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Abstract  
 
The current study tests whether individuals (n=53) produce distinct speech adaptations during pre-
scripted spoken interactions with a voice-AI assistant (Amazon’s Alexa) relative to those with a 
human interlocutor. Interactions crossed intelligibility pressures (staged word misrecognitions) 
and emotionality (hyper-expressive interjections) as conversation-internal factors that might 
influence participants’ intelligibility adjustments in Alexa- and human-directed speech (DS). 
Overall, we find speech style differences: Alexa-DS has a decreased speech rate, higher mean f0, 
and greater f0 variation than human-DS. In speech produced toward both interlocutors, 
adjustments in response to misrecognition were similar: participants produced more distinct vowel 
backing (enhancing the contrast between the target word and misrecognition) in target words, and 
louder, slower, and higher mean f0, and higher f0 variation at the sentence-level. No differences 
were observed in human- and Alexa-DS following displays of emotional expressiveness by the 
interlocutors. Expressiveness, furthermore, did not mediate intelligibility adjustments in response 
to a misrecognition. Taken together, these findings support proposals that speakers presume voice-
AI has a ‘communicative barrier’ (relative to human interlocutors), but that speakers adapt to 
conversational-internal factors of intelligibility similarly in human- and Alexa-DS. This work 
contributes to our understanding of human-computer interaction, as well as theories of speech style 
adaptation. 
 
Keywords: voice-activated artificially intelligent (voice-AI) assistant, speech register, 
intelligibility, human-computer interaction, computer personification 
 
1. Introduction  
 
People dynamically adapt their speech according to the communicative context and (apparent) 
barriers present. In the presence of background noise, for example, speakers produce speech that 
is louder, slower, and higher pitched (‘Lombard speech’) (for a review, see Brumm & Zollinger, 
2011), argued by some to be an automatic, non-socially mediated response (Junqua, 1993, 1996). 
Other work has shown that people adapt their speech to the type of listener they are engaging with. 
One stance is that speakers presume certain types of interlocutors to have greater communicative 
barriers (Branigan et al., 2011; Clark, 1996; Clark & Murphy, 1982; Oviatt, MacEachern, et al., 
1998). Supporting this account, prior work has shown that people use different speech styles when 
talking to non-native speakers (Hazan et al., 2015; Scarborough et al., 2007; Uther et al., 2007), 
hearing impaired adults (Knoll et al., 2015; Picheny et al., 1985; Scarborough & Zellou, 2013), 
and computers (Bell et al., 2003; Bell & Gustafson, 1999; Burnham et al., 2010; Lunsford et al., 
2006; Mayo et al., 2012; Oviatt, Levow, et al., 1998; Oviatt, MacEachern, et al., 1998; Siegert et 
al., 2019; Stent et al., 2008). For example, computer-directed speech (DS) has been shown to be 
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louder (Lunsford et al., 2006), with durational lengthening (Burnham et al., 2010; Mayo et al., 
2012), greater vowel space expansion (Burnham et al., 2010), and smaller pitch range (Mayo et 
al., 2012) than speech directed to a (normal hearing adult) human. 

This paper explores whether speakers use a specific speech style (or ‘register’) when 
talking to a voice-activated artificially intelligent (voice-AI) assistant. Voice-AI assistants (e.g., 
Amazon’s Alexa, Apple’s Siri, Google Assistant) are now a common interlocutor for millions of 
individuals completing everyday tasks (e.g., “set a timer for 5 minutes”, “turn on the lights”, etc.) 
(Ammari et al., 2019; Bentley et al., 2018). A growing body of research has begun to investigate 
the social, cognitive, and linguistic effects of humans interacting with voice-AI (Arnold et al., 
2019; Burbach et al., 2019; Cohn, Ferenc Segedin, et al., 2019; Purington et al., 2017). For 
example, recent work has shown that listeners attribute human-like characteristics to the text-to-
speech (TTS) output used for modern voice-AI, including personality traits (Lopatovska, 2020), 
apparent age (Cohn, Jonell, et al., 2020; Zellou et al., 2021), and gender (Habler et al., 2019; 
Loideain & Adams, 2020). While the spread of voice-AI assistants is undeniable — particularly 
in the United States — there are many open scientific questions as to the nature of people’s 
interactions with voice-AI. 

There is some evidence for a different speech style used in interactions with ‘voice-AI’ 
assistants: several studies have used classifiers to successfully identify ‘device-’ and ‘non-device-
’directed speech from users’ interactions with Amazon Alexa (Huang et al., 2019; Mallidi et al., 
2018). Yet, in these cases, the linguistic content, physical distance from the device, and other 
factors were not controlled and might have contributed to differences that are not speech-style 
adaptations per se. Critically, holding the interaction constant across a voice-AI and human 
interlocutor can reveal if individuals have a distinct voice-AI speech style. Some groups have 
aimed to compare human and voice-AI speech styles in more similar contexts. For instance, the 
Voice Assistant Conversation Corpus (VACC) had participants complete the same type of 
communicative task (setting an appointment on a calendar and doing a quiz) with an Alexa Echo 
and a real human confederate (Siegert et al., 2018). Several studies measuring the acoustic-
phonetic features of human- and Alexa-DS in the corpus found productions toward Alexa were 
louder (Raveh et al., 2019; Siegert & Krüger, 2020), higher in fundamental frequency (f0, 
perceived pitch) (Raveh et al., 2019), and contained different vowel formant characteristics1 
(Siegert & Krüger, 2020). Yet, similar to studies of individuals using Alexa in their homes (e.g., 
Huang et al., 2019), differences observed in the VACC might also be driven by physical distance 
from the device and conversational variations. The current study holds context and physical 
distance from the microphone constant for the two interlocutors to address these limitations in 
prior work.  

Making a direct human- and Alexa-DS comparison in a scripted task can speak to 
competing predictions across different computer personification accounts: if speech styles differ 
because speakers have a ‘routinized’ way of talking to computers (in line with routinized 
interaction accounts) or if speech styles are the same (in line with technology equivalence 
accounts). Routinized interaction accounts propose that people have a ‘routinized’ way of 
interacting with technological systems (Gambino et al., 2020), borne out of real experience with 
the systems, as well as a priori expectations. As mentioned, there is ample evidence for a computer-
DS register (e.g., Bell et al., 2003; Bell & Gustafson, 1999; Burnham et al., 2010). Specifically, 
some propose that the computer faces additional communicative barriers, relative to humans 

 
1 They do not report a directionality of difference. 
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(Branigan et al., 2011; Oviatt, MacEachern, et al., 1998). These attitudes appear to be a priori, 
developed before any evidence of communicative barriers in an interaction. For example, people 
rate TTS voices as ‘less communicatively competent’ (Cowan et al., 2015). Therefore, one 
prediction for the current study is that speakers might have overall different speech styles in 
human- and Alexa-DS, reflecting this presumed communicative barrier and a ‘routinized’ way of 
talking to voice-AI. 

Technology equivalence accounts, on the other hand, propose that people automatically 
and subconsciously apply social behaviors from human-human interaction to their interactions 
with computer systems (e.g., Lee, 2008). For example, ‘Computers are Social Actors’ (CASA) 
(Nass et al., 1997, 1994) specifies that this transfer of behaviors from human-human interaction is 
triggered when people detect a ‘cue’ of humanity in the system, such as engaging with a system 
using language. For example, people appear to apply politeness norms from human-human 
interaction to computers: giving more favorable ratings when a computer directly asks about its 
own performance, relative to when a different computer elicits this information (Hoffmann et al., 
2009; Nass et al., 1994). In line with technology equivalence accounts, there is some evidence for 
applied social behaviors to voice-AI in the way people adjust their speech, such as gender-
mediated vocal alignment (Cohn, Ferenc Segedin, et al., 2019; Zellou et al., 2021). In the present 
study, one prediction from technology equivalence accounts is that people will adjust their speech 
patterns when talking to voice-AI and humans in similar ways if the communicative context is 
controlled. 

 
1.1. Different strategies to improve intelligibility following a misrecognition? 
 
To probe routinized interaction and technology equivalence accounts, the present study further 
investigates if speakers adapt their speech differently after a human or a voice-AI assistant 
‘mishears’ them. There is evidence that speakers monitor communicative pressures during an 
interaction, varying their acoustic-phonetic output to improve intelligibility when there is evidence 
listeners might mishear them (Smiljanić & Bradlow, 2009; Hazan & Baker, 2011). Lindblom’s 
(1990) Hyper- & Hypo-articulation (H&H) model proposes a real-time trade-off between 
speakers’ needs (i.e., to preserve articulatory effort) and listeners’ needs (i.e., to be more 
intelligible). While the majority of prior work examining speakers’ adaptations following a 
computer misrecognition has lacked a direct human comparison, many of the adjustments parallel 
those observed in human-human interaction; for example, speakers produce louder and slower 
speech after a dialog system conveys that it ‘heard’ the wrong word (Bell & Gustafson, 1999; 
Oviatt, Levow, et al., 1998; Swerts et al., 2000). Additionally, some studies report vowel 
adaptations in response to a misunderstanding that are consistent with enhancements to improve 
intelligibility, including vowel space expansion (Bell & Gustafson, 1999; Maniwa et al., 2009) and 
increase in formant frequencies (Vertanen, 2006). There is also evidence of targeted adjustments: 
speakers produce more vowel-specific expansion (e.g., high vowels produced higher) in response 
to misrecognitions by a dialog system (Stent et al., 2008). Will speakers use different strategies to 
improve intelligibility following a staged word misrecognition based on who their listener is? One 
possibility is that speakers might have a ‘routinized’ way of improving their intelligibility 
following a misrecognition made by a voice-AI assistant, which would support routinized 
interaction accounts. At the same time, Burnham et al. (2010) found no difference between speech 
adjustments post-misrecognition for an (apparent) human and digital avatar, but only more global 
differences for the computer interlocutor (i.e., speech with longer segmental durations and with 
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greater vowel space expansion). Therefore, it is possible that speakers will produce similar 
intelligibility adjustments in response to a staged misrecognition made by either a voice-AI or 
human listener, supporting technology equivalence accounts.  
 Additionally, the current study adds a novel manipulation in addition to intelligibility 
pressures: emotional expressiveness. When an interlocutor ‘mishears’, they might be disappointed 
and express it (e.g., “Darn! I think I misunderstood.”); when they get it correct, they might be 
enthusiastic and convey that in their turn (e.g., “Awesome! I think I heard boot.”). Emotional 
expressiveness is a common component of naturalistic human conversations, providing a window 
into how the listener is feeling (Ameka, 1992; Goffman, 1981). This ‘socio-communicative 
enhancement’ might increase the pressure for speakers to adapt their speech for the listener. On 
the one hand, this enhanced emotional expressiveness might result in even more similar 
adjustments for voice-AI and human interlocutors, since adding expressiveness might increase the 
perception of human-likeness for the device, which could strengthen technology equivalence. 
Indeed, there is some work to suggest that emotional expressiveness in a computer system is 
perceived favorably by users. For instance, Brave and colleagues (2005) found when computer 
systems expressed empathetic emotion, they were rated more positively. For voice-AI, there is a 
growing body of work testing how individuals perceive emotion in TTS voices (Cohn, Chen, et 
al., 2019; Cohn, Jonell, et al., 2020). For example, an Amazon Alexa Prize socialbot was rated 
more positively if it used emotional interjections (Cohn, Chen, et al., 2019). Alternatively, the 
presence of emotionality might lead to distinct clear speech strategies for the human and voice-AI 
interlocutors. For example, a study of phonetic alignment (using the same corpus in the current 
study) found that vowel duration alignment differed both by the social category of interlocutor 
(human vs. voice-AI) and based on emotionality (Zellou & Cohn, 2020): participants aligned more 
in response to a misrecognition, consistent with H&H theory (Lindblom, 1990), which increased 
even more when the voice-AI talker was emotionally expressive when conveying their 
misunderstanding (e.g., “Bummer! I’m not sure I understood. I think I heard sock or sack.”). Still, 
that study examined just one acoustic difference in speech behavior (vowel duration alignment). 
The present study investigates whether emotionality similarly mediates targeted speech 
adjustments to voice-AI, an underexplored research question. 
 
1.2. Current study 
 
The present study examines a corpus of speech directed at a human and voice-AI interlocutor 
which crossed intelligibility factors (staged misrecognitions) and emotionality of the interlocutor’s 
responses in identical pre-scripted tasks (Zellou & Cohn, 2020). This is the first study, to our 
knowledge, to test both intelligibility and emotional expressiveness factors in speech style 
adaptations for a voice-AI assistant and human. Here, the Amazon Alexa voice (US-English, 
female) was selected for its ability to generate emotionally expressive phrases recorded by the 
voice actor, common in Alexa Skills Kit apps (‘Speechcons’). To determine overall differences 
between Alexa- and human-DS, as well as more local intelligibility adjustments in response to a 
staged misrecognition, we measure several acoustic features associated with computer-DS and/or 
‘clear’ speech: intensity, speech rate, mean f0, f0 variation, and vowel formant characteristics (F1, 
F2).  
 
2. Methods  
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2.1. Participants 
 
Data were taken from a corpus (Zellou & Cohn, 2020) containing 53 native English speaking 
participants (27 female, 26 male; mean age of 20.28 years old, sd = 2.42 years; range: 18-34) 
talking to a voice-AI and human interlocutor in an identical interactive task. None reported having 
any hearing impairment. Nearly all participants (n=49) reported using a voice-AI system: Alexa 
(n=35), Siri (n=13), Google Assistant (n=1). Participants were recruited from the UC Davis 
psychology subjects pool and completed informed consent, in pursuance with the UC Davis 
Institutional Review Board (IRB).  

2.2. Target words  
Sixteen target words, presented in Table 1, were selected from Babel (2012) who had chosen the 
items for being low frequency in American English; higher frequency items have been shown to 
be more phonetically reduced in production (e.g., Pluymaekers et al., 2005). Target words were all 
CVC words containing either /i, æ, u, ow, a/ and a word-final obstruent (e.g., /z/, /p/) (a subset of 
the words used in Babel, 2012). In addition, we selected a real-word vowel minimal pair, differing 
in vowel backness, to be used in the interlocutor responses in the misrecognition condition. 

 
Table 1. Target words and their (minimal pairs) used in the experiment dialogue. 

bat (boat) boot (beat) cheek (choke) coat (Kate) 

cot (cat) deed (dude) dune (dean) hoop (heap) 

moat (meet) pod (pad) soap (seep) sock (sack) 

tap (top) toot (teat) tot (tat) weave (wove) 

 
2.3. Interlocutor Recordings 
 
The human and voice-AI interlocutor responses were pre-recorded. For the human, a female native 
California English speaker recorded responses in a sound attenuated booth, with a head-mounted 
microphone (Shure WH20 XLR). The Alexa productions were generated with the default female 
Alexa voice (US-English) with the Alexa Skills Kit. Both interlocutors generated introductions 
(“Hi! I’m Melissa. I’m a research assistant in the Phonetics Lab.” / “Hi! I’m Alexa. I’m a digital 
device through Amazon.”) and voice-over instructions for the task. We recorded each interlocutor 
producing two responses for each target word: a ‘correctly understood’ response (“I think I heard 
bat”) and an ‘misrecognition’ response (“I’m not sure I understood. I think I heard bought or bat.”). 
Figure 1 provides an example of the different interlocutor responses. Order of target word and 
misheard word was counterbalanced across sentences, such that the ‘correct’ word did not always 
occur in the same position in these response types.  

Both interlocutors generated 16 emotionally expressive interjections as well: 8 positive 
interjections (bam, bingo, kapow, wahoo, zing, awesome, dynamite, yipee) and 8 negative 
interjections (argh, baa, blarg, oof, darn, boo, oy, ouch) selected from the Speechcons website2 at 
the time of the study. We generated these interjections for the Alexa text-to-speech (TTS) output 

 
2 https://developer.amazon.com/en-US/docs/alexa/custom-skills/speechcon-reference-interjections-english-us.html 
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using synthesis markup language (SSML) tags. The human produced these interjections in an 
expressive manner (independently, not imitating the Alexa productions). We randomly assigned 
each interjection to the interlocutor responses, matching in whether the response was correctly 
understood (positive interjection) or misunderstood (negative interjection). The full set of 
interjections was used twice in each block (e.g., 8 positive interjections randomly concatenated to 
16 correct productions). The full set of interlocutor productions are available on Open Science 
Framework3. 
 
2.4. Procedure 
 
Participants completed the experiment while seated in a sound-attenuated booth, wearing a head-
mounted microphone (Shure WH20 XLR) and headphones (Sennheiser Pro), and facing a 
computer screen. First, we collected citation forms of the target words produced in sentences. 
Participants read the word in a sentence (“The word is bat.”) presented on the screen. Target words 
were presented randomly. 

Following the Citation block, participants completed identical experimental blocks with 
both a human talker and an Alexa talker (block order counterbalanced across subjects). First, the 
interlocutor introduced themselves and then went through voice-over instructions with the 
participant. Participants saw an image corresponding to the interlocutor category: stock images of 
‘adult female’ (used in prior work; Zellou et al., 2021) and ‘Amazon Alexa’ (2nd Generation Black 
Echo).  

Each trial consisted of 4 turns. Participants first read a sentence aloud containing the target 
word sentence-finally (e.g., “The word is bat.”). Then, the interlocutor responded in one of four 
possible Staged Misunderstanding (correctly heard/misrecognition) and Emotionality 
(neutral/expressive) Conditions (see Figure 1). Next, the participant responded to the interlocutor 
by repeating the sentence (e.g., “The word is bat.”). This is the response that we acoustically 
analyze. Finally, the interlocutor provides a confirmation, randomized (“Thanks”, “Perfect”, 
“Okay”, “Uh huh”, “Got it”, etc.).  
 

 
3 doi: 10.17605/OSF.IO/3Y59M 
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Figure 1. Interaction trial schematic. After participants read a sentence, the interlocutor (human or Alexa) responds 
in one of the Staged Misunderstanding Conditions (correctly heard, misrecognition) and Emotionality Conditions 
(neutral, emotionally expressive). Then, the subject responds (the production we analyze). Finally, the interlocutor 
provides a follow-up response.  
 
In 50% of trials, the interlocutor (human, Alexa) ‘misunderstood’ the speakers, while in the other 
50% they heard correctly. Additionally, in 50% of trials, the interlocutor responded with an 
expressive production (distributed equally across correctly heard and misrecognition trials). Order 
of target words was randomized, as well as trial correspondence to the Misunderstanding and 
Emotionality Conditions. In each block, participants produced all target sentences once for all 
conditions for a total of 128 trials for each interlocutor (16 words x 2 misunderstanding conditions 
x 2 emotionality conditions). Participants completed the task with both interlocutors (256 total 
target sentences). After the speech production experiment ended (and while still in the 
soundbooth), participants used a sliding scale (0-100) to rate how human-like each interlocutor 
sounded (order of interlocutor was randomized) (“How much like a real person did [Alexa/Human] 
sound?” (0=not like a real person, 100=extremely realistic)”. The overall experiment took roughly 
45 minutes. 
 
2.5. Acoustic Analysis  
 
Four acoustic measurements were taken over each target sentence in both the Citation and 
Interaction blocks using Praat scripts (De Jong et al., 2017; DiCanio, 2007): intensity (dB), speech 
rate (syllables/second), mean fundamental frequency (f0) (semitones, ST, relative to 100 Hz), and 
f0 variation (ST). We centered the measurements from the Interaction blocks within-speaker, 
subtracting their Citation speech mean value (within-speaker, within-word). This measurement 
indicates changes from the speakers' citation form for that feature. 

To extract vowel-level features, recordings were force-aligned (using the Forced 
Alignment and Vowel Extraction (FAVE) suite) (Rosenfelder et al., 2014). Next, vowel 
boundaries were hand-corrected by trained research assistants: vowel onsets and offsets were 
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defined by the presence of both higher format structure and periodicity. Following hand-
correction, we measured vowel duration and vowel formant frequency values (F1, F2) at vowel 
midpoint with FAVE-extract (Rosenfelder et al., 2014) for the subset of 13 words containing 
corner vowels: /i/ (cheek, weave, deed), /u/ (boot, hoop, toot, dune), /a/ (pod, cot, sock, tot), and 
/æ/ (bat, tap). We additionally scaled the formant frequency values (from Hertz) using a log base-
10 transformation and centering each value to the subject’s citation production values for that word 
(Nearey, 1978). 

In order to assess whether speech changes made by participants were not simply alignment 
toward the interlocutors, the same sentence-level (rate, mean f0, f0 variation) and target vowel 
measurements (duration, F1, F2) were also taken over each interlocutor’s production in Turn 2 
(e.g., “I think I heard weave.”). In order to compare across the interlocutors, formant frequency 
values (F1, F2) were centered relative to each interlocutor’s mean value for that word (log mean 
normalization: Nearey, 1978). 
 
2.6. Statistical Analysis 
 
Participants’ sentence-level values for each acoustic feature (centered to speaker citation form 
values) were modeled in separate linear mixed effects models with the lme4 R package (Bates et 
al., 2015), with identical model structure: fixed effects of Interlocutor (voice-AI, human), Staged 
Misunderstanding Condition (correctly heard, misrecognition), Expressiveness (neutral, 
expressive), and all possible interactions, with by-Sentence and by-Speaker random intercepts.  

Participants’ vowel-level features (F1, F2) were also modeled in separate linear mixed 
effects models with a similar structure as in the sentence-level models: Interlocutor, Staged 
Misunderstanding Condition, Expressiveness Condition, with by-Word and by-Speaker random 
intercepts. In both the F1 and F2 model, we included an additional predictor of Vowel Category 
(For the F1 (height) model, this factor included 2 height levels: high vs. low vowels; for the F2 
(backness) model, this factor included 2 levels: front vs. back vowels) and all possible interactions 
with the other predictors (Vowel Category*Interlocutor*Misunderstanding*Emotion). The 
formant models (F1, F2) additionally included a fixed effect of Vowel Duration (centered within 
speaker). 
 
3. Results 
3.1. Human-likeness rating 
 
Figure 2 provides the mean values for participants' human-like ratings of the voices. A t-test on 
participants’ ratings of the voices confirmed that the Alexa voice was perceived as less human-
like (x̄=31.06) than the human (x̄=87.67) [t(104.87)=-12.84, p<0.001]. 
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Figure 2. Mean ‘human-like’ ratings of each interlocutor. Error bars depict the standard error.  

 
3.2. Interlocutor stimuli acoustics  
 
T-tests of the interlocutors’ productions found no overall difference between the Alexa and Human 
speaking rate (Human x̄=2.53 syll/s; Alexa x̄=2.68 syll/s) [t(124.27)=-1.87, p=0.06], but there was 
a significant difference in mean f0: the human had a higher mean f0 (x̄ =14.42 ST) than Alexa 
(x̄=13.16 ST) [t(106.25)=9.21, p<0.001]. Additionally, the human produced greater f0 variation (x̄ 
=3.27 ST) than Alexa (x̄=2.86 ST) [t(132.97)=7.06, p<0.001]. T-tests comparing formant 
frequency characteristics revealed no difference in vowel height (F1) for the interlocutors for high 
vowels (Human x̄=-0.37 log Hz; Alexa x̄=-0.41 log Hz) [t(35.28)=-1.38, p=0.18] or low vowels 
(Human x̄=0.43 log Hz; Alexa x̄=0.47 log Hz) [t(45.42)=1.75, p=0.09]. Additionally, there was no 
difference in vowel fronting (F2) for the interlocutors for front vowels (Human x̄=0.30; Alexa 
x̄=0.35)[t(34.66)=0.67, p=0.51] or back vowels (Human x̄=-0.18; Alexa x̄=-0.22)[t(47.73)=0.71, 
p=0.48]. 

T-tests comparing the Expressiveness Conditions (neutral vs. emotionally expressive) 
confirmed differences: expressive productions were produced with a slower speaking rate 
(Expressive x̄=2.45 syll/s; Neutral x̄= 2.76 syll/s) [t(153.88)=-4.25, p<0.001] and with a lower 
mean f0 (Expressive x̄=13.55 ST; Neutral x̄=14.03 ST) [t(145.44)=-2.89, p<0.01]. However, there 
was no difference for f0 variation (Expressive x̄=3.04 ST; Neutral x̄=3.09 ST) [t(157.44)=-0.60, 
p=0.55]. 

T-tests comparing the Misunderstanding Conditions (correctly heard vs. misrecognition) 
showed no significant difference in speaking rate (Correct x̄=2.64 syll/s; misunderstood x̄=2.57 
syll/s) [t(139.38)=0.89, p=0.37] or mean f0 (Correct x̄=13.92 ST; misunderstood x̄=13.65 ST) 
[t(114.62)=1.60, p=0.11]. However, they did vary in terms of f0 variation: larger for correctly 
understood (x̄=3.15 ST) than misrecognized (x̄=2.98 ST) [t(141.59)=2.58, p<0.05]. 
  
3.3. Participants’ sentence-level measurements 
 
Figure 3 displays the mean acoustic values for participants’ sentence-level measurements (centered 
to speakers’ Citation form values). Model output tables are provided in Appendices A1-A4.  

The Intensity model showed a significant intercept: participants increased their intensity in 
the interaction (relative to their citation form) [Coef=2.64, SE=0.45, t=5.86, p<0.001]. There was 
also a main effect of Misunderstanding Condition: as seen in Figure 3, participants' productions of 
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sentences that the system did not understand correctly were louder than repetitions of utterances 
that the system understood correctly [Coef=0.20, SE=0.04, t=5.13, p<0.001]. No other effects or 
interactions were significant in the Intensity model.  

The Speech Rate model showed no difference from 0 for intercept: overall, speakers did 
not speed up or slow down their speech in interlocutor interactions, relative to their citation form 
productions. The model also revealed a main effect of Interlocutor, producing a slower speech rate 
(indicated by fewer syllables per second) in Alexa-DS [Coef=-0.03, SE=0.01, t=-2.87, p<0.01]. 
There was also a main effect of Misunderstanding Condition wherein speakers decreased their 
speech rate in response to a misrecognition [Coef=-0.02, SE=0.01, t=-1.96, p<0.05]. These effects 
can be seen in Figure 3. No other effects or interactions were significant in the model. 

The Mean F0 model had a significant intercept, indicating that speakers increased their 
mean f0 in the interactions relative to the citation form productions [Coef=0.83, SE=0.15, t=5.65, 
p<0.001]. The model also showed an effect of Interlocutor: speakers produced a higher mean f0 
toward the Alexa interlocutor [Coef=0.03, SE=0.01, t=2.40, p<0.05]. Additionally, there was an 
effect of Misunderstanding wherein responses to misunderstood utterances were produced with a 
higher f0 [Coef=0.06 SE=0.01, t=5.04, p<0.001], as seen in Figure 3. Furthermore, there was a 
main effect of Expressiveness Condition wherein speakers produced a higher mean f0 in response 
to emotionally expressive utterances [Coef=0.03, SE=0.01, t=2.49, p<0.05]. No other effects or 
interactions were observed in the Mean f0 model.  

The F0 Variation model also had a significant intercept: relative to their citation form 
productions, speakers increased their f0 variation in the interaction [Coef=0.34, SE=0.07, t=4.94, 
p<0.001]. There was also a main effect of Interlocutor: speakers produced greater f0 variation in 
responses directed to the Alexa voice [Coef=0.02, SE=0.01, t=2.79, p<0.01]. Additionally, there 
was an effect of Misunderstanding: responses to misrecognitions were produced with greater f0 
variation [Coef=0.01, SE=0.01, t=1.98, p<0.05]. No other effects or interactions were significant 
in the F0 Variation model.  
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Figure 3. Mean acoustic changes from speaker’s citation form productions to the interaction with the Interlocutors 
(Alexa vs. human) for sentence intensity (in decibels, dB), speech rate (syllables per second), f0 (semitones, ST, rel. 
to 100 Hz), and f0 variation (ST). The x-axis shows Staged Misunderstanding Condition (correctly heard vs. 
misrecognized), while Expressiveness Condition is faceted. Values higher than 0.0 indicate an increase (relative to 
speakers’ citation form), while values lower than 0.0 indicate a relative decrease. Error bars depict the standard error.  
 
 
3.4. Participants’ vowel-level measurements 
 
Figure 4 displays participants’ mean vowel-level values across conditions. Model output tables are 
provided in Appendices A5 and A6.  
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Figure 4. Mean acoustic changes from speaker’s citation form productions to the interaction with the Interlocutors 
(Alexa vs. human) for vowel duration (milliseconds, ms), F1 (log Hertz, Hz), and F2 (log Hertz, Hz). Formant plots 
are additionally faceted by Vowel Category: F1 (by vowel height: low vs. high vowels) and F2 (by vowel backness: 
front vs. back vowels). The x-axis shows Staged Misunderstanding Condition (correctly heard vs. misrecognized), 
while Expressiveness Condition is faceted. Values higher than 0.0 indicate an increase (relative to speakers’ citation 
form), while values lower than 0.0 indicate a relative decrease. Error bars depict the standard error.  
 
The F1 model testing changes in vowel height (where a smaller F1 values indicate raising) showed 
no significant intercept; relative to the citation forms, speakers did not change their vowel height. 
The model revealed only an effect of Vowel Duration: speakers produce lower vowels (higher F1) 
with increasing duration [Coef=2.1e-04, SE=7.8e-05, t=2.62, p<0.01]. No other effects or 
interactions were significant. 

The F2 model, testing changes in vowel backness, showed several significant effects. 
While there was no significant intercept (indicating no general change in vowel backness from 
citation form), participants produced more backed vowels (i.e., lower F2 values) with increasing 
vowel duration [Coef=-1.8e-04, SE=3.4e-05, t=-5.41, p<0.001]. There was also an interaction 
between Misunderstanding Condition and Vowel Category. As seen in Figure 4, back vowels were 
produced even farther back (lower F2) in response to a staged word misrecognition [Coef=-0.01, 
SE=1.5e-03, t=-3.46, p<0.001]. No other effects or interactions were observed4.  
 
4. Discussion  

 
4 Note that while there is a numerical F2 increase in the Front Vowels in response to Misrecognized Expressive 
productions, this was not significant in the main model or in a post hoc model (with the subset of Front Vowels). 
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The current study examined whether participants use a different speech style when talking to an 
Alexa interlocutor, relative to a human interlocutor, in a computer-mediated interaction (a 
summary of the main effects is provided in Table 2). We systematically controlled functional and 
socio-communicative pressures in real-time during interactions with both interlocutors who made 
the same types and rates of staged word misrecognitions, and responded in emotionally expressive 
and neutral manners. This approach serves to complement studies done with users talking to 
devices in their home (e.g., Huang et al., 2019; Mallidi et al., 2018) and also pinpoint differences 
that might be present due to other factors in the situation (e.g., physical distance from the 
microphone; rate and type of automatic speech recognition (ASR) errors). While TTS methods 
have advanced in recent years (e.g., Wavenet in Van Den Oord et al., 2016), our participants rated 
the two talkers as distinct in their human-likeness: Alexa was less human-like than the human 
voice, consistent with prior work (Cohn, Sarian, et al., 2020; Cohn & Zellou, 2020). 

Overall, we found prosodic differences across Alexa- and human-DS, consistent with 
routinized interaction accounts that propose people have a ‘routinized’ way of engaging with 
technology (Gambino et al., 2020), and in line with prior studies finding differences in computer 
and voice-AI speech registers (e.g., Burnham et al., 2010; Huang et al., 2019; Siegert & Krüger, 
2020). In the present study, speakers showed a systematic Alexa-DS speech style: when talking to 
Alexa, speakers produced sentences with a slower rate, higher mean f0, and higher f0 variation, 
relative to human-DS. These differences align with prior work showing slowed speech rate toward 
Alexa socialbot (Cohn et al., 2021), increased higher mean f0 in speech toward voice-AI (Raveh 
et al., 2019), and greater segmental lengthening in computer-DS (Burnham et al., 2010). 
Furthermore, both an increased mean f0 and f0 variation are consistent with increased vocal effort 
in response to a presumed communicative barrier; for instance, prior work has reported that 
speakers produce greater f0 variation in response to a word misrecognition in computer-DS 
(Vertanen, 2006), as well as higher mean f0 and a larger f0 range in Lombard speech (Brumm & 
Zollinger, 2011; Marcoux & Ernestus, 2019). Furthermore, in contrast to other work reporting 
greater intensity in Alexa-DS (Raveh et al., 2019; Siegert & Krüger, 2020), we did not see a 
difference in intensity in the present study. This might reflect the controlled interaction, where 
participants were recorded with a head-mounted microphone (such that it was equidistant from 
their mouths for the entire experiment) and heard amplitude normalized stimuli over headphones. 
Additionally, the lack of an intensity effect suggests that adjustments in Alexa-DS differ from 
strict ‘Lombard’ effects (e.g., louder in Brumm & Zollinger, 2011). 

While one possibility was that these adjustments reflect alignment toward the Alexa talker, 
we did not find support for this: acoustic analyses demonstrated that the Alexa productions had 
lower mean f0 and less f0 variation than the human productions (speech rate did not significantly 
differ for the Alexa and human productions). Hence, speakers appear to produce more effortful 
prosodic adjustments in response to an interlocutor with presumed communicative barriers 
(Branigan et al., 2011; Clark & Murphy, 1982; Cowan et al., 2015; Oviatt, Levow, et al., 1998), 
even while the ‘actual’ misunderstandings were matched across the two talker types.  

 
Table 2. Summary of effects in main analysis, comparing interlocutor acoustics.  
  Speaking Style Changes Interlocutor acoustics 

Sentence-level Intensity Louder for Misrecognition -- 
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Speech rate Decreased rate in Alexa-DS 
Decreased rate for Misrecognition 

Alexa vs. human N.S. 
Correct vs. misrecognized N.S. 

Mean f0 Higher mean f0 in Alexa-DS 
Higher mean f0 for Misrecognition 
Higher mean f0 for Expressive 

Human - higher mean f0 (p<0.001) 
Correct vs. misrecognized N.S. 
Expressive - lower mean f0 (p<0.01) 

F0 variation More f0 variation in Alexa-DS 
More f0 variation for Misrecognition 

Human-  larger f0 var. (p<0.001) 
Correct - greater f0 var. (p<0.05) 

Vowel-level F1  
(Vowel height) 

No diff. Alexa vs. human N.S. 

F2  
(Vowel backness) 

Back vowels backed for 
Misrecognition 

Alexa vs. human N.S. 

 
 Do the differences in human- and Alexa-DS reflect distinct functionally-oriented speech 
registers? Examining responses to misrecognized utterances suggests that some of these 
adjustments might be part of a more general speech intelligibility strategy. When either 
interlocutor ‘misheard’ the word, participants responded by producing many of the same 
adjustments they did in Alexa-DS, including slower rate, higher f0, and higher f0 variation. These 
adjustments are in line with proposals that the speech adjustments people make in 
communicatively challenging contexts are listener-oriented (Lindblom, 1990; Smiljanić & 
Bradlow, 2009; Hazan & Baker, 2011). Thus, for these particular features, the adjustments made 
when there is a local communicative pressure parallel those made globally in Alexa-DS, 
suggesting that speakers make adjustments following misrecognitions and toward Alexa to 
improve intelligibility. 

Yet, we see other adjustments in response to word misrecognitions not seen globally in 
Alexa-DS: increased intensity and F2 adjustments. These F2 adjustments, in particular, are 
predicted based on the type of misunderstanding created in the experimental design: when the 
interlocutor ‘misheard’ the participant, they always produced the correct target word alongside its 
minimal pair counterpart which differed in backness (e.g., “mask” (front vowel) versus “mosque” 
(back vowel)). Producing back vowels further back is consistent with vowel space expansion. In 
particular, one possibility is that these F2 adjustments are targeted specifically for clarity, making 
the vowels more distinct from the distractor minimal pair. This aligns with findings from Stent et 
al. (2008) who found that speakers repaired misrecognitions of high vowels by a dialog system 
(e.g., “deed”) by producing even higher vowels. That the same effect is not seen for front vowels 
in the current study could come from the dialectal variety of the speakers: participants were 
California English speakers, a variety with back vowel fronting (Hall-Lew, 2011). Thus, it is 
possible that there is more room for these speakers to make back vowels more back, rather than to 
adjust the front vowels, though further work exploring dialect-specific intelligibility strategies can 
shed light on this question (cf. Clopper et al., 2017; Zellou & Scarborough, 2019). Future work 
varying vowel height, as well as hyperarticulation of consonants (e.g., flapping vs. /t/ release in 
Stent et al., 2008) can further explore targeting effects in response to word misunderstandings. 

However, if people produce global register differences in speech toward Alexa that parallel 
those seen in response to misrecognitions, why don’t we see greater speech adjustments in 
response to misrecognitions made by Alexa? One possible explanation for the similarities is the 
rate: in the current study, the interlocutors both had staged word misrecognitions in 50% of trials. 
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Related work has shown that rate of misrecognition can change speakers’ global and local 
adaptations (Oviatt, MacEachern, et al., 1998; Stent et al., 2008); at a high rate of word 
misrecognitions, speakers might produce more similar intelligibility-related adjustments across 
interlocutors. Additionally, this high misrecognition rate — as well as random occurrence of the 
misunderstandings — might be interpreted by the speaker that the listener (human or Alexa) is not 
benefiting from these adjustments, which might drive similarities. In the current study, speakers 
might produce a word as clearly as they can and the human/voice-AI listener still misunderstands 
them half the time. The extent to which these patterns hold at a lower misrecognition rate — or an 
adaptive misrecognition rate, improving as the speaker produces ‘clearer’ speech — are avenues 
for future work. 

Furthermore, another possible reason for the similar intelligibility adjustments in response 
to a misunderstanding (in both Alexa- and human-DS) is that the speakers did not have access to 
information about the source of these perceptual barriers. For example, Hazan and Baker (2011) 
found that speakers dynamically adjust their speech to improve intelligibility when they are told 
their listener is hearing them in competing background speakers or as noise-vocoded speech 
(simulating the auditory effect of cochlear implants), relative to when the listener experienced no 
barrier. Furthermore, the type of adjustments varied according to the type of barrier (e.g., more f0 
adjustments when the listener was in ‘babble’ than ‘vocoded speech’). In the present study, 
speakers were left to ‘guess’ what the source of the communicative barrier was, based on observed 
behavior of the human or voice-AI interlocutor. Indeed, when the speaker does not have 
information about the listener, adaptations might not be advantageous. For example, computer-DS 
adaptations have been shown in some work to lead to worse outcomes for some ASR systems, 
leading to a cycle of misunderstanding (e.g., Wade et al., 1992; for a discussion, see Stent et al., 
2008 and Oviatt et al., 1998). Future work examining intelligibility for the intended listener (here, 
a human or ASR system) can further shed light on the extent local intelligibility adjustments in 
Alexa- and human-DS are equally beneficial. 

Another possible factor why we see similar local intelligibility adjustments in response to 
misunderstandings (across Alexa- and human-DS) is that the experiment was computer-mediated. 
Recent work has shown differences in linguistic behavior across contexts: for example, 
participants show stronger style convergence toward their interlocutor in the in-person condition, 
relative to a (text-based) computer-mediated interaction (Liao et al., 2018). In line with this 
possibility, Burnham et al. (2010) found similar adjustments in response to a misrecognition made 
by a computer- and human-DS (but overall differences in computer-DS, paralleling our findings). 
At the same time, in the current study, the human-likeness ratings for the interlocutors collected at 
the end of study suggest that the participants found the interlocutors to be distinct. Future work 
manipulating rate of misunderstanding and embodiment (Cohn, Jonell, et al., 2020; Staum 
Casasanto et al., 2010) can investigate what conditions lead to greater targeted intelligibility 
strategies for distinct interlocutor types. 
 We also explored whether emotional expressiveness mediates speech styles for Alexa- and 
human-DS. Here, we found the same speech adjustments in response to expressiveness by both 
interlocutors: higher mean f0 in response to utterances containing emotional expressiveness. First, 
speakers’ overall higher f0 in their sentences does not appear to reflect an alignment toward the 
interlocutors (who actually produced lower mean f0 in their expressive productions). One possible 
explanation for the increased f0 following the expressive responses is that it reflects a positivity 
bias in reaction to stimuli (but see Jing-Schmidt (2007) for work on biases toward negative 
valence). Indeed, work has shown that smiling is associated with higher mean f0 (Tartter, 1980; 
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Tartter & Braun, 1994) (but we did not see formant shifts, which are also associated with smiled 
speech, in response to Expressiveness). Here, one explanation for similarities in response to 
emotion by both interlocutors is that speakers are applying the social behaviors toward voice-AI 
as they do toward humans, as proposed by technology equivalence accounts (Lee, 2008; Nass et 
al., 1997, 1994). For instance, here people are reacting to emotional expressiveness by both types 
of interlocutors similarly. This explanation is consistent with work showing similar affective 
responses to computers as seen in human-human interaction (e.g., Brave et al., 2005; Cohn, Chen, 
et al., 2019; Cohn & Zellou, 2019). 
 Additionally, we did not observe differences in how participants adapted their speech 
following an emotionally expressive or neutral word misrecognition. This contrasts with related 
work on this same corpus (Zellou & Cohn, 2020) that found greater vowel duration alignment 
when participants responded to an emotionally expressive word misunderstanding made by a 
voice-AI system. Thus, it is possible that emotional expressiveness might shape vocal alignment, 
but it might not influence speech style adjustments. That emotion appears to have an effect on 
vocal alignment toward humans and voice-AI (e.g., Cohn & Zellou, 2019; Vaughan et al., 2018) 
could be explained by proposals that alignment is used as a means to communicate social closeness 
(Giles et al., 1991). While conveying affect is thought to be part of infant- and pet-DS registers 
(Trainor et al., 2000), listener-oriented speech styles directed toward human adults (non-native 
speakers, hearing impaired speakers) and computers are generally not associated with increased 
emotionality. Furthermore, conveying affect is generally not associated with clear speech 
strategies. Indeed, classic perspectives on clear speech (H&H theory) do not account for 
emotionality in predicting hyperspeech behavior (e.g., Lindblom, 1990). Yet, one possibility for a 
lack of difference in the current study is based on how emotion was added in the stimuli: emotional 
expressiveness was conveyed only in the interjection. Since the time this study was run, there are 
now more ways to adapt the Alexa voice in terms of positive and negative emotionality (at low, 
medium, and high levels5), which can serve as avenues for future research. 
 There were also several limitations of the present study which open directions for future 
work. For instance, one possible factor in the lack of difference detected for emotionality across 
Alexa- and human-DS is the communicative context: the current study consisted of fully scripted 
interactions in a lab setting. While this controlled interaction was intentional as we were interested 
in word misrecognitions (which might otherwise be difficult to control in voice-AI interactions), 
it is possible that differences based on emotional expressiveness might be seen in a non-scripted 
conversation with voice-AI, as well as one conducted outside a lab context (e.g., Cohn et al., 2019). 
Additionally, the present study used two types of voices; it is possible that other paralinguistic 
features of those voices might have mediated speech style adjustments. For example, recent work 
has shown that speakers align speech differently toward TTS voices that ‘sound’ older (e.g., 
Apple’s Siri voices, rated in their 40s and 50s) (Zellou et al., 2021). Furthermore, there is work 
showing that introducing ‘charismatic’ features from human speakers’ voices shapes perception 
of TTS voices (Fischer et al., 2019; Niebuhr & Michalsky, 2019). The extent to which individual 
differences in speakers (human and TTS) and participants remain avenues for future research.  

While here the findings align with those for another Germanic language (e.g., German in 
Raveh et al., 2019; Siegert & Krüger, 2020), the extent to which the same effects might be observed 
with other languages and other cultures is another open question for future work. For example, 
cultures might vary in terms of acceptance of voice-AI technology, such as due to privacy concerns 

 
5 https://developer.amazon.com/en-US/docs/alexa/custom-skills/speech-synthesis-markup-language-ssml-
reference.html#amazon-emotion 
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(e.g., GDPR in Europe: Loideain & Adams, 2020; Voss, 2016). Additionally, cultures vary in 
terms of their expressions of emotion (Mesquita & Markus, 2004; Shaver et al., 1992; Van Hemert 
et al., 2007). How emotional expressiveness and ‘trust’ in voice-AI (Metcalf et al., 2019; Shulevitz, 
2018) might interact remains an open question for future work. 

 
5. Conclusion 
 
Overall, this work adds to our growing understanding of the dynamics of human interaction with 
voice-AI assistants — still distinct from how individuals talk to human interlocutors. As these 
systems and other AI robotics systems are even more widely adopted, characterizing these patterns 
across different timepoints — and with diverse populations of participants — is important in our 
ability to track the trajectory of the influence of voice-AI on humans and human speech across 
languages and cultures. 
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Appendix A. Model outputs for sentence measurements 
Table A1. Intensity 
 Coef SE df t p  

Intercept 2.63 0.45 58.12 5.86 <0.001 *** 

Interlocutor(Alexa) 0.07 0.04 6415.3 1.88 0.06  

MisunderstandingCond(misrecognized) 0.20 0.04 6415.31 5.13 <0.001 *** 

ExpressivenessCond(expressive) -1.4e-03 0.04 6415.2 -0.03 0.97  

Int(Alexa)*Misunderstanding(misrec.) 0.04 0.04 6415.19 1.02 0.31  

Int(Alexa)*Expr(expressive) -0.06 0.04 6415.17 -1.64 0.10  

Misunderstanding(misrec.)*Expr(express.) -0.01 0.04 6415.2 -0.14 0.89  

Int(Alexa)* Misunderstanding(misrec.)* 
Expr(express.) -0.01 0.04 6415.22 -0.15 0.88 

 

Num. observations =6,490, Num. subjects=53, Sentences=16  

 
 

Table A2. Speech rate 
 Coef SE df t p  

Intercept 0.03 0.05 59.71 0.53 0.60  

Interlocutor(Alexa) -0.03 0.01 6416.32 -2.87 <0.01 ** 

MisunderstandingCond(misrecognized) -0.02 0.01 6416.34 -1.96 <0.05 * 

ExpressivenessCond(expressive) 0.02 0.01 6415.74 1.81 0.07  

Int(Alexa)*Misunderstanding(misrec.) 1.6e-03 0.01 6415.79 0.15 0.88  

Int(Alexa)*Expr(expressive) 0.01 0.01 6415.59 0.90 0.37  

Misunderstanding(misrec.)*Expr(express.) -0.02 0.01 6415.67 -1.81 0.07  

Int(Alexa)* Misunderstanding(misrec.)* 
Expr(express.) 0.01 0.01 6415.73 1.2 0.23 

 

Num. observations =6,490, Num. subjects=53, Sentences=16  
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Table A3. Mean f0 
 Coef SE df t p  

Intercept 0.83 0.15 53.69 5.65 <0.001 *** 

Interlocutor(Alexa) 0.03 0.01 6382.35 2.40 0.02 * 

MisunderstandingCond(misrecognized) 0.06 0.01 6382.41 5.04 <0.001 *** 

ExpressivenessCond(expressive) 0.03 0.01 6382.23 2.49 0.01 * 

Int(Alexa)*Misunderstanding(misrec.) -6.9e-04 0.01 6382.15 -0.05 0.96  

Int(Alexa)*Expr(expressive) 2.6e-04 0.01 6382.11 0.02 0.98  

Misunderstanding(misrec.)*Expr(express.) -0.01 0.01 6382.26 -0.92 0.36  

Int(Alexa)* Misunderstanding(misrec.)* 
Expr(express.) 0.01 0.01 6382.25 1.12 0.26 

 

Num. observations =6,457 Num. subjects=53, Sentences=16  

 
 
 
 
 
Table A4. F0 variation 
 Coef SE df t p  

Intercept 0.34 0.07 54.45 4.94 <0.001 *** 

Interlocutor(Alexa) 0.02 0.01 6382.74 2.79 <0.01 ** 

Misunderstanding(misrec.) 0.01 0.01 6382.79 1.98 <0.05 * 

ExpressivenessCond(expressive) -1.1e-03 0.01 6382.55 -0.14 0.89  

Int(Alexa)* Misunderstanding(misrec.) -4.1e-04 0.01 6382.47 -0.05 0.96  

Int(Alexa)*Expr(expressive) -4.9e-03 0.01 6382.41 -0.65 0.52  

Misunderstanding(misrec.)*Expr(express.) 4.8e-03 0.01 6382.56 0.63 0.53  

Int(Alexa)* Misunderstanding(misrec.)* 
Expr(express.) 0.01 0.01 6382.56 0.74 0.46 

 

Num. observations =6,457, Num. subjects=53, Sentences=16  
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Appendix B. Model outputs for vowel measurements 
Table B1. F1 (Vowel height) 
 Coef SE df t p  

Intercept 1.2e-03 0.01 37.12 -0.10 0.92  

Interlocutor(Alexa) 1.1e-03 3.6e-03 5576.60 0.31 0.76  

MisunderstandingCond(misrecognized) -3.0e-04 3.6e-03 5576.39 -0.08 0.93  

ExpressivenessCond(expressive) 1.7e-03 3.6e-03 5575.11 0.46 0.65  

VowelCategory: HighorLow(high) -2.0e-03 0.01 10.89 -0.27 0.79  

Duration 2.1e-04 7.8e-05 4823.13 2.62 <0.01 ** 

Int(Alexa)* Misunderstanding(misrec.) 4.8e-04 3.6e-03 5575.16 0.13 0.89  

Int(Alexa)*Expr(expressive) 2.7e-05 3.6e-03 5575.00 0.01 0.99  

Misunderstanding(misrec.)*Expr(expressive) 3.8e-03 3.6e-03 5574.24 1.05 0.30  

Int(Alexa)*Vowel(high) -2.3e-03 3.6e-03 5573.96 -0.64 0.52  

Misunderstanding(misrec.)*Vowel(high) 1.0e-03 3.6e-03 5573.61 0.28 0.78  

Expr(express.)*Vowel(high) -1.7e-03 3.6e-03 5573.93 -0.47 0.64  

Int(Alexa)* 
Misunderstanding(misrec.)Expr(express.) -1.4e-03 3.6e-03 5574.67 -0.39 0.70 

 

Int(Alexa)* 
Misunderstanding(misrec.)Vowel(high) -1.6e-03 3.6e-03 5573.59 -0.44 0.66 

 

Int(Alexa)*Expr(express.)*Vowel(high) -7.2e-04 3.6e-03 5573.60 -0.20 0.84  

Misunderstanding(misrec.)*Expr(express.)* 
Vowel(high) -2.0e-03 3.6e-03 5573.29 -0.55 0.59 

 

Int(Alexa)* Misunderstanding(misrec.)* 
Expr(express.)*Vowel(high) 5.9e-04 3.6e-03 5573.48 0.16 0.87 

 

Num. observations =5,656, Num. subjects=53, Words=13  
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Table B2. F2 (Vowel backness) 
 Coef SE df t p  

Intercept 0.01 0.01 30.83 1.06 0.30  

Interlocutor(Alexa) -2.2e-03 1.5e-03 5576.13 -1.43 0.15  

MisunderstandingCond(misrecognized) -7.1e-04 1.5e-03 5575.87 -0.46 0.65  

ExpressivenessCond(expressive) 9.9e-04 1.5e-03 5575 0.64 0.52  

VowelCategory:FrontorBack(back) 2.0e-03 4.0e-03 10.9 0.51 0.62  

Duration -1.8e-04 3.4e-05 5024.68 -5.41 <0.001 *** 

Int(Alexa)* Misunderstanding(misrec.) -8.5e-04 1.5e-03 5574.95 -0.55 0.59  

Int(Alexa)*Expr(expressive) -2.7e-04 1.5e-03 5575 -0.17 0.86  

Misunderstanding(misrec.)*Expr(expressive) 2.9e-03 1.5e-03 5574.26 1.9 0.06  

Int(Alexa)*Vowel(back) 3.0e-03 1.5e-03 5573.58 1.94 0.05  

Misunderstanding(misrec.)*Vowel(back) -0.01 1.5e-03 5573.59 -3.46 <0.001 *** 

Expr(express.)*Vowel(back) -3.0e-03 1.5e-03 5573.54 -1.92 0.06  

Int(Alexa)*Misunderstanding(misrec.)* 
Expr(express.) -1.5e-03 1.5e-03 5574.67 -0.10 0.92 

 

Int(Alexa)*Misunderstanding(misrec.)* 
Vowel(back) 1.4e-03 1.5e-03 5573.53 0.90 0.37 

 

Int(Alexa)*Expr(express.)*Vowel(back) -1.1e-03 1.5e-03 5573.6 -0.69 0.49  

Misunderstanding(misrec.)*Expr(express.)* 
Vowel(back) 2.4e-04 1.5e-03 5573.48 0.16 0.88 

 

Int(Alexa)*Misunderstanding(misrec.)* 
Expr(express.)*Vowel(back) 1.1e-03 1.5e-03 5573.49 0.68 0.50 

 

Num. observations =5,656, Num. subjects=53, Words=13  

 


