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Plants in nature are protected against insect herbivory by a

wide variety of specialized metabolites. Although insect

herbivores generally tolerate the defensive metabolites of their

preferred host plants, the presence of additional chemical

defenses in otherwise closely related plant species can

nevertheless provide resistance. This chemical resistance to

insect herbivory can be enhanced by genetic engineering to

increase the production of endogenous defensive metabolites,

modify existing biochemical pathways, or move the

biosynthesis of entirely new classes of specialized metabolites

into recipient plants. However, current plant genetic

engineering strategies are limited by insufficient knowledge of

the biosynthetic pathways of plant specialized metabolism,

unintended side-effects that result from redirecting plant

metabolism, inadequate transgene construction and delivery

methods, and requirements for tissue-specific production of

defensive metabolites to enhance herbivore resistance.
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Introduction
The 350,000 extant species of vascular plants [1] are
consumed by an estimated 400,000 species of herbivorous
insects [2]. Although all plants are attacked by at least
some insects, any individual plant species is resistant to
the vast majority of insect herbivores. As a result, the
world is mostly green. Along with physical traits like leaf
toughness, spines, and low digestibility, many of the more
than 600,000 known metabolites in plants [3] provide
protection against herbivorous insects. Such toxic and
deterrent plant metabolites, if harnessed more efficiently

through current biotechnologies, could be used to
enhance herbivore resistance in crop plants. In this pro-
spective review, we provide an overview of the current
strategies in plant metabolic engineering to increase
insect resistance (Figure 1), summarize scientific and
technological challenges for this approach, and point to
other recent publications that examine the latest progress
on addressing each of these challenges in more detail.

Plant defensive chemicals determine insect
host ranges
The efficacy of plant chemical defenses in limiting insect
host ranges is most dramatically demonstrated by means
of knockout mutations affecting plant biosynthetic path-
ways and/or insect detoxifying enzymes. Glucosinolates,
well-studied defensive compounds that are characteristic
of the Brassicaceae [4], can inhibit the growth of insects
that are not specialized for feeding on this plant family.
For instance, growth of Solanaceae-specialist Manduca
sexta (tobacco hornworm) larvae is improved by Arabidop-
sis thaliana (Arabidopsis) knockout mutations that reduce
either glucosinolate biosynthesis [5] or the activity of
myrosinases, b-glucosidases that activate glucosinolates
to produce isothiocyanates and nitriles [6] (Figure 2).
Bemisia tabaci (whiteflies) are able to reproduce on Nico-
tiana benthamiana with an acylsugar acyltransferase
knocked out, but not on wildtype plants, indicating that
acylsugars on the leaf surface are a potent defense against
these phloem-feeding insects [7]. On the insect side of
the interaction, knockdown of detoxifying enzymes also
demonstrates the importance of plant chemical defenses.
For instance, Plutella xylostella (diamondback moths) can
detoxify glucosinolates by means of a sulfatase [8], and
reduction of this enzymatic activity by virus-induced
gene silencing or CRISPR/Cas9 knockout compromised
the performance of P. xylostella larvae on Arabidopsis
[9,10]. Similarly, knockdown of a glucosinolate-detoxify-
ing glutathione S-transferase in B. tabaci by RNA inter-
ference (RNAi) reduced the nymph development rate on
Arabidopsis [11]. RNAi-mediated knockdown of Spodop-
tera frugiperda (fall armyworm) UDP-glucosyltransferase
activity, which detoxifies maize benzoxazinoids by re-
glycosylation, compromised larval performance on their
host plants [12].

Specialized insect herbivores, which tend to tolerate the
characteristic defensive metabolites of their preferred
host plant species, genera, or families, may nevertheless
be deterred by more sporadically distributed chemical
defenses. For instance, the well-studied Brassicaceae
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provide excellent examples of plant species that produce
additional chemical defenses beyond the canonical glu-
cosinolates that are characteristic of this plant family [4].
G-type (glabrous) Barbarea vulgaris (yellow rocket)
lineages, which contain more triterpenoid saponins than
P-type (pubescent) lineages, are resistant to crucifer-
specialist P. xylostella [13]. Cardiac glycosides, which
are present in the genus Erysimum [14!], act as both
oviposition and feeding deterrents for Brassicaceae-spe-
cialist Pieris rapae (white cabbage butterfly) [15,16]. Other
examples of non-glucosinolate chemical defenses that are
sporadically present in the Brassicaceae and provide
protection against herbivory include cucurbitacins in
Iberis umbellata (candytuft) [17], alliarinoside in Alliaria
petiolata (garlic mustard) [18], and tropane alkaloids in
Cochlearia officinalis (scurvygrass) [19]. Although we are
not aware of more recently discovered examples, it is
likely that a detailed examination of Brassicaceae

chemical diversity would identify additional insect
defenses that are limited to particular genera or species
within this plant family.

Biochemical pathway engineering can
increase pest resistance
Given the protective effects of plant chemical defenses, it
is tempting to improve the existing defensive arsenal of
crop plants using transgenic approaches to move biosyn-
thetic pathways from one species into another. However,
to date there are very few examples where complete
pathways of specialized metabolism were transferred into
stable transgenic plants of another species. In an early
example of introducing a new biochemical pathway for
insect resistance (Figure 1, introduction), transfer of two
genes for the biosynthesis of the cyanogenic glucoside
dhurrin from Sorghum bicolor (sorghum) to Arabidopsis
increased resistance to Phyllotreta nemorum (flea beetles)
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Strategies for engineering insect resistance using plant specialized metabolism.
As illustrated in the center panel, all plants produce specialized metabolites from common core metabolic precursors to protect themselves
against generalist insect herbivores (indicated by T-shaped arrows). Specialist insect herbivores can circumvent native chemical defenses of their
host plants (dashed T-shaped arrows) and thereby benefit from feeding on nutritive core metabolites. Current strategies of engineering insect
resistance using specialized metabolism can generally be divided into four categories: Introduction [20,22–24,25!!], whereby completely novel
specialized metabolic pathways can be introduced from one species to another across large phylogenetic distances. Modification [4,26–32] with
genes from closely related species, genotypes, or wild relatives can provide modifying enzymes that act on top of a shared specialized metabolic
pathway. Regulation [5,37,38,39!,40!] allows targeted activation/de-activation of cis-regulatory and trans-regulatory elements of transcription
factors (TF) to promote upregulation of existing biosynthetic genes (indicated by the bolded arrow) and accumulation of specialized metabolites
(indicated by the larger circle at the end) and hence more effective defense. Recofiguration [29,30,43–49] involves manipulation of metabolic
gene expression further upstream to divert greater metabolic flux (indicated by the larger green arrow) into existing specialized metabolic pathway
to promote accumulation of anti-herbivore specialized metabolites (indicated by the larger circle at the end) while reducing the amount of nutritive
core metabolites (indicated by the smaller C-labelled circle) that are available to herbivores.
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[20]. Nicotiana tabacum (tobacco) plants that were engi-
neered to produce betalain with genes from Beta vulgaris
(red beet) had enhanced resistance to Botrytis cinerea (grey
mold) [21]. A pathway for benzylglucosinolate biosynthe-
sis (Figure 3a) has been engineered in stable transgenic
tobacco, though with a low overall yield [22]. Triticum
aestivum (wheat) plants were genetically engineered to
produce (E)-b-farnesene, an aphid alarm pheromone, but
this did not reduce aphid infestations in the field [23].
Other pathways for the biosynthesis of plant specialized
metabolites, for instance saponins from B. vulgaris [24]
and colchicine from Colchicum (fall crocus) [25!!], have
been expressed transiently in N. benthamiana using
viruses or Agrobacterium tumefaciens, but not yet in stable
transgenic plants.

Whereas transfer of new chemical defenses into unrelated
species is difficult, a currently more feasible approach is the
modification of well-characterized biosynthetic pathways
based on natural variation that is present in closely related
species. In cases where the core biosynthetic pathway
already is present in the target species, fewer exogenous
genes need to be transformed and there may be fewer
unanticipated changes in other aspects of plant metabo-
lism. If genes are transferred from one food crop to another,

this would involve the biosynthesis of compounds that are
already part of the human diet and negative physiological
effects from consuming such transgenic plants may be less
likely. For example, whereas maize and wheat predomi-
nately accumulate DIMBOA-Glc (2,4-dihydroxy-7-meth-
oxy-1,4-benzoxazin-3-one glucoside), HDMBOA-Glc (2-
hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside),
and other modified benzoxazinoids, in Secale cereale (rye)
the benzoxazinoid biosynthetic pathway ends with
DIBOA-Glc (2,4-dihydroxy-1,4-benzoxazin-3-one gluco-
side) [26]. Insect growth is improved on maize bx6 mutants,
which accumulate primarily DIBOA-Glc instead of DIM-
BOA-Glc and HDMBOA-Glc [27], suggesting that adding
maize benzoxazinoid biosynthetic enzymes to rye could
enhance pest resistance (Figure 1, modification of an exist-
ing biochemical pathway; Figure 3b).

There have been several successes in modifying the glu-
cosinolate content of both Arabidopsis and Brassica species
through transgenic approaches [28]. For instance, accumu-
lation of 2-phenylethylglucosinolate, which is not normally
abundant in Arabidopsis leaves, can be increased by phe-
nylalanine overproduction (Figure 1, reconfiguration),
leading to enhanced Trichoplusia ni (cabbage looper) resis-
tance [29,30]. Although there are more than 120 known
glucosinolates [4], most of these are not present in Brassica
crops. As the core glucosinolate biosynthetic pathway
already exists in crops like Brassica oleracea (cabbage)
and Brassica napus (rapeseed), it would be feasible to
modify existing defensive pathways (Figure 1) by intro-
ducing a small number of glucosinolate biosynthetic genes,
most likely using genetic engineering approaches, and
thereby enhancing herbivore and/or pathogen resistance.
In an example of how this might be achieved, expression of
glucosinolate biosynthesis genes from Manihot esculenta
(cassava) in Arabidopsis increased resistance to the bacte-
rial pathogens Erwinia carotovora and Pseudomonas syringae
[31].

Solanaceous crops also provide examples of metabolic
pathway transfers between related species. Heterologous
expression of a sesquiterpene synthase gene from Sola-
num habrochaites in Solanum lycopersicum (cultivated
tomato) induced the production of a novel insecticidal
compound (Figure 1, modification) and increased resis-
tance against whiteflies and spider mites (Tetranychus
urticae and Tetranychus evansi) [32]. Leptines, steroidal
glycoalkaloids that act as defenses against Leptinotarsa
decemlineata (Colorado potato beetle), a devastating pest
of potatoes worldwide, are present in Solanum chacoense,
but not in Solanum tuberosum (cultivated potato) [33].
Recently, a 2-oxoglutarate-dependent dioxygenase, the
first of two enzymes that would be needed to produce
leptines (Figure 3c) was cloned in S. tuberosum [34!]. If the
second, as yet unidentified gene can be cloned in a similar
manner, it may be possible to engineer potato plants that
are more resistant to Colorado potato beetles. Although
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Manduca sexta (tobacco hornworm) caterpillars (a) prefer tgg1 tgg2
(myrosinase-deficient) leaves over wildtype Arabidopsis ecotype
Columbia-0 (Col-0) in choice tests, and (b) grow more rapidly and are
able to reach pupation only on tgg1 tgg2 mutant plants [6].
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acylsugars provide effective resistance against insect
pests in several wild relatives of cultivated tomatoes,
efforts to introgress genes from wild relatives to produce
tomatoes that have both elevated insect resistance and
good fruit quality have been unsuccessful [35]. However,
now that most or perhaps all enzymes of tomato acylsugar
biosynthesis have been identified [36!], it will be feasible
to overexpress this biosynthetic pathway in cultivated
tomatoes in a more targeted manner.

Regulatory networks to enhance plant
metabolic resistance
In addition to engineering biosynthetic genes directly,
advances in the understanding the genetic regulatory
networks of plant specialized metabolism open the pos-
sibility of cis-regulatory and trans-regulatory element
engineering (Figure 1, regulation). However, most pub-
lished examples of this approach are functional genetics
studies under laboratory conditions. For instance, over-
expression of specific MYB and MYC transcription factors
in transgenic Arabidopsis can lead to significant alteration
of both defensive metabolites and herbivore performance

[5,37,38]. Other recent examples showing upregulation of
plant defensive metabolite biosynthesis with transcrip-
tion factors include transient expression of ORCA6 tran-
scription factor in Catharanthus roseus (Madagascar peri-
winkle) to increase terpenoid indole alkaloid
accumulation [39!] and increased accumulation of nico-
tine in stable transgenic tobacco overexpressing the
NtERF189 transcription factor [40!].

It is worth noting that, although insect resistance in plants
is commonly associated with specialized metabolism, the
dichotomy between plant ‘primary’ and ‘secondary’
metabolism is fading. Instead, a more holistic view of
plant metabolic networks is required for engineering to
the desired plant defense outcomes. Although we are not
aware of plant genetic engineering efforts based on such
principles, nature has provided ample examples of
defense-related interactions that extend beyond special-
ized metabolites (reviewed in Ref. [41]). For instance,
aphids and other phloem-feeders have highly efficient
osmoregulatory systems that allow them to cope with
their sugar-rich and nitrogen-poor diet [42], and some

118 Plant biotechnology

Figure 3
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Examples of plant biochemical pathways that could be engineered for insect resistance. (a) Six genes for the biosynthesis of benzylglucosinolate
were moved from Brassicaceae into tobacco [17]. Higher levels of benzylglucosinolate accumulation might increase resistance against
Solanaceae-specialist herbivores feeding on these transgenic plants. (b) Transforming BX6, BX7, and BX10 genes from maize into rye, which
accumulates DIBOA-glucoside, would allow biosynthesis of DIMBOA-glucoside and HDMBOA-glucoside and likely would increase pest tolerance.
(c) a-Solanin a glycoalkaloid in cultivated potatoes is converted to leptinine II by GAME32 from Solanum chacoense [29]. An as yet unidentified
enzyme converts leptinine II to leptine. Production of leptine in cultivated potatoes could increase resistance to Colorado potato beetles.
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even actively manipulate host plant metabolism to
increase the nitrogen content in their diet [43–45]. On
the plant side, studies with both monocot and dicot
species demonstrate that plants relocate nutritive metab-
olites away from insect feeding sites to hamper herbivore
growth and/or promote re-growth after insect infestation,
thereby providing increased tolerance of herbivory [46–
49]. These studies of natural plant–insect interactions
should inspire novel perspectives in rewiring local and
systemic plant biochemical environments to promote
insect resistance.

Current limitations for engineering insect
resistance in plants
Several biological factors and technical bottlenecks limit
plant metabolic engineering to enhance anti-herbivore
defenses on a broader scale: (1) Successful metabolic
engineering examples are mostly restricted to biosyn-
thetic pathways of a few well-characterized anti-herbivore
compounds. This suggests that insufficient knowledge of
defensive compounds, biosynthetic pathways, and regu-
latory mechanisms remains a major limitation in applying
metabolic engineering approaches to enhance plant
defense. (2) In addition to genetic elucidation of plant
biosynthetic pathways, a better understanding of enzyme
functions at the cell biology level, such as tissue-specific
and subcellular enzyme localization [50–52] and metabo-
lon assembly [53], is also required for the proper engi-
neering of a new metabolic pathway in a heterologous
plant species. (3) Plant genetic engineering currently is
limited by the host-specificity and genetic load limit of
the commonly used Agrobacterium-mediated transgene
delivery system, as well as technical bottlenecks in tissue
culture and other steps required for generation of a stable
transgenic plants. Therefore, the successful metabolic
engineering approaches described here have involved
short pathways and well-studied model plant species.
(4) The introduction of a heterologous metabolic pathway
can have indirect effects such as depletion or provision of
substrates for other metabolic pathways, feedback inhi-
bition, and phytotoxicity that may negatively impact the
normal biological processes and economic traits of the
engineered plants. For instance, nicotine overproduction
in tobacco caused stunting [40!], enhanced biosynthesis
of the essential amino acid phenylalanine altered gluco-
sinolate accumulation in Arabidopsis [29,30], and gluco-
sinolate biosynthesis in transgenic tobacco likely was
limited by substrate availability [22]. (5) The volatile
legal and legislative landscape, public opinion regarding
transgenic plants, and possible flavor changes resulting
from new defensive metabolites in food crops could
impose non-scientific hurdles to the adoption of meta-
bolically engineered plants.

Conclusions
Despite of the many challenges ahead, recent scientific
and technological advancements have greatly accelerated

progress in removing obstacles from plant metabolic
engineering. The ten enzyme-encoding genes required
for the biosynthesis of bioactive zealexins in maize were
identified in 2020, only nine years after the initial discov-
ery and functional validation of these compounds
[54!!,55!!]. By contrast, more than 40 years were required
to characterize the first five benzoxazinoid biosynthetic
genes in maize [56]. Indeed, genetic dissection and
metabolic modeling of plant specialized metabolic path-
ways using a multi-omics platform is currently one of the
most active areas of plant research [57]. Meanwhile,
development of modular cloning systems, nano-parti-
cle-based bio-material delivery systems, and other syn-
thetic biology tools will expand the targets of efficient
genetic transformation beyond model species in the near
future [57–60]. The integration of accumulating knowl-
edge on the structural bases of post-translational modifi-
cations, identification of protein–protein interactions, and
precise gene-editing tools give rise to the concept of
‘metabolic editing’, which could result in seamlessly
edited cis-genic plants with negligible side-effects on
normal plant physiology (reviewed in Ref. [61]). With
this rapid progress in scientific knowledge and technical
tools, engineering plant metabolism for improved insect
resistance could become a vital component of a sustain-
able integrated pest management strategy in agricultural
ecosystems.

Conflict of interest statement
Nothing declared.

CRediT authorship contribution statement
Shaoqun Zhou: Conceptualization, Writing - original
draft, Writing - review & editing. Georg Jander: Concep-
tualization, Writing - original draft, Writing - review &
editing.

Acknowledgements
This work was funded by US National Science Foundation award
2019516 and United States Department of Agriculture Biotechnology Risk
Assessment Grant 2017-33522-27006 to GJ, the Youth Program of the
National Natural Science Foundation of China award 32000229 to SZ, and
the Shenzhen Peacock Plan award KQTD20180411143628272.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

! of special interest
!! of outstanding interest

1. Antonelli A, Fry C, Smith RJ, Simmonds MSJ, Kersey PJ,
Pritchard HW, Abbo MS, Acedo C, Adams J, Ainsworth AM et al.:
State of the World’s Plants and Fungi 2020. Kew: Royal Botanic
Gardens; 2020.

2. Grimaldi D, Engel MS: Evolution of Insects. Cambride University
Press; 2005.

3. Berdy J: Bioactive microbial metabolites. J Antibiot (Tokyo)
2005, 58:1-26.

Engineering insect resistance Zhou and Jander 119

www.sciencedirect.com Current Opinion in Biotechnology 2021, 70:115–121

http://refhub.elsevier.com/S0958-1669(21)00049-5/sbref0005
http://refhub.elsevier.com/S0958-1669(21)00049-5/sbref0005
http://refhub.elsevier.com/S0958-1669(21)00049-5/sbref0005
http://refhub.elsevier.com/S0958-1669(21)00049-5/sbref0005
http://refhub.elsevier.com/S0958-1669(21)00049-5/sbref0010
http://refhub.elsevier.com/S0958-1669(21)00049-5/sbref0010
http://refhub.elsevier.com/S0958-1669(21)00049-5/sbref0015
http://refhub.elsevier.com/S0958-1669(21)00049-5/sbref0015


4. Fahey JW, Zalcmann AT, Talalay P: The chemical diversity and
distribution of glucosinolates and isothiocyanates among
plants. Phytochemistry 2001, 56:5-51.

5. Müller R, De Vos M, Sun JY, Sønderby IE, Halkier BA, Wittstock U,
Jander G: Differential effects of indole and aliphatic
glucosinolates on lepidopteran herbivores. J Chem Ecol 2010,
36:905-913.

6. Barth C, Jander G: Arabidopsis myrosinases TGG1 and TGG2
have redundant function in glucosinolate breakdown and
insect defense. Plant J 2006, 46:549-562.

7. Feng H, Acosta-Gamboa L, Kruse LH, Nava Fereira AR, Shakir S,
Xu H, Sunder G, Gore MA, Moghe GD, Jander G: An acylsugar-
deficient Nicotiana benthamiana strain for aphid and whitefly
research. bioRxiv 2021 http://dx.doi.org/10.1101/
2020.08.04.237180.

8. Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J:
Disarming the mustard oil bomb. Proc Natl Acad Sci U S A 2002,
99:11223-11228.

9. Chen W, Dong Y, Saqib HSA, Vasseur L, Zhou W, Zheng L, Lai Y,
Ma X, Lin L, Xu X et al.: Functions of duplicated glucosinolate
sulfatases in the development and host adaptation of Plutella
xylostella. Insect Biochem Mol Biol 2020, 119:103316.

10. Sun R, Jiang X, Reichelt M, Gershenzon J, Pandit SS, Vassão DG:
Tritrophic metabolism of plant chemical defenses and its
effects on herbivore and predator performance. eLife 2019, 8.

11. Eakteiman G, Moses-Koch R, Moshitzky P, Mestre-Rincon N,
Vassao DG, Luck K, Sertchook R, Malka O, Morin S: Targeting
detoxification genes by phloem-mediated RNAi: a new
approach for controlling phloem-feeding insect pests. Insect
Biochem Mol Biol 2018, 100:10-21.

12. Israni B, Wouters FC, Luck K, Seibel E, Ahn SJ, Paetz C, Reinert M,
Vogel H, Erb M, Heckel DG et al.: The fall armyworm Spodoptera
frugiperda utilizes specific UDP-glycosyltransferases to
inactivate maize defensive benzoxazinoids. Front Physiol 2020,
11:604754.

13. Agerbirk N, Olsen CE, Bibby BM, Frandsen HO, Brown LD,
Nielsen JK, Renwick JA: A saponin correlated with variable
resistance of Barbarea vulgaris to the diamondback moth
Plutella xylostella. J Chem Ecol 2003, 29:1417-1433.

14.
!
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