

1 **Influences of pH and substrate supply on the ratio of iron to sulfate reduction**

2

3 Running head: Controls on the ratio of iron to sulfate reduction

4

5 Janet M. Paper^{1,6}, Theodore M. Flynn^{2,7}, Maxim I. Boyanov^{2,3}, Kenneth M. Kemner², Ben R.
6 Haller^{1,8}, Kathleen Crank⁴, AnneMarie Lower⁴, Qusheng Jin⁵, Matthew F. Kirk^{1*}

7

8 ¹Department of Geology, Kansas State University, Manhattan, KS 66506, USA

9 ²Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA

10 ³Bulgarian Academy of Sciences, Institute of Chemical Engineering, Sofia, 1113, Bulgaria

11 ⁴Department of Biology, Benedictine College, Atchison, KS 66002, USA

12 ⁵Department of Earth Sciences, University of Oregon, Eugene 97403, OR

13 ⁶Current address: Department of Biology, Benedictine College, Atchison, KS 66002, USA

14 ⁷Current address: California Department of Water Resources, Sacramento, CA 95814, USA

15 ⁸Current address: Kansas Department of Health and Environment, Topeka, KS 66612, USA

16 *Correspondence: mfkirk@ksu.edu, 785-532-6724

17

18 **ACKNOWLEDGEMENTS**

19 This project was supported by funding from NSF awards EAR-1753436 and EPS-
20 0903806, the Benedictine Discovery Day Program, and the State of Kansas through the Kansas
21 Board of Regents. The XAFS data collection and analyses and effort of KMK, MIB, and TMF
22 were supported by the Argonne Wetlands Hydrobiogeochemistry Scientific Focus Area (SFA) at
23 Argonne National Laboratory funded by the Subsurface Biogeochemical Research Program,

24 Office of Biological and Environmental Research, Office of Science, U.S. Department of Energy
25 (DOE), under contract DE-AC02-06CH11357. MRCAT/EnviroCAT operations are supported by
26 DOE and the MRCAT/EnviroCAT member institutions. This research used resources of the
27 Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE
28 Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

29

30 **Abstract**

31 Iron reduction and sulfate reduction often occur simultaneously in anoxic systems, and where
32 that is the case, the molar ratio between the reactions (i.e., $\text{Fe}/\text{SO}_4^{2-}$ reduced) influences their
33 impact on water quality and carbon storage. Previous research has shown that pH and the supply
34 of electron donors and acceptors affect that ratio, but it is unclear how their influences compare
35 and affect one another. This study examines impacts of pH and the supply of acetate, sulfate, and
36 goethite on the ratio of iron to sulfate reduction in semi-continuous sediment bioreactors. We
37 examined which parameter had the greatest impact on that ratio and whether the parameter
38 influences depended on the state of each other. Results show that pH had a greater influence than
39 acetate supply on the ratio of iron to sulfate reduction, and that the impact of acetate supply on
40 the ratio depended on pH. In acidic reactors (pH 6.0 media), the ratio of iron to sulfate reduction
41 decreased from 3:1 to 2:1 as acetate supply increased (0 to 1 mM). In alkaline reactors (pH 7.5
42 media), iron and sulfate were reduced in equal proportions, regardless of acetate supply.
43 Secondly, a comparison of experiments with and without sulfate shows that the extent of iron
44 reduction was greater if sulfate reduction was occurring and that the effect was larger in alkaline
45 reactors than acidic reactors. Thus, the influence of sulfate supply on iron reduction extent also
46 depended on pH and suggests that iron reduction grows more dependent on sulfate reduction as

47 pH increases. Our results compare well to trends in groundwater geochemistry and provide
48 further evidence that pH is a major control on iron and sulfate reduction in systems with
49 crystalline (oxyhydr)oxides. pH not only affects the ratio between the reactions but also the
50 influences of other parameters on that ratio.

51

52 **Summary statement:** This study uses bioreactor experiments to examine environmental controls
53 on the ratio of iron reduction to sulfate reduction. Findings underscore the importance of pH as a
54 major control on the relationship between the reactions. pH not only affected the ratio between
55 the reactions but also influences of other parameters on that ratio. Moreover, the results suggest
56 that iron reduction grows increasingly dependent on sulfate reduction as pH increases.

57

58 **Key words:** iron reduction, sulfate reduction, anoxic environments, *Geobacter*, goethite

59

60 1. INTRODUCTION

61 Iron reduction and sulfate reduction help drive organic carbon oxidation in anoxic
62 environments and in doing so impact water quality, nutrient availability, and carbon storage
63 (Jorgensen, 1982; Roden & Edmonds, 1997; Borch *et al.*, 2010; Kirk *et al.*, 2013; Muller *et al.*,
64 2017). The nature of that impact depends in part on the molar ratio between the reactions (i.e.,
65 Fe/SO₄²⁻ reduced). Where the reactions occur independently, their products (ferrous iron (Fe(II))
66 and sulfide) can accumulate in solution and degrade water quality (Chapelle & Lovley, 1992;
67 Rabus *et al.*, 2006). In contrast, where the reactions occur simultaneously, their products can
68 precipitate as mackinawite (~FeS) (Berner, 1970; Luther & Rickard, 2005; Michel *et al.*, 2005),
69 which can ultimately transform into greigite and pyrite (Hunger & Benning, 2007). In

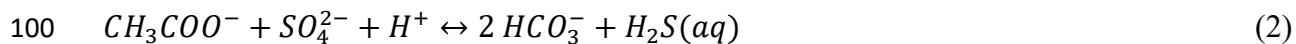
70 environments hosting both reactions, accumulation of dissolved ferrous iron and sulfide varies
71 with the ratio of iron reduction and sulfate reduction (Chapelle *et al.*, 2009). That ratio is known
72 to be sensitive to pH and the supply of energy resources for microbial metabolism, but the
73 relative influences of those variables are unclear. By learning more about these controls, we will
74 be better able to use them to interpret and manage the biogeochemistry of anoxic systems.

75 Iron and sulfate reduction are mediated by microorganisms in low-temperature (i.e.,
76 superficial) systems. Numerous groups of microorganisms are capable of reducing sulfate for
77 dissimilatory and assimilatory metabolism (Muyzer & Stams, 2008; Anantharaman *et al.*, 2018).
78 Similarly, a wide diversity of microorganisms can catalyze iron reduction for dissimilatory
79 metabolism (Lovley & Phillips, 1988; Weber *et al.*, 2006). In addition, iron can also be reduced
80 abiotically by reaction with sulfide and reduced humic substances generated by microbial
81 activity (Pyzik & Sommer, 1981; Canfield, 1989; Lovley *et al.*, 1996; Roden *et al.*, 2010).

82 Multiple lines of evidence have shown that the ratio of iron reduction to sulfate reduction
83 decreases as pH increases in anoxic systems. Results from previous studies that identify this
84 relationship include rates observed in an aquifer (Jakobsen & Postma, 1999), findings from
85 culturing experiments (Küsel & Dorsch, 2000; Kirk *et al.*, 2013; Flynn *et al.*, 2014), and
86 variation in groundwater geochemistry in U.S. aquifers (Kirk *et al.*, 2016).

87 One potential reason for this relationship is that pH has a stronger influence on the free
88 energy yield of iron reduction than sulfate reduction (Postma & Jakobsen, 1996; Bethke *et al.*,
89 2011; Jin & Kirk, 2018a). Oxidized iron in soil and sediment most commonly exists within a
90 solid phase, such as a ferric oxide, oxyhydroxide, or hydroxide solid (Cornell & Schwertmann,
91 2003). Hereafter, we refer to these phases collectively as (oxyhydr)oxides. Where those phases
92 are reductively dissolved, the reaction consumes a large number of protons, as shown in the

93 example reaction, which includes acetate (CH_3COO^-) as the electron donor and goethite
94 (FeOOH) as a source of ferric iron (Fe(III)):


95

97

98 In contrast, sulfate reduction coupled with acetate oxidation consumes at most one proton:

99

101

102 Therefore, as pH increases, the Gibbs free energy yield of sulfate reduction varies little whereas
103 the free energy yield of iron reduction decreases rapidly (Postma & Jakobsen, 1996; Bethke *et*
104 *al.*, 2011; Jin & Kirk, 2018a). This difference can impact the ratio of iron reduction to sulfate
105 reduction by affecting iron reduction kinetics. Microbial reactions that release more energy can
106 have kinetic advantages over those releasing less energy (Jin & Bethke, 2007; Jin, 2012; LaRowe
107 *et al.*, 2012; LaRowe & Amend, 2015; Jin & Kirk, 2018b). As such, the rate of iron reduction
108 may decrease in response to decreasing energy yield with increasing pH.

109 Another potential reason pH influences the ratio of iron to sulfate reduction is that pH
110 affects ferrous iron sorption. In general, ferrous iron is more soluble than ferric iron in solutions
111 at near-neutral pH (Stumm & Morgan, 1996), and thus dissolved ferrous iron can accumulate
112 during iron reduction (equation 1). However, some portion of the ferrous iron produced can also
113 sorb onto the residual ferric (oxyhydr)oxide mineral:

114

116

117 where $\equiv FeOH$ and $\equiv FeOFe^+$ represent uncomplexed and complexed sorbing sites on goethite,
118 respectively (Dixit & Hering, 2006). Because the reaction produces a proton, ferrous iron
119 sorption becomes more favorable as pH increases (Dixit & Hering, 2006). Sorption of ferrous
120 iron fouls (oxyhydr)oxide surfaces and causes the rate of iron reduction to decrease (Roden &
121 Urrutia, 1999; Urrutia *et al.*, 1999; Benner *et al.*, 2002). Thus, as pH increases, iron reduction
122 may be more likely to slow in response to increasing ferrous iron sorption.

123 In addition to pH, electron donor supply also has the potential to influence the ratio of
124 iron reduction to sulfate reduction. Because ferric iron typically exists within a solid phase, the
125 surface area of the solid can limit the rate of electron transfer to ferric iron (Roden & Zachara,
126 1996; Roden, 2003, 2006). Where the rate of electron donor supply exceeds that limit, we reason
127 that excess electron donor may divert to alternative reactions, such as sulfate reduction, even if
128 iron reduction is favored otherwise. More generally, previous studies have shown that microbial
129 reactions can coexist when electron donor supply is not limiting (Lovley & Phillips, 1987;
130 Lovley & Goodwin, 1988; Achtnich *et al.*, 1995; Küsel & Dorsch, 2000).

131 Lastly, electron acceptor supply helps determine if the reactions can occur
132 simultaneously. For both reactions to occur within the same environment, a source of ferric iron
133 and sulfate must be available. Beyond that basic requirement, ferric iron source also has the
134 potential to influence the ratio of iron to sulfate reduction. Ferric (oxyhydr)oxide reactivity varies
135 widely, reflecting variation in mineral properties as well as environmental conditions (Konhauser
136 *et al.*, 2011). In general, however, poorly crystalline phases such as ferrihydrite ($\sim Fe(OH)_3$) tend
137 to have higher surface areas and solubilities than more stable phases, such as goethite and
138 hematite (Fe_2O_3). Iron reduction rates have been found to increase with (oxyhydr)oxide surface

139 area and solubility (Larsen & Postma, 2001; Roden, 2003, 2006; Bonneville *et al.*, 2004, 2009;
140 Cutting *et al.*, 2009). Therefore, environments with poorly crystalline phases may tend to have
141 higher ratios of iron to sulfate reduction than those with highly crystalline phases.

142 These previous studies provide insight into the roles of pH and supply of electron donors
143 and acceptors as environmental factors that influence the ratio of iron to sulfate reduction.
144 However, it remains unclear which of these environmental factors has the biggest influence on
145 the reaction ratio. Furthermore, it is also unclear whether there are interaction effects between
146 these factors. For example, does the influence of electron donor supply on the ratio of iron to
147 sulfate reduction depend on the pH of the environment?

148 To help answer these questions, we carried out semi-continuous bioreactor experiments
149 that examined variation in pH alongside variation in electron donor concentration. We included
150 bioreactors with goethite as a source of ferric iron and acetate as an electron donor, as well as
151 control reactors that lacked sulfate and goethite. We inoculated all of the bioreactors with marsh
152 sediment that included a natural microbial consortium capable of iron and sulfate reduction.
153 Lastly, to test the environmental relevance of our experiments, we compare our results to broad
154 spatial-scale trends in the chemistry of groundwater from U.S. aquifers.

155

156 **2. MATERIALS AND METHODS**

157 **2.1. Study design**

158 We performed five experiments in triplicate, each consisting of two sets of semi-
159 continuous bioreactors: one that received acidic medium (pH 6.0) and one that received alkaline
160 medium (pH 7.5) (Table 1). In our experiment labels, S stands for sulfate, NA, LA, and HA
161 indicate no acetate, low acetate, and high acetate, respectively, and NFe indicates no iron. Media

162 for experiments S-NA, S-LA, S-HA included 0, 0.25, and 1 mM acetate, respectively, and 1.5 -
163 2.5 mM sulfate, allowing us to test the influence of acetate flux on the balance between iron
164 reduction and sulfate reduction. Experiment HA was identical to S-HA, except no sulfate was
165 included in the media. Similarly, experiment S-LA-NFe was similar to S-LA, except we did not
166 add goethite to the reactor sediment. Thus, HA and S-LA-NFe represent sulfate and ferric iron
167 control experiments, respectively. Lastly, we inoculated all of the reactors with the same marsh
168 sediment, which was previously analyzed for chemical and microbial compositions, as described
169 below (section 2.4).

170 We selected the pH range of the media for two reasons. First, that pH range is common in
171 natural systems hosting iron and sulfate reduction. For example, Kirk et al. (2016), analyzed the
172 chemistry of groundwater from zones of iron and/or sulfate reduction in 19 aquifers distributed
173 across the U.S. and found that more than 50% of the >5,000 samples in their dataset had pH
174 between 6.0 and 7.5 (Table SI12). Secondly, thermodynamic calculations show that goethite
175 reduction can be favored over sulfate reduction at acidic pH but that sulfate reduction is favored
176 above pH 6.5-7.0 (Jin & Kirk, 2018a). Thus, our experiments consider both sides of that tipping
177 point.

178

179 **2.2. Aqueous media preparation**

180 We defined the composition of aqueous media for the bioreactor experiments based on
181 the composition of the water overlying the marsh sediment and included small amounts of
182 ammonium (50 μ M) and phosphate (1 μ M) to stimulate microbial activity (Table 1). We made
183 media solutions in volumetric flasks and dispensed them into 1 L solution bottles sealed with
184 either rubber stoppers or ported PTFE solution bottle caps. To remove oxygen and set the pH of

185 the medium, we sparged the media for 2 hr/L with oxygen-free gas flowing at >0.5 L/min and
186 composed of CO₂ and N₂. We set the pH to either 6.0 or 7.5 by adjusting the N₂:CO₂ ratio of the
187 sparge gas. The N₂:CO₂ ratio of the sparge gas was 65:35 for pH 6.0 media and 99:1 for pH 7.5
188 media. We scrubbed trace oxygen from the gas by passing it through a heated column filled with
189 copper wool (Hungate, 1969). We measured the pH of the media each week and, if it deviated
190 from target values, we re-sparged the medium.

191

192 **2.3. Bioreactors**

193 The bioreactors consisted of 160 mL serum bottles that contained 100 mL of aqueous
194 medium, 1 g of wet marsh sediment inoculum, and except for S-LA-NFe reactors, 1 mmol of
195 goethite (i.e., 10 mmol/L). We synthesized the goethite by slowly oxidizing a bicarbonate-
196 buffered solution of ferrous chloride as described by Schwertmann and Cornell (2000) and
197 verified its identity prior to its initial use using X-ray diffraction (XRD) and high-resolution
198 transmission electron microscopy (HR-TEM) (Kirk *et al.*, 2010). Prior to this study, we
199 reanalyzed the goethite again using X-ray absorption spectroscopy (XAS), as described
200 previously (Marquart *et al.*, 2019). Results of the XAS analyses indicate that the synthetic
201 goethite was mostly goethite (75%) mixed with a disordered iron phase (ferrihydrite) or possibly
202 nano-goethite crystals (Marquart *et al.*, 2019) (Fig. SI1). For simplicity we refer to the synthetic
203 goethite simply as “goethite”, but we acknowledge the possibility that a portion of the ferric
204 mineral was ferrihydrite.

205 We assembled the bioreactors as described by Marquart *et al.* (2019). We added aqueous
206 medium and goethite, sparged the bioreactors with N₂, plugged them with butyl rubber stoppers,
207 and then sterilized them with an autoclave (30 minutes at 121°C). Next, we placed the

208 bioreactors in an anaerobic chamber (Coy Labs, 2-5% H₂ with N₂ balance and Pd catalyst),
209 removed their stoppers, and inoculated them with marsh sediment. We homogenized the marsh
210 sediment and measured the exact mass added to each reactor. We also added ferrous chloride
211 (100 µM final concentration) to consume trace oxygen that may have been present after reactor
212 assembly. Next, we replaced the stoppers and sealed the reactors with aluminum crimp seals,
213 inserted a sterile 4-inch stainless steel needle through the stopper, and capped the needle with a
214 syringe valve. The needle terminated in the aqueous phase of the reactors at a level about 2 cm
215 above the bottom and was used to add and remove fluid during the incubation. Lastly, we
216 removed the reactors from the anaerobic chamber and sparged them with filter-sterilized, O₂-free
217 gas to adjust the proportion of N₂ and CO₂ gas according to Table 1.

218 The reactors incubated in the dark at 20°C until acetate concentrations were stable for >1
219 month (91 days total). Every seven days during the incubation, we removed 1/5 of the aqueous
220 volume from each reactor (i.e., 20 mL) without removing reactor solids. Then, immediately
221 afterward, we replaced the sampled volume with fresh medium and gently swirled the reactors to
222 mix them. We chemically analyzed the volume removed using the techniques described below.
223 This semi-continuous sediment bioreactor approach is similar to an aquifer, in that sulfate and
224 other solutes migrate with flowing groundwater and sources of ferric iron exist within the solid
225 matrix.

226

227 **2.4. Marsh sediment inoculum**

228 We collected marsh sediment for the reactors from the floodplain of the Big Blue River
229 near its mouth on Tuttle Creek Reservoir (latitude 039°27'38.988"N longitude
230 096°41'25.3428"W). The site was chosen because it is conveniently located near Kansas State

231 University (site of the experiments) and because diverse communities of anaerobic
232 microorganisms are common in wetland sediments (Pester *et al.*, 2012; Kim & Liesack, 2015).
233 We collected samples on January 30, 2016. At the time, the sediment was submerged beneath ice
234 and about 0.25 m of water. We collected water-saturated soil samples for inoculum in a sterile
235 (autoclaved; 121°C for 30 min) jar and stored them at 20°C in the laboratory for 6 months before
236 starting the experiments. This pre-incubation period allowed endogenous electron donors (e.g.,
237 organic matter) to partially deplete before we started the experiments.

238 In addition to the inoculum sample, we also collected soil samples for chemical and
239 microbiological analysis and water samples for chemical analysis. We stored the soil samples in
240 sterile 50 mL centrifuge tubes at -80°C and the water samples in 60 mL polyethylene bottles at
241 4°C. We characterized the pH, elemental composition, organic matter content, particle size
242 distribution, mineralogy, and microbial community composition of the sediment. Results of the
243 analyses are presented in Marquart *et al.* (2019). To briefly summarize, those analyses showed
244 that the sediment was primarily composed of clay minerals with 0.7 mmol Fe and 7.5 mmol
245 organic carbon per gram. XAS analysis indicates that the iron in the sediment was ferric iron and
246 that it existed primarily within clay minerals (Fig. SI2; Table SI2). Microbial community
247 analysis reveals a diverse community that includes groups commonly associated with iron
248 reduction and sulfate reduction, including *Geobacter* and members of the order
249 *Desulfobacterales* (Table SI9).

250

251 **2.5. Chemical Analysis**

252 *2.5.1. Analysis of water and gas samples*

253 We monitored the chemistry of reactor solutions and gas to identify variation in the
254 reaction ratio. Each week during the incubation, we measured pH and concentrations of anions
255 (acetate, chloride, and sulfate) and total dissolved sulfide and ferrous iron in reactor effluent
256 samples. We also periodically analyzed headspace methane abundance and effluent
257 concentrations of cations (sodium, potassium, magnesium, and calcium) and alkalinity.
258 Similarly, we analyzed pH, alkalinity, and concentrations of anions and cations in the marsh
259 water sample and each batch of aqueous medium.

260 For all water chemistry analyses except pH measurements, we filtered the samples using
261 syringe filters with 0.45 μm pores. We measured pH using an Oakton PC-300 pH meter. To
262 measure ferrous iron and sulfide concentrations, we used the ferrozine method (Stookey, 1970)
263 and the methylene blue method (Eaton *et al.*, 1995), respectively, with a Thermo Scientific
264 Genesys 10S UV-Vis spectrophotometer. We analyzed alkalinity concentrations using Gran
265 alkalinity titrations with 0.02 N sulfuric acid. To measure anion and cation concentrations, we
266 used Dionex ICS-1100 ion chromatographs. For methane analysis, we used a GOW MAC series
267 580 gas chromatograph with a thermal conductivity detector. Prior to extracting gas samples, we
268 measured the headspace pressure using a low-pressure mechanical gauge. Uncertainty and
269 detection limit values for our water and gas chemistry methods are available in Table SI1.

270

271 *2.5.2. Analysis of sediment samples*

272 We evaluated the abundance of ferrous iron in subsamples of homogenized reactor
273 sediment at the end of the experiment by measuring 0.5 N HCl extractable ferrous iron (Heron *et*
274 *al.*, 1994). The approach provides an estimate of the abundance of labile ferrous iron, including
275 sorbed ferrous iron and ferrous iron in siderite (FeCO_3) and mackinawite (FeS). To evaluate

276 speciation of iron in the solid phase of select reactors at the end of the experiment, we used iron
277 K-edge (7,112 eV) XAS measurements at the MR-CAT/EnviroCAT bending magnet beamline
278 (Sector 10, Advanced Photon Source, Argonne National Laboratory) (Kropf *et al.*, 2010). For the
279 analysis, one replicate reactor was characterized from each pH treatment of experiments
280 containing goethite.

281 To prepare samples for XAS, we filtered well-mixed aliquots of reactor solids and fluid
282 through 0.22 μ m nylon membranes inside an anoxic glove box and then sealed hydrated solids
283 with the membrane between two layers of Kapton film. Anoxic integrity of samples prepared and
284 measured this way have been demonstrated in previous work (O'Loughlin *et al.*, 2003). We
285 collected X-ray absorption near edge spectra (XANES) and extended X-ray absorption fine
286 structure (EXAFS) spectra from standards and reactor solids in transmission mode using gas-
287 filled ionization chambers. Energy calibration was set to the inflection point in an iron foil
288 spectrum (7,112 eV) and was continuously maintained by collecting spectra from the foil
289 simultaneously with the data from the samples. Radiation-induced changes in the spectra were
290 not detected and no differences were observed between spectra from fresh areas on the sample,
291 so all scans from each sample were averaged to produce the final spectrum.

292 We quantified the average oxidation state and speciation of Fe in the samples by linear
293 combination (LC) fits of the XANES and EXAFS spectra using the program Athena (Ravel &
294 Newville, 2005). The LC analysis utilized spectra from reduced and oxidized Fe standards
295 (mackinawite, FeO, Fe(OH)₂, vivianite, siderite, green rust, magnetite, goethite, ferrihydrite)
296 measured previously at the same beamline (Latta *et al.*, 2012; Kwon *et al.*, 2014).

297

298 **2.6. Microbial community analysis**

299 We collected samples for microbial community analysis at the end of the incubation from
300 each reactor and at the beginning of the incubation from some of the reactors. To obtain each
301 sample, we mixed the reactors, withdrew 3 mL of reactor fluid and solids with a sterile syringe,
302 and then filtered the slurry onto a mixed-cellulose-ester filter membrane with 0.22 μ m pores.
303 Prior to sampling, we sterilized the membranes and filter housing using an autoclave (30 minutes
304 at 121°C). After filtering, we placed the membranes in sterile 2 mL centrifuge tubes, preserved
305 them with 0.2 mL of sucrose lysis buffer (Giovannoni *et al.*, 1990), and stored them at -80°C.

306 We analyzed the samples as described previously (Marquart *et al.*, 2019). A detailed
307 description of the analysis is available in the Supporting Information. Briefly, we extracted total
308 community DNA from reactor samples and marsh sediment using a MoBio PowerSoil DNA
309 isolation kit. DNA amplification sequencing was carried out at the Environmental Sample
310 Preparation and Sequencing Facility at Argonne National Laboratory. The facility amplified 16S
311 rRNA genes using the polymerase chain reaction (PCR) targeting the V4 region of this gene in
312 both bacteria and archaea using the primers 515F (5'-GTGYCAGCMGCCGCGGTAA-3') and
313 806R (5'-GGACTACNVGGGTWTCTAAT-3') (Walters *et al.*, 2016). Paired-end amplicons
314 (151 \times 12 \times 151 base pairs) were then sequenced by Illumina MiSeq using customized sequencing
315 primers and procedures (Caporaso *et al.*, 2012) . Following sequencing, amplicon libraries were
316 processed using QIIME (Caporaso *et al.*, 2012) and USEARCH (Edgar, 2010). After quality
317 filtering, the average sequencing depth was 25,050 \pm 8,883 sequences per sample. Taxonomy was
318 assessed using the UCLUST algorithm (Edgar, 2010) with the SILVA reference database
319 (version 128) (Quast *et al.*, 2013). Raw sequence data collected for this study are available to
320 download via MG-RAST (Meyer *et al.*, 2008) under project mgp89849.

321

322 **2.7. Statistical analysis**

323 We tested the significance of differences in results between reactors using unpaired t-tests
324 with Welch's correction to avoid the assumption of equal standard deviation between groups. To
325 test the significance of correlations between parameters, we used Spearman's rho rank
326 correlation tests. We carried out statistical calculations using Prism GraphPad, version 6.00
327 (GraphPad Software). We used two-tailed tests and considered *P*-values <0.05 to be significant.

328

329 **3. RESULTS**

330 **3.1. Reactor chemistry**

331 *3.1.1. Effluent and gas*

332 The chemical composition of reactor effluent (i.e., solution removed each week) differed
333 considerably between experiments, reflecting the interplay between microbial activity and
334 environmental conditions. In reactors that received pH 6.0 media, average effluent pH values
335 initially ranged from 5.5 to 6.0 but stabilized at values ranging from 6.2 and 6.5 by day 42 (Fig.
336 1A; Tables SI3-7). Similarly, in reactors that received pH 7.5 media, average initial pH ranged
337 from 6.7 to 7.3 but stabilized at values ranging from 7.5 to 8.5 by day 42.

338 Acetate concentrations in reactor effluent were initially higher than influent (i.e., fresh
339 medium added each week) levels for all reactors in response to organic matter degradation in the
340 marsh sediment. Maximum levels were higher in acidic reactors than corresponding alkaline
341 reactors. Peak levels were also higher in reactors with goethite than those without. In reactors
342 with goethite, average initial acetate levels ranged from 5.8 to 8.0 mM in acidic reactors and
343 from 3.8 to 5.7 mM in alkaline reactors (Fig. 1B). In reactors without goethite (S-LA-NFe),
344 initial acetate concentrations averaged 1.8 and 1.1 mM in acidic and alkaline reactors,

345 respectively. Regardless, by day 42, acetate concentrations fell to values near or below the
346 detection limit (15.8 μ M) for all reactors and remained there for the rest of the incubation.

347 As acetate concentrations decreased, dissolved ferrous iron concentrations increased (Fig.
348 1C). In reactors with goethite, average ferrous iron concentrations peaked at values ranging from
349 2.87 to 3.25 mM in acidic reactors and 337 to 383 μ M in alkaline reactors. In contrast, in
350 reactors without goethite (S-LA-NFe), ferrous iron concentrations peaked at 269 and 14 μ M in
351 acidic and alkaline reactors, respectively. After reaching maximum levels, ferrous iron
352 concentrations gradually declined in all reactors but remained above the detection limit (1.8 μ M)
353 for each reactor except the alkaline S-HA reactors. Among reactors with goethite, ferrous iron
354 concentrations decreased more rapidly for those that received sulfate (S-NA, S-LA, S-HA) than
355 those that did not (HA), regardless of pH.

356 In contrast to ferrous iron, sulfate concentrations decreased as acetate levels fell in
357 reactors that received sulfate (Fig. 1D). Concentrations fell more rapidly in alkaline reactors than
358 acidic reactors. In reactors with goethite, sulfate concentrations decreased to values near the
359 detection limit (7.4 μ M) by 28 days. In response, we increased sulfate concentration in the
360 influent media of goethite-amended reactors from 1.5 mM to 2.5 mM on day 28 to prevent
361 sulfate supply from limiting sulfate reduction. After this point, sulfate concentrations gradually
362 increased. Final sulfate concentrations were about 2 mM in S-NA and S-LA reactors and about
363 1.2 mM in S-HA reactors.

364 For reactors without goethite (S-LA-NFe), sulfate concentrations followed a similar
365 pattern over time as those with goethite. However, we started the experiment about 5 weeks after
366 the other experiments. Based on results gathered during that time from the reactors with goethite,
367 we set the influent sulfate concentration at 2.5 mM from the start of the experiment to avoid the

368 potential for sulfate depletion. For reactors without sulfate in the influent media (HA), sulfate
369 concentration remained below the detection limit (7.4 μM) throughout the experiment.

370 Although sulfate was consumed in each sulfate-bearing reactor, concentrations of
371 dissolved sulfide remained near or below the detection limit for most of the reactors except for
372 those without goethite (S-LA-NFe) and the alkaline S-HA reactors (Fig. 1E). In reactors without
373 goethite, variation in sulfide levels mirrored variation in sulfate. Average sulfide concentrations
374 peaked at just over 100 μM at nearly the same time that sulfate concentrations reached their
375 minimum and then, as sulfate concentrations increased, sulfide concentrations decreased. In
376 contrast, sulfide concentrations steadily increased in the alkaline S-HA reactors during the
377 incubation, reaching a maximum of 65 μM on average.

378 Lastly, methane partial pressures were generally low, except for those without sulfate in
379 the influent media (HA) (Fig. 1F; Table SI8). In those reactors, methane abundance steadily
380 increased, reaching maximums of 16.95 and 12.52 kPa on average in the acidic and alkaline
381 reactors, respectively, by the end of the incubation. In reactors with sulfate, methane partial
382 pressures were highest in those that received the most acetate (S-HA), reaching maximums of
383 2.34 and 1.40 kPa on average in the acidic and alkaline reactors, respectively, by the end of the
384 experiment. For all experiments, methane production was higher in acidic than alkaline reactors
385 on average, matching the observed variation with pH in maximum acetate concentrations.

386

387 *3.1.2. Sediment*

388 Amounts of 0.5 N HCl-extractable ferrous iron in reactor sediments at the end of the
389 incubations varied widely, ranging from about 0.43 mmol/L of reactor suspension to 5.21
390 mmol/L (Fig. 2). Within each experiment, extractable iron levels were higher on average for

391 reactors that received alkaline medium than those that received acidic medium. However, at the
392 level of replication of the experiments, differences in extractable iron between acidic and
393 alkaline reactors within each experiment were only significant for the goethite control
394 experiment (S-LA-NFe; $P = 0.0147$) and the sulfate control experiment (HA; $P = 0.0017$).

395 Between experiments, average 0.5 N HCl-extractable ferrous iron levels were
396 significantly higher in reactors with sulfate and goethite (S-NA, S-LA, and S-HA) than those
397 without sulfate (HA; $P \leq 0.0060$) or goethite (S-LA-NFe; $P < 0.0001$). Among reactors that
398 contained sulfate and goethite, average extractable ferrous iron levels increased with the acetate
399 content of the medium (S-NA < S-LA < S-HA). Average abundance of extractable ferrous iron
400 was significantly greater for S-HA compared to S-NA ($P < 0.0001$) and S-LA ($P < 0.0001$)
401 whereas S-NA and S-LA were not significantly different.

402 Based on LC analysis of XANES data, variation in the oxidation state of sediment iron
403 followed a similar pattern to extractable iron levels. The XANES edge position of the marsh
404 sediment inoculum and the goethite amendment align well with that of a crystalline goethite
405 standard, indicating that the iron in the reactors initially was predominantly ferric iron (Fig. SI3).
406 In reactor sediment samples collected at the end of the incubations, the proportion of ferrous iron
407 determined by LC analysis of XANES spectra ranged from 13 to 57% (Figs. 3, SI6-7). Among
408 reactors containing sulfate and goethite, the proportion of ferrous iron increased with acetate
409 supply (S-NA < S-LA < S-HA), matching the trend in extractable iron. In reactors without
410 sulfate (HA), the proportion of ferrous iron was similar to that in S-NA reactors, despite
411 differences in acetate supply (1 vs 0 mM). Compared to acidic reactors, the proportion of ferrous
412 iron in corresponding alkaline reactors was higher in experiments with sulfate (S-NA, S-LA, S-

413 HA) and lower in the sulfate control experiment (HA). Reactors without goethite (S-LA-NFe)
414 were not characterized by XANES.

415 XANES spectra collected from reactor sediments at the end of the incubations contain
416 spectral features indicative of mackinawite (Figs. SI4-5). LC analysis of the XANES and
417 EXAFS data confirms mackinawite presence in the samples and quantifies its abundance (Fig.
418 SI6-9). In reactors with sulfate and goethite, the proportion of mackinawite increased with
419 acetate supply (S-NA < S-LA < S-HA), consistent with the trend in extractable iron and iron
420 oxidation state. Based on the XANES results, the proportion of solid-phase iron existing within
421 mackinawite ranged from 9 to 48%. Based on the EXAFS results, the proportion ranged from 6
422 to 32%. In reactors with goethite but without sulfate (HA), mackinawite abundance was below
423 the detection limit ($\leq 5\%$).

424

425 **3.2. Microbial community composition**

426 Our microbial community analysis reveals diverse communities potentially capable of a
427 broad range of metabolic reactions. Here we focus on the most abundant groups ($\geq 0.5\%$ avg.
428 relative abundance) that classified in *Delta**proteobacteria*, a class containing many of the
429 bacteria capable of iron and/or sulfate reduction (Kersters *et al.*, 2006; Weber *et al.*, 2006). On
430 average, 50% of the sequences from samples collected at the end of the incubations classified in
431 *Delta**proteobacteria*. Complete results are available in the Supporting Information (Table SI9).

432 The largest group of sequences overall was most closely related to *Geobacter* (Fig. 4), a
433 genus associated with iron reduction (Lovley *et al.*, 1993a; Lentini *et al.*, 2012; Hori *et al.*,
434 2015). In bioreactor samples collected at the end of the incubation, 21% of the sequences overall
435 classified within *Geobacter* compared to only 0.3% in the marsh sediment used to inoculate the

436 reactors. In reactors containing sulfate and goethite (S-NA, S-LA, S-HA), *Geobacter* relative
437 abundance was significantly higher ($P \leq 0.0063$) on average in those receiving acidic media
438 (30.5%) than alkaline media (15.9%), but varied insignificantly with the acetate content of the
439 influent media (overall average: 25.3% in S-NA, 23.7% in S-LA, and 19.8% in S-HA). In
440 sulfate-bearing reactors without goethite (S-LA-NFe), *Geobacter* relative abundance was 9.8%
441 on average with insignificant variation between acidic (9.4%) and alkaline (10.1%) reactors. In
442 reactors without sulfate but with goethite (HA), *Geobacter* relative abundance was 25.7% on
443 average, again with insignificant variation between acidic (25.2%) and alkaline (26.2%) reactors.

444 Sequences also classified with several groups that include species capable of
445 dissimilatory sulfate reduction, including *Desulfobacter* (2.9%), *Desulfotalea* (2.3%),
446 *Desulfobulbus* (2.2%), *Desulfocapsa* (2.0%), *Desulfobacterium* (1.2%), *Desulfobacca* (0.8%),
447 *Desulfomicrobium* (0.7%), *Desulfuromonas* (0.6%), and uncultured members of
448 *Desulfobulbaceae* (6.6%), *Desulfuromonadales* (1.6%), *Syntrophobacteraceae* (0.7%), and
449 *Desulfurellaceae* (0.6%) (Rabus *et al.*, 2006; Rosenberg *et al.*, 2006). In addition to sulfate
450 reduction, some *Desulfobacterium* and *Desulfobulbaceae* species are capable of dissimilatory
451 iron reduction (Lovley *et al.*, 1993b; Holmes *et al.*, 2004).

452 Sequences that classified with groups capable of sulfate reduction had an average relative
453 abundance of 20.4% in the reactor samples collected at the end of the incubation and 5.0% in the
454 sediment inoculum (Fig. 4). Their relative abundance was significantly lower ($P \leq 0.0005$) in
455 reactors with sulfate and goethite (S-NA, S-LA, S-HA) that received acidic media (10.6%) than
456 alkaline media (40.3%) but varied insignificantly with the acetate content of the influent media
457 (overall average: 22.9% in S-NA, 24.3% in S-LA, and 23.3% in S-HA). In reactors with sulfate
458 but without goethite (S-LA-NFe), their relative abundance was 22.3% overall with greater

459 average abundance in alkaline (29.4%) than acidic (15.3%) reactors. However, their relative
460 abundance varied considerably in replicate alkaline S-LA-NFe reactors and the difference
461 between acidic and alkaline reactors was not significant. In reactors without sulfate but with
462 goethite (HA), their relative abundance was 3.1% on average with significantly greater average
463 abundance in alkaline (4.2%) than acidic (2.0%) reactors ($P = 0.0040$).

464

465 **4. DISCUSSION**

466 **4.1. Reaction extent**

467 Variations in ferrous iron and sulfate concentrations reflect weekly sampling of reactor
468 solutions, weekly replacement of the sampled volume with unreacted media, precipitation and
469 sorption reactions, and iron and sulfate reduction. Thus, mass-balance calculations based on
470 variation in aqueous chemistry and fluid exchanges can be combined with sediment extraction
471 data to evaluate extents of iron reduction and sulfate reduction. We calculated the extent of iron
472 reduction based on changes in dissolved ferrous iron concentrations during each reaction interval
473 and the abundance of 0.5 N HCl-extractable ferrous iron at the end of the incubations. Similarly,
474 we calculated the extent of sulfate reduction based on changes in sulfate concentration during
475 each reaction interval. Our calculations assess net amounts of each reaction and do not
476 distinguish between potential dissimilatory and abiotic contributions. Our calculations follow
477 those of Bethke et al. (2011) and are described in detail in the Supporting Information.

478 The calculations illustrate the two-way interactions between pH and iron and sulfate
479 reduction. On one side of those interactions, the pH of the influent media influenced the extents
480 of iron and sulfate reduction. Iron reduction was greater in acidic reactors than corresponding
481 alkaline reactors within each experiment (Fig. 5A). Differences were significant ($P \leq 0.0007$) for

482 all experiments except the goethite control (S-LA-NFe). In contrast, sulfate reduction was greater
483 in alkaline reactors than acidic reactors, but differences were only significant for those that
484 received the most acetate (S-HA; $P = 0.0143$) (Fig. 5B). Thus, the extent of both reactions varied
485 with pH but in opposite ways and by different amounts.

486 On the other side of these two-way interactions, reaction extent influenced the pH of the
487 reactor effluent. During the incubations, the pH of the reactor effluent increased above the level
488 of the influent media (Fig. 1) in response to proton consumption by iron and sulfate reduction.
489 Consistent with this interpretation, the amount of pH increase varied directly with the extents of
490 iron reduction and sulfate reduction (Fig. SI11A and SI11B).

491 Alongside variation in pH, the calculations demonstrate that acetate influx was also
492 influential. Reaction extents were not significantly different between acidic no-acetate (NA) and
493 low-acetate (LA) reactors or between alkaline no-acetate (NA) and low-acetate (LA) reactors
494 despite differences in acetate influx (Fig. 5). However, significantly more iron and sulfate
495 reduction occurred in acidic and alkaline high-acetate (HA) reactors relative to corresponding
496 no-acetate (NA) and low-acetate (LA) reactors ($P \leq 0.0252$), consistent with the increase in
497 mackinawite abundance with acetate supply observed by XANES and EXAFS. Thus, the
498 increase in influent acetate concentration from 0 to 0.25 mM had little impact on reaction extent
499 but the increase from 0.25 to 1 mM was influential.

500 Insignificant differences between no-acetate (NA) and low-acetate (LA) reactors may
501 reflect supply of electron donors from organic matter degradation in the marsh sediment (Fig. 1).
502 Because of that electron donor source, differences in electron donor availability between the no-
503 acetate, low-acetate, and high-acetate (NA, LA, and HA) experiments were not as large as we
504 intended. Despite this limitation to our study, however, more acetate was supplied to HA reactors

505 during the incubation (0.34 mmol) than LA (0.09 mmol) and NA (0 mmol) reactors and, as
506 discussed above, this difference significantly affected the extents of iron and sulfate reduction
507 (Fig. 5) and reactor mineralogy (Fig. SI6-9). Thus, the analysis provides a measure of the
508 influence of electron donor supply, if not as sensitive a measure as intended.

509 Lastly, the results show that sulfate reduction consumed more electron donor than iron
510 reduction in all reactors. Ferric and ferrous iron differ in oxidation state by a single electron. In
511 contrast, sulfate and sulfide sulfur differ by eight electrons. As such, at least 8X more ferric iron
512 needs to be reduced than sulfate for iron reduction to consume more electron donor than sulfate
513 reduction (Park *et al.*, 2009). In our reactors, the amount of ferric iron reduced was at most 3X
514 greater than sulfate reduced.

515

516 **4.2. pH and acetate supply**

517 Changes in reaction extent with pH and acetate supply equate to changes in the molar
518 ratio of iron reduction to sulfate reduction (Fe/SO₄²⁻ reduced). Among acidic reactors with
519 sulfate, the average molar ratio of iron to sulfate reduced was about 3:1 for no-acetate (S-NA)
520 and low-acetate (S-LA) reactors and 2:1 for high-acetate (S-HA) reactors (Fig. 6). Among
521 alkaline reactors, the ratio was about 1:1 for all experiments with sulfate and goethite (Fig. 6).
522 Thus, the results show that increasing pH and acetate supply both shifted the ratio in favor of
523 sulfate reduction. The change in influent pH from 6.0 to 7.5 caused a larger shift in reaction
524 proportions than the change in influent acetate concentration from 0.25 to 1 mM, indicating that
525 the ratio was more sensitive to pH than acetate concentration under the conditions tested.
526 Moreover, the results demonstrate that the impact of acetate concentration on the reaction ratio

527 was sensitive to pH. The ratio varied with acetate supply in the acidic reactors but not the
528 alkaline reactors.

529 These results agree well with previous laboratory studies that have examined controls on
530 iron reduction and sulfate reduction. Bethke et al. (2011) and Kirk et al. (2013) also observed a
531 1:1 ratio of iron reduction and sulfate reduction in alkaline (pH 7.40 and 7.15, respectively)
532 semi-continuous bioreactors with goethite (Fig. 6). Similarly, Hansel et al. (2015) found that iron
533 reduction and sulfate reduction were tightly linked in alkaline (pH 7-8) column reactors with
534 variable ferric iron sources (ferrihydrite, Al-ferrihydrite, goethite, and hematite). The authors
535 concluded that sulfur re-cycling was the dominant driver of iron reduction. Of these studies, only
536 Kirk et al (2013) included a complementary acidic reactors (pH 5.87) for comparison. In contrast
537 to their alkaline reactors, no sulfate reduction occurred. Although sulfate was available, only iron
538 reduction occurred. Thus, they observed an even greater increase in iron reduction relative to
539 sulfate reduction than we observed in our acidic reactors, possibly reflecting the lower pH and
540 acetate levels of their acidic reactors compared to ours.

541 Our results are also consistent with potential mechanisms described in the Introduction.
542 The decrease in the ratio of iron to sulfate reduction with increasing acetate supply in acidic
543 reactors may reflect the limit of goethite surface area on iron reduction kinetics described
544 previously (Roden, 2003, 2006). Moreover, the decrease in the ratio of iron to sulfate reduction
545 with increasing pH may reflect an increase in ferrous iron sorption (Dixit & Hering, 2006) as
546 well as a decrease in the free energy yield of iron reduction relative to sulfate reduction (Postma
547 & Jakobsen, 1996; Bethke *et al.*, 2011; Jin & Kirk, 2018a).

548 To test the thermodynamic mechanism further, we calculated the free energy yields of
549 acetotrophic goethite reduction and sulfate reduction (equations 1 and 2) for samples collected

550 on days when concentrations of all major ions were measured (days 42, 84, and 91). Our
551 calculations followed those described previously (Bethke *et al.*, 2011) and are described in detail
552 in the Supplementary Methods. The results indicate that iron reduction was more favorable than
553 sulfate reduction by about 18 kJ/mol of acetate on average in acidic reactors. In alkaline reactors,
554 however, sulfate reduction was more favorable than iron reduction by about 12 kJ/mol of acetate
555 on average. Thus, the calculation results are consistent with the conclusion from earlier
556 thermodynamic modeling studies that iron reduction loses its thermodynamic advantage over
557 sulfate reduction as pH increases (Postma & Jakobsen, 1996; Bethke *et al.*, 2011; Jin & Kirk,
558 2018a). Full results of the calculation are available in Table SI11.

559 Taken together, these observations suggest that the limit of (oxyhydr)oxide surface area
560 on iron reduction kinetics as well as impacts of pH on sorption and reaction energies may have
561 helped cause the decrease in iron reduction relative to sulfate reduction with increasing pH.
562 However, these mechanisms alone do not explain why iron reduction and sulfate reduction
563 converged on a 1:1 ratio in alkaline reactors regardless of acetate availability. We hypothesize
564 that this relationship reflects the impact of sulfate reduction on iron reduction, as discussed in the
565 next section below.

566

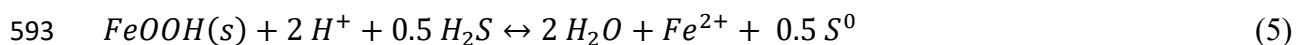
567 **4.3. pH and sulfate supply**

568 Our mass-balance calculations show that more iron reduction occurred if sulfate
569 reduction also occurred and that the effect was greater in alkaline reactors than acidic reactors. In
570 acidic reactors, the extent of iron reduction was similar in complementary reactors with and
571 without sulfate. Only 9% more iron was reduced in acidic S-HA reactors compared to
572 complimentary sulfate-deficient controls (HA) (Fig. 5A). In contrast, at alkaline pH, the extent of

573 iron reduction was much greater if sulfate was available. About 47% more iron was reduced in
574 alkaline S-HA than HA reactors.

575 Previous laboratory studies that also observed more iron reduction if sulfate reduction
576 was also occurring include Li et al. (2006), Bethke et al. (2011) and Kwon et al. (2014). One
577 possible reason for this relationship is that sulfide generated by sulfate reduction (equation 2) can
578 react with ferrous iron produced by iron reduction (biotic or abiotic) and precipitate as
579 mackinawite (Berner, 1970; Luther & Rickard, 2005; Michel *et al.*, 2005):

580



582

583 By precipitating ferrous iron, the reaction limits ferrous iron accumulation in solution and on
584 sorption sites and thus helps maintain a negative free energy change of iron reduction and limit
585 the impact of sorption (Bethke *et al.*, 2008, 2011).

586 A second possible reason for greater iron reduction when sulfate reduction occurs is that
587 sulfur cycling can drive iron reduction. By this mechanism, sulfide produced by sulfate reduction
588 abiotically reacts with (oxyhydr)oxides to produce ferrous iron and sulfur compounds with
589 intermediate oxidation states, such as elemental sulfur (S^0), polysulfides (S_n^{2-}), and thiosulfate
590 (S_2O_3) (Pyzik & Sommer, 1981; Canfield, 1989; Wan *et al.*, 2014), as shown in the following
591 example reaction with goethite:

592

594

595 Some metal reducers and other groups can reduce or disproportionate these sulfur compounds
596 and produce sulfide, which can then reduce ferric iron again or react with ferrous iron and form
597 mackinawite (equation 4) (Thamdrup *et al.*, 1993; Nevin & Lovley, 2000; Straub & Schink,
598 2004).

599 Our XAS results demonstrate that mackinawite formed in reactors with sulfate. We do
600 not have direct evidence that sulfide reduced goethite. Sulfide reacts more slowly with goethite
601 than poorly crystalline phases, such as ferrihydrite (Canfield, 1989; Poulton *et al.*, 2004).

602 Moreover, results from reactors without sulfate (HA) demonstrate that iron reduction was not
603 dependent on sulfide oxidation. However, we cannot rule out the possibility that sulfide
604 oxidation contributed to iron reduction in reactors that received sulfate. Moreover, as discussed
605 below in section 4.4, some reactor microbial populations were indeed capable of catalyzing
606 associated reactions.

607 Contributions to iron reduction of both mechanisms, sulfide oxidation and mackinawite
608 precipitation, may depend on pH. Elemental sulfur reduction becomes more thermodynamically
609 favorable than reduction of crystalline (oxhydr)oxides at alkaline pH (Flynn *et al.*, 2014). As
610 such, metal reducers may increasingly reduce sulfur rather than (oxyhydr)oxides as pH increases,
611 and thereby help turn the sulfur cycle and indirectly reduce iron (Flynn *et al.*, 2014). Secondly, as
612 noted earlier, sorption of ferrous iron increases with pH (Dixit & Hering, 2006), suggesting that
613 mackinawite precipitation has a greater potential to promote iron reduction at alkaline pH than
614 acidic pH. Lastly, mackinawite precipitation itself is also sensitive to pH. The reaction produces
615 two protons per mole of mackinawite, if written as above (equation 4), or one, if written in terms
616 of bisulfide (HS^-), which is most appropriate for our alkaline reactors. That proton production
617 would offset some of the proton consumption of dissimilatory (equation 1) and abiotic (equation

618 5) iron reduction, and thus help buffer against the increase in pH caused by (oxyhydr)oxide
619 reduction. These observations suggest, therefore, that contributions of these mechanisms to iron
620 reduction may increase with pH, consistent with the pH dependence of the effect of sulfate
621 availability that we observed.

622 If contributions of these mechanism do indeed increase with pH, they may explain why
623 the ratio of iron to sulfate reduction fell near 1:1 in alkaline reactors, regardless of acetate supply,
624 and exceeded 1:1 in acidic reactors (Fig. 6). As pH increases, the thermodynamic drive of
625 (oxyhydr)oxide reduction decreases, and dissimilatory iron reduction may become increasingly
626 reliant on benefits of mackinawite precipitation and/or it may also be increasingly displaced by
627 abiotic reduction of iron by sulfide. Either way, iron reduction and sulfate reduction would be
628 increasingly linked as pH increases. To test this hypothesis, more research is needed to better
629 understand these mechanisms. In particular, we need a better understanding of the relative
630 significance of their contributions to iron reduction and whether that varies with pH.

631

632 **4.4. Potential roles of microbial populations**

633 Our ability to isolate biotic and abiotic reactions is limited in part by the absence of
634 sterile controls. However, sterile controls were included in previous studies that used the same
635 reactor design and source of goethite as our study (Kirk *et al.*, 2010, 2013). The pH of their
636 control reactors was also similar to our study and ranged from 5.7 to 7.3. No iron reduction
637 occurred in the sterile controls of either study. Thus, the result suggests that iron reduction in our
638 reactors was driven by microbial activity, either directly via dissimilatory iron reduction or
639 indirectly via oxidation of sulfide produced by microorganisms.

640 Supporting this interpretation, our results show that relative abundances of *Geobacter* and
641 potential sulfate reducers generally varied with the extent of iron reduction and sulfate reduction,
642 respectively. Relative abundances of *Geobacter* were higher in reactor samples compared to the
643 inoculum (Fig. 4), suggesting growth during the incubations. Similarly, relative abundances of
644 potential sulfate reducers were higher in samples from reactors with sulfate compared to the
645 inoculum. Moreover, for individual experiments, differences in relative abundance between
646 acidic and alkaline reactors were mostly consistent with differences in reaction extent (Fig.
647 SI10A and SI10B). Specifically, potential sulfate reducers had higher relative abundances in
648 alkaline reactors, which hosted more sulfate reduction, and *Geobacter* had higher relative
649 abundances in acidic reactors, where more iron was reduced. The lone exception to this result
650 was *Geobacter* in experiment HA, as discussed below.

651 Enrichment of *Geobacter* and some of the sulfate-reducing taxa may reflect use of acetate
652 as the electron donor in our aqueous media. Previous sediment bioreactor studies that also
653 observed enrichment of *Geobacter* when acetate was provided include Lentini et al. (2012), Kirk
654 et al. (2013), Hori et al. (2015), and Glodowska et al. (2020). Similarly, the genera
655 *Desulfobacca*, *Desulfobacter*, and *Desulfobacterium* contain species capable of oxidizing acetate
656 (Brandis-Heep et al., 1983; Schauder et al., 1986; Oude Elferink et al., 1999). In our
657 experiments, a variety of electron donors were likely supplied by degradation of organic matter
658 in the sediment inoculum, but acetate was the primary electron donor available during most of
659 the incubation.

660 In addition to dissimilatory iron and sulfate reduction, *Geobacter* and the potential sulfate
661 reducers we detected may have also catalyzed reactions involving sulfur compounds with
662 intermediate oxidation states. Some *Geobacter* species can respire elemental sulfur (Caccavo et

663 *al.*, 1994; Lovley *et al.*, 1995). Moreover, bacteria in the family *Desulfobulbaceae*, which
664 includes the genera *Desulfobulbus* and *Desulfocapsa* (Fig. 4), are capable of sulfur
665 disproportionation when ferrous iron is available to maintain low sulfide concentration (Müller *et*
666 *al.*, 2020), as was mostly the case in our reactors (Fig. 1E). *Desulfobulbaceae* species can
667 metabolize some organic compounds but none are known that can use acetate (Rabus *et al.*,
668 2006; Miletto *et al.*, 2011). Interestingly, among reactors with goethite and sulfate, the relative
669 abundance of sequences classifying in *Desulfobulbaceae* was nearly 4X higher in alkaline
670 reactors than acidic reactors. Therefore, the results show that populations capable of sulfur
671 cycling were present and that their activity may have been greater in alkaline reactors than acidic
672 reactors, consistent with our hypothesis that iron reduction by sulfide was more important in
673 alkaline reactors (section 4.3). To fully evaluate this possibility, data constraining the absolute
674 abundances of *Desulfobulbaceae* and their specific function(s) would be needed.

675 Lastly, *Geobacter* may have also participated in interspecies electron transfer with
676 methanogens. In experiment HA, little iron reduction occurred in alkaline reactors and yet
677 *Geobacter* relative abundance was high (Fig. SI10a). Marquart *et al.* (2019) obtained similar
678 result and hypothesized that *Geobacter* responds to the lower free energy yield of goethite
679 reduction at basic pH by transferring electrons to methanogens rather than goethite. Other studies
680 that have observed high relative abundances of *Geobacter* in methanogenic systems include Hori
681 *et al.* (2007), Kim and Liesack (2015), Morita *et al.* (2011), and Rotaru *et al.* (2014). Our
682 taxonomic analysis revealed few methanogens (Table SI9), but we observed by far the highest
683 methane levels in HA reactors (Fig. 1F), consistent with significantly greater amounts of
684 methanogenesis in HA reactors than other reactors. Nonetheless, like the above result with

685 *Desulfobulbacea*, to fully evaluate this possibility, data constraining the absolute abundances of
686 *Geobacter* and their specific function(s) would be needed.

687

688 **4.5. Comparison to natural systems**

689 To test the environmental relevance of our experiments, we compared our results to
690 groundwater geochemistry data gathered by Kirk et al. (2016). Their analysis considered data
691 from the U.S. Geological Survey National Water Information System for 19 principal aquifers
692 distributed across the U.S., as noted previously (section 2.1). From each aquifer, they isolated
693 samples with chemistry consistent with iron and/or sulfate reducing environments based on
694 criteria for interpreting groundwater redox processes from McMahon et al. (2008). Next,
695 following the approach of Chapelle et al. (2009), Kirk et al. (2016) calculated the ratio of
696 dissolved iron to sulfide as a way to assess the proportion of iron to sulfate reduction where the
697 samples were collected. Kirk et al. (2016) calculated this ratio only for samples in their dataset
698 that had measurable concentrations of both iron and sulfide. Their dataset included 129 samples
699 that met that criteria and those samples were collected from nine different aquifers (Table SI12).
700 The calculation showed that, as pH decreases, iron/sulfide ratios increase significantly ($r = -0.43$,
701 $P < 0.0001$) (Fig. 7), consistent with an increase in iron reduction relative to sulfate reduction.

702 We compared our results to the groundwater data using ferrous iron and sulfide
703 concentrations measured at the end of the incubations in reactors with goethite and sulfate. We
704 substituted detection limit values if either ferrous iron (1.8 μM) or sulfide (1.6 μM)
705 concentration was below detection. That substitution was necessary for ferrous iron in alkaline
706 high-acetate (S-HA) reactors and for sulfide in alkaline no-acetate (S-NA) reactors.

707 Dissolved iron/sulfide ratios from our reactors plot within the scatter of the groundwater
708 data and increase significantly as pH decreases ($r = -0.94$, $P = 0.0167$) (Fig. 7). Groundwater
709 samples with data needed to calculate iron/sulfide ratios came from aquifers distributed across
710 the U.S. (Table SI12), and thus represent a range of climate and geology. Within the aquifers,
711 numerous factors besides rates of iron and sulfate reduction impact concentrations of ferrous iron
712 and sulfide, including mineral precipitation, aquifer mineralogy, and sorption (Chapelle *et al.*,
713 2009; Kirk *et al.*, 2016). Therefore, agreement between our results and the groundwater data
714 provides evidence that the biogeochemical relationships we observed have broad environmental
715 relevance and can help us better understand controls on iron and sulfate reduction in natural
716 systems.

717

718 CONCLUSIONS

719 The results of this study improve our ability to use pH and the supply of electron donor
720 and acceptors to predict and manage impacts of iron reduction and sulfate reduction on
721 environmental chemistry. We show that the molar ratio of iron to sulfate reduction increased as
722 pH and acetate supply decreased. Under the conditions tested, the ratio between the reactions
723 was more sensitive to pH than acetate supply. Secondly, our results demonstrate that sulfate
724 reduction increases iron reduction. More iron was reduced in reactors with sulfate compared to
725 control reactors without sulfate at both acidic and alkaline pH. Thirdly, our results demonstrate
726 that the impacts of acetate and sulfate supply varied with pH. Acetate supply had a greater
727 impact on the ratio of iron to sulfate reduction at acidic pH than alkaline pH. In contrast, sulfate
728 availability had a greater impact on the extent of iron reduction at alkaline pH than acidic pH.
729 Lastly, variation in the chemistry of our reactors agrees well with trends observed on a broad

730 scale in groundwater, providing evidence that the biogeochemical relationships we observed
731 have strong environmental relevance and advance our understanding of controls on iron
732 reduction and sulfate reduction in natural systems.

733 These findings highlight the importance of pH as a control on the proportion of iron
734 reduction to sulfate reduction in systems that contain crystalline (oxyhydr)oxides such as
735 goethite. Under acidic conditions, our results show that considerable iron reduction can occur
736 independently of sulfate reduction in systems with goethite, but as pH increases, iron reduction
737 appears to have a growing dependency on sulfate reduction, which ultimately drives the reactions
738 toward a 1:1 ratio. The mechanisms underpinning these relationships require more attention. In
739 particular, we need a better understanding of how the relative contributions of biotic and abiotic
740 drivers of iron reduction shift with pH.

741

742 **ACKNOWLEDGEMENTS**

743 To be added.

744

745 **CONFLICT OF INTEREST**

746 The authors declare that there is no conflict of interest regarding the publication of this article.

747

748 **ORCID**

749 To be added.

750

751 **REFERENCES**

752 Achtnich C, Bak F, Conrad R (1995) Competition for electron donors among nitrate reducers, ferric iron
753 reducers, sulfate reducers, and methanogens in anoxic paddy soil. *Biology and Fertility of Soils*
754 **19**, 65–72.

755 Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, Rappe MS, Pester M, Loy A,
756 Thomas BC, Banfield JF (2018) Expanded diversity of microbial groups that shape the
757 dissimilatory sulfur cycle. *ISME Journal* **12**, 1715–1728.

758 Benner SG, Hansel CM, Wielinga BW, Barber TM, Fendorf S (2002) Reductive dissolution and
759 biomineralization of iron hydroxide under dynamic flow conditions. *Environmental Science &*
760 *Technology* **36**, 1705–1711.

761 Berner RA (1970) Sedimentary pyrite formation. *American Journal of Science* **268**, 1–23.

762 Bethke CM, Ding D, Jin Q, Sanford RA (2008) Origin of microbiological zoning in groundwater flows.
763 *Geology* **36**, 739–742.

764 Bethke CM, Sanford RA, Kirk MF, Jin Q, Flynn TM (2011) The thermodynamic ladder in geomicrobiology.
765 *American Journal of Science* **311**, 183–210.

766 Bonneville S, Behrends T, Van Cappellen P (2009) Solubility and dissimilatory reduction kinetics of
767 iron(III) oxyhydroxides: A linear free energy relationship. *Geochimica et Cosmochimica Acta* **73**,
768 5273–5282.

769 Bonneville S, Van Cappellen P, Behrends T (2004) Microbial reduction of iron(III) oxyhydroxides: effects
770 of mineral solubility and availability. *Chemical Geology* **212**, 255–268.

771 Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M, Voegelin A, Campbell K (2010)
772 Biogeochemical Redox Processes and their Impact on Contaminant Dynamics. *Environmental*
773 *Science & Technology* **44**, 15–23.

774 Brandis-Heep A, Gebhardt N, Thauer R, Widdel F, Pfennig N (1983) Anaerobic acetate oxidation to CO₂
775 by Desulfobacter postgatei. I. Demonstration of all enzymes required for the operation of the
776 citric acid cycle. *Archives of Microbiology* **136**, 222–229.

777 Caccavo F, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp.
778 nov., a hydrogen-oxidizing and acetate-oxidizing dissimilatory metal reducing microorganism.
779 *Applied and Environmental Microbiology* **60**, 3752–3759.

780 Canfield DE (1989) Reactive iron in marine-sediments. *Geochimica et Cosmochimica Acta* **53**, 619–632.

781 Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L,
782 Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial
783 community analysis on the Illumina HiSeq and MiSeq platforms. *ISME Journal* **6**, 1621–1624.

784 Chapelle FH, Bradley PM, Thomas MA, McMahon PB (2009) Distinguishing iron-reducing from sulfate-
785 reducing conditions. *Ground Water* **47**, 300–305.

786 Chapelle FH, Lovley DR (1992) Competitive exclusion of sulfate reduction by Fe(III)-reducing bacteria: A
787 mechanism for producing discrete zones of high-iron ground water. *Ground Water* **30**, 29–36.

788 Cornell RM, Schwertmann U (2003) *The Iron Oxides*, 2nd edn. Wiley-VCH, New York.

789 Cutting RS, Coker VS, Fellowes JW, Lloyd JR, Vaughan DJ (2009) Mineralogical and morphological
790 constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. *Geochimica et*
791 *Cosmochimica Acta* **73**, 4004–4022.

792 Dixit S, Hering JG (2006) Sorption of Fe(II) and As(III) on goethite in single- and dual-sorbate systems.
793 *Chemical Geology* **228**, 6–15.

794 Eaton AD, Clesceri LS, Greenberg AE (1995) *Standard Methods for the Examination of Water and*
795 *Wastewater*, 19th edn. American Public Health Association, American Water Works Association,
796 and Water Environmental Federation, Washington, DC USA.

797 Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* **26**, 2460–
798 2461.

799 Flynn TM, O'Loughlin EJ, Mishra B, DiChristina TJ, Kemner KM (2014) Sulfur-mediated electron shuttling
800 during bacterial iron reduction. *Science* **344**, 1039–1042.

801 Giovannoni SJ, Delong EF, Schmidt TM, Pace NR (1990) Tangential flow filtration and preliminary
802 phylogenetic analysis of marine picoplankton. *Applied and Environmental Microbiology* **56**,
803 2572–2575.

804 Glodowska M, Stopelli E, Schneider M, Lightfoot A, Rathi B, Straub D, Patzner M, Duyen VT, Berg M,
805 Kleindienst S, Kappler A (2020) Role of in Situ Natural Organic Matter in Mobilizing As during
806 Microbial Reduction of Fe-III-Mineral-Bearing Aquifer Sediments from Hanoi (Vietnam).
807 *Environmental Science & Technology* **54**, 4149–4159.

808 Hansel CM, Lentini CJ, Tang Y, Johnston DT, Wankel SD, Jardine PM (2015) Dominance of sulfur-fueled
809 iron oxide reduction in low-sulfate freshwater sediments. *The ISME Journal* 1–13.

810 Heron G, Crouzet C, Bourg ACM, Christensen TH (1994) Speciation of Fe(II) and Fe(III) in contaminated
811 aquifer sediments using chemical-extraction techniques. *Environmental Science & Technology*
812 **28**, 1698–1705.

813 Holmes DE, Bond DR, Lovley DR (2004) Electron transfer by Desulfobulbus propionicus to Fe(III) and
814 graphite electrodes. *Applied and Environmental Microbiology* **70**, 1234–1237.

815 Hori T, Aoyagi T, Itoh H, Narihiro T, Oikawa A, Suzuki K, Ogata A, Friedrich MW, Conrad R, Kamagata Y
816 (2015) Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural
817 environments. *Frontiers in Microbiology* **6**.

818 Hungate RE (1969) A roll-tube method for cultivation of strict anaerobes. *Methods in Microbiology* **3B**,
819 117–132.

820 Hunger S, Benning LG (2007) Greigite: a true intermediate on the polysulfide pathway to pyrite.
821 *Geochemical Transactions* **8**.

822 Jakobsen R, Postma D (1999) Redox zoning, rates of sulfate reduction and interactions with Fe-reduction
823 and methanogenesis in a shallow sandy aquifer, Romo, Denmark. *Geochimica et Cosmochimica
824 Acta* **63**, 137–151.

825 Jin Q (2012) Energy conservation of anaerobic respiration. *American Journal of Science* **312**, 573–628.

826 Jin Q, Bethke CM (2007) The thermodynamics and kinetics of microbial metabolism. *American Journal of
827 Science* **307**, 643–677.

828 Jin Q, Kirk MF (2018a) pH as a primary control in environmental microbiology: 1. Thermodynamic
829 perspective. *Frontiers in Environmental Science* **6**, 1–15.

830 Jin Q, Kirk MF (2018b) pH as a primary control in environmental microbiology: 2. Kinetic perspective.
831 *Frontiers in Environmental Science* **6**, 1–16.

832 Jorgensen BB (1982) Mineralization of organic matter in the sea bed - the role of sulfate reduction.
833 *Nature* **296**, 643–645.

834 Kersters K, DeVos P, Gillis M, Swings J, VanDamme P, Stackebrandt E (2006) Introduction to the
835 Proteobacteria. In: *The Prokaryotes* (eds. Rosenberg E, Delong EF, Lory S, Stackebrandt E,
836 Thompson F). Springer, New York, NY, pp. 3–37.

837 Kim Y, Liesack W (2015) Differential assemblage of functional units in paddy soil microbiomes. *Plos One*
838 **10**.

839 Kirk MF, Jin Q, Haller BR (2016) Broad-scale evidence that pH influences the balance between microbial
840 iron and sulfate reduction. *Groundwater* **54**, 406–413.

841 Kirk MF, Roden EE, Crossey LJ, Brearley AJ, Spilde MN (2010) Experimental analysis of arsenic
842 precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors.
843 *Geochimica et Cosmochimica Acta* **74**, 2538–2555.

844 Kirk MF, Santillan EFU, Sanford RA, Altman SJ (2013) CO₂-induced shift in microbial activity affects
845 carbon trapping and water quality in anoxic bioreactors. *Geochimica et Cosmochimica Acta* **122**,
846 198–208.

847 Konhauser KO, Kappler A, Roden EE (2011) Iron in microbial metabolism. *Elements* **7**, 89–93.

848 Kropf AJ, Katsoudas J, Chattopadhyay S, Shibata T, Lang EA, Zyryanov VN, Ravel B, McIvor K, Kemner KM,
849 Scheckel KG, Bare SR, Terry J, D KS, Bunker BA, Segre CU (2010) The new MRCAT (sector 10)
850 bending magnet beamline at the Advanced Photon Source. Presented at the 10th International
851 Conference on Radiation Instrumentation, American Institute of Physics, pp. 299–302.

852 Küsel K, Dorsch T (2000) Effect of supplemental electron donors on the microbial reduction of Fe(III),
853 sulfate, and CO₂ in coal mining-impacted freshwater lake sediments. *Microbial Ecology* **40**, 238–
854 249.

855 Kwon MJ, Boyanov MI, Antonopoulos DA, Brulc JM, Johnston ER, Skinner KA, Kemner KM, O'Loughlin EJ
856 (2014) Effects of dissimilatory sulfate reduction on Fe(II) (hydr)oxide reduction and microbial
857 community development. *Geochimica et Cosmochimica Acta* **129**, 177–190.

858 LaRowe DE, Amend JP (2015) Catabolic rates, population sizes and doubling/replacement times of
859 microorganisms in natural settings. *American Journal of Science* **315**, 167–203.

860 LaRowe DE, Dale AW, Amend JP, Van Cappellen P (2012) Thermodynamic limitations on microbially
861 catalyzed reaction rates. *Geochimica et Cosmochimica Acta* **90**, 96–109.

862 Larsen O, Postma D (2001) Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and
863 goethite. *Geochimica Et Cosmochimica Acta* **65**, 1367–1379.

864 Latta DE, Boyanov MI, Kemner KM, O'Loughlin EJ, Scherer MM (2012) Abiotic reduction of uranium by
865 Fe(II) in soil. *Applied Geochemistry* **27**, 1512–1524.

866 Lentini CJ, Wankel SD, Hansel CM (2012) Enriched iron(III)-reducing bacterial communities are shaped by
867 carbon substrate and iron oxide mineralogy. *Frontiers in Microbiology* **3**.

868 Li YL, Vali H, Yang J, Phelps TJ, Zhang CL (2006) Reduction of iron oxides enhanced by a sulfate-reducing
869 bacterium and biogenic H₂S. *Geomicrobiology Journal* **23**, 103–117.

870 Lovley DR, Coates JD, BluntHarris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron
871 acceptors for microbial respiration. *Nature* **382**, 445–448.

872 Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S (1993a) Geobacter
873 metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation
874 of organic-compounds to the reduction of iron and other metals. *Archives of Microbiology* **159**,
875 336–344.

876 Lovley DR, Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal
877 electron-accepting reactions in aquatic sediments. *Geochimica et Cosmochimica Acta* **52**, 2993–
878 3003.

879 Lovley DR, Phillips EJP (1987) Competitive mechanisms for inhibition of sulfate reduction and methane
880 production in the zone of ferric iron reduction in sediments. *Applied and Environmental
881 Microbiology* **53**, 2636–2641.

882 Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic-carbon oxidation
883 coupled to dissimilatory reduction of iron or manganese. *Applied and Environmental
884 Microbiology* **54**, 1472–1480.

885 Lovley DR, Phillips EJP, Lonergan DJ, Widman PK (1995) Fe(III) AND SO₄²⁻ reduction by Pelobacter
886 carbinolicus. *Applied and Environmental Microbiology* **61**, 2132–2138.

887 Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993b) Enzymatic iron and uranium reduction by
888 sulfate-reducing bacteria. *Marine Geology* **113**, 41–53.

889 Luther GW, Rickard DT (2005) Metal sulfide cluster complexes and their biogeochemical importance in
890 the environment. *Journal of Nanoparticle Research* **7**, 389–407.

891 Marquart KA, Haller BR, Paper JM, Flynn TM, Boyanov MI, Shodunke G, Gura C, Jin Q, Kirk MF (2019)
892 Influence of pH on the balance between methanogenesis and iron reduction. *Geobiology* **17**,
893 185–198.

894 McMahon PB, Chapelle FH (2008) Redox processes and water quality of selected principal aquifer
895 systems. *Ground Water* **46**, 259–271.

896 Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke
897 A, Wilkening J, Edwards RA (2008) The metagenomics RAST server - a public resource for the
898 automatic phylogenetic and functional analysis of metagenomes. *BMC Bioinformatics* **9**.

899 Michel FM, Antao SM, Chupas PJ, Lee PL, Parise JB, Schoonen MAA (2005) Short- to medium-range
900 atomic order and crystallite size of the initial FeS precipitate from pair distribution function
901 analysis. *Chemistry of Materials* **17**, 6246–6255.

902 Miletto M, Williams KH, N'Guessan AL, Lovley DR (2011) Molecular analysis of the metabolic rates of
903 discrete subsurface populations of sulfate reducers. *Applied and Environmental Microbiology* **77**,
904 6502–6509.

905 Müller H, Marozava S, Probst AJ, Meckenstock RU (2020) Groundwater cable bacteria conserve energy
906 by sulfur disproportionation. *Isme Journal* **14**, 623–634.

907 Muller JB, Ramos DT, Larose C, Fernandes M, Lazzarin HSC, Vogel TM, Corseuil HX (2017) Combined iron
908 and sulfate reduction biostimulation as a novel approach to enhance BTEX and PAH source-zone
909 biodegradation in biodiesel blend-contaminated groundwater. *Journal of Hazardous Materials*
910 **326**, 229–236.

911 Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. *Nature
Reviews Microbiology* **6**, 441–454.

912 Nevin KP, Lovley DR (2000) Potential for nonenzymatic reduction of Fe(III) via electron shuttling in
913 subsurface sediments. *Environmental Science & Technology* **34**, 2472–2478.

914 O'Loughlin EJ, Kelly SD, Cook RE, Csencsits R, Kemner KM (2003) Reduction of Uranium(VI) by mixed
915 iron(II)/iron(III) hydroxide (green rust): Formation of UO₂ nanoparticiles. *Environmental Science
916 & Technology* **37**, 721–727.

917 Oude Elferink S, Akkermans-van Vliet WM, Boge JJ, Stams AJM (1999) Desulfobacca acetoxidans gen.
918 nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular
919 sludge. *International Journal of Systematic Bacteriology* **49**, 345–350.

920 Park J, Sanford RA, Bethke CM (2009) Microbial activity and chemical weathering in the Middendorf
921 aquifer, South Carolina. *Chemical Geology* **258**, 232–241.

922 Pester M, Knorr K-H, Friedrich MW, Wagner M, Loy A (2012) Sulfate-reducing microorganisms in
923 wetlands - fameless actors in carbon cycling and climate change. *Frontiers in Microbiology* **3**.

924 Postma D, Jakobsen R (1996) Redox zonation: Equilibrium constraints on the Fe(III)/SO₄-reduction
925 interface. *Geochimica et Cosmochimica Acta* **60**, 3169–3175.

926 Poulton SW, Krom MD, Raiswell R (2004) A revised scheme for the reactivity of iron (oxyhydr)oxide
927 minerals towards dissolved sulfide. *Geochimica et Cosmochimica Acta* **68**, 3703–3715.

928 Pyzik A, Sommer S (1981) Sedimentary iron monosulfides: Kinetics and mechanisms of formation.
929 *Geochimica et Cosmochimica Acta* **45**, 687–698.

930 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Gloeckner FO (2013) The SILVA
931 ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic
932 Acids Research* **41**, D590–D596.

933 Rabus R, Hansen TA, Widdel F (2006) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: *The
934 Prokaryotes* (eds. Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E). Springer,
935 New York, NY, pp. 659–768.

936 Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption
937 spectroscopy using IFEFFIT. *Journal of Synchrotron Radiation* **12**, 537–541.

938 Roden EE (2003) Fe(III) oxide reactivity toward biological versus chemical reduction. *Environmental
939 Science & Technology* **37**, 1319–1324.

940 Roden EE (2006) Geochemical and microbiological controls on dissimilatory iron reduction. *Comptes
941 Rendus Geoscience* **338**, 456–467.

943 Roden EE, Edmonds JW (1997) Phosphate mobilization in iron-rich anaerobic sediments: Microbial Fe(III)
944 oxide reduction versus iron-sulfide formation. *Archiv Fur Hydrobiologie* **139**, 347–378.

945 Roden EE, Kappler A, Bauer I, Jiang J, Paul A, Stoesser R, Konishi H, Xu HF (2010) Extracellular electron
946 transfer through microbial reduction of solid-phase humic substances. *Nature Geoscience* **3**,
947 417–421.

948 Roden EE, Urrutia MM (1999) Ferrous iron removal promotes microbial reduction of crystalline iron(III)
949 oxides. *Environmental Science and Technology* **33**, 1847–1853.

950 Roden EE, Zachara JM (1996) Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface
951 area and potential for cell growth. *Environmental Science & Technology* **30**, 1618–1628.

952 Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds.) (2006) *The Prokaryotes*.
953 Deltaproteobacteria and Epsilonproteobacteria, 4th edn. Springer.

954 Schauder R, Eikmanns B, Thauer R, Widdel F, Fuchs G (1986) Acetate oxidation to CO₂ in anaerobic
955 bacteria via a novel pathway not involving reactions of the citric acid cycle. *Archives of*
956 *Microbiology* **145**, 162–172.

957 Schwertmann U, Cornell RM (2000) *Iron oxides in the laboratory: Preparation and characterization*, 2nd
958 edn. Weinheim, New York.

959 Stookey LL (1970) Ferrozine - a new spectrophotometric reagent for iron. *Analytical Chemistry* **42**, 779–
960 781.

961 Straub KL, Schink B (2004) Ferrihydrite-dependent growth of *Sulfurospirillum deleyianum* through
962 electron transfer via sulfur cycling. *Applied and Environmental Microbiology* **70**, 5744–5749.

963 Stumm W, Morgan J (1996) *Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters*. John
964 Wiley and Sons, Inc., New York.

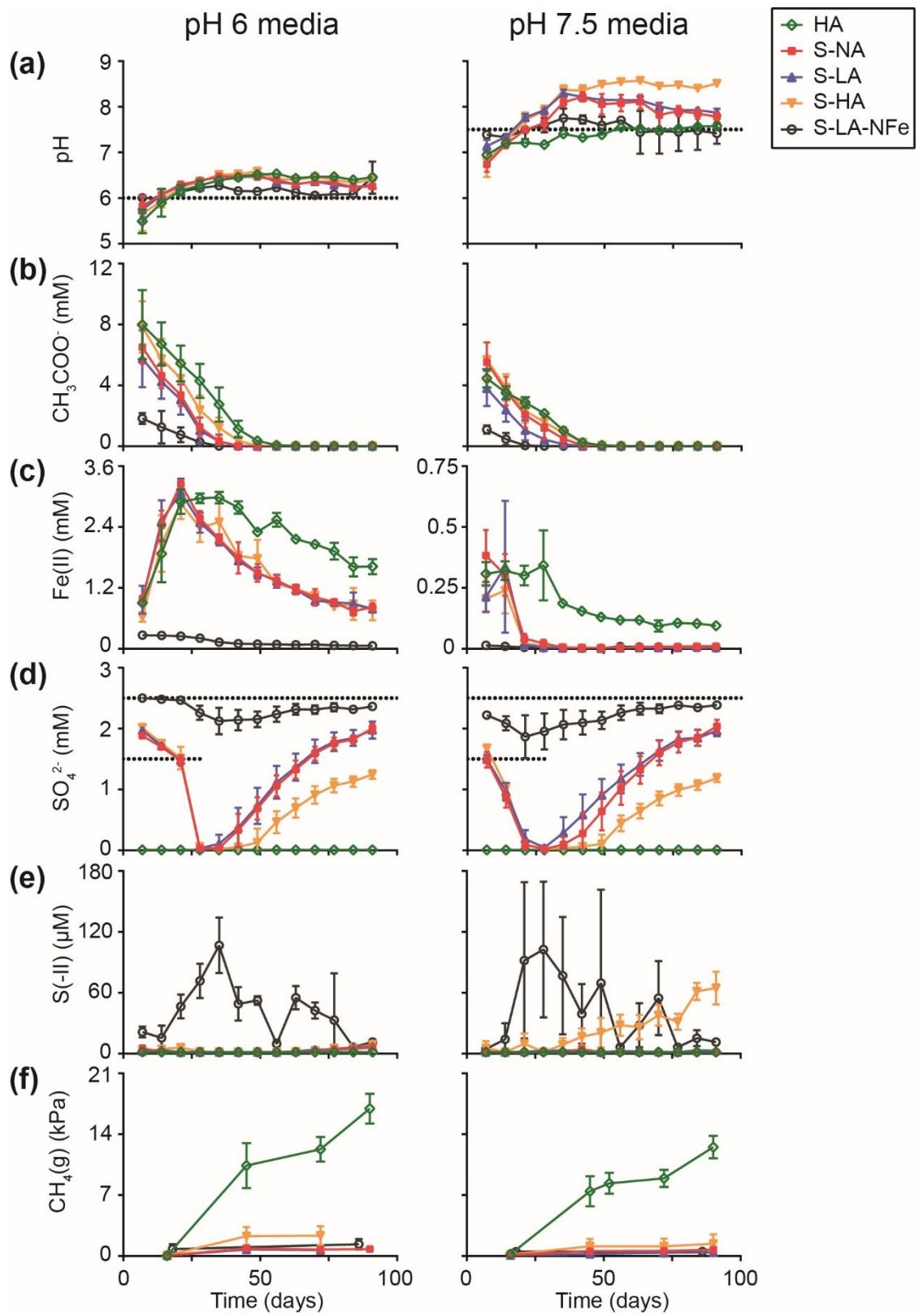
965 Thamdrup B, Finster K, Hansen JW, Bak F (1993) Bacterial disproportionation of elemental sulfur coupled
966 to chemical reduction of iron or manganese. *Applied and Environmental Microbiology* **59**, 101–
967 108.

968 Urrutia MM, Roden EE, Zachara JM (1999) Influence of aqueous and solid-phase Fe(II) complexants on
969 microbial reduction of crystalline iron(III) oxides. *Environmental Science & Technology* **33**, 4022–
970 4028.

971 Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK,
972 Caporaso JG, Fuhrman JA, Apprill A, Knight R (2016) Improved Bacterial 16S rRNA Gene (V4 and
973 V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community
974 Surveys. *mSystems* **1**.

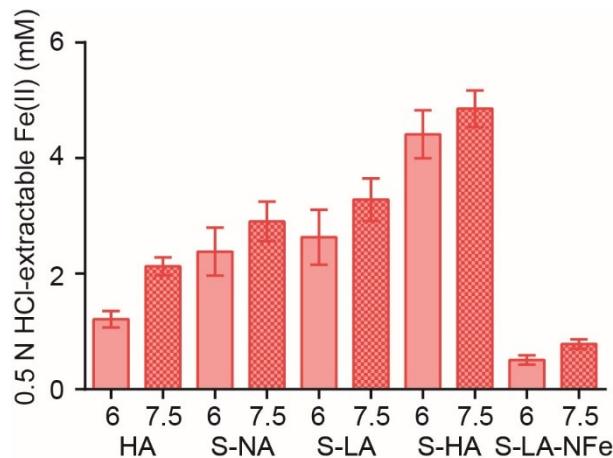
975 Wan M, Shchukarev A, Lohmayer R, Planer-Friedrich B, Peiffer S (2014) Occurrence of Surface
976 Polysulfides during the Interaction between Ferric (Hydr)Oxides and Aqueous Sulfide.
977 *Environmental Science & Technology* **48**, 5076–5084.

978 Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron
979 oxidation and reduction. *Nature Reviews Microbiology* **4**, 752–764.

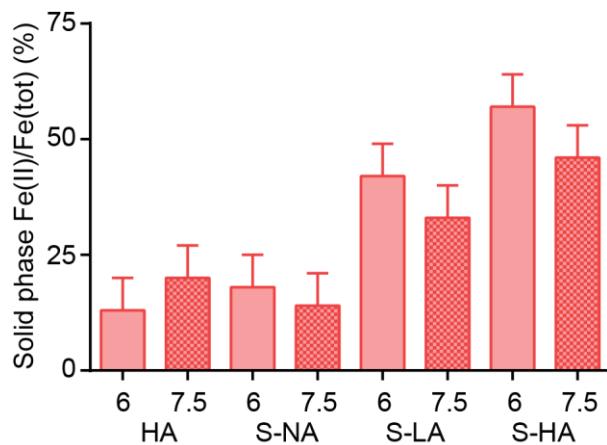

980

981

982 **Figure captions**


983 Figure 1. Variation with time in (a) pH and concentrations of (b) acetate, (c) ferrous iron, (d)
984 sulfate, and (e) sulfide in reactor effluent and (f) methane partial pressure in reactor headspace.
985 Experiments were carried out in triplicate. Scatter data plot mean values. Error bars show
986 standard deviation. Dotted horizontal lines show influent levels. Influent sulfate levels were
987 increased from 1.5 to 2.5 on day 28 (d) for all experiments except S-LA-NFe. Influent sulfate
988 content for S-LA-NFe was 2.5 mM for the entire incubation. Also, note differences in the scale
989 of pH 6 and pH 7.5 plots of ferrous iron concentration (c). Data plotted are available in the
990 Supporting Information (Tables SI3-8).

991


993 Figure 2. Amount of 0.5 N HCl-extractable ferrous iron in reactor solids at the end of the
994 incubations. Bars show mean values for triplicate reactors and error bars show standard
995 deviation. Data plotted are available in the Supporting Information.

996

999 Figure 3. Proportion of ferrous iron to total solid-phase iron in reactor sediment at the end of the
1000 incubations based on LC fits of the iron K-edge XANES data. Bars depict values measured from
1001 individual samples and error bars show uncertainty associated with the analysis (7%).
1002 Experiment S-LA-NFe reactors was not included in the analysis. Details on the LC analysis can
1003 be found in Figs. SI6 and SI7.

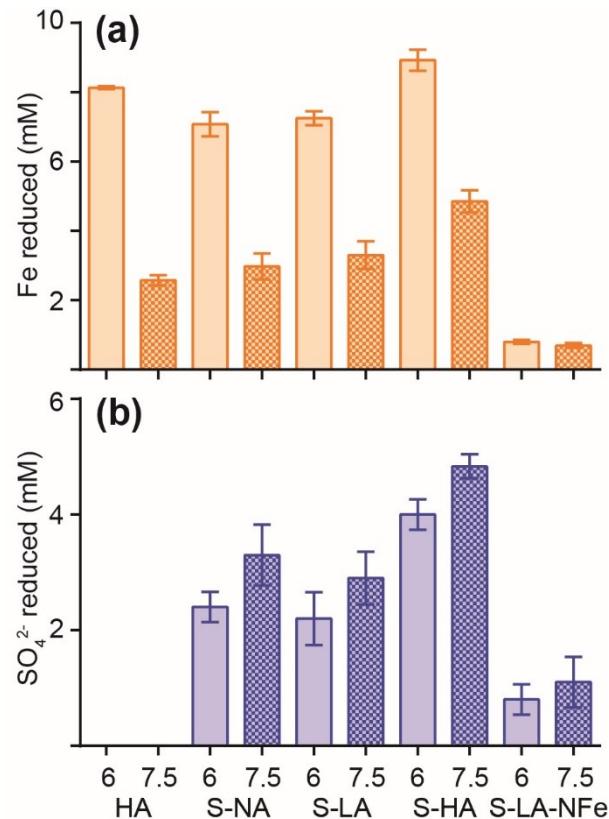
1004

1005

1006

1007 Figure 4. Relative abundances (%) of 16S rRNA gene sequences classifying in operational
1008 taxonomic units (OTUs) within class Deltaproteobacteria. Results are only shown for OTUs that
1009 had >0.5% relative abundance on average in samples collected at the end of the incubation.
1010 Results for replicate bioreactors are averaged. Complete results of our taxonomic analysis are
1011 available in the Supporting Information (Table SI9).

1012

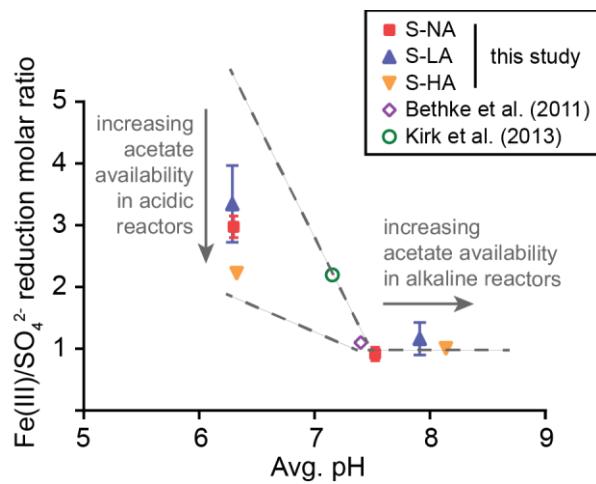


1013

1014

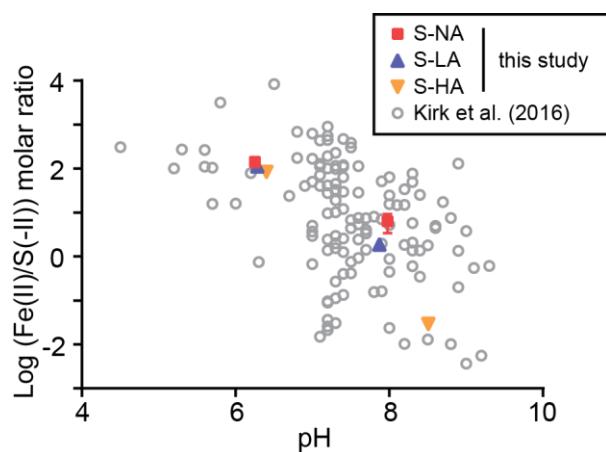
1015 Figure 5. Total amount of (a) iron reduction and (b) sulfate reduction that occurred during the
1016 incubations based on mass-balance calculations. Bars show mean values for triplicate reactors
1017 and error bars show standard deviation. Data plotted are available in the Supporting Information
1018 (Table SI10).

1019



1020

1021


1022 Figure 6. Variation with pH in the ratio of iron reduction to sulfate reduction. Results are shown
1023 for reactors from this study that contained goethite and sulfate as well as two previously
1024 published studies (Bethke *et al.*, 2011; Kirk *et al.*, 2013), which used a similar experimental
1025 design to ours and included goethite. For those studies, we calculated the ratio of iron reduction
1026 to sulfate reduction using their published data and the same mass-balance approach used here.
1027 The acidic bioreactors from Kirk *et al.* (2013) hosted no sulfate reduction and thus could not be
1028 included in this plot. Error bars show standard deviation among replicate reactors. The dashed
1029 lines and arrows highlight differences in reaction ratio trends between acidic and alkaline
1030 systems.

1031

1034 Figure 7. Variation with pH in the molar ratio of dissolved ferrous iron to sulfide (Fe(II)/S(-II))
1035 in bioreactors and groundwater from U.S. principal aquifers. The groundwater data was isolated
1036 by Kirk et al. (2016) from the U.S. Geological Survey National Water Information System.
1037 Bioreactor values plotted are averages among replicates for concentrations measured in reactor
1038 solutions at the end of the incubations. Error bars show standard deviation. Only those reactors
1039 that received sulfate are included.

1040

1041