

ScienceDirect

Engineering insect resistance using plant specialized metabolites

Shaoqun Zhou (周绍群)¹ and Georg Jander²

Plants in nature are protected against insect herbivory by a wide variety of specialized metabolites. Although insect herbivores generally tolerate the defensive metabolites of their preferred host plants, the presence of additional chemical defenses in otherwise closely related plant species can nevertheless provide resistance. This chemical resistance to insect herbivory can be enhanced by genetic engineering to increase the production of endogenous defensive metabolites, modify existing biochemical pathways, or move the biosynthesis of entirely new classes of specialized metabolites into recipient plants. However, current plant genetic engineering strategies are limited by insufficient knowledge of the biosynthetic pathways of plant specialized metabolism, unintended side-effects that result from redirecting plant metabolism, inadequate transgene construction and delivery methods, and requirements for tissue-specific production of defensive metabolites to enhance herbivore resistance.

Addresses

¹ Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 440307, Shenzhen, China

² Boyce Thompson Institute, Ithaca, NY 14853, USA

Corresponding author: Jander, Georg (gj32@cornell.edu)

Current Opinion in Biotechnology 2021, 70:115-121

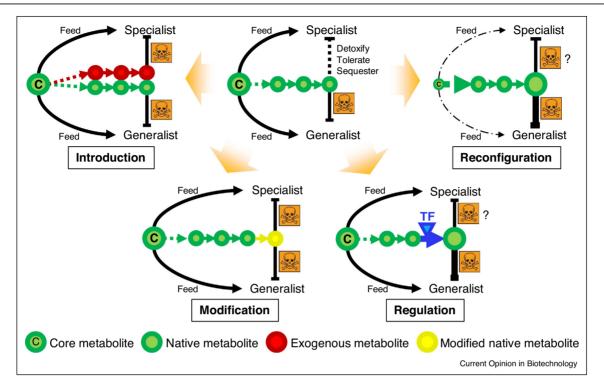
This review comes from a themed issue on **Plant biotechnology**Edited by **Harro Bouwmeester** and **Rob Schuurink**

https://doi.org/10.1016/j.copbio.2021.03.005

0958-1669/© 2021 Elsevier Ltd. All rights reserved.

Introduction

The 350,000 extant species of vascular plants [1] are consumed by an estimated 400,000 species of herbivorous insects [2]. Although all plants are attacked by at least some insects, any individual plant species is resistant to the vast majority of insect herbivores. As a result, the world is mostly green. Along with physical traits like leaf toughness, spines, and low digestibility, many of the more than 600,000 known metabolites in plants [3] provide protection against herbivorous insects. Such toxic and deterrent plant metabolites, if harnessed more efficiently


through current biotechnologies, could be used to enhance herbivore resistance in crop plants. In this prospective review, we provide an overview of the current strategies in plant metabolic engineering to increase insect resistance (Figure 1), summarize scientific and technological challenges for this approach, and point to other recent publications that examine the latest progress on addressing each of these challenges in more detail.

Plant defensive chemicals determine insect host ranges

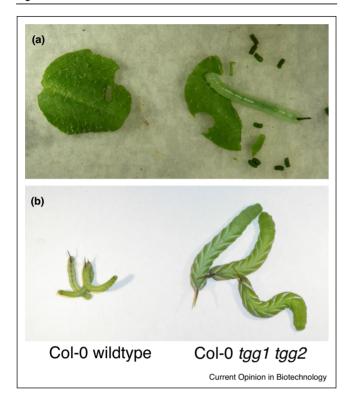
The efficacy of plant chemical defenses in limiting insect host ranges is most dramatically demonstrated by means of knockout mutations affecting plant biosynthetic pathways and/or insect detoxifying enzymes. Glucosinolates, well-studied defensive compounds that are characteristic of the Brassicaceae [4], can inhibit the growth of insects that are not specialized for feeding on this plant family. For instance, growth of Solanaceae-specialist Manduca sexta (tobacco hornworm) larvae is improved by Arabidopsis thaliana (Arabidopsis) knockout mutations that reduce either glucosinolate biosynthesis [5] or the activity of myrosinases, β-glucosidases that activate glucosinolates to produce isothiocyanates and nitriles [6] (Figure 2). Bemisia tabaci (whiteflies) are able to reproduce on Nicotiana benthamiana with an acylsugar acyltransferase knocked out, but not on wildtype plants, indicating that acylsugars on the leaf surface are a potent defense against these phloem-feeding insects [7]. On the insect side of the interaction, knockdown of detoxifying enzymes also demonstrates the importance of plant chemical defenses. For instance, Plutella xylostella (diamondback moths) can detoxify glucosinolates by means of a sulfatase [8], and reduction of this enzymatic activity by virus-induced gene silencing or CRISPR/Cas9 knockout compromised the performance of *P. xylostella* larvae on Arabidopsis [9,10]. Similarly, knockdown of a glucosinolate-detoxifying glutathione S-transferase in B. tabaci by RNA interference (RNAi) reduced the nymph development rate on Arabidopsis [11]. RNAi-mediated knockdown of Spodoptera frugiperda (fall armyworm) UDP-glucosyltransferase activity, which detoxifies maize benzoxazinoids by reglycosylation, compromised larval performance on their host plants [12].

Specialized insect herbivores, which tend to tolerate the characteristic defensive metabolites of their preferred host plant species, genera, or families, may nevertheless be deterred by more sporadically distributed chemical defenses. For instance, the well-studied Brassicaceae

Figure 1

Strategies for engineering insect resistance using plant specialized metabolism.

As illustrated in the center panel, all plants produce specialized metabolites from common core metabolic precursors to protect themselves against generalist insect herbivores (indicated by T-shaped arrows). Specialist insect herbivores can circumvent native chemical defenses of their host plants (dashed T-shaped arrows) and thereby benefit from feeding on nutritive core metabolites. Current strategies of engineering insect resistance using specialized metabolism can generally be divided into four categories: Introduction [20,22-24,25**], whereby completely novel specialized metabolic pathways can be introduced from one species to another across large phylogenetic distances. **Modification** [4,26–32] with genes from closely related species, genotypes, or wild relatives can provide modifying enzymes that act on top of a shared specialized metabolic pathway. Regulation [5,37,38,39*,40*] allows targeted activation/de-activation of cis-regulatory and trans-regulatory elements of transcription factors (TF) to promote upregulation of existing biosynthetic genes (indicated by the bolded arrow) and accumulation of specialized metabolites (indicated by the larger circle at the end) and hence more effective defense. Recofiguration [29,30,43-49] involves manipulation of metabolic gene expression further upstream to divert greater metabolic flux (indicated by the larger green arrow) into existing specialized metabolic pathway to promote accumulation of anti-herbivore specialized metabolites (indicated by the larger circle at the end) while reducing the amount of nutritive core metabolites (indicated by the smaller C-labelled circle) that are available to herbivores.


provide excellent examples of plant species that produce additional chemical defenses beyond the canonical glucosinolates that are characteristic of this plant family [4]. G-type (glabrous) Barbarea vulgaris (yellow rocket) lineages, which contain more triterpenoid saponins than P-type (pubescent) lineages, are resistant to cruciferspecialist P. xylostella [13]. Cardiac glycosides, which are present in the genus Erysimum [14°], act as both oviposition and feeding deterrents for Brassicaceae-specialist *Pieris rapae* (white cabbage butterfly) [15,16]. Other examples of non-glucosinolate chemical defenses that are sporadically present in the Brassicaceae and provide protection against herbivory include cucurbitacins in Iberis umbellata (candytuft) [17], alliarinoside in Alliaria petiolata (garlic mustard) [18], and tropane alkaloids in Cochlearia officinalis (scurvygrass) [19]. Although we are not aware of more recently discovered examples, it is likely that a detailed examination of Brassicaceae

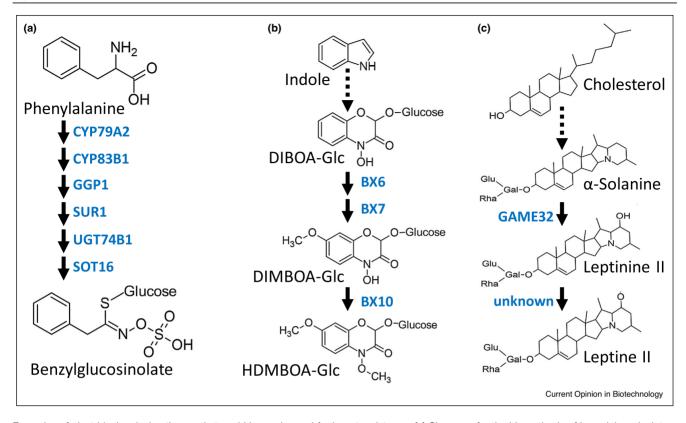
chemical diversity would identify additional insect defenses that are limited to particular genera or species within this plant family.

Biochemical pathway engineering can increase pest resistance

Given the protective effects of plant chemical defenses, it is tempting to improve the existing defensive arsenal of crop plants using transgenic approaches to move biosynthetic pathways from one species into another. However, to date there are very few examples where complete pathways of specialized metabolism were transferred into stable transgenic plants of another species. In an early example of introducing a new biochemical pathway for insect resistance (Figure 1, introduction), transfer of two genes for the biosynthesis of the cyanogenic glucoside dhurrin from Sorghum bicolor (sorghum) to Arabidopsis increased resistance to Phyllotreta nemorum (flea beetles)

Figure 2

Manduca sexta (tobacco hornworm) caterpillars (a) prefer tgg1 tgg2 (myrosinase-deficient) leaves over wildtype Arabidopsis ecotype Columbia-0 (Col-0) in choice tests, and (b) grow more rapidly and are able to reach pupation only on tgg1 tgg2 mutant plants [6].


[20]. Nicotiana tabacum (tobacco) plants that were engineered to produce betalain with genes from Beta vulgaris (red beet) had enhanced resistance to Botrytis cinerea (grey mold) [21]. A pathway for benzylglucosinolate biosynthesis (Figure 3a) has been engineered in stable transgenic tobacco, though with a low overall yield [22]. Triticum aestivum (wheat) plants were genetically engineered to produce (E)-β-farnesene, an aphid alarm pheromone, but this did not reduce aphid infestations in the field [23]. Other pathways for the biosynthesis of plant specialized metabolites, for instance saponins from B. vulgaris [24] and colchicine from *Colchicum* (fall crocus) [25°°], have been expressed transiently in N. benthamiana using viruses or Agrobacterium tumefaciens, but not yet in stable transgenic plants.

Whereas transfer of new chemical defenses into unrelated species is difficult, a currently more feasible approach is the modification of well-characterized biosynthetic pathways based on natural variation that is present in closely related species. In cases where the core biosynthetic pathway already is present in the target species, fewer exogenous genes need to be transformed and there may be fewer unanticipated changes in other aspects of plant metabolism. If genes are transferred from one food crop to another, this would involve the biosynthesis of compounds that are already part of the human diet and negative physiological effects from consuming such transgenic plants may be less likely. For example, whereas maize and wheat predominately accumulate DIMBOA-Glc (2,4-dihydroxy-7-methoxy-1.4-benzoxazin-3-one glucoside), HDMBOA-Glc (2hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside), and other modified benzoxazinoids, in Secale cereale (rye) the benzoxazinoid biosynthetic pathway ends with DIBOA-Glc (2,4-dihydroxy-1,4-benzoxazin-3-one glucoside) [26]. Insect growth is improved on maize bx6 mutants, which accumulate primarily DIBOA-Glc instead of DIM-BOA-Glc and HDMBOA-Glc [27], suggesting that adding maize benzoxazinoid biosynthetic enzymes to rye could enhance pest resistance (Figure 1, modification of an existing biochemical pathway; Figure 3b).

There have been several successes in modifying the glucosinolate content of both Arabidopsis and *Brassica* species through transgenic approaches [28]. For instance, accumulation of 2-phenylethylglucosinolate, which is not normally abundant in Arabidopsis leaves, can be increased by phenylalanine overproduction (Figure 1, reconfiguration), leading to enhanced *Trichoplusia ni* (cabbage looper) resistance [29,30]. Although there are more than 120 known glucosinolates [4], most of these are not present in Brassica crops. As the core glucosinolate biosynthetic pathway already exists in crops like *Brassica oleracea* (cabbage) and Brassica napus (rapeseed), it would be feasible to modify existing defensive pathways (Figure 1) by introducing a small number of glucosinolate biosynthetic genes, most likely using genetic engineering approaches, and thereby enhancing herbivore and/or pathogen resistance. In an example of how this might be achieved, expression of glucosinolate biosynthesis genes from Manihot esculenta (cassava) in Arabidopsis increased resistance to the bacterial pathogens Erwinia carotovora and Pseudomonas syringae [31].

Solanaceous crops also provide examples of metabolic pathway transfers between related species. Heterologous expression of a sesquiterpene synthase gene from Solanum habrochaites in Solanum lycopersicum (cultivated tomato) induced the production of a novel insecticidal compound (Figure 1, modification) and increased resistance against whiteflies and spider mites (Tetranychus urticae and Tetranychus evansi) [32]. Leptines, steroidal glycoalkaloids that act as defenses against Leptinotarsa decemlineata (Colorado potato beetle), a devastating pest of potatoes worldwide, are present in Solanum chacoense, but not in Solanum tuberosum (cultivated potato) [33]. Recently, a 2-oxoglutarate-dependent dioxygenase, the first of two enzymes that would be needed to produce leptines (Figure 3c) was cloned in S. tuberosum [34°]. If the second, as yet unidentified gene can be cloned in a similar manner, it may be possible to engineer potato plants that are more resistant to Colorado potato beetles. Although

Figure 3

Examples of plant biochemical pathways that could be engineered for insect resistance. (a) Six genes for the biosynthesis of benzylglucosinolate were moved from Brassicaceae into tobacco [17]. Higher levels of benzylglucosinolate accumulation might increase resistance against Solanaceae-specialist herbivores feeding on these transgenic plants. (b) Transforming BX6, BX7, and BX10 genes from maize into rye, which accumulates DIBOA-glucoside, would allow biosynthesis of DIMBOA-glucoside and HDMBOA-glucoside and likely would increase pest tolerance. (c) α -Solanin a glycoalkaloid in cultivated potatoes is converted to leptinine II by GAME32 from Solanum chacoense [29]. An as yet unidentified enzyme converts leptinine II to leptine. Production of leptine in cultivated potatoes could increase resistance to Colorado potato beetles.

acylsugars provide effective resistance against insect pests in several wild relatives of cultivated tomatoes, efforts to introgress genes from wild relatives to produce tomatoes that have both elevated insect resistance and good fruit quality have been unsuccessful [35]. However, now that most or perhaps all enzymes of tomato acylsugar biosynthesis have been identified [36°], it will be feasible to overexpress this biosynthetic pathway in cultivated tomatoes in a more targeted manner.

Regulatory networks to enhance plant metabolic resistance

In addition to engineering biosynthetic genes directly, advances in the understanding the genetic regulatory networks of plant specialized metabolism open the possibility of cis-regulatory and trans-regulatory element engineering (Figure 1, regulation). However, most published examples of this approach are functional genetics studies under laboratory conditions. For instance, overexpression of specific MYB and MYC transcription factors in transgenic Arabidopsis can lead to significant alteration of both defensive metabolites and herbivore performance

[5,37,38]. Other recent examples showing upregulation of plant defensive metabolite biosynthesis with transcription factors include transient expression of ORCA6 transcription factor in Catharanthus roseus (Madagascar perito increase terpenoid indole alkaloid accumulation [39°] and increased accumulation of nicotine in stable transgenic tobacco overexpressing the NtERF189 transcription factor [40°].

It is worth noting that, although insect resistance in plants is commonly associated with specialized metabolism, the dichotomy between plant 'primary' and 'secondary' metabolism is fading. Instead, a more holistic view of plant metabolic networks is required for engineering to the desired plant defense outcomes. Although we are not aware of plant genetic engineering efforts based on such principles, nature has provided ample examples of defense-related interactions that extend beyond specialized metabolites (reviewed in Ref. [41]). For instance, aphids and other phloem-feeders have highly efficient osmoregulatory systems that allow them to cope with their sugar-rich and nitrogen-poor diet [42], and some

even actively manipulate host plant metabolism to increase the nitrogen content in their diet [43-45]. On the plant side, studies with both monocot and dicot species demonstrate that plants relocate nutritive metabolites away from insect feeding sites to hamper herbivore growth and/or promote re-growth after insect infestation. thereby providing increased tolerance of herbivory [46– 49]. These studies of natural plant-insect interactions should inspire novel perspectives in rewiring local and systemic plant biochemical environments to promote insect resistance.

Current limitations for engineering insect resistance in plants

Several biological factors and technical bottlenecks limit plant metabolic engineering to enhance anti-herbivore defenses on a broader scale: (1) Successful metabolic engineering examples are mostly restricted to biosynthetic pathways of a few well-characterized anti-herbivore compounds. This suggests that insufficient knowledge of defensive compounds, biosynthetic pathways, and regulatory mechanisms remains a major limitation in applying metabolic engineering approaches to enhance plant defense. (2) In addition to genetic elucidation of plant biosynthetic pathways, a better understanding of enzyme functions at the cell biology level, such as tissue-specific and subcellular enzyme localization [50-52] and metabolon assembly [53], is also required for the proper engineering of a new metabolic pathway in a heterologous plant species. (3) Plant genetic engineering currently is limited by the host-specificity and genetic load limit of the commonly used Agrobacterium-mediated transgene delivery system, as well as technical bottlenecks in tissue culture and other steps required for generation of a stable transgenic plants. Therefore, the successful metabolic engineering approaches described here have involved short pathways and well-studied model plant species. (4) The introduction of a heterologous metabolic pathway can have indirect effects such as depletion or provision of substrates for other metabolic pathways, feedback inhibition, and phytotoxicity that may negatively impact the normal biological processes and economic traits of the engineered plants. For instance, nicotine overproduction in tobacco caused stunting [40°], enhanced biosynthesis of the essential amino acid phenylalanine altered glucosinolate accumulation in Arabidopsis [29,30], and glucosinolate biosynthesis in transgenic tobacco likely was limited by substrate availability [22]. (5) The volatile legal and legislative landscape, public opinion regarding transgenic plants, and possible flavor changes resulting from new defensive metabolites in food crops could impose non-scientific hurdles to the adoption of metabolically engineered plants.

Conclusions

Despite of the many challenges ahead, recent scientific and technological advancements have greatly accelerated progress in removing obstacles from plant metabolic engineering. The ten enzyme-encoding genes required for the biosynthesis of bioactive zealexins in maize were identified in 2020, only nine years after the initial discovery and functional validation of these compounds [54°,55°]. By contrast, more than 40 years were required to characterize the first five benzoxazinoid biosynthetic genes in maize [56]. Indeed, genetic dissection and metabolic modeling of plant specialized metabolic pathways using a multi-omics platform is currently one of the most active areas of plant research [57]. Meanwhile, development of modular cloning systems, nano-particle-based bio-material delivery systems, and other synthetic biology tools will expand the targets of efficient genetic transformation beyond model species in the near future [57-60]. The integration of accumulating knowledge on the structural bases of post-translational modifications, identification of protein-protein interactions, and precise gene-editing tools give rise to the concept of 'metabolic editing', which could result in seamlessly edited cis-genic plants with negligible side-effects on normal plant physiology (reviewed in Ref. [61]). With this rapid progress in scientific knowledge and technical tools, engineering plant metabolism for improved insect resistance could become a vital component of a sustainable integrated pest management strategy in agricultural ecosystems.

Conflict of interest statement

Nothing declared.

CRediT authorship contribution statement

Shaoqun Zhou: Conceptualization, Writing - original draft, Writing - review & editing. Georg Jander: Conceptualization, Writing - original draft, Writing - review & editing.

Acknowledgements

This work was funded by US National Science Foundation award 2019516 and United States Department of Agriculture Biotechnology Risk Assessment Grant 2017-33522-27006 to GJ, the Youth Program of the National Natural Science Foundation of China award 32000229 to SZ, and the Shenzhen Peacock Plan award KQTD20180411143628272.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest
- Antonelli A, Fry C, Smith RJ, Simmonds MSJ, Kersey PJ, Pritchard HW, Abbo MS, Acedo C, Adams J, Ainsworth AM et al.: State of the World's Plants and Fungi 2020. Kew: Royal Botanic Gardens: 2020.
- Grimaldi D, Engel MS: Evolution of Insects. Cambride University Press: 2005.
- Berdy J: Bioactive microbial metabolites. J Antibiot (Tokyo) 2005, **58**:1-26.

- Fahey JW, Zalcmann AT, Talalay P: The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56:5-51.
- Müller R, De Vos M, Sun JY, Sønderby IE, Halkier BA, Wittstock U, Jander G: Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. J Chem Ecol 2010, **36**:905-913.
- Barth C, Jander G: Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J 2006. 46:549-562.
- Feng H, Acosta-Gamboa L, Kruse LH, Nava Fereira AR, Shakir S, Xu H, Sunder G, Gore MA, Moghe GD, Jander G: An acylsugardeficient Nicotiana benthamiana strain for aphid and whitefly research. bioRxiv 2021 http://dx.doi.org/10.1101/ 2020.08.04.237180.
- Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J: **Disarming the mustard oil bomb**. *Proc Natl Acad Sci U S A* 2002,
- Chen W, Dong Y, Saqib HSA, Vasseur L, Zhou W, Zheng L, Lai Y, Ma X, Lin L, Xu X et al.: Functions of duplicated glucosinolate sulfatases in the development and host adaptation of Plutella xylostella. Insect Biochem Mol Biol 2020, 119:103316.
- 10. Sun R, Jiang X, Reichelt M, Gershenzon J, Pandit SS, Vassão DG: Tritrophic metabolism of plant chemical defenses and its effects on herbivore and predator performance. eLife 2019, 8.
- 11. Eakteiman G, Moses-Koch R, Moshitzky P, Mestre-Rincon N, Vassao DG, Luck K, Sertchook R, Malka O, Morin S: Targeting detoxification genes by phloem-mediated RNAi: a new approach for controlling phloem-feeding insect pests. Insect Biochem Mol Biol 2018, 100:10-21.
- 12. Israni B, Wouters FC, Luck K, Seibel E, Ahn SJ, Paetz C, Reinert M, Vogel H, Erb M, Heckel DG et al.: The fall armyworm Spodoptera frugiperda utilizes specific UDP-glycosyltransferases to inactivate maize defensive benzoxazinoids. Front Physiol 2020, 11:604754
- 13. Agerbirk N, Olsen CE, Bibby BM, Frandsen HO, Brown LD, Nielsen JK, Renwick JA: A saponin correlated with variable resistance of *Barbarea vulgaris* to the diamondback moth *Plutella xylostella*. *J Chem Ecol* 2003, **29**:1417-1433.
- 14. Züst T, Strickler SR, Powell AF, Mabry ME, An H, Mirzaei M, York T, Holland CK, Kumar P, Erb M et al.: Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum, Brassicaceae). eLife 2020, 9 http://dx.doi.org/ 10.7554/eLife.51712

The authors characterized cardiac glycosides in the genus Erysimum. This chemical defense co-exists with glucosinolates a characteristic chemical defense of the Brassicaceae.

- Sachdev-Gupta K, Radke C, Renwick JA, Dimock MB: Cardenolides from Erysimum cheiranthoides: feeding deterrents to Pieris rapae larvae. J Chem Ecol 1993, 19:1355-
- 16. Sachdev-Gupta K, Renwick JA, Radke CD: Isolation and identification of oviposition deterrents to cabbage butterfly, Pieris rapae, from Erysimum cheiranthoides. J Chem Ecol 1990, **16**:1059-1067.
- 17. Nielsen JK, Larsen LM, Søorensen H: Cucurbitacin E and I in Iberis amara: feeding inhibitors for Phyllotreta nemorum. Phytochemistry 1977, 10:1519-1522.
- 18. Haribal M, Yang Z, Attygalle AB, Renwick JA, Meinwald J: A cyanoallyl glucoside from Alliaria petiolata, as a feeding deterrent for larvae of Pieris napi oleracea. J Nat Prod 2001, 64:440-443
- 19. Brock A, Herzfeld T, Paschke R, Koch M, Drager B: Brassicaceae contain nortropane alkaloids. Phytochemistry 2006, 67:2050-
- 20. Tattersall DB, Bak S, Jones PR, Olsen CE, Nielsen JK, Hansen ML, Hoj PB, Moller BL: Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 2001, **293**:1826-1828.

- 21. Polturak G, Grossman N, Vela-Corcia D, Dong Y, Nudel A, Pliner M, Levy M, Rogachev I, Aharoni A: Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. Proc Natl Acad Sci USA 2017, 114:9062-9067.
- 22. Møldrup M, Geu-Flores F, De Vos M, Olsen CE, Sun JY, Jander G, Halkier BA: Engineering of benzylglucosinolate in tobacco provides proof-of-concept for dead-end trap crops genetically modified to attract Plutella xylostella (diamondback moth). Plant Biotech J 2012, 10:435-442.
- 23. Bruce TJA, Aradottir GI, Smart LE, Martin JL, Caulfield JC, Doherty A. Sparks CA. Woodcock CM. Birkett MA. Napier JA et al.: The first crop plant genetically engineered to release an insect pheromone for defence. Sci Rep 2015, 5:11183.
- 24. Khakimov B, Kuzina V, Erthmann PO, Fukushima EO, Augustin JM, Olsen CE, Scholtalbers J, Volpin H, Andersen SB, Hauser TP et al.: Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana. Plant J 2015, **84**:478-490.
- 25. Nett RS, Lau W, Sattely ES: Discovery and engineering of colchicine alkaloid biosynthesis. *Nature* 2020, **584**:148-153 An almost-complete pathway for the biosynthes of colchicine was identified and expressed heterologously in Nicotiana benthamiana.
- 26. Niemeyer HM: Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defense chemicals in the Gramineae. Phytochemistry 1988, **27**:3349-3358.
- 27. Tzin V, Fernandez-Pozo N, Richter A, Schmelz EA, Schoettner M, Schaefer M, Ahern KR, Meihls LN, Kaur H, Huffaker A et al.: Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays. Plant Physiol 2015, 169:1727-1743.
- 28. Petersen A, Wang C, Crocoll C, Halkier BA: Biotechnological approaches in glucosinolate production. J Integr Plant Biol 2018, 60:1231-1248.
- 29. Huang T, Toghe T, Lytovchenko A, Fernie AR, Jander G: Pleiotropic physiological consequences of feedbackinsensitive phenylalanine biosynthesis in *Arabidopsis* thaliana. Plant J 2010, **63**:823-835.
- 30. Tzin V, Malitsky S, Ben Zvi MM, Bedair M, Sumner L, Aharoni A, Galili G: Expression of a bacterial feedback-insensitive 3deoxy-p-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism. New Phytol 2012, 194:430-439.
- 31. Brader G, Mikkelsen MD, Halkier BA, Tapio Palva E: Altering glucosinolate profiles modulates disease resistance in plants. Plant J 2006. 46:758-767.
- 32. Bleeker PM, Mirabella R, Diergaarde PJ, VanDoorn A, Tissier A, Kant MR, Prins M, de Vos M, Haring MA, Schuurink RC: Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc Natl Acad Sci U S A 2012, 109:20124-20129.
- 33. Sinden SL, Sanford LL, Cantelo WW, Deahl KL: Leptine glycoalkaloids and resistance to the Colorado potato beetle (Coleoptera: Chrysomelidae) in Solanum chacoense. Environ Entomol 1986. 15:1057-1062
- 34. Cardenas PD, Sonawane PD, Heinig U, Jozwiak A, Panda S,
 Abebie B, Kazachkova Y, Pliner M, Unger T, Wolf D et al.:
 Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nat Commun 2019, 10:5169

The authors describe the identification of an enzyme that is required for leptinine biosynthesis in Solanum chacoense. A similar enzyme catalyzes the hydroxylation of the bitter α -tomatine to hydroxytomatine during tomato fruit ripening.

Smeda JR, Schilmiller AL, Anderson T, Ben-Mahmoud S, Ullman DE, Chappell TM, Kessler A, Mutschler MA: Combination of acylglucose QTL reveals additiveand epistatic genetic interactions and impacts insectoviposition and virus infection. Mol Breed 2018, 28:3.

36. Fan P, Wang P, Lou YR, Leong BJ, Moore BM, Schenck CA,
Combs R, Cao P, Brandizzi F, Shiu SH et al.: Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity. eLife 2020, 9

This publication provides new insight into the evolution of acylsugar biosynthesis. This important group of insect-defensive specialized metabolites accumulates in Solanaceae trichomes.

- Schweizer F, Fernandez-Calvo P, Zander M, Diez-Diaz M, Fonseca S, Glauser G, Lewsey MG, Ecker JR, Solano R, Reymond P: Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 2013, 25:3117-3132.
- 38. Onkokesung N, Reichelt M, van Doorn A, Schuurink RC, van Loon JJ, Dicke M: Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. J Exp Bot 2014, 65:2203-2217.
- 39. Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L: Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Sci 2020,

Overexpression of transcription factors in Catharanthus roseus provides insight into the biosynthesis of monoterpenoid indole alkaloids, a class of insect-defensive metabolites.

Hayashi S, Watanabe M, Kobayashi M, Tohge T, Hashimoto T, Shoji T: **Genetic manipulation of transcriptional regulators** alters nicotine biosynthesis in tobacco. Plant Cell Physiol 2020, **61**:1041-1053

This manuscript provides new insight into the regulation of nicotine biosynthesis, an important insect-defensive pathway in tobacco.

- 41. Zhou S, Lou YL, Tzin V, Jander G: Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol 2015, **169**:1488-1498.
- Karley AJ, Ashford DA, Minto LM, Pritchard J, Douglas AE: The significance of gut sucrase activity for osmoregulation in the pea aphid, Acyrthosiphon pisum. J Insect Physiol 2005, **51**:1313-1319.
- Dorschner KW, Ryan JD, Johnson RC, Eikenbary RD: Modification of host nitrogen levels by the greenbug (Homoptera: Aphididae): its role in resistance of winter wheat to aphids. Environ Entomol 1987, 16:1007-1011.
- 44. Koyama Y, Yao I, Akimota SA: Aphid galls accumulate high concentrations of amino acids: a support for the nutrition hypothesis for gall formation. Entomol Exp Appl 2004, **113**:35-44.
- 45. Sandstrom J, Telang A, Moran NA: Nutritional enhancement of host plants by aphids - a comparison of three aphid species on grasses. J Insect Physiol 2000, 46:33-40.
- Schwachtje J, Minchin PEH, Jahnke S, van Dongen JT, Schittko U, Baldwin IT: SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proc Natl Acad Sci U S A 2006, 103:12935-12940.
- Tao LL, Hunter MD: Allocation of resources away from sites of herbivory under simultaneous attack by aboveground and belowground herbivores in the common milkweed, Asclepias syriaca. Arthropod Plant Interact 2013, 7:217-224.

- 48. Robert CA, Ferrieri RA, Schirmer S, Babst BA, Schueller MJ, Machado RA, Arce CC, Hibbard BE, Gershenzon J, Turlings TC et al.: Induced carbon reallocation and compensatory growth as root herbivore tolerance mechanisms. Plant Cell Environ 2014. 37:2613-2622.
- Lu J, Robert CA, Riemann M, Cosme M, Mene-Saffrane L, Massana J, Stout MJ, Lou Y, Gershenzon J, Erb M: Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. Plant Physiol 2015, **167**:1100-1116.
- 50. Richter A, Powell AF, Mirzaei M, Wang LJ, Movahed N, Miller JK, Pineros MA, Jander G: Indole-3-glycerolphosphate synthase, a branchpoint for the biosynthesis of tryptophan, indole, and benzoxazinoids in maize. Plant J 2021 http://dx.doi.org/10.1111/ tpj.15163. online ahead of print.
- 51. Heinig U, Gutensohn M, Dudareva N, Aharoni A: The challenges of cellular compartmentalization in plant metabolic engineering. Curr Opin Biotechnol 2013, 24:239-246.
- 52. Nintemann SJ, Hunziker P, Andersen TG, Schulz A, Burow M, Halkier BA: Localization of the glucosinolate biosynthetic enzymes reveals distinct spatial patterns for the biosynthesis of indole and aliphatic glucosinolates. Physiol Plant 2018, **163**:138-154.
- 53. Zhang Y, Fernie AR: Metabolons, enzyme-enzyme assemblies that mediate substrate channeling, and their roles in plant metabolism. Plant Commun 2021, 2:100081.
- Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM, Ni XZ, Rocca JR, Alborn HT, Teal PE: **Identity, regulation, and activity**
- of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci U S A 2011, 108:5455-5460

The authors used a multi-omic approach to identify ten enzymes involved in the biosynthesis of zealexins in maize.

- Ding Y, Weckwerth PR, Poretsky E, Murphy KM, Sims J,
- Saldivar E, Christensen SA, Char SN, Yang B, Tong AD et al.: Genetic elucidation of interconnected antibiotic pathways mediating maize innate immunity. Nat Plants 2020, 6:1375-1388

The authors identified ten genes for the biosynthesis of zealexins in maize and conducted further research to investigate the functions of these compounds in plant defense.

- 56. Niemeyer HM: Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals. J Agric Food Chem 2009, 57:1677-1696.
- 57. Rai A, Yamazaki M, Saito K: A new era in plant functional genomics. Curr Opin Syst Biol 2019, 15:58-67.
- 58. Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S: A modular cloning system for standardized assembly of multigene constructs. *PLoS One* 2011, **6**:e16765.
- Demirer GS, Silva TN, Jackson CT, Thomas JB, Ehrhardt DW, Rhee SY, Mortimer JC, Landry MP: Nanotechnology to advance CRISPR/Cas genetic engineering of plants. Nat Nanotechnol 2021, **16**:243-250.
- 60. Hahn F, Korolev A, Sanjurjo Loures L, Nekrasov V: A modular cloning toolkit for genome editing in plants. BMC Plant Biol 2020. **20**:179.
- 61. Swinnen G, Goossens A, Colinas M: Metabolic editing: small measures, great impact. Curr Opin Biotechnol 2019, 59:16-23.