5) in the following is proposed to address this
issue

Myl = Aenp + Betiy + Gy
yk = Cenk (5)

where 4y, is the input to the LME, é;, = yr — i, is the model
output error with g, as the actual PEA output. The sizes of A,
Be,Ge,and Ceare2 x 2,2 x 1,2 x 1,and 1 X 2, respectively.
Note that LME is to model the dynamics of H. The error term
can be regarded as a feedback term. Suppose the output of H
is Y (i), subject to the designed y ) ., the output of the LME
U(1s),k Should be nearly the same as /() 1, Similar to the RNNinv,
the parameters of LME can be obtained through solving the
following optimization problem

Jl = ||§V(ls) - if(ts)”

min
AE’B€7G87CE

subject to : N1 = A + BeYs),k + Gelr

Yy k1 = Cenit

€k = Y(s),k — Y(s),k

o = [0,0]"

6o=0,k=0,1,... (6)

where  Yii) = [Y(s),15 Uis),20 - - ) Yis) = [Wes) 15 Ds) 20 - - s
and Y(i) = [Y(is),1, Y(is),20 - - -

Furthermore, to avoid high-frequency disturbance to be fed
into the feedback loop, a low-pass filter (LPF1) is cascaded to the
LME to remove the ultrahigh-frequency dynamics (see Fig. 1).
Suppose LPF1 can be represented as

Br1 = ABy + Bu,
zi = CPh. @)

Since system (5) is connected to (7), we have zj, = 4. Thus,
the two models can be combined as the “plant model” shown as
follows:

| Brtr A 0 0].
P41 = | =BG A bk + o et G|
= Ay + Buy, + Géy,
Uk = {0 Ce:| ok = Cox (®)

where 1y, is the input. The block diagram of the LME+RNNinv
framework is schematically shown in Fig. 1.

Remark 2. Since the RNNinv can already model the PEA
high-frequency dynamics with high accuracy, it is expected that
if ahigh-frequency signal X is fed to the LME, the output should
be X, too, i.e., the gain of LME in high-frequency region is 1
without phase delay. However, the LME obtained earlier may
not satisfy this condition. Therefore, if the predictive controller
based on LME is applied directly on the system, the tracking
error for high-frequency signal may be pronounced. This issue
is addressed in Section V.

[lI. CONTROLLER DESIGN

Since not all the states in (8) can be accurately measured, a
Kalman estimator can be used to estimate the states. Interested
readers can find details in [24]. Then, a predictive controller is
designed based on the linear model (8). The control diagram is
shown in Fig. 1.

A. Predictive Control

With the PEA low-frequency dynamics modeled by LME, a
predictive controller based on the system model represented by
(8) is designed. To facilitate analyzing the closed-loop stability,
a modeling uncertainty term J;, = Géj, is introduced to replace
Géy, in (8). The system dynamics becomes

Grr1 = Adp + Buy, + 0y,

Ik = Coy. &)

Let U= [ukH, Ugyo,. .. ,uk+NC], Al = [uk+1 —
Wy U2 — Ukt 1y - -« Wkt N, — Uk N — 1) Ay =
[6F, 5&_1, ce 6,{+Np71]T, and 1, =[1,1,...,1]7. Given

the current state ¢ and input uyg, the outputs of the system H
in the future IV, steps can be predicted as

Y? = Gpoér + Hil+ Fuy,
= Gpor + H(SAU+ 1uy) + H1 A + Fuy,

= Gpd + HSAU + Hi A + (F+ Hl)u,  (10)
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with where ¥ = pl + STHTHS. Let By = [1,0,...,0]. Thus, the
roa 7 control law will be
Yk+1 CA
7 Uk+2 a C A2 U1 = U, + BT AU =y, — El\IlilsTHTE
SRR IS ’ = Migy + Maug + MRy, + MyAy
" C AN (13)
LYk+Ny ] N, 1 Npx1 where M, = —EB, U 'STHTG,, My=1-—
M ] By 1STHT(F + H1), Mz = E, 9 1STHT, and
My=—-E 9 'STHTH,, they are constant matrices and
= Ue+2 only depend on IV, and N.. The closed-loop system can then
v be rewritten as
LMktNe ]y <1 A B 0 0
] % Prtr| _ P R, + A,
0 0 ... 0 Uk 41 My M| |ug M; M,
CB 0 .. 0 S e
H = , Therefore, the closed-loop stability condition is
Np—2 N,p—3 A B
_ My, My
OB max
CAB where A(-) denotes the eigenvalues of the matrix. Furthermore,
F= . as can be seen from (14), the modeling uncertainty and/or
: disturbances Ay will not affect the closed-loop stability if it
| CAN»~1B Ny« is bounded. It is worth pointing out that the control law is very
~ computationally efficient with time complexity of © (N, N) (NV:
C 0 0 order of the model).
CAl C 0
i = : . IV. STABILITY OF THE RNNINV IN UNFORCED MODE
CANo=11 CAN»—21 ... C As the RNNinv is proposed to model the inversion dynamics
) of the PEA system, here we present a numerical method to prove
0 the stability of the RNNinv [i.e., (3)] in unforced mode (i.e.,
0 u(r),x = 0). The stability of (3) in unforced mode means that
S = given any initial state x, the following autonomous system
- T converges to one point, i.e., there exists a unique equilibrium
11 ... 1 point for the following equation:

where IV}, and N, are the prediction horizon and control horizon,
respectively, Iy« n, is an identity matrix. The future inputs 4L,
can be computed in each sample time through minimizing the
cost function as follows:

J=(Y? - R,)T(Y? — R,) + pAUT AU

=AUT(pI+ STHTHS) AU+ 2A4TSTHTE + ETE

an
where Ry = [Tki1, k42« s ThtNos -+ s ThinN, |- is the refer-
ence signal, p is the weighting coefficient, and £ = G)p¢r, +
HyAp + (F + Hl)u, — R, Note that convex constraints on
the input can also be added, the resulting optimization problem
will remain convex thus efficient algorithm can be deployed. The
closed-loop stability without adding constraints on the input will
be analyzed in the following section.

B. Closed-Loop Stability
To minimize J (11), AYl should be

AU = arg miny J =~V 'STHTE (12)

g1 = tanh(Wixg + Ba)

Yy, ke = Wazg + Bs. (16)

To prove the stability, first, we narrow the dissipativity domain
until it becomes sufficiently small [25]. As a result, proving
the global asymptotically stability of (16) is transformed to
the problem of proving local stability. Then, the proof can
be completed by searching a convex Lyapunov function using
linear matrix inequality (LMI) [26]. The details are presented as
follows.

For the discrete system 1 = f(2), suppose the equilib-
rium point is located at the origin. The basic idea of contracting
the dissipativity domain is to construct a series of sets Dy, such
that Dk+1 C D;, and f(Dk) C Dk+1 [25]. Thus, if xq € Dy,
then xj € Dy. Therefore, Dy — {0} will lead to z;, — 0 as
k — oo.

Dy can be constructed with the set {z = [z1,22,...,2N]
|z;| < max |f;(x)|,« € R}. For the system
Zrpt1 = W tanh(xy) 17
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where W is an N x N matrix, Dy is chosen as the poly-
tope [] = {z : [z:i| < I, |Wjil} as | tanh(z)| < 1. The al-
gorithm provided in [25] shows the detailed steps of reduction
of the dissipativity domain, and proves that the system has
the equilibrium point at the origin. To use the algorithm, we
transform (16) to the equivalent form of xy1 = f(x)) with the
equilibrium point at the origin. Assume z* is the equilibrium
point of (16), i.e.,

¥ = tanh(Wiz* + By). (18)

Take ¢ = Wia* 4+ B, and use change of variable v = Wy (x —
x*), (16) can be rewritten as

Vg1 = Wi(agpyr — ) = Wi(tanh(vg, + ¢) — tanh(c)).
(19)
It is clear that the equilibrium of (19) is at the origin. After
the domain is contracted to a small region, we use a simplified
version (see Theorem 1) of the theorem in [26] to complete the
stability proof.
Theorem 1. For the following system:

Tr1 = Bpo(&x)
& = Cyxy

which has one equilibrium point at the origin, it is globally
asymptotically stable if there exist symmetric positive-definite
matrices P and diagonal semipositive-definite matrices A and
M such that the following LMI holds:

—P—2CTMQUC, CIA+CI(Q+U)M
AC, + M(Q+U)C, B,PB, — 2M

(20)

<0 (21

where Q = diag{q1, q2, ...}, U = diag{p1, pi2, ...}, and A =
diag{A1,22,...}. @ and U can be determined from ¢(+), i.e.,
the sector conditions (22) with ¢;, u; > 0

¢i(&i(+) /& () € lai, puil-

Proof: Choose the following Lyapunov functional:

(22)

L k—1
V(wg) = af Pox+2) 2y 6il(&(1)& () (23)
i—1 =0

where 1; > 0. Since A, D,, in [26, eq. (52)] are zeros, the LMI
[i.e., (21)] can be obtained based on the sector conditions in (22).
The readers are referred to [26] for the detailed proof.H

For system (19), which is equivalent to (16), let B, =
Wy, Cq = I (identity matrix), ¢(s) = tanh(s + ¢) — tanh(c).
Then, Theorem 1 can be applied as ¢; and p; will be very
close to 0 because of the bounds added on the variables by
the contraction algorithm [25]. In sum, the algorithm in [25]
contracts the domain to a small area around the equilibrium
point, i.e., q;,; — 0, then by the use of Theorem 1, the
globally asymptotically stability of (16) is proved. This com-
pletes the stability proof of the proposed RNNinv in unforced
mode.

Note that the stability in unforced mode can be directly
verified by simulations. In practice, stability of an RNNinv in
unforced mode is useful as once proven stable, the RNNinv

always evolves to a certain state instead of an unpredictable
random one. In addition, it may provide insights about the
input—output stability of RNNinv for future investigations.

V. SEPARATING THE CONTROLLING DYNAMICS

In practice, the LME may affect the control performance at
high frequencies, as the LME high-frequency dynamics cannot
be exactly gain one with zero-phase delay. Therefore, we present
a mechanism to ensure that the PEA high-frequency dynamics
and control is solely taken care of by the RNNinv by using
LPFs, as shown in Fig. 2 (this augmented approach will be
called “RNNinv+LME,” compared to RNNinv+LME, the bar is
removed to indicate that the effect the LME on high-frequency
dynamics has been removed).

First, suppose the dynamics of RNNinv+PEA can be repre-
sented by the following state space equation:

T+l = h(xk, uk)

yr = Wy, + B. (24)

The mechanism of isolating the LME for high-frequency
control rests on the assumption that / in (24) satisfies

Were + xak, ure + unrk) = h(xoe, unk) + ho(Tak, WaE)

(25)
where xy = xrk + Tk, Uk = ULk + Uk, h1, and ho can be
any reasonable functions. Equation (25) is also called additivity.
Whether this condition will hold or not depends on how accurate
the RNNinv is. If RNNinv is not effective in compensating for the
PEA nonlinearity, this assumption will be violated, and tracking
error will occur.

Next, we show how the separation mechanism works. Previ-
ously, we showed that the system LPF1+RNNinv+PEA (i.e., G
in Fig. 2) can be described by (8). Introduce another LPF—LPF2
represented by the following model:

01 = Aoy, + Buy,

(26)
2z = Cay,.
It follows that G1+LPF2 (called G5 in Fig. 2) is
Pr+1 A0 | ok B N

= + + o

[ak+1 EC A Qe 0 He 0 c
z=0 ¢ "5’“] . 27)

a,

As shown in Fig. 2, the desired trajectory known a priori
is divided into low-frequency part r;, and high-frequency part
rp offline using a zero-phase LPF (LPFO in Fig. 2). Since it is
assumed that (25) holds, r, and ry will incur output y;, and
ym, respectively. Note that yz will be blocked by LPF2, it is
equivalent to the case where r, is the only reference applied
to the predictive controller. Therefore, the Kalman estimator
in Fig. 2 is designed based on G2 with the estimated state
[pLaT)T. By extracting ¢;, from [¢p al]T and feeding it to
the predictive controller, which is based on the LME+LPF1, the
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o Jr’g’ THK= Tk — I'Lk
f A— pefofetetebupoyegafefefetepepupale afefetepupuafofeletepupupuiofefetetepupuapefefetepupuppepepeietet
Tk Zero-phase ILk .
ot > LPFO w RNNinv >
777777777777 offline | | “k Kalman
Estimator . .
. G, =
0% [ SRR J
LME |«—|LPF1 |« \ A
Ok . .
> .. «— Extract
Predictive Controller k
Fig. 2. Block diagram of integrating RNNinv and LME with the separation mechanism (called “RNNinv+LME”).

predictive controller will only act on low-frequency dynamics.
The necessity of adding such a dynamics separation mechanism
in the proposed control framework was verified in experiments
and shown in the subsequent section.

Suppose the cutoff frequencies of LPF0 and LPF2 are f,j and
fe2, respectively. To ensure that the output ¢z corresponding to
r g will be completely removed after passing through LPF2, f.o
should be chosen slightly higher than f..

Proposition 1. Every frequency component in the reference
trajectory is accounted for either by RNNinv, or, predictive
controller, or both.

Proof: As shown in Fig. 2, the reference trajectory is 7y,
after passing through LPFO, the low-frequency reference is
and the high-frequency part is rg = rx — 7. Suppose the
cutoff frequency of LPFO is f.o, due to the feature of LPF,
some frequencies close to f.o can appear both in rgj and
rLk. Suppose the bandwidth of 71 and rpy are [0, foo + €1]
and [feo — €2, fs/2], respectively, where f; is the sampling
frequency, e; > 0 and e > 0. To separate the dynamics, it only
needs to ensure that any frequency higher than f.y — €5 cannot
pass through LPF2 as explained as follows.

Suppose that for LPF2 (with cutoff frequency of f.2), fre-
quency higher than f.o + €3 (3 > 0) cannot pass through LPF2.
Set feo + €3 = feo — €2, thus feo = feo — €2 — €3. €2 and €3
can be obtained with MATLAB. Therefore, the output incurred
by 7 cannot pass through LPF2 by choosing f.o = fog —
€9 — €3, thus, it is equivalent that 775, cannot affect the system
consisting of LPF1+RNNinv+PEA+LPF2 assuming that (25)
holds.

Recall that 7 is fed into RNNinv directly and rz is the
reference trajectory to be tracked by the predictive controller
as seen in Fig. 2. Therefore, rf;; is accounted for by RNNinv
only, and 7 is accounted for by the predictive controller.
Considering rgy + rox = rx, We can now claim that every
frequency is accounted for either by RNNinv, or the predictive
controller, or both. [ |

Remark 3. Note that é; in (8) is the same with that in
(27). Therefore, for the Kalman esgimator, the computation
of é, shouldbe é;, = g — gk — Cop = Yok + Yk — THE
- C é;. If the RNNinv for high-frequency dynamics is accurate
enough, we will have yg 1, — 7m ; ~ 0.

Nano-piezo stage

Nano-Drive

Fig. 3. Experimental setup.

VI. EXPERIMENT RESULTS AND DISCUSSION

The proposed RNNinv+LME framework was implemented
on a PEA (Nano-OP30, Mad City Labs) with the maximum
displacement of 30 um (see the supplementary material for
detailed manufacturer specifications), and the results were com-
pared with that of a PI feedback controller. Also, to further
evaluate the accuracy of the proposed method, the tracking
results were compared with one ILC approach—MIIFC [23]—to
demonstrate that the proposed real-time control approach was
able to reach the accuracy as high as that of the offline control
technique.

All the signals were acquired by the data acquisition system
(NI PCIe-6353, National Instruments), which was installed in
the workstation (Intel Xeon W-2125, RAM 32 GB). The con-
troller was designed in MATLAB Simulink (MathWorks, Inc.)
environment. The experiment setup is shown in Fig. 3. The
sampling frequency was 10 kHz. Frequency response of the PEA
is shown in Fig. 4.

A. Constructing the RNNinv Training Set

To generate Y, 70 (frequency, amplitude) pairs were com-
puted using k-means algorithms [27]. Before implementing the
algorithm, 5000 points were randomly generated to cover the
space in the given range (frequency: 0-250 Hz, amplitude:
0-4.5 V). Then, the generated Y/, shown in Fig. 5 was set as
the desired trajectory to be tracked by the PEA through MIIFC,
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and the corresponding Uy (i.€., the converged drive input to the
PEA calculated by MIIFC) was obtained. A 9th order RNNinv
was trained with the obtained (Y{y), Uy))-

B. Evaluating the Modeling Accuracy of RNNinv

The effectiveness of the RNNinv in eliminating system non-
linearities such as hysteresis was validated first. The PEA
hysteresis curves (see Fig. 6) were measured using different
sinusoidal drive voltages with the frequencies of 30, 120, and
200 Hz, respectively, for the original PEA system and system H
(RNNinv cascaded with PEA). Note that these three frequencies
were randomly selected and did not overlap with the training
frequency components. The displacement range generated was
about 45% of maximum PEA displacement range. It can be seen
that the PEA hysteresis is both rate- and amplitude-dependent.
By cascading the proposed RNNinv, hysteresis at all measured
frequencies and amplitudes were removed. Therefore, the PEA
hysteresis nonlinearity was effectively accounted for by the
RNNinv.

In Section II, we stated that FNN is not suitable for the
inversion model. We have conducted experiments to show that
RNN is more accurate than FNN for the PEA system in this
work (see the supplementary material).

C. RNNinv Stability in Unforced Mode

If the given system (16) is globally asymptotically stable, it
should have only one equilibrium point and converges to the

same point for any initial state. Given any RNNinv, it is not
guaranteed to be stable. As running the algorithm in Section IV
is more complicated than directly simulating the system, we first
simulate RNNinv numerically with randomly selected initial
states, if divergence occurs, there is no need to run the algorithm
in Section IV. Once convergence is verified numerically in sim-
ulation, the aforementioned algorithm can be used to rigorously
prove that RNNinv is globally asymptotically stable.

Three hundred random initial states were chosen for the
RNNinv, and for each of them, 100 steps were simulated. The
simulation results (see Fig. 7) show that the RNNinv converges
to the same point for any initial state in less than 0.01 s (100
steps), which implies that the RNNinv is probably globally
asymptotically stable. Note that the convergence of the obtained
RNNinv, based on its function, is directly determined by the
PEA inversion dynamics. Therefore, the convergence rate in
simulation cannot be used to evaluate the performance of the
proposed approach.

Also, one equilibrium point a* = [0.688, —0.378,0.104,
0.529,0.969, 0.229, —0.913, 0.884, 0.904]7 was obtained. Next
the global asymptotic stability was verified using the theories
presented in Section II-B. By using the algorithm in [25], the
dissipativity domain is contracted to the area denoted with ¢ and
I, where

g = [0.1332,0.1095, 0.0857, 0.2120, 0.2536

0.1119,0.3493, 0.1416, 0.9065] 7
i = [—0.0952, —0.0979, —0.1255, —0.1198, —0.2044

—0.3694, —0.1010, —0.2514, —0.1128]%", (28)

In the simulation, it took 261 steps with 569 linear constraints
to reach this result. With the bounds in (28), the LMI in (21)
was solved using MATLAB LMI toolbox. Since the solution of
LMI did exist, it can be concluded that the obtained RNNinv is
indeed globally asymptotically stable in unforced mode.

Note that as the order of RNNinv increases, the computation
power needed to contract the dissipativity domain will increase
exponentially, which limits this method for the proof of globally
asymptotically stability for high-order RNN system.

D. Tracking Performance Comparison

The tracking performance is demonstrated as follows. The
prediction horizon was 20 and the closed-loop stability con-
dition (15) was satisfied. The modeling bandwidth of RN-
Ninv was 250 Hz, but the control bandwidth could reach
350 Hz due to the generalization ability of RNN. There-
fore, the bandwidth of the trajectories to be tracked should
be within 350 Hz. The desired PEA trajectories used were
sinusoidal signals (with the frequencies of 30, 100, and
200 Hz, and amplitude of 6 pm), triangle signal (50 Hz),
chirp signal (frequency range 0-350 Hz) and I' which is
written as I'(t) = [0.8sin(275¢ + 1.57) + 0.43 sin(2750¢) +
0.12sin(27120¢ 4 1.27) + 0.3 sin(27180¢ 4 7)]/1.3.

First, the proposed method (RNNinv+LME) is compared with
the case in which only RNNinv is used to show the necessity
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of the LME and the predictive controller. Then, it is compared
with a PI feedback controller. The parameters of PI controller
were P = (0.01, and I = 300. Since MIIFC has been proven
effective in achieving high-precision PEA control, it is chosen
as the benchmark to evaluate the accuracy of the proposed
framework. The control law of MIIFC [23] is shown in the
following equation. The gain o was set to v = 1.2

uo(jw) = aya(jw)

wtledy (jw) i yi 1 (jw) # 0 and

ya(jw) #0,i>1 (29)

u;(jw) =
0 otherwise.

Furthermore, we also demonstrate that itis necessary to imple-
ment the control separation mechanism introduced in Section IV
by comparing the performances of RNNinv+LME and that with-
out the control separation mechanism (called “RNNinv+LME”).
feos fe1, and f.o were chosen as 45, 1200, and 25 Hz, respec-
tively. Note that f.; should be as large as possible when tracking
broad-band trajectories, however, since not all the dynamics are
modeled, its value should be limited. The frequency response
of RNNinv+PEA shown in Fig. 4 is helpful for choosing f.; as
the modeling bandwidth is close to 1000 Hz, choosing 1200 Hz
can make the controller more aggressive. However, in the ex-
periment, it is observed that when f.; changed between 800 and
1300 Hz, the performance for tracking band-limited trajectories
did not show much difference. How to choose f.q and f.o has
been elaborated in the proof for Proposition 1.

For the predictive controller, IV, and IN. were chosen to be
40 and 20, respectively. The tracking errors were computed as

follows [23]:

A IO =0l o a Q) = yO)ls
Bnac = 0l 2™ = 00l

where r(-) and y(-) are complex vectors obtained through dis-
crete Fourier transform of the corresponding signals, respec-
tively. Table I shows the tracking errors for all the approaches.
Fig. 8 shows the tracking performance in time domain for
the desired trajectories of 100 Hz sinusoidal signal, stair-like
trajectory, and I', respectively. More tracking results can be
found in the supplementary material.

RNNinv+LME, versus RNNinv When tracking trajectories
contained low-frequency dynamics, RNNinv+LME outper-
formed RNNinv. For example, in Table I, the tracking errors of
RNNinv+LME for 30 Hz signal and I" signal are about 40% less
than those of RNNinv. This is because LME captured the PEA
low-frequency dynamics that RNNinv missed, and the error term
in LME could also eliminate the tracking error contributed by the
low-frequency dynamics, which is clearly shown in Fig. 8(b),
(c), (e), and (f) part of the low-frequency error was removed
by RNNinv+LME. However, since LME was not designed to
model the PEA high-frequency dynamics, it did not improve
the tracking performance when tracking 100 Hz and 200 Hz
signals as can be seen from Table I and Fig. 8. Furthermore,
LME could negatively influence the tracking performance at
high frequencies. In Table I, the tracking error of RNNinv for
200 Hz signal is very low, which indicates that the RNNinv
could model the high-frequency inversion dynamics accurately.
Thus, the large tracking errors of RNNinv+LME in this case
might be induced by the LME: tracking errors of RNNinv+LME
are about three times larger than that of RNNinv for 200 Hz
signal. However, by incorporating the separating mechanism
based on RNNinv+LME, the overall control performance is
further improved in this case as seen in Table I.

RNNinv+LME versus PI. PI controller, as one of the most
popular real-time controllers, works for low-frequency tasks
in general. But its performance downgrades significantly as
the frequency increases. As seen in Table I, RNNinv+LME
decreased the tracking errors by at least 50% for all the cases
compared to PI. The performance difference is more obvious as
the frequency increases. Moreover, the tracking errors in time
domain in Fig. 8 can clearly demonstrate the superiority of the
proposed method over PL

(30)
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TABLE |
PEA TRACKING PERFORMANCE COMPARISON
Refs. 30Hz 100Hz 200Hz r Chirp 0-350Hz | Triangle 50Hz stair
Error (%) Erms Enax | Erms Epnax | Erms Epax | Erms Epnax | Erms Epax Emng Eax Ens Epnax
RNNinv+LME| 0.65 0.33 135 094 | 231 1.61 226  1.11 298 0.26 3.17 227 1.89  0.70
RNNinv+LME| 093 043 1.71 129 | 412 327 | 214 1.06 | 6.89 0.57 2.86 241 282 143
RNNinv 2.41 1.68 1.64 1.19 1.37 054 | 392 1.28 1.74  0.22 2.83  2.07 9.15 6.33
PI 269 229 | 919 793 19.29 16.61| 481 330 | 51.87 4.71 6.43 3.88 4.07 035
MIIFC 2.01 1.21 1.81 1.18 1.69 1.11 2.23 1.16 | 4.03 047 094 057 1.50 1.19
RNNPC 1.27 039 | 232 174 | 6.31 7.48 1.82  0.69 | 6.64 0.51 2.19 1.18 2.38 1.00
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Fig. 8. Comparison of the tracking results of MIIFC, RNNinv+LME, RNNPC, RNNinv, PI, and RNNinv+LME for (a) 100 Hz sinusoidal trajectory,

(b) I, and (c) stair-like trajectory. (d)—(f) Corresponding tracking errors, respectively.

RNNinv+LME versus MIIFC: For MIIFC, the converged
tracking results were chosen after eight iterations. From Table I,
it can be seen that RNNinv+LME outperformed MIIFC when
tracking low-frequency trajectories—the tracking error is about
half of that of MIIFC for 30 Hz signal, and has comparable ac-
curacy with MIIFC at “medium” frequency range, i.e., tracking
100 Hz signal and I" signal, which is shown in details in Fig. 8.
Although there is a surge in the tracking error for high-frequency
trajectory tracking (i.e., 200 Hz), the separating mechanism can
mitigate the problem in this case. Overall, even compared to the
MIIFC—an offline control approach, the proposed method can
still achieve similar or even better control accuracy in real time.

RNNinv+LME: Since RNNinv+LME is based on
RNNinv+LME and is designed to ensure that LME and
the predictive controller only work on the system control at
low frequencies. Therefore, it is expected to achieve higher
accuracy at low-frequency region compared to RNNinv and
at high-frequency region compared to RNNinv+LME. In
Table I, the performance of RNNinv+LME is close to that

of RNNinv+LME when tracking low-frequency trajectories
(e.g., 30 Hz signal and I'). There are two reasons that may
induce tracking errors for RNNinv+LME. One is the violation
of the assumption (25) and the other is the modeling error
of RNNinv (i.e., Yu,r — 7m,x 7 0 as explained in Remark 3).
Therefore, when tracking high-frequency signal (e.g., 200 Hz
signal), RNNinv+LME cannot reach the accuracy of RNNinv.
Nevertheless, RNNinv+LME absorbs the merits of both LME
and RNNinv achieving the best overall performance.

Moreover, compared to RNNPC, the overall performance
of RNNinv+LME is better especially for high-frequency tra-
jectories tracking as seen in Table I. More importantly, RN-
Ninv+LME is much more computationally efficient than RN-
NPC with controller time complexity of (N, N) compared to
O©(k2(Ny, — e )N.N2) of RNNPC [21].

Note that although the RNNinv can model the nonlinear dy-
namics of the PEA system, it does not assume any specific forms
of nonlinearity of the system in advance, thus, it is expected
to model any nonlinearities with enough parameters in theory.
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TABLE I
COMPARISON OF DIFFERENT CONTROLLERS

Controllers Time Complexity [©] Tractable? | Real-time? | Bandwidth Accuracy
PI O(Ny) 0(5) Yes Yes Medium Low
MIIFC O(2Nylog(Ny)) ©(5.7¢5) Yes No Very High | Very High
RNNinv+LME O(N2 +Ny) 0(45) Yes Yes High High
RNNPC O(k(Nj, — % )NNZ) | ©(9.6¢4) No Yes High High
RNNinv O(N2) 0(25) Yes Yes High Medium
RNNinv+LME O(N2 +Ny) 0(45) Yes Yes High Very High

On the other hand, the LME overcomes the issue caused by
the limited length of the RNN training set. Therefore, the RN-
Ninv+LME framework is expected to have broader applications
for tracking control of other systems.

All the controllers are compared in Table II in terms of
computation features. In evaluating the time complexity © qual-
itatively (as shown in third column in Table IT), the parameters
are set as follows: modeling order N,,, = 5, prediction horizon
Njp, = 20, number of sampled points in the trajectory to be
tracked N4 = 20000, for RNNPC, k = 10, N,,, = 20, N, = 6,
Ny, = 12 (refer to [21] for the details). “Tractability” is deter-
mined by whether the optimization problem in the controller can
be solved in limited time with limited computation resources.
For instance, RNNPC involves solving a general optimization
(usually nonconvex) problem, thus, is intractable. Note that the
control bandwidth is defined as the first frequency where the gain
drops below 70% of its dc value. As an example, when tracking
320 Hz sinusoidal trajectory, the gains of PI and RNNPC are
65% and 72%, respectively. When tracking 350 Hz sinusoidal
trajectory, the gains of MIIFC, RNNinv+LME, RNNinv, and
RNNinv+LME are 100%, 87%, 96%, and 96%, respectively.
Therefore, the proposed approach can achieve excellent overall
performance among all the real-time controllers compared.

VIl. CONCLUSION

In this article, we proposed to use RNNinv+LME to realize
a broadband, high-precision, and computationally efficient real-
time controller for PEA trajectory tracking. The key novelty of
the proposed control framework lies in the following conditions:
1) the idea of using RNN to model system inversion dynamics
(RNNinv) for nonlinearity compensation, and 2) the integration
of RNNinv and an LME-based model predictive controller to
ensure the control accuracy and computation efficiency. Besides,
the proposed separating mechanism further improves the con-
troller performance.

In the future, stability analysis of RNNinv and its combination
with Kalman filter in forced mode will be thoroughly studied.
Also, the RNN structure used in this article is one of many RNNss,
we will explore RNNs with other structures to further increase
the modeling bandwidth and accuracy.
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