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Abstract. A fully-constrained n − DOF cable-driven parallel robot
(CDPR) has wrench closure if there are n+1 cables exerting positive ten-
sions spanning the wrench space. However, the quality of wrench closure
is often dependent on the geometric configuration of the supporting in-
parallel chains of the CDPR. The reconfigurability endowed by adding
in-chain kinematic and/or actuation redundancy to a conventional ca-
ble robot could greatly improve quality of the workspace. However, the
status of various joints (active, passive or locked) affect the complexity
of the systematic formulation and ultimate wrench-based analysis. Past
efforts have tended to equilibrate the forces in these systems in such
a way as to avoid kinematic redundancies. To this end, we formulate
the kinematics of the redundant reconfigurable CDPR using matrix Lie
group formulation (to allow ease of formulation and subsequent generaliz-
ability). Reciprocity (and selective reciprocity) permits the development
of wrench analyses including the partitioning of actuation vs structural
equilibration components. The total wrench set is greatly expanded both
by the addition of kinematic redundancy and selective actuation/locking
of the joints. The approach adopted facilitates the holistic determination
of the true wrench polytope which accounts for the wrench contributions
from all actuation sources. All these aspects are examined with vari-
ants of a 4-PRPR planar cable driven parallel manipulator (with varied
active/passive/locked joints).

Keywords: Wrench Analysis · Reconfigurable Cable Robot · Reciprocal
Screws

1 Introduction

Traditional cable-driven parallel robots (CDPRs) are parallel manipulators whose
individual chains may not feature kinematic redundancy (e.g. RPR in planar,
SPS/SPU in spatial). However, due to the unilateral cable tension conditions,
they require at minimum n+1 cables for an n−DOF task space which creates
actuation redundancy.
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The placement of the cable winching mechanism on a mobile platform al-
lows the ability to change the geometry of the attachment points of the cables
creating a reconfigurable CDPR (r-CDPR). Such additional kinematic and/or
actuation redundancy creates potential for enhancing the performance of con-
ventional cable robots. For example, the added mobility offers advantages such
as the ability to increase the wrench feasible workspace (WFW) as proposed by
Rosati et al. [20] or improve the quality of the WFW for a span of end-effector
poses. This mobility can be incorporated by housing the winching mechanism on
mobile differential drive robots that are independently steered, as seen in [17], or
looping the cable through a pulley on linear guides as modeled and implemented
in [24]. While early efforts [4] speculated on the value of adding reconfigurability
to CDPRs, specifically the location of the control and actuator packages, this
prospect was not fully analyzed until later. Zhou [23] used the reconfigurability
offered by an r-CDPR with mobile attachment points to adjust cable tensions
to suit the task and modulate control the stiffness at the end-effector. Nyu-
gen et al. [16] proposed an r-CDPR alternative to maintenance lifts in aircraft
hangers and resolved the redundancy by optimizing for stiffness and power con-
sumption. Rasheed et al. [19] proposed a spatial r-CDPR wherein the columns
supporting the fully-constrained CDPR are independently movable on differen-
tial drive robots (forerunner to [17]). Gagliardini et al. [11] presented a spatial
reconfigurable cable robot for sandblasting and painting of large structures and
proposed an optimization algorithm for planning the reconfiguration. Erskine et
al. [8] performed the wrench analysis on a reconfigurable robot where the ca-
ble lengths are kept constant and the cable attachment points are connected to
drones. In our own past work, we have used base mobility in combination with
the tension isolation module developed by Zhou [23] on a 3-cable planar r-CDPR
to modulate the stiffness at the end-effector [18].

The modeling and formulation for CDPRs have largely relied on vector loop
closure. In some papers, this relationship has also been easily derived through
screw theoretic analysis as described in Bosscher et al. [2]. For a fully-constrained
CDPR, the force and moment applied on the payload is related to the cable ten-
sion directly by JT (which is composed of the wrenches along the cables). Tra-
ditionally, cables have been modeled as unilateral prismatic joints surrounded
by two passive revolute joints, i.e. they can exert forces along an axis, in a cer-
tain direction. Such a formulation treats the cable and attachment points as a
“proper” serial chain (3 joints for 3 degrees of freedom at the end-effector). In
effect the cable is treated as a two force member (in the planar case) and defines
the direction of the line of action of a pure force. If the attachment points of
the cables are known, one can write down the equations of static equilibrium
in a matrix form where the columns of the subsequent Jacobian form the pure
force direction and the magnitudes of the forces are unknown. Such a formula-
tion makes it amenable for subsequent linear matrix analysis. Although this has
proven adequate for CDPRs, the formulation and wrench analyses r-CDPRs has
not yet been undertaken without decoupling the mobile base attachment points
from the CDPR. In this paper we systematically formulate and analyze a planar
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r-CDPRs with multiple cases of in-chain kinematic and actuation redundancy
by varying status of joints (active/passive/locked). We formulate the kinemat-
ics using reciprocal screw theory [1] applied using matrix Lie group formulation
following the formulation style and notation in Murray et al. [15]. The use of
reciprocity, selective reciprocity with matrix Lie groups permits the systematic,
analytical and computationally-efficient treatment of r-CDPRs as a sub-class
of articulated multi-body systems as well as ease of generalization to the fully-
spatial case.

Further, while there have been many studies encompassing wrench feasibility
analyses of CDPRs [3, 12, 13, 5], these do not consider the effect of kinematically-
redundant supporting chains. Even in the studies by Erskine [8] and Rasheed [19]
that deal specifically with the wrench analysis of reconfigurable CDPRs, the
forces at the payload and mobile bases are equilibrated separately. Therefore,
the determined wrench set available at the end-effector does not directly take
into consideration the wrench contributions at the mobile joints. The separation
of the force equilibration also necessitates the redundancy resolutions to take
cascaded forms where the actuation and kinematic redundancies are resolved
asynchronously. In contrast, we have reformulated the kinetostatics to consider
these forces within the same wrench Jacobian and also determine the true wrench
set available at the end-effector.

The wrench set determination was carried out with the convex hull method
described by Bouchard [5]. Studies by Bosscher [3], Firmani [9, 10] and Boudreu[6]
all consider the convex hull determination for examining the available wrench
set for parallel structures. Bouderu specifically tackles the problem of a kine-
matically redundant (rigid-link) planar parallel manipulator and shows that the
convex hull, sliced at mz = 0 for all possible kinematic configurations of the
redundant manipulator presents the same results as the optimization schema
to produce maximum forces at the end-effector for a kinematically redundant
3-RPRP manipulator by Weihmann [21].

In this work, after a brief introduction of the mathematical background (in
Section 2), we represent the formulation of the r-CDPR using Lie groups (in
Section 3.1) by following the procedure and notation established in [15]. In sub-
sequent sections of this paper we model the reciprocal wrenches that span the
wrench space of the r-CDPR (Section 3.2) and discuss how the in-chain re-
dundancies improve the dexterity and wrench set of the manipulator. Finally,
a study of wrench feasibility shows the value added by the redundancy and
is demonstrated in the paper with the analysis and visualization of available
wrench sets (and how they change shape) at the end-effector through graphical
representations of its wrench polytope (Section 4).

2 Mathematical Methods

2.1 Lie Group Formulations

Lie groups are a group of symmetry transformations that form smooth dif-
ferentiable manifolds. Lie groups include rotations, translations, scaling, and
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other geometric transformations. Despite the many parallels existing between
the unilateral tension requirements and unidirectional normal-force constraints
arising in multi-fingered hands, multi-legged walkers and multi-arm cooperative-
manipulation, efforts to relate this wealth of literature to cable robots have been
very limited. Such an approach offers us an opportunity to pursue a coordinate-
free geometric formulation as well as connect this formulation to the rich litera-
ture of geometric treatment of articulated in-parallel multibody systems.

The notation for the Lie group formulation is largely based on the notation
in [15], where {s} forms the inertially-fixed spatial frame and {b} forms the
body-fixed or moving frame and homogeneous transformation of the body-fixed
frame with respect to the spatial frame is given by gsb ∈ SE(3). In vector

space, the body twist is btsb =
[
v ω

]T
and is related to the spatial twist by an

adjoint transformation, stsb = Adgsb
btsb where Adgsb =

[
Rsb p̂sbRsb

0 Rsb

]
(in planar:

Adgsb =


Rsb

[
py
−px

]

0 1


).

2.2 Reciprocal Wrenches

There have been many successful attempts to unify the terminology and formu-
lation surrounding the design of parallel robots. In [7], Bruyninckx proposes a
unified method of wrench formulation using screws that is equally applicable to
the formulation of serial-chain as well as in-parallel manipulators.

For a given serial chain, each column of its Jacobian, J , represents the partial
twist at the end-effector which is contributed by that joint. In other words, it
is the instantaneous motion of the end-effector caused by the ith joint when all
but the ith joint is locked [14]. The span of the all the twists that make up a
Jacobian is called the twist space of the robot.

A reciprocal wrench is then any wrench that is reciprocal to a twist in the
span of J such that, wT

r t = 0, ∀t ∈ span(J). In other words, given a serial chain
the reciprocal wrench to the twists that form the Jacobian will be that set of
wrenches that does zero work on t ∈ span(J). The wrench will then belong to
the null space of the Jacobian. The number of reciprocal wrenches that exist will
be (6− n) for spatial and (3− n) for planar, where n = rank(J).

A selectively non-reciprocal wrench (SNRW) is a special case of reciprocal
wrenches. It is a wrench that is reciprocal only to the ith twist and non-reciprocal
to all other joints.

wT
r t = δi with

{
(δi)j = 1, if i = j

(δi)j = 0, if i 6= j
(1)

The SNRW of a joint is the partial wrench at the end-effector contributed
by joint i. In this sense it is analogous to the assembly of partial twists forming
the twist Jacobian. The assembly of the SNRW for each of the joints forms the
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wrench Jacobian, Jw. For some unique cases, (e.g. a serial robot) this Jacobian is
the same as the transpose of the twist Jacobian, J . The selectively non-reciprocal
wrench (or screw) described here is the same as the special case of reciprocal
screws described by Agrawal [1].

2.3 Available Wrench Set

The Available Wrench Set (AWS) is the set of all forces at the end-effector that
are achievable without violating the force limits at the actuated joints. These
limits are determined by the setting the joint torques to their extreme values and
plotting the limits of wrenches they cause at the end-effector. Bouchard et al. [5]
determined that the zonotope generated at the end-effector for an equilibrated
system is a convex polytope called the wrench polytope. The wrench limits
can also be determined as ellipsoids, tangential to the manipulability ellipsoids
introduced by Yoshikawa [22]. However, as the ellipsoids an approximation of
the wrench polytope, they do not represent the AWS in its entirety and thus not
considered here.

2.4 Wrench Polytope

The wrench polytope is a region of end-effector wrenches determined by the
bounds on the range space of joint forces. For the planar case, this polytope is
graphically represented by a three dimensional shape in the task space. Given
the current pose of the end-effector, the vertices of the polytope are determined
by mapping the extreme values of the joint torques (fi ∈ {fmax, fmin}) to task
space wrenches using the wrench Jacobian. If the number of actuated joints in
a parallel robot is given by n, then the resultant number of vertices forming the
polytope is given by 2n,

Foext
= Jwfcext

; fcext
=

[
f1ext f2ext ... fnext

]T

where n is the number of actuators and fnext represents an extreme value of fi.
For the redundant manipulator, a number of these vertices thus determined

lie inside the overall convex hull. However, the internal facets determined by
connecting all the (internal and external) vertex points also represent n − 2
actuators working at the extreme limits.

3 r-CDPR Formulation

All these aspects are examined with variants of a 4-PRPR planar cable-driven
parallel manipulator (with varied active/passive/locked joints) to serve as an
exemplar of the reconfigurable CDPRs (r-CDPR) under study. In the rest of the
paper, we will use the following notation for the planar 4-PRPR with frames as
shown in Figure 1.

We define the payload or end-effector as a rigid body connected via cables
to the main frame or to sliders that move along the main frame. The cables
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Fig. 1. Planar 4-PRPR CDPR (Planar r-CDPR)

are considered to have no mass and no slack, and the sliders moving along the
frame are not inhibited by friction. The world frame and end-effector frame are
denoted by {P} and {O} respectively. The frame corresponding to the geometry
of the CDPR are given by {S1}i where i corresponds to the ith chain. Every
subsequent frame in the chain is given by {Sj}i for j joints in each chain. The
final frame in the chain, the frame that shares and origin with the contact point
on the surface, is given by {F}i.The contact point of each cable with the end-
effector is given by {C}i, and it is assumed that that the orientation of {C}i is
fixed with respect to {O}. The angle between {F}i and {C}i is γi.

3.1 Twist Assembled Jacobian

For the ith serial chain, the twist from it’s base frame {S1}i to final frame {F}i
is given by t

s1i
s1ifi

. Dropping subscript i,

ts1s1f =
[
ts1s1s2 ts1s2s3 ... ts1snf

]

ts1s1f =
[
t̂s1s1s2 Adgs1s2

t̂s2s2s3 ... Adgs1sn
t̂snsnf

]




q̇01
q̇12
...

q̇n−1,n



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ts1s1f = Js1
s1f

(q)iq̇i = Js(q)iq̇i

Each column of the twist assembled Jacobian or the structure Jacobian,
Js(q)i, forms the twist between two consecutive frames, k−1 and k, expressed in
the spatial frame {S1} by adjoint transformations, F tk−1,k = AdgF,k−1

k−1tk−1,k.
The attachment point of a cable on the payload the the cable robot is anal-

ogous to a the modelling of a finger contact on a grasped object by Murray, Li
and Sastry [15]. The wrench contribution from tension in the cable is along the
direction of {F}i applied on {Ci}. This wrench is given by Fci ,

Fci =



− cos(γ)
− sin(γ)

0


 fi, ∀fi ≥ 0

where fi is the magnitude of the tension. Transforming this force into the object
frame {O},

FOi = AdT
g−1
oci

Fci = AdT
g−1
oci

Ncifi = Pifi

where Nci is the direction vector of the ith cable with respect to the contact
frame {Ci}, and Pi is the ith column of the pulling map. The total wrench is
the summation of the individual ith contributions. As the contact point is fixed
to the object, the relative velocity between the contact frame and the cable
frame is zero in x, y and z. Thus the relationship NT

ci t
ci
fici

equals zero. With this
relationship follows the computation of the relationship between the active and
passive joint twists of serial chain and twist at the end-effector. The complete
derivation is given in [15] for the analogous case of multi-fingered grasping.

The forward-kinematic relationship (joint- to task-space) for the manipulator
is given by,

Jc =




NT
c1Ad−1

gs1c1
Js1
s1f1

(qf1) 0

. . .

0 NT
ck
Ad−1

gskck
Jsk
skfk

(qfk)




Jcq̇ = PT topo

where P is the pulling map and Jc is the cable Jacobian, analogous to the grasp
map and hand Jacobian. For the fixed base standard case, the cable Jacobian is
an identity matrix.

3.2 Wrench Assembly

The body twist at {O} for a single chain is given by,

tos1o = Ad−1
gs1o

Js1
s1o(q)iq̇i
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For the 4-cable planar r-CDPR, this is



ẋ
ẏ

φ̇


 =




cos(γ + θ2) yoc + l3 sin γ cos γ yoc
− sin(γ + θ2) l3 cos γ − xoc − sin γ −xoc

0 1 0 1







l̇1
θ̇2
l̇3
γ̇




where l1 and l3 at the linear translations, which can be locked, passive or active
and θ2 and γ are the passive rotations.

Case 1: Passive motion accommodation (4-PRPR) If the entire system is
passive, the system should be able to accommodate any arbitrary twist applied
at the end-effector. The total rank of the assembled Jacobian for a singular
chain is 3, while the dimensions of its columns is four. Thus, there is a linear
dependency that must exist between the columns. However, we see that at any
time, at least 3 of the four columns are independent and is thus able to passively
accommodate any twist at the end-effector except when l3 = 0 or when θ2 = 0.
For these conditions, another set of columns becomes linearly dependent thus
reducing the rank to 2.

Case 2: Standard, fully-constrained CDPR (4-RPR): With the mobile
bases locked and fixed, each individual chain forms a planar RPR serial chain
attached at the end-effector and twists associated with the locked joint drop
out of consideration. Thus each chain forms a class-1 type “proper” serial chain,
wheres the DOFs of the joint equal the DOFs at the end-effector. The wrench
at the end-effector is contributed to only by the actuated joint. The SNRW at
this joint is given by,

[
tθ2 tγ

]T
wl3 = 0

wl3 =




− cos γ
sin γ

xoc sin γ + yoc cos γ




Assembling the wrenches for all the four chains, we get,

[
wl31

wl32
wl33

wl34

]



fc1
fc2
fc3
fc4


 = Fo

The assembled wrenches form the wrench Jacobian Jw which takes the same
form as the pulling map, P.
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Case 3: Reconfigurable CDPR (4-PRPR) Each chain connecting to pay-
load is a 4 − DOF PRPR mechanism. Thus, each chain forms a class-3 type
redundant serial chain. Any wrench at the end-effector will have a non-unique
and possibly undefinable contribution at the joint. Thus, we break each chain
off after the first 3 (PRP) joints to form a “proper” serial chain. Any wrench at
frame {F} will have a unique solution at the joints. The forces on the payload
from these wrenches are then summed and translated into the body frame at
{O}.

[
tθ2 tl3

]T
wl1 = 0

[
tθ2 tl1

]T
wl3 = 0

wf
l1
=




0
−1
l3




wf
l3
=



− sin(θ2)
− cos(θ2)
l3 cos(θ2)




Fig. 2. Lines of action of reciprocal wrenches on a 3−DOF planar model for (a) Case
2, (b) Case 3 and (c) Case 4

These wrenches are then transformed to the body-frame {O}.

wl1 = AdT
g−1
of

wf
l1
=




− sin(γ)
− cos(γ)

l3 − xoc cos(γ) + yoc sin(γ))




wl3 = AdT
g−1
of

wf
l3
=




− sin(γ + θ2)
− cos(γ + θ2)

l3 cos(θ2)− xoc cos(γ + θ2) + yoc sin(γ + θ2)



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The collected wrench Jacobian is an assembly of individual wrenches. The
lines of actions of these forces are given in Figure 2. For a CDPR, the direction
of the forces should be such that they always provide positive tensions at the
cables.

Case 4: Single mobile base (3-RPR, 1-PRPR): We break each chain at
the point connecting to the payload {Ci} and the forces at {Ci} are translated
into the {O} frame. The 3 RPR chains form a 2 − DOFRP “deficient” serial
chain. Any wrench at frame {F} will have non-unique solutions at the joints.
Given a reciprocal wrench for the entire chain, the SNRWs will be the set of
reciprocal wrench minus the wrench reciprocal to the entire chain. The forces on
the payload from these wrenches are then summed and translated into the body
frame.The reciprocal wrench for the entire chain given by,

[
tθ2 tl3

]T
wr = 0;wr =




0
−1
l3




For each joint there exist two wrenches spanned by the null space. For the active
joint these are,

Wl3 =



1 0
0 −1
0 l3




As one of these screws corresponds to the reciprocal wrench for the entire chain,
it cannot be unique, and thus the true selective reciprocal wrench is given by
the first column. The SNRWs for the remaining chain are described in Case 3.
The wrenches are transformed from frame {F} to frame {O} as before and we
see that the wrench contribution of the individual cables takes a form similar to
Case 2, as expected.

WOi
=




− cos(γ)
sin(γ)

xoc sin(γ) + yoc cos(γ)




Assembling the wrenches, we extract a wrench Jacobian of size 3 by 5 where
5 is the number of actuated joints.

4 Analysis of the Available Wrench Set

The following section contains a study on the determination of the wrench set
available at the end-effector for two of the cases described above. This is done by
investigating the convex polytopes generated by joint actuators at their extreme
values. Any wrench at the end-effector that can be sustained by the joints must
lie within the boundaries of that polytope.
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The wrench-feasible workspace (WFW) of a parallel cable-driven mechanism
is the set of poses of its mobile platform for which the cables can balance any
wrench in a specified set of wrenches, such that the tension in each cable (as well
as the forces at the mobile bases for an r-CDPR) remains within a prescribed
range. The boundaries of the WFW are determined by the geometric properties
of the Available Wrench Set [3].

Traditionally, the AWS is determined only by the tension contribution of the
cables. Even in studies of reconfigurable robots, the wrench contributions of the
mobile bases are analysed independently. In this paper, we will make use of the
formulations in Section 3 to visualize the combined wrench set.

We assume that the cables contain negligible mass and have no slack even
at minimum tensions. The end-effector is a rigid body and the dynamic effect of
gravity is considered negligible as well. The frame of the planar manipulator is
1 m × 1 m, and the platform is 0.39 m × 0.16 m. The minimum and maximum
forces at the cables ranges from 0 N to 1 N and at the mobile base prismatic
joints from −0.1 N to 0.1 N.

The quality of the Available Wrench Set provides an indication of the quality
of the wrench feasible workspace at that point, but does not give an indication
of the overall quality of the workspace over a span of poses. Future efforts will
involve determining the quality of the wrench feasible workspace around the locii
of the current pose to update the limits of the available end-effector wrenches
and twists for input into r-CDPR control.

4.1 Available Wrench Set for the 4-RPR CDPR

The wrench polytope of the 4-RPR CDPR is shown in Figure 3. As expected,
the number of vertices for the wrench polytope are 16, as there are 16 combi-
nations of maximum torques at the end-effector. The red hypercube in Figure 3
encapsulates the set of wrenches for which the magnitude of tension in cable 1 is
maximum and the green hypercube encapsulates the set of wrenches for which
the magnitude of the tension in cable 1 is at its minimum. The regions between
them and within the polytope shows the region in which this actuator works un-
der its torque capabilities, but another set of actuators sustains extreme values.
The polytope generated at φ = 0 is symmetric along all three axis. It contains
14 external vertices and two internal vertices with are coincident. This marks
points where all of the actuators have either their maximum or minimum values.
This is aligned with intuition. To achieve zero wrench at the end-effector all of
the forces at the joints should either be fighting against each other or be zero.
The closer the pose moves towards the extreme value of orientation (φ = −0.4 or
0.4), the less it is able to sustain a moment in that same direction. This is seen
by the polytope moving further along the positive mz axis as the pose moves
to φ = −0.35 and along the negative axis when the pose moves to φ = 0.35. At
these positions, the cable actuators are less able to sustain transition actuator
values, as seen by either disappearing hypercubes for cable 1 in Figure 3 (b) or
fully aligned hypercubes in Figure 3(c). The polytopes become truly cuboidal at
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Fig. 3. Convex polytope representing AWS for the 4-RPR CDPR at (a) φe = 0 (b)
φe = −0.35 and (c) φe = 0.35
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Fig. 4. Convex polytope representing AWS for the 3RPR, 1-PRPR r-CDPR at (a)
φe = 0 (b) φe = −0.4 and (c) φe = 0.4
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φ = ±0.4.

As the number of actuators in the chain are increased, so do the number
of vertices for the wrench polytope. For a 4 cable r-CDPR with 8 actuators,
the corresponding wrench polytope contains 28 = 256 vertices. With increasing
number of vertices, the creation of polytopes becomes increasingly complex to
visualize. Thus for the next case, we will study the wrench polytope of the case
with a single mobile base.

4.2 Available Wrench Set for the 3-RPR, 1-PRPR r-CDPR

The wrench polytope for this case is represented in Figure 4. The number of
vertices for this structure is 16 (25), and similar to the previous figure, red
denotes the set of vertex points encapsulating a volume where forces at the
slider are maximum and green denotes the set of points encapsulating a volume
where forces at the slider are minimum. The individual polytopes themselves are
reminiscent of the prior case with 4 cable actuators. The individual hypercubes
that comprise this polytope similarly represent the volumes enclosed by cable 1
at its maximum and minimum limit respectively.

In part (b) we notice that as φ approaches an extreme limit (-0.4), the forces
at the cables reach their limit conditions and can no longer generate a pose with
φ < −0.4. Further, the lowest vertex of the polytope lies just above the mz = 0
plane, which indicates that a force with further negative moment can no longer
be applied or sustained. However, this is not the case in (c) when φ reaches
its symmetrically opposite limit of 0.4. These angles are physically realizable
due to the additional effect of the mobile slider. The end-effector is capable of
sustaining further positive moments at this position indicating that Available
Wrench Set at the end-effector is greatly increased simply with the addition of a
single mobile base. The true performance and quality of these wrench polytopes
over the span of the entire workspace can be evaluated on the basis of better
metrics than the pure interpretation of graphical representations and will be
part of future work.

5 Conclusion

The wrench formulation through Lie group analysis and subsequent analysis of
the wrench polytopes is presented for the fixed fully-constrained planar CDPR
and for a reconfigurable CDPR with mobile cable attachment points. Unlike pre-
vious established efforts, this approach of formulation does not require the mobile
bases and the CDPR to be equilibrated separately. The use of Lie groups was
favored here as it aids the formulation (over traditional line-geometry based-
screws or vector loop-closure based kinetostatics) because: (a) the modelling
lends itself well to generalizations in higher dimensions; and (b) allows direct
exploitation of computationally-assisted matrix-vector formulation approaches.
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The assembly of the wrench Jacobian is based on the determination of recipro-
cal wrenches (reciprocal screws) of the individual proper- and redundant- chains.
Both parallel mechanisms are redundant, but while a fixed base contains only
actuation redundancy, the r-CDPR contains kinematic and further actuation re-
dundancy. The wrench Jacobian can be directly used to graphically represent the
true Available Wrench Set at the end-effector that fully represents the tensions
at the cable as well as the forces at the mobile bases. We show that with actua-
tion and/or kinematic redundancy at the level of individual chains, the resulting
set of wrenches that can be applied and sustained at those poses is significantly
increased.
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