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Abstract. As a popular tool for producing meaningful and interpretable models, large-
scale sparse learning works efficiently in many optimization applications when the un-
derlying structures are indeed or close to sparse. However, naively applying the existing
regularization methods can result in misleading outcomes because of model mis-
specification. In this paper, we consider nonsparse learning under the factors plus sparsity
structure, which yields a joint modeling of sparse individual effects and common latent
factors. A newmethodology of nonsparse learning with latent variables (NSL) is proposed
for joint estimation of the effects of two groups of features, one for individual effects and
the other associated with the latent substructures, when the nonsparse effects are captured
by the leading population principal component score vectors. We derive the convergence
rates of both sample principal components and their score vectors that hold for a wide class
of distributions. With the properly estimated latent variables, properties including model
selection consistency and oracle inequalities under various prediction and estimation losses
are established. Our new methodology and results are evidenced by simulation and real-
data examples.
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1. Introduction
Advances of information technologies have made
high-dimensional data increasingly frequent not only
in the domains of machine learning and biology but
also in economics (Belloni et al. 2017, Uematsu and
Tanaka 2019), marketing (Paulson et al. 2018), and
numerous operations research and engineering op-
timization applications (Xu et al. 2016). In the high-
dimensional regime, the number of available samples
can be less than the dimensionality of the problem,
so the optimization formulations will contain many
more variables and constraints than in fact are needed
to obtain a feasible solution. The key assumption that
enables high-dimensional statistical inference is that
the regression function lies in a low-dimensional mani-
fold (Hastie et al. 2009, Fan and Lv 2010, Bühlmann and
van de Geer 2011). Based on this sparsity assumption,
a long list of regularization methods has been devel-
oped to generate meaningful and interpretable models,

including those of Tibshirani (1996), Fan and Li (2001),
Zou andHastie (2005), Candès and Tao (2007), Belloni
et al. (2011), Sun and Zhang (2012), and Chen et al.
(2016), among many others. Algorithms and theoretical
guarantees were also established for various regulari-
zation methods. See, for example, Zhao and Yu (2006),
Radchenko and James (2008), Bickel et al. (2009), Tang
and Leng (2010), Fan et al. (2012), Candès et al. (2018),
and Belloni et al. (2018).
Although large-scale sparse learning works effi-

ciently when the underlying structures are indeed or
close to sparse, naively applying the existing regu-
larization methods can result in misleading outcomes
because of model misspecification (White 1982, Lv
and Liu 2014, Hsu et al. 2019). In particular, it was
imposed in most high-dimensional inference methods
that the coefficient vectors are sparse, which has been
questioned in real applications. For instance, Boyle
et al. (2017) suggested the omnigenic model, in which

346

http://pubsonline.informs.org/journal/opre
mailto:zhengzm@ustc.edu.cn
https://orcid.org/0000-0002-0240-9411
https://orcid.org/0000-0002-0240-9411
mailto:jinchilv@marshall.usc.edu
https://orcid.org/0000-0002-5881-9591
https://orcid.org/0000-0002-5881-9591
mailto:weilin@math.pku.edu.cn
https://orcid.org/0000-0002-7598-6199
https://orcid.org/0000-0002-7598-6199
https://doi.org/10.1287/opre.2020.2005
https://doi.org/10.1287/opre.2020.2005


the genes associated with complex traits tend to be
spread across most of the genome. Similarly, it was
conjectured earlier by Pritchard (2001) that instead of
being sparse, the causal variants responsible for a trait
can be distributed.Under such cases,making a correct
statistical inference is an important yet challenging
task. Though it is generally impossible to accurately
estimate large numbers of nonzero parameters with
relatively low sample size, nonsparse learning may
be achieved by considering a natural extension of
the sparse scenario—that is, the factors plus sparsity
structure. Specifically, we assume the coefficient vector
of predictors to be sparse after taking out the impacts
of certain unobservable factors, which yields a joint
modeling of sparse individual effects and common
latent factors. A similar ideawas exploited by Fan et al.
(2013) using the low-rank-plus-sparse representation
for large covariance estimation, where a sparse error
covariance structure is imposed after extracting com-
mon but unobservable factors.

To characterize the impacts of latent variables,
various methods have been proposed under different
model settings. For instance, the latent and observed
variables were assumed to be jointly Gaussian by
Chandrasekaran et al. (2012) for graphical model
selection. To control for confounding in genetic ge-
nomics studies, Lin et al. (2015) used genetic variants
as instrumental variables. Pan et al. (2015) charac-
terized latent variables by confirmatory factor analysis
(CFA) in survival analysis and estimated them using
the expectation–maximization algorithm. Despite the
growing literature, relatively few studies deal with
latent variables in high dimensions. In this paper, we
focus on high-dimensional linear regression incor-
porating two groups of features besides the response
variable—that is, predictors with individual effects and
covariates associated with the latent substructures. The
numbers of both predictors and potential latent variables
can be large, where the latent variables are nonsparse
linear combinations of the covariates. To the best of our
knowledge, this is a new contribution to the case of
high-dimensional latent variables. Our analysis also
allows for a special case that the two groups of features
are identical, meaning that the latent variables are
associated with the original predictors.

We would like to provide a possible methodology
of nonsparse learning when the nonsparse effects
of the covariates can be captured by their leading
population principal component score vectors, which
are unobservable because of the unknown population
covariance matrix. The main reasons are as follows.
Practically, principal components evaluate orthogo-
nal directions that reflect maximal variations in the
data, thus often employed as surrogate variables to
estimate the unobservable factors in many contem-
porary applications such as genome-wide expression

studies (Leek and Storey 2007). In addition, the leading
principal components are typically extracted to adjust
for human genetic variations across population sub-
structures (Menozzi et al. 1978, Cavalli-Sforza et al.
1993) or stratification (Price et al. 2006). From a the-
oretical point of view, principal components yield the
maximum likelihood estimates of unobservable fac-
tors when the factors are uncorrelated with each
other, even subject to certain measurement errors
(Mardia et al. 1979). Moreover, the effects of the
covariates are mainly worked through their leading
population principal component score vectors when
the remaining eigenvalues decay rapidly.
The major contributions of this paper are threefold.

First, we propose nonsparse learning with latent
variables based on the aforementioned factors plus
sparsity structure to simultaneously recover the sig-
nificant predictors and latent factors as well as their
effects. Exploring population principal components as
common latent variables will be helpful in attenuat-
ing collinearity and facilitating dimension reduction.
Second, to estimate population principal components,
we use the sample counterparts and provide the
convergence rates of both sample principal compo-
nents and their score vectors that hold for a wide class
of distributions. The convergence property of sample
score vectors is critical to the estimation accuracy of
latent variables. This is, however, much less studied in
the literature compared with the principal compo-
nents, and our work is among the first attempts in
the high-dimensional case. Third, we characterize the
model identifiability condition and show that the
proposed methodology is applicable to general fami-
lies with properly estimated latent variables. In par-
ticular, under some regularity conditions, NSL via the
threshold regression is proved to enjoymodel selection
consistency and oracle inequalities under various pre-
diction and estimation losses.
The rest of this paper is organized as follows.

Section 2 presents the new methodology of nonsparse
learning with latent variables. We establish asymptotic
properties of sample principal components and their
score vectors in high dimensions, as well as theoretical
properties of the proposed methodology via the thresh-
old regression in Section 3. Simulated and real-data
examples are provided in Section 4. Section 5 dis-
cusses extensions and possible future work. All the
proofs of the main results and additional technical
details are included in the e-companion to this paper.

2. Nonsparse Learning with
Latent Variables

2.1. Model Setting
Denote byy � (y1, . . . , yn)T the n-dimensional response
vector, X � (x1, . . . , xp) the n × p random design
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matrix with p predictors, andW � (w1, . . . ,wq) the n ×
q random matrix with q features. Assume that the
rows of X are independent with covariance matrix ΣX
and that the rows of W are independent with mean
zero and covariance matrix ΣW . We consider the
following high-dimensional linear regression model:

y � Xβ0 +Wη0 + ε, (1)
where β0 � (β0,1, . . . , β0,p)T and η0 � (η0,1, . . . , η0,q)T are,
respectively, the regression coefficient vectors of
the predictors and the additional features, and ε ∼
N(0, σ2In) is an n-dimensional error vector indepen-
dent of X and W.

The Gaussianity of the random noises is imposed
for simplicity, and our technical arguments still apply
as long as the error tail probability bound decays
exponentially. Different from most of the existing
literature, the regression coefficients η0 for covariates
W can be nonsparse, whereas the coefficient vector β0
for predictors is assumed to be sparse with many zero
components after adjusting for the impacts of addi-
tional features. Therefore, Model (1) is a mixture of
sparse and nonsparse effects. Both the dimensionality
p and the number of features q are allowed to grow
nonpolynomially fast with the sample size n.

As discussed in Section 1, to make the nonsparse
learning possible, we impose the assumption that the
impacts of covariates W are captured by their K
leading population principal component score vec-
tors fi � Wui for 1 ≤ i ≤ K, where {ui}Ki�1 are the top-K
principal components of the covariance matrix ΣW .
That is, the coefficient vector η0 lies in the span of
the top K population principal components, and
thus, η0 � U0γ0 for some coefficient vector γ0 and
U0 � (u1, . . . ,uK). In fact, when the covariance matrix
ΣW adopts a spiked structure (to be discussed in
Section 3.1), the part of η0 orthogonal to the span of
the leading population principal components will
play a relatively small role in prediction in view of
Wη0 � V̂D̂ÛTη0, where V̂D̂ÛT is the singular value
decomposition of W.

Denote by F � (f1, . . . , fK) the n × K matrix consist-
ing of the K potential latent variables and by γ0 �
(γ0,1, . . . , γ0,K)T their true regression coefficient vector.
Then Model (1) can be rewritten as

y � Xβ0 + Fγ0 + ε. (2)
It is worth pointing out that the latent variables F are
unobservable to us because of the unknown vectors
ui, which makes our work distinct frommost existing
studies. For the identifiability of population principal
components in high dimensions,Kwill be the number
of significant eigenvalues in the spiked covariance
structure of ΣW , and we allow it to diverge with the
sample size.

Model (2) is applicable to two different situations.
The first is that we aim at recovering the relationship
between predictors X and response y, whereas the
features W are treated as confounding variables for
making correct inferences on the effects of X, such as
the gene expression studies with sources of hetero-
geneity (Leek and Storey 2007). Then the latent var-
iables fi are not required to be associated with dif-
ferent eigenvalues as long as their joint impacts Fγ0
can be estimated. The other situation is that we are
interested in exploring the effects of bothX and F such
that the latent variables fi should be identifiable. This
occurs in applications when the latent variables are
also meaningful. For instance, the principal compo-
nents of genes can be biologically interpretable as
representing independent regulatory programs or
processes (referred to as eigengenes) from their ex-
pression patterns (Alter et al. 2000, Bair et al. 2006).
In this paper, we mainly focus on the second sit-

uation because the latent variables in our motivating
application can also be biologically important. Spe-
cifically, both nutrient intake and human gut micro-
biome composition are believed to be important in the
analysis of body mass index (BMI), and they share
strong associations (Chen and Li 2013). To alleviate
the strong correlations and facilitate the analysis of
possibly nonsparse effects, we take nutrient intake
as a predictor and adjust for confounding variables
by incorporating the principal components of gut
microbiome composition because principal compo-
nents of human gut microbiome were found to reveal
different enterotypes that affect energy extraction
from the diet (Arumugam et al. 2011). The results of
this real-data analysis will be presented in Section 4.2.
In general applications, which variables should be

chosen as X andwhich should be chosen asW depend
on the domain knowledge and research interests.
Overall, predictors X stand for features with indi-
vidual effects, whereas observable covariates W are
covariates that reflect the confounding substructures.
Our analysis also allows for a special case that W is a
part of X, meaning that the latent variables are non-
sparse linear combinations of the original predictors.
The identifiability of Model (2) will be discussed in
Section 3.3 after Condition 4.

2.2. Estimation Procedure by NSL
With unobservable latent factors F, it is challenging to
consistently estimate and recover the support of the
regression coefficient vector β0 for observable pre-
dictors and the coefficients γ0 for latent variables. We
partially overcome this difficulty by assuming that
the factors appear in an unknown linear form of the
covariates W. Then F can be estimated by the sample
principal component scores of matrix W. Because the
rows of W have mean zero, the sample covariance
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matrix S � n−1WTW is an unbiased estimate of ΣW

with top K principal components {ûi}Ki�1. So the esti-
mated latent variables are F̂ � (̂f1, . . . , f̂K)with f̂i �Wûi

for 1 ≤ i ≤ K. To ensure identifiability, both fi and f̂i
are rescaled to have a common L2-norm n1/2, matching
that of the constant predictor 1 for the intercept. For
future prediction, we can transform the coefficient
vector γ back by multiplying the scalars n1/2‖Wûi‖−12 .
The notation ‖ · ‖q denotes the Lq-norm of a given
vector for q ∈ [0,∞].

To produce a joint estimate for the true coefficient
vectors β0 and γ0, we suggest NSL, which minimizes

Q βT,γT( )T{ }
� 2n( )−1 y − Xβ − F̂γ

⃦⃦⃦ ⃦⃦⃦2
2
+ pλ βT∗ ,γT( )T{ }⃦⃦⃦ ⃦⃦⃦

1
, (3)

the penalized residual sum of squares with penalty func-
tion pλ(·). Here β∗ � (β∗,1, . . . , β∗,p)T is the Hadamard
(component-wise) product of two p-dimensional vec-
tors (n−1/2‖xk‖2)1≤k≤p and β. It corresponds to the de-
sign matrix with each column rescaled to have a
common L2-norm n1/2. The penalty function pλ(t) is
defined on t ∈ [0,∞), indexed by λ ≥ 0, and assumed
to be increasing in both λ and t with pλ(0) � 0. We
use a compact notation for

pλ βT∗ ,γT( )T{ }
� pλ |β∗,1|( )

, . . . , pλ |β∗,p|( )
, pλ |γ1|( )

, . . . ,
{
pλ |γK |( )}T.

The proposed methodology in (3) enables the possi-
bility of simultaneously estimating β0 and γ0, iden-
tifying the significant observable predictors and la-
tent factors altogether. However, it is still difficult to
obtain accurate estimates because the confounding
factors F are replaced by the estimate F̂, and the
correlations between the observable predictors and
latent variables can aggravate the difficulty. To pre-
vent the estimation errors being further magnified
in prediction, we consider γ in an L∞ ball Bρ � {γ ∈
RK : ‖γ‖∞ ≤ ρ}, where any component of γ is assumed
to be no larger than ρ in magnitude. We allow ρ to
diverge slowly such that it will not deteriorate the
overall prediction accuracy.

2.3. Comparisons with Existing Methods
The proposed methodology can be regarded as a reali-
zation of the aforementioned low-rank plus sparse rep-
resentation (Fan et al. 2013) in the high-dimensional
linear regression setting, but there are significant
differences lying behind them. First, the latent vari-
ables in our setup are not necessarily a part of the
original predictors but can stem from any sources
related to the underlying features. Second, unlike the
typical assumption in factor analysis that the factors

and the remaining part are uncorrelated, we allow
latent variables to share correlations with the ob-
servable predictors. In the extreme case, the latent
variables can be nonsparse linear combinations of the
predictors. Third, latent variables are employed to
recover the information beyond the sparse effects of
predictors, and thus we do not modify or assume
simplified correlations between the original predic-
tors even after accounting for the latent substructures.
Another method proposed by Kneip and Sarda

(2011) also incorporated principal components as
extra predictors in penalized regression, but it applies
to a single group of features. Even if the two groups of
features X and W are identical, the method differs
from ours in the following aspects. First of all, based
on the framework of factor analysis, the observed
predictors in Kneip and Sarda (2011) weremixtures of
individual features and common factors, both of
which were unobservable. In view of this, we aim at
different scopes of applications. Moreover, Kneip and
Sarda (2011) suggested sparse regression on the pro-
jected model, where individual features were recov-
ered as residuals of projecting the observed predictors
on the factors. In contrast, we keep the original pre-
dictors such that they will not be contaminated when
the estimated latent variables are irrelevant. Last but
not least, benefiting from factor analysis, the indi-
vidual features in Kneip and Sarda (2011) were un-
correlated with each other and also shared no cor-
relation with the factors. But we do not impose such
assumptions, as explained earlier.
The proposed methodology is also closely related

to principal component regression (PCR). PCR sug-
gests regressing the response vector on a subset of
principal components instead of all explanatory vari-
ables, and comprehensive properties have been estab-
lished in the literature for its importance in reducing
collinearity and enabling prediction in high dimen-
sions. For instance, Cook (2007) explored situations
where the response can be regressed on the leading
principal components of predictors with little loss of
information. Probabilistic explanation was provided
by Artemiou and Li (2009) to support the phenom-
enon that the response is often highly correlated with
the leading principal components. Our new meth-
odology takes advantage of the strengths of principal
components to extract the most relevant information
from additional sources and adjust for confounding
and nonsparse effects, whereas model interpretabil-
ity is also retained by exploring the individual effects
of observable predictors.
In addition to the aforementioned literature, there

are two recent lines of work addressing nonsparse
learning in high dimensions. Essential regression
(Bing et al. 2019, 2020) is a new variant of factor re-
gressionmodelswhere both the response and covariates
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depend linearly on unobserved low-dimensional fac-
tors. Our model assumptions are quite different from
those of Bing et al. (2019, 2020) in that we also allow
the presence of covariates with sparse individual
effects. Another line of work including that of Bradic
et al. (2020) and Zhu and Bradic (2018) aims at hy-
pothesis testing under nonsparse linear structures.
Test statistics were constructed through restructured
regression or marginal correlations, but the original
regression coefficients were not estimated.

3. Theoretical Properties
We will first establish the convergence properties of
sample principal components and their score vectors
for a wide class of distributions under the spiked
covariance structure. With the aid of these convergence
properties, additional properties including model se-
lection consistency and oracle inequalities will be
proved for the proposed methodology via the threshold
regression using hard thresholding.

3.1. Spiked Covariance Model
High-dimensional principal component analysis (PCA)
particularly in the context of spiked covariance
model, introduced by Johnstone (2001), has been
studied by Paul (2007), Jung and Marron (2009), Shen
et al. (2016), and Wang and Fan (2017), among many
others. This model assumes that the first few eigen-
values of the population covariance matrix deviate
from one, whereas the rest are equal to one. Although
sample principal components are generally incon-
sistent without strong conditions when the number of
covariates is comparable to or larger than the sample
size (Johnstone and Lu 2009), with the aid of a spiked
covariance structure, consistency of sample principal
components was established in the literature under
different high-dimensional settings. For instance, in
the high-dimension, low-sample-size context, Jung
and Marron (2009) proved the consistency of sample
principal components for spiked eigenvalues. When
both the dimensionality and sample size are diverging,
phase transition of sample principal components was
studied by Paul (2007) and Shen et al. (2016) for
multivariate Gaussian observations. The asymptotic
distributions of spiked principal components were
established byWang and Fan (2017) for sub-Gaussian
distributions with a finite number of distinguishable
spiked eigenvalues.

In this section, we adopt the generalized version of
spiked covariance model studied by Jung and Marron
(2009) for the covariance structure of covariate matrix
W, where the population covariance matrix ΣW is
assumed to contain K spiked eigenvalues that can be
divided into m groups. The eigenvalues grow at the
same rate within each group, whereas the orders of

magnitude of the m groups are different from each
other. To be specific, there are positive constants α1 >
α2 > · · · > αm > 1 such that the eigenvalues in the
lth group grow at the rate of qαl , 1 ≤ l ≤ m, where q is
the dimensionality or number of covariates in W.
The constants αl are larger than one because other-
wise the sample eigenvectors can be strongly incon-
sistent (Jung and Marron 2009). Denote the group
sizes by positive integers k1, . . . , km satisfying

∑m
l�1 kl �

K < n. Set km+1 � q − K, which is the number of non-
spiked eigenvalues. Then the set of indices for the lth
group of eigenvalues is

Jl � 1 +∑l−1
j�1

kj, . . . , kl +
∑l−1
j�1

kj

{ }
, l � 1, . . . ,m + 1. (4)

Although this eigenstructure looks almost the same
as that in Jung and Marron (2009), the key difference
lies in the magnitudes of the sample size n and the
number of spiked eigenvalues K, both of which are
allowed to diverge in our setup instead of being fixed.
This makes the original convergence analysis of sam-
ple eigenvalues and eigenvectors invalid because the
number of entries in the dual matrix SD � n−1WWT is
no longer finite. We will overcome this difficulty
by conducting a delicate analysis on the deviation
bound of the entries such that the corresponding
matrices converge in Frobenius norm. Our theoretical
results are applicable to a wide class of distributions,
including sub-Gaussian distributions. For multivar-
iate Gaussian or sub-Gaussian observations with a
finite number of spiked eigenvalues, the phase tran-
sition of PCA consistency was studied by, for in-
stance, Shen et al. (2016) and Wang and Fan (2017).
Nevertheless, the convergence property of sample
principal component score vectors was not provided
in the aforementioned references and needs further
investigation.
Assume that the eigendecomposition of the pop-

ulation covariance matrix ΣW is given by ΣW � UΛUT,
where Λ is a diagonal matrix of eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λq ≥ 0, andU � (u1, . . . ,uq) is an orthogonal
matrix consisting of the population principal com-
ponents. Analogously, the eigendecomposition of S �
ÛΛ̂ÛT provides the diagonal matrix Λ̂ of sample ei-
genvalues λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂q ≥ 0 and the orthogonal
matrix Û � (û1, . . . , ûq) consisting of sample principal
components. We always assume that the sample prin-
cipal components take the correct directions such that
the angles between sample and population principal
components are no more than a right angle.
Our main focus is the high-dimensional setting

where the number of covariates q is no less than the
sample size n. Denote by

Z � Λ−1/2UTWT (5)
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the sphered data matrix. It is clear that the columns
of Z are independent and identically distributed (i.i.d.)
with mean zero and covariance matrix Iq. To build our
theory, we will impose a tail probability bound on the
entry of Z and make use of the n-dimensional dual
matrix SD � n−1ZTΛZ, which shares the same nonzero
eigenvalues with S.

3.2. Threshold Regression Using
Hard Thresholding

As discussed in Section 1, there is a large spectrum of
regularization methods for sparse learning in high
dimensions. It has been demonstrated by Fan and
Lv (2013) that the popular L1-regularization of least
absolute shrinkage and selection operator (Lasso) and
concave methods can be asymptotically equivalent
in thresholded parameter space for polynomially
growing dimensionality, meaning that they share the
same convergence rates in the oracle inequalities. For
exponentially growing dimensionality, concavemethods
can also be asymptotically equivalent and have faster
convergence rates than Lasso. Therefore, we will
show theoretical properties of the proposed method-
ology via a specific concave regularizationmethod, the
threshold regression using hard thresholding (Zheng
et al. 2014). It uses either the hard-thresholding
penalty pH,λ(t) � 1

2 [λ2 − (λ − t)2+] or the L0-penalty
pH0,λ(t) � 2−1λ21{t 
�0} in the penalized least squares (3),
both of which enjoy the hard-thresholding property
(Zheng et al. 2014, lemma 1) that facilitates sparse
modeling and consistent estimation.

A key concept for characterizing model identifi-
ability in Zheng et al. (2014) is the robust spark
rsparkc(X) of agivenn × pdesignmatrixXwith bound c,
defined as the smallest possible number τ such that
there exists a submatrix consisting of τ columns from
n−1/2X̃ with a singular value less than the given
positive constant c, where X̃ is obtained by rescaling
the columns of X to have a common L2-norm n1/2. The
bound on themagnitude of rsparkc(X)was established
by Fan and Lv (2013) for Gaussian design matrices
and further studied by Lv (2013) for more general
random design matrices. Under mild conditions,M �
c̃n/(log p)with some positive constant c̃will provide a
lower bound on rsparkc(X,F) for the augmented de-
signmatrix (see Condition 4 in Section 3.3 for details).
Following Fan and Lv (2013) and Zheng et al. (2014),
we consider the regularized estimator on the union of
coordinate subspaces SM/2 � {(βT,γT)T ∈ Rp+K : ‖(βT,
γT)T‖0 < M/2} to ensure model identifiability and
reduce estimation instability. So the joint estimator
(β̂T

, γ̂T)T is defined as the global minimizer of the
penalized least squares (3) constrained on space SM/2.

3.3. Technical Conditions
Here we list a few technical conditions and discuss
their relevance. Let Δ � min1≤l≤m−1(αl − αl+1). Then qΔ

reflects the minimum gap between the magnitudes of
spiked eigenvalues in two successive groups. The first
two conditions are imposed for Theorem 1, whereas
the rest are needed in Theorem 2, to be presented in
Section 3.4.

Condition 1. There exist positive constants ci and C such
that uniformly over i ∈ Jl, 1 ≤ l ≤ m,

λi/qαl � ci +O q−Δ
( )

with ci ≤ C,

and λj ≤ C for any j ∈ Jm+1.

Condition 2. (a) There exists some positive α < min{Δ,
αm − 1} such that uniformly over 1 ≤ i ≤ n and 1 ≤ j ≤ q,
the (j, i)th entry zji of the sphered data matrix Z defined
in (5) satisfies

P z2ji > K−1qα
( )

� o q−1n−1
( )

.

(b) For any 1 ≤ l ≤ m, ‖n−1ZlZT
l − Ikl‖∞ � op(k−1l ), where

Zl is a submatrix of Z consisting of the rows with indices
in Jl.

Condition 3. Uniformly over j, 1 ≤ j ≤ K, the angle ωjj

between the jth estimated latent vector f̂j and its population

counterpart fj satisfies cos(ωjj) ≥ 1 − c22 log n/8K
2ρ2n with

probability 1 − θ1 that converges to one as n → ∞.

Condition 4. The inequality ‖n−1/2(X, F)δ‖2 ≥ c‖δ‖2 holds
for any δ satisfying ‖δ‖0 < M with probability 1 − θ2
approaching one as n → ∞.

Condition 5. There exists some positive constant L
such that

P ∩p
j�1 L−1 ≤ ‖xj‖2/

̅̅
n

√ ≤ L
{ }( )

� 1 − θ3,

where θ3 converges to zero as n → ∞.

Condition 6. Denote by s � ‖β0‖0 + ‖γ0‖0 the number of
overall significant predictors and by b0 � minj∈supp(β0)(|β0,j|) ∧minj∈supp(γ0)(|γ0,j|) the overall minimum signal
strength. It holds that s < M/2 and

b0 >
̅̅
2

√
c−11

( )
∨ 1

[ ]
c−11 c2L

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2s + 1( ) log p( )

/n
√

for some positive constants c1 defined in Proposition 1 in
Section 3.4 and c2 > 2

̅̅
2

√
σ.

Condition 1 requires that the orders of magnitude
of spiked eigenvalues in each group be the same,
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whereas their limits can be different depending on
the constants ci. This is weaker than the conditions
usually imposed in the literature, such as in Shen
et al. (2016), where the spiked eigenvalues in each
group share exactly the same limit. Nevertheless, we
will prove the consistency of spiked sample eigen-
values under very mild conditions. To distinguish the
eigenvalues in different groups, convergence to the
corresponding limit is assumed to be at a rate of
O(q−Δ). As the number of spiked eigenvalues di-
vergeswith q, we impose a constant upper boundCon
ci for simplicity, and our technical argument still
applies when C diverges slowly with q. Without loss
of generality, the upper bound C also controls the
nonspiked eigenvalues.

As pointed out earlier, the columns of the sphered
data matrix Z are i.i.d. withmean zero and covariance
matrix Ip. Then part (a) of Condition 2 holds as long as
the entries in any column of Z satisfy the tail prob-
ability bound.Moreover, it is clear that this tail bound
decays polynomially, so it holds for a wide class of
distributions including sub-Gaussian distributions.
With this tail bound, the larger sample eigenvalues
would dominate the sum of all eigenvalues in the
smaller groups regardless of the randomness. Fur-
thermore, by definition, we know that the columns of
Zl are i.i.d. with mean zero and covariance matrix Ikl
such that n−1ZlZT

l → Ikl entrywise as n → ∞. Hence,
part (b) of Condition 2 is a very mild assumption to
deal with the possibly diverging group sizes kl.

Condition 3 imposes a convergence rate of logn/
(K2ρ2n) for the estimation accuracy of confounding
factors, so the estimation errors in F̂ will not deteri-
orate the overall estimation and prediction powers.
This rate is easy to satisfy in view of the results in
Theorem 1 in Section 3.4 because the sample princi-
pal component score vectors are shown to converge
to the population counterparts in polynomial or-
ders of q, which is typically larger than n in high-
dimensional settings.

Condition 4 assumes the robust spark of matrix
(X,F) with bound c to be at least M � c̃n/(log p) with
significant probability. This is the key for character-
izing the model identifiability in our conditional
sparsity structure and also controls the correlations
between theobservablepredictorsX and latent factors F.
Consider a special case where F consists of nonsparse
linear combinations of the original predictors X. Then
Model (2) cannot be identified if we allow for non-
sparse regression coefficients. However, if we con-
strain the model size by a certain sparsity level, such
as rsparkc(X, F), the model will become identifiable
because F cannot be represented by sparse linear

combinations of X. Using the same idea, if we impose
conditions such as the minimum eigenvalue for the
covariance matrix of any M1 features in (X,F) being
bounded from below, where M1 � c̃1n/(log p) with
c̃1 > c̃ denotes the sparsity level, then theorem 2 of
Lv (2013) ensures that the robust spark of any sub-
matrix consisting of less thanM1 columns of (X,F)will
be no less than M � c̃n/(log p). This holds for general
distributions with tail probability decaying expo-
nentially fast with the sample size n and the constant c̃
depending only on c. This justifies the inequality in
Condition 4.
Although no distributional assumptions are im-

posed on the random design matrix X, Condition 5
places a mild constraint that the L2-norm of any
column vector ofXdivided by its common scale n1/2 is
bounded with significant probability. This can be
satisfied by many distributions and is needed due to
the rescaling of β∗ in (3). Condition 6 is similar to that
of Zheng et al. (2014) for deriving the global prop-
erties via the threshold regression. The first part
puts a sparsity constraint on the true model size s for
model identifiability, as discussed after Condition 4,
whereas the secondpart gives a lower boundO{[s(log p)/
n]1/2} on the minimum signal strength to distinguish
the significant predictors from the others.

3.4. Main Results
We provide two main theorems in this section. The
first is concerned with the asymptotic properties of
sample principal components and their score vectors,
which serves as a bridge for establishing the global
properties in the second theorem.
A sample principal component is said to be consistent

with its population counterpart if the angle between
them converges to zero asymptotically. However,
when several population eigenvalues belong to the
same group, the corresponding principal components
may not be distinguishable. In this case, subspace
consistency is essential to characterizing the asymp-
totic properties (Jung and Marron 2009). Denote θil �
Angle(ûi, span{uj : j ∈ Jl}) for i ∈ Jl, 1 ≤ l ≤ m, which is
the angle between the ith sample principal compo-
nent and the subspace spanned by population prin-
cipal components in the corresponding spiked group.
The following theorem presents the convergence rates
of sample principal components in terms of angles
under the aforementioned generalized spiked covari-
ance model. Moreover, for the identifiability of latent
factors, we assume each group size to be one for
the spiked eigenvalues when studying the principal
component score vectors. That is, kl � 1 for 1 ≤ l ≤ m,
implying that K � m.
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Theorem 1 (Convergence Rates). Under Conditions 1
and 2, with probability approaching one, the following
statements hold:

a. Uniformly over i ∈ Jl, 1 ≤ l ≤ m, θil � Angle(ûi,
span{uj : j ∈ Jl}) is no more than

arccos 1 −∑l−1
t�1

∏l−1
i�t+1

1 + ki( )
[ ]

O ktA t( ){ }
[(

−O A l( ){ }
]1/2)

, (6)

where A(t) � (∑m
l�t+1 klq

αl + km+1)K−1qα−αt , and we de-
fine

∑j
t�i st � 0 and

∏j
t�i st � 1 if j < i for any sequence {st}.

b. If each group of spiked eigenvalues has size one, then
uniformly over 1 ≤ i ≤ K, ωii � Angle(Wûi,Wui) is no
more than

arccos 1 −∑i−1
t�1

2i−t−1O A t( ){ } −O A i( ){ }
[ ]1/2( )

.

Part (a) of Theorem 1 provides the uniform con-
vergence rates of sample principal components to the
corresponding subspaces for a general spiked co-
variance structure with possibly tiered eigenvalues
under mild conditions. It holds even if the principal
components are not separable, so the results also
apply to the first kind of applications of Model (2)
discussed in Section 2.1. Because the convergence
rates of θ2

il to zero and cos2(θil) to one are the same by
L’Hôpital’s rule, both of them are

∑l−1
t�1[∏l−1

i�t+1(1+
ki)]O{ktA(t)} +O{A(l)} in view of (6). Thus, when the
group sizes kl are relatively small, the convergence
rates are determined by A(t), which decays poly-
nomially with q and converges to zero fairly fast.
This shows the “blessing of dimensionality” under
the spiked covariance structure because the larger q
gives faster convergence rates. Furthermore, it is clear
that when the gaps between the magnitudes of dif-
ferent spiked groups are large, A(t) decays quickly
with q to accelerate the convergence of sample prin-
cipal components.

The uniform convergence rates of sample principal
component score vectors are given in part (b) of
Theorem 1when each group contains only one spiked
eigenvalue such that the latent factors are separable.
In fact, the proof of Theorem 1 shows that the sample
score vectors converge at least as fast as the sample
principal components. Then the results in part (b) are
essentially the convergence rates in part (a) with
kl � 1. Because the number of spiked eigenvalues K is
much smaller than q, the sample principal compo-
nent score vectors will converge to the population
counterparts polynomially with q. The convergence
property of sample score vectors is critical to our
purpose of nonsparse learning because it offers the

estimation accuracy of latent variables, which is much
less well studied in the literature. To the best of our
knowledge,ourwork isafirst attempt inhighdimensions.
The established asymptotic property of sample

principal component score vectors justifies the esti-
mation accuracy assumption in Condition 3. To-
gether with Condition 4, this leads to the following
proposition.

Proposition 1. Under Conditions 3 and 4, the inequality

‖n−1/2 X, F̂
( )

δ‖
2
≥ c1‖δ‖2

holds for some positive constant c1 and any δ satisfying
‖δ‖0 < M with probability at least 1 − θ1 − θ2.

From the proof of Proposition 1, we see that the
constant c1 is smaller than but can be very close to c
when n is relatively large. Therefore, Proposition 1
shows that the robust spark of the augmented design
matrix (X, F̂) will be close to that of (X,F) when F
is accurately estimatedby F̂.Wearenowready topresent
theoretical properties for the proposed methodology.

Theorem 2 (Global properties). Assume that Condi-
tions 3–6 hold and

c−11 c2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2s + 1( ) log p( )

/n
√

< λ < L−1b0 1 ∧ c1/
̅̅
2

√( )[ ]
.

Then, for both the hard-thresholding penalty pH,λ(t) and
L0-penalty pH0,λ(t), with probability at least 1−4σ(2/π)1/2

c−12 (logp)−1/2p1−
c2
2

8σ2 −2σ(2/π)1/2c−12 s(logn)−1/2 ·n−
c2
2

8σ2 −θ1−
θ2−θ3, the regularized estimator (β̂T

, γ̂T)T satisfies that

a. Themodel selection consistency supp{(β̂T
, γ̂T)T} �

supp{(βT
0 ,γ

T
0 )T}, where supp denotes the support of a vector;

b. The prediction error bound n−1/2‖(X, F̂)(β̂T
, γ̂T)T−

(X, F)(βT
0 ,γ

T
0 )T‖2 ≤ (c2/2 + 2c2c−11

̅̅
s

√ ) ̅̅̅̅̅̅̅̅̅̅̅̅(logn)/n√
;

c. The oracle inequalities ‖β̂ − β0‖q ≤ 2c−21 c2Ls1/q̅̅̅̅̅̅̅̅̅̅̅̅̅(log n)/n√
, ‖γ̂−γ0‖q ≤ 2c−21 c2s1/q

̅̅̅̅̅̅̅̅̅̅̅̅(logn)/n√
for q ∈ [1, 2].

The upper bounds with q � 2 also hold for ‖β̂ − β0‖∞
and ‖γ̂ − γ0‖∞.
The model selection consistency in Theorem 2(a)

shows that we can recover both the significant ob-
servable predictors and the latent variables, so the
whole model would be identified by combining these
two parts even if it contains nonsparse coefficients.
The prediction loss of the joint estimator is shown to
be within a logarithmic factor (logn)1/2 of that of the
oracle estimator when the regularization parameter λ
is properly chosen, which is similar to the result in
Zheng et al. (2014). This means that the prediction
accuracy is maintained regardless of the hidden ef-
fects as long as the latent factors are properly esti-
mated. The extra term (c2/2)

̅̅̅̅̅̅̅̅̅̅̅̅(logn)/n√
in the pre-

diction bound reflects the price we pay in estimating
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the confounding factors. Furthermore, the oracle in-
equalities for both β̂ and γ̂ under Lq-estimation losses
with q∈ [1,2] ∪{∞} are also established inTheorem 2(c).
Although the estimation accuracy for the nonsparse
coefficients Uγ0 of W are obtainable, we omit the
results here because their roles in inferring the indi-
vidual effects andprediction are equivalent to those of
the latent variables.

The proposed methodology of NSL under the con-
ditional sparsity structure is not restrictive to the po-
tential family of population principal components. It
is more broadly applicable to any latent family pro-
vided that the estimation accuracy of latent factors in
Condition 3 and the correlations between the ob-
servable predictors and latent factors characterized
by the robust spark in Condition 4 hold similarly. The
population principal component provides a common
and concrete example to extract the latent variables
from additional covariates. A significant advantage of
this methodology is that even if the estimated latent
factors are irrelevant, they rarely affect the variable
selection and effect estimation of the original pre-
dictors because the number of potential latent vari-
ables is generally a small proportion of that of the
predictors. This also implies that a relatively large K
can be chosen when we are not sure about how many
latent variables indeed exist. This is a key difference
between our methodology and those based on factor
analysis, which renders our methodology useful for
combining additional sources.

4. Numerical Studies
In this section, we investigate the finite sample per-
formance of NSL via three regularization methods of
Lasso (Tibshirani 1996), smoothly clipped absolute
deviation (SCAD; Fan and Li 2001), and the threshold
regression using hard thresholding (Hard; Zheng
et al. 2014). All three methods are implemented
through the independent component analysis algo-
rithm (Fan and Lv 2011) because coordinate optimi-
zation enjoys scalability for large-scale problems. The
oracle procedure (Oracle) that knew the truemodel in
advance is also conducted as a benchmark.

Wewill explore two differentmodels, whereModel
M1 involves only observable predictors andModelM2

incorporates estimated latent variables as extra pre-
dictors. The case of linear regression Model (2) with
the confounding factor as nonsparse combination of
the existing predictors is considered in the first ex-
ample, whereas in the second examplemultiple latent
factors stem from additional observable covariates,
and the error vector is relatively heavy tailed with a
t-distribution.

4.1. Simulation Examples
4.1.1. Simulation Example 1. In the first simulation
example, we consider a special case of linear re-
gression Model (2) with potential latent factors F
coming from the existing observable predictors—that
is,W � X. Then Fγ represents the nonsparse effects of
the predictors X, and it will be interesting to check the
impacts of latent variables when they are dense linear
combinations of the existing predictors. The sample
size n was chosen to be 100 with true regression co-
efficient vectors β0 � (vT, . . . ,vT,0)T, γ0 � (0.5, 0)T, and
Gaussian error vector ε ∼ N(0, σ2In), where v � (0.6,
0, 0,−0.6, 0, 0)T is repeated k times, and γ0 is a K-
dimensional vector with one nonzero component 0.5,
denoting the effect of the significant confounding
factor. We generated 200 data sets and adopted the
setting of (p, k,K, σ) � (1,000, 3, 10, 0.4) such that there
are 6 nonzero components with magnitude 0.6 in
the true coefficient vector β0 and 10 potential la-
tent variables.
The key point in the design of this simulation study

is to construct a population covariance matrix Σwith
spiked structure. Therefore, for each data set, the
rows of the n × p design matrix X were sampled as
i.i.d. copies from a multivariate normal distribution
N(0,Σ)withΣ � 1/2(Σ1 + Σ2), whereΣ1 � (0.5|i−j|)1≤i,j≤p
and Σ2 � 0.5Ip + 0.511T. The choice of Σ1 allows for
correlation between the predictors at the population
level, and Σ2 has an eigenstructure such that the
spiked eigenvalue is comparable with p. Based on the
construction ofΣ1 and Σ2, it is easy to check thatΣ has
the largest eigenvalue 251.75, and the others are all
below 1.75. For regularization methods, Model M2
involved the top K sample principal components as
estimated latent variables, whereas Oracle used the
true confounding factor instead of the estimated one.
We applied Lasso, SCAD, and Hard for both M1 and
M2 to produce a sequence of sparse models and se-
lected the regularization parameter λ by minimizing
the prediction error calculated based on an indepen-
dent validation set for fair comparison of all methods.
To compare the performance of the aforementioned

methods under two different models, we consider
several performance measures. The first measure is
the prediction error (PE), defined as E(Y − xTβ̂)2 in
Model M1 and as E(Y − xTβ̂ − f̂Tγ̂)2 in Model M2,
where β̂ or (β̂T

, γ̂T)T are the estimated coefficients in
the corresponding models, (xT,Y) is an independent
test sample of size 10, 000, and f̂ is the sample prin-
cipal component score vector. For Oracle, f̂ is replaced
by the true confounding factor f. The second to fourth
measures are the Lq-estimation losses of β0—that is,
‖β̂ − β0‖q with q � 2, 1, and ∞, respectively. The fifth
and sixth measures are the false positives (FP), falsely
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selected noise predictors, and false negatives (FN),
missed true predictors with respect to β0. The seventh
measure is the model selection consistency (MSC)
calculated as the frequency of selecting exactly the
relevant variables. We also reported the estimated
error standard deviation σ̂ by all methods in both
models. The results are summarized in Table 1. For
the selection and effect estimation of latent variables
in Model M2, we display in Table 2 the measures
similar to those defined in Table 1 but with respect
to γ0. They are Lq-estimation losses ‖γ̂ − γ0‖q with
q � 2, 1, and ∞, FPγ, FNγ, and MSCγ.

In view of Table 1, it is clear that compared with
Model M2, the performance measures in variable
selection, estimation, and prediction all deteriorated
seriously in Model M1, where most of important
predictors were missed, and both the estimation and
prediction errors were quite large. We want to em-
phasize that in this first example, the latent variables
are linear combinations of the observable predictors
initially included in the model, which means that the
nonsparse effects would not be captured without the
help of estimated confounding factors. By contrast,
the prediction and estimation errors of all regulari-
zation methods were reasonably small in the latent
variable–augmented Model M2. It is worth noticing
that the performance of Hard was comparable to that
of Oracle regardless of the estimation errors of latent
features, which is in line with the theoretical results
in Theorem 2. Furthermore, we can see from Table 2
that all methods with the estimated latent variables

correctly identified the true confounding factor and
accurately recovered its effect.

4.1.2. Simulation Example 2. Nowwe consider a more
general case where the latent variables stem from a
group of observable covariates instead of the origi-
nal predictors. Moreover, we also want to see whether
similar results hold when more significant confounding
factors are involved and the errors become relatively
heavy tailed. Thus, there are three main changes in
the setting of this second example. First, the predictorsX
and observable covariates W are different, as well as
their covariance structures, which will be specified
later. Second, there are two significant latent variables
and the K-dimensional true coefficient vector γ0 �(0.5,−0.5, 0)T. Third, the error vector ε � ση, where
the components of the n-dimensional randomvector η
are independent and follow the t-distribution with
df � 10 degrees of freedom. The settings of β0 and
(n, p,K, σ) are the same as in the first simulation ex-
ample in Section 4.1.1, whereas the dimensionality q
of covariates W equals 1,000, which is also large.
For the covariance structure of X, we set ΣX �

(0.5|i−j|)1≤i,j≤p to allow for correlation at the population
level. By contrast, in order to estimate the principal
components in high dimensions, the population co-
variance matrix of W should have multiple spiked
eigenvalues. Thus, we constructed it using the block
diagonal structure such that

ΣW � Σ11 0

0 Σ22

( )
,

where Σ11 � 3/4(Σ1 + Σ2)1≤i,j≤200 and Σ22 � 1/2 (Σ1 +
Σ2)1≤i,j≤800 with the definitions of Σ1 and Σ2 similar to
those in Section 4.1.1 except for different dimensions.
Under such construction, the two largest eigenvalues
of ΣW are 201.75 and 77.61, respectively, whereas the
others are less than 2.63. Based on the aforementioned
covariance structures, for each data set, the rows of X

Table 1. Means and Standard Errors (in Parentheses) of
Different Performance Measures by All Methods over 200
Simulations in Section 4.1.1

Model Measure Lasso SCAD Hard Oracle

M1 PE 65.27 (1.35) 65.29 (1.40) 68.80 (6.45) —
L2-loss 1.61 (0.24) 1.61 (0.25) 2.25 (1.07) —
L1-loss 4.69 (1.84) 4.70 (1.88) 5.03 (2.31) —
L∞-loss 0.65 (0.13) 0.65 (0.15) 1.48 (1.10) —
FP 4.45 (7.15) 4.45 (7.16) 0.51 (0.90) —
FN 5.93 (0.26) 5.93 (0.26) 5.98 (0.16) —
MSC 0 (0) 0 (0) 0 (0) —
σ̂ 7.88 (0.57) 7.88 (0.57) 7.78 (0.60) —

M2 PE 0.39 (0.16) 0.19 (0.01) 0.19 (0.01) 0.17 (0.01)
L2-loss 0.43 (0.13) 0.13 (0.03) 0.10 (0.03) 0.10 (0.03)
L1-loss 1.52 (0.40) 0.44 (0.07) 0.21 (0.13) 0.21 (0.06)
L∞-loss 0.23 (0.07) 0.07 (0.02) 0.07 (0.02) 0.07 (0.02)
FP 28.79 (6.52) 15.99 (5.63) 0.02 (0.28) 0 (0)
FN 0.02 (0.16) 0 (0) 0 (0) 0 (0)
MSC 0 (0) 0 (0) 1.00 (0.07) 1 (0)
σ̂ 0.47 (0.06) 0.38 (0.03) 0.41 (0.03) 0.40 (0.03)

Note. M1, model with only observable predictors;M2, model includes
estimated latent variables; SCAD, smoothly clipped absolute deviation;
PE, prediction error; FP, false positives; FN, false negatives; MSC,
model selection consistency.

Table 2. Means and Standard Errors (in Parentheses) of
Different Performance Measures for Regression Coefficients
of Confounding Factors by All Methods over 200
Simulations in Section 4.1.1

Measure Lasso SCAD Hard Oracle

L2-loss 0.02 (0.00) 0.01 (0.00) 0.01 (0.00) 0.00 (0.00)
L1-loss 0.02 (0.01) 0.01 (0.00) 0.01 (0.00) 0.00 (0.00)
L∞-loss 0.02 (0.00) 0.01 (0.00) 0.01 (0.00) 0.00 (0.00)
FPγ 0.29 (0.55) 0.21 (0.43) 0 (0) 0 (0)
FNγ 0 (0) 0 (0) 0 (0) 0 (0)
MSCγ 0.73 (0.45) 0.79 (0.41) 1 (0) 1 (0)

Notes. The notation 0.00 denotes a number less than 0.005. SCAD,
smoothly clipped absolute deviation.
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and W were sampled as i.i.d. copies from the corre-
sponding multivariate normal distribution.

We included the top K sample principal compo-
nents in Model M2 as potential latent factors and
compared the performance of Lasso, SCAD, Hard,
and Oracle by the same performance measures as
defined in Section 4.1.1. The results are summarized
in Tables 3 and 4. From Table 3, it is clear that the
methods that relied only on the observable predictors
still suffered a lot under this more difficult setting,
where all true predictors were missed, prediction er-
rors were large, and the error standard deviation (SD)
was poorly estimated. In contrast, the new NSL
methodology via Lasso, SCAD, and Hard was able to
tackle the issues associated with variable selection,
coefficient estimation, prediction, and error SD esti-
mation. With the latent variable–augmented Model
M2, Hard almost recovered the exact underlying
model. Similar to the first example, in view of Table 4,
all methods correctly identified the significant con-
founding factors and estimated their effects accu-
rately. However, compared with Tables 1 and 2, most
of the performance measures deteriorated in this second
example. This is mainly due to the relatively heavy-tailed
random errors, as well as the difficulty in estimating
multiple high-dimensional principal components.

4.2. Application to Nutrient Intake and Human Gut
Microbiome Data

Nutrient intake strongly affects human health and
diseases such as obesity, whereas gut microbiome
composition is an important factor in energy ex-
traction from the diet. We illustrate the usefulness of

our proposed methodology by applying it to the data
set reported by Wu et al. (2011) and previously
studied by Chen and Li (2013) and Lin et al. (2014),
where a cross-sectional study of 98 healthy volunteers
was carried out to investigate the habitual diet effect
on the human gut microbiome. The nutrient intake
consisted of 214 micronutrients collected from the
volunteers by a food frequency questionnaire. The
values were normalized by the residual method to
adjust for caloric intake and then standardized to
have mean zero and SD one. Similar to Chen and
Li (2013), we used one representative for a set of
highly correlated micronutrients whose correlation
coefficients are larger than 0.9, resulting in 119 rep-
resentative micronutrients in total. Furthermore, stool
samples were collected, and DNA samples were an-
alyzed by Roche 454 pyrosequencing of 16S rDNA
gene segments from the V1–V2 region. After taxo-
nomic assignment of the denoised pyrosequences,
the operational taxonomic units were combined into
87 genera that appeared in at least one sample.We are
interested in identifying the important micronutrients
and potential latent factors from the gut microbiome
genera that are associated with the BMI.
Because of the high correlations between the micro-

nutrients, we applied NSL via the elastic net (Zou and
Hastie 2005) to this data set by treating BMI, nutrient
intake, and gut microbiome composition (after the
centered log-ratio transformation; Aitchison 1983)
as the response, predictors, and covariates of con-
founding factors, respectively. The data set was split
100 times into a training set of 60 samples and a
validation set of the remaining samples. For each

Table 3. Means and Standard Errors (in Parentheses) of Different Performance Measures
by All Methods over 200 Simulations in Section 4.1.2

Model Measure Lasso SCAD Hard Oracle

M1 PE 72.33 (1.53) 72.33 (1.53) 76.04 (6.62) —
L2-loss 1.58 (0.24) 1.58 (0.24) 2.25 (1.09) —
L1-loss 4.49 (1.86) 4.49 (1.86) 5.00 (2.10) —
L∞-loss 0.64 (0.13) 0.64 (0.13) 1.50 (1.15) —
FP 3.59 (6.52) 3.59 (6.52) 0.49 (0.72) —
FN 5.95 (0.23) 5.95 (0.23) 6.00 (0.07) —
MSC 0 (0) 0 (0) 0 (0) —
Error SD 8.33 (0.59) 8.33 (0.59) 8.20 (0.63) —

M2 PE 1.74 (1.08) 1.10 (1.05) 1.04 (0.99) 0.22 (0.01)
L2-loss 0.70 (0.22) 0.25 (0.22) 0.16 (0.18) 0.11 (0.03)
L1-loss 2.18 (0.50) 0.87 (0.50) 0.39 (0.53) 0.23 (0.07)
L∞-loss 0.37 (0.12) 0.13 (0.10) 0.10 (0.09) 0.08 (0.03)
FP 20.63 (13.60) 23.29 (12.52) 0.70 (3.34) 0 (0)
FN 0.09 (0.38) 0.15 (0.94) 0.09 (0.63) 0 (0)
MSC 0 (0) 0.09 (0.29) 0.92 (0.27) 1 (0)
Error SD 0.74 (0.20) 0.48 (0.21) 0.50 (0.12) 0.45 (0.04)

Notes. M1, model with only observable predictors; M2, model includes estimated latent variables.
The population error standard deviation σ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
df/(df − 2)√

equals to 0.45. SCAD, smoothly clipped
absolute deviation; PE, prediction error; FP, false positives; FN, false negatives; MSC, model
selection consistency; SD, standard deviation.
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splitting of the data set, we explored two different
models,M1 andM2, as defined in Section 4.1, with the
top 20 sample principal components of gut micro-
biome composition included in Model M2 to estimate
the potential latent factors. All predictors were rescaled
to have a common L2-norm of n1/2, and the tuning
parameter was chosen by minimizing the prediction
error calculated on the validation set. We summarize
in Table 5 the selection probabilities and coefficients
of the significant micronutrients and latent variables
whose selection probabilities were greater than 0.9 in
M1 or greater than 0.85 in M2. The means (with
standard errors in parentheses) of the prediction errors
averaged over 100 random splittings were 167.9 (7.2)
in ModelM1 and 110.3 (4.0) in ModelM2, whereas the
median model size also decreased from 93 to 69 after
applying the NSL methodology. This shows that the
prediction performance was improved after using the
information on gut microbiome genera.

In view of the model selection results in Table 5,
many significant micronutrients in Model M1 became
insignificant after adjusting for the latent substructures,
which implies that either they affect BMI through the
gut microbiome genera or their combinative effects are
captured by the latent variables. This was also evi-
denced by the reduction in model size mentioned

earlier. Moreover, the effects of some micronutrients
changed signs in Model M2, and the subsequent as-
sociations with BMI are consistent with scientific
discoveries (Gul et al. 2017). For instance, aspartame
is a sugar substitute widely used in beverages such as
diet soda, and it was negatively associated with BMI
inModelM1 but tended to share a positive association
after accounting for the gut microbiome genera. A
potential reason is that the people who drink diet
soda can have a relatively healthy habitual diet and
gut microbiome composition that, in turn, lower the
BMI, but the diet soda itself does not reduce fat.
Similar phenomena happened with both acrylamide
and vitamin E as well.
We also applied the model-free knockoffs (Candès

et al. 2018) with a target false discovery rate (FDR)
level of 0.2 to Model M2, and the most significant
factors identified were the latent variables of 7th and
9th principal components, whichmay be explained as
BMI-associated enterotypes while adjusting for nu-
trient intake (Arumugam et al. 2011, Wu et al. 2011).
Themajor gutmicrobiome genera in the compositions
of these two latent variables are displayed in Table 6.
At the phylum level, the latent factors mainly con-
sist of Bacteroidetes and Firmicutes, whose relative
proportion has been shown to affect human obesity
(Ley et al. 2006). In view of the associations with BMI,
both the 7th and 9th principal components confirm
the claim that the Firmicutes-enriched microbiome
holds a greater metabolic potential for energy gain
from the diet that results in weight gain (Turnbaugh
et al. 2006). Furthermore, one of the major micro-
biome genera in the latent factor of the 9th principal
component, Acidaminococcus, was also found to be
positively associated with BMI by Lin et al. (2014),
who show that human obesity can be affected at the
genus level.

5. Discussion
In this paper, we have introduced a new methodol-
ogy, NSL, for prediction and variable selection in the

Table 5. Selection Probabilities and Rescaled Coefficients (in Parentheses) of the Most
Frequently Selected Predictors by Each Model Across 100 Random Splittings in Section 4.2

Predictor Model M1 Model M2 Predictor Model M1 Model M2

Sodium 0.98 (1.35) 0.67 (0.55) PC(7th) — 0.99 (1.76)
Eicosenoic acid 0.98 (–2.47) 0.80 (–1.24) — — 0.96 (–1.21)
Vitamin B12 0.96 (0.43) 0.62 (0.30) Apigenin 0.95 (–1.67) 0.93 (–1.88)
Gallocatechin 0.96 (–4.81) 0.84 (–1.70) PC(9th) — 0.88 (–0.87)
Riboflavin pills 0.94 (1.71) 0.55 (0.61) PC(10th) — 0.86 (0.78)
Acrylamide 0.94 (–0.34) 0.62 (0.32) Iron 0.93 (1.22) 0.86 (0.75)
Naringenin 0.94 (1.11) 0.58 (0.32) Aspartame 0.93 (–0.46) 0.79 (0.59)
Pelargonidin 0.94 (–1.15) 0.75 (–1.03) Vitamin C 0.93 (–0.71) 0.76 (–0.39)
Lauric acid 0.93 (1.88) 0.71 (0.50) Vitamin E 0.92 (0.45) 0.65 (–0.29)

Note. M1, model with only micronutrients as predictors; M2, model includes latent variables from gut
microbiome composition; PC, principal component.

Table 4. Means and Standard Errors (in Parentheses) of
Different Performance Measures for Regression Coefficients
of Confounding Factors by All Methods over 200
Simulations in Section 4.1.2

Measure Lasso SCAD Hard Oracle

L2-loss 0.08 (0.03) 0.07 (0.04) 0.07 (0.04) 0.01 (0.00)
L1-loss 0.10 (0.04) 0.09 (0.05) 0.08 (0.05) 0.01 (0.00)
L∞-loss 0.08 (0.03) 0.06 (0.03) 0.06 (0.03) 0.01 (0.00)
FPγ 0.21 (0.45) 0.34 (0.60) 0.01 (0.10) 0 (0)
FNγ 0 (0) 0 (0) 0 (0) 0 (0)
MSCγ 0.81 (0.39) 0.72 (0.45) 0.99 (0.10) 1 (0)

Notes. The notation 0.00 denotes a number less than 0.005. SCAD,
smoothly clipped absolute deviation,
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presence of nonsparse coefficient vectors through the
factors plus sparsity structure, where latent variables
are exploited to capture the nonsparse combinations
of either the original predictors or additional cova-
riates. The suggested methodology is ideal for the
applications involving two sets of features that are
strongly correlated, as in our BMI study. Both theo-
retical guarantees and empirical performance of the
potential latent family incorporating population princi-
pal components have been demonstrated. And our
methodology is also applicable to more general fam-
ilies with properly estimated latent variables and
identifiable models.

It would be interesting to further investigate sev-
eral problems, such as hypothesis testing and FDR
control in nonsparse learning by the idea of NSL.
Based on the established model identifiability con-
dition that characterizes the correlations between
observable and latent predictors, hypothesis testing
can proceed using the debiasing idea in Javanmard
andMontanari (2014), van deGeer et al. (2014), Zhang
and Zhang (2014). FDR could be controlled by ap-
plying the knockoffs inference procedures (Barber
and Candès 2015, Candès et al. 2018, Fan et al.
2020) on the latent variable–augmented model. The
main difficulty lies in analyzing how the estimation
errors of unobservable factors affect the corresponding
procedures. Another possible direction is to explore
more general ways of modeling the latent variables to
deal with the nonsparse coefficient vectors. These
problems are beyond the scope of this paper and will
be interesting topics for future research.
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