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Abstract

Silver nanowires have been widely adopted as nanofillers in composite materials used for
various applications. Electrical and thermal properties of these composites are critical for proper
device operation, and highly depend on transport through the nanowires and their contacts, yet
studies on silver nanowires have been limited to one or two samples and no solid data have been
reported for individual contacts. Through systematic measurements of silver nanowires of different
sizes, we show that the Lorenz number increases with decreasing wire diameter and has a higher
value at wire contacts. Examination of the corresponding electrical and thermal conductivities
indicates that these changes are due to contributions of phonons that become more important as a
result of elastic stiffening. The derived contact thermal conductance per unit area between silver
nanowires is ~10 times that between carbon nanotubes. This helps to explain the more significant
thermal conductivity enhancement of silver nanowires-based composites.
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Silver nanowires, owing to their excellent electrical, thermal and optoelectronic properties,
are finding more and more applications as essential components in flexible electronic devices,
optoelectronic energy converters, and thermal interface materials.!* So far, there have been
several reports on the transport properties of silver nanowires.’ However, the reported studies are
often based on limited samples and the results are not consistent with each other; and therefore, it
is important to conduct systematic studies to obtain consistent trends of transport properties as a
function of the nanowire size. In addition, as nanofillers, electrical and thermal contact resistance
between silver nanowires are critical for the overall properties of the resulting composites;
however, no direct experimental data have been reported on the resistance at these nanoscale
contacts.

One interesting observation for silver nanowires is that elastic stiffening occurs as the wire
diameter drops below ~100 nm.'%!2 Recently, it has been shown that for silicon nanowires of < 30
nm diameters, elastic/acoustic softening is responsible for the observed thermal conductivity
reduction beyond what the classical size effect predicts.!>!* It follows to ask whether and how
elastic stiffening alters electrical and thermal transport in thin silver nanowires.

In this letter, we report on systematic measurements of electrical and thermal transport
properties of silver nanowires with diameters ranging from 38 to 84 nm, which allows for
examination of the elastic stiffening effects on the transport properties. Importantly, we also extract
previously unavailable data on the contact resistance between individual silver nanowires. These
results provide important insights into the transport properties of silver nanowire-based
nanocomposites.

Fig. 1a shows a scanning electron microscopy (SEM) image of a silver nanowire with a

pentagonal cross-section. For wires with non-circular cross-sections, we use the hydraulic diameter
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(Dn=4A/P, where A is cross-sectional area and P is perimeter) to represent the wire characteristic
size.!>1¢ To reduce the contact resistance, we conducted electron beam induced deposition (EBID)
of Pt at the wire-membrane contacts and Fig. 1b plots the extracted thermal conductance versus
temperature after the first and second round of EBID. The overlapping values indicate that the
contact thermal resistance becomes negligible as compared to the resistance of the nanowire!” (see
Supporting Information).

Fig. 2a shows the thermal conductivity of a silver nanowire with D= 84 nm and Ls = 44 um,
which demonstrates an increasing trend with temperature. The room-temperature (300 K) thermal
conductivity is 332 W/m-K, ~22.6% lower than the bulk value of 429 W/m-K.!® However,
compared to the reported experimental data,>®° which range from 200 to 300 W/m-K for silver
wires of 90-230 nm in diameter and 7-28 pm long, our results represent a higher thermal
conductivity for a smaller wire. For silver nanowires of larger diameters and shorter lengths, we
found that the contact thermal resistance between the wire and suspended membranes might not
be negligible (see Fig. S1), which could lead to a lower effective thermal conductivity. Another
factor that could contribute to the lower thermal conductivity in the literature is the overestimation
of the wire diameter with an assumption of a circular cross-section. In our case, the pentagonal
cross-section corresponding to D» = 84 nm actually shows an outer-diameter of 96 nm as measured
directly from the top-view SEM micrograph.

The temperature dependence of the electrical resistivity of the same wire is plotted in Fig. 2b.
Compared to the bulk value of 1.63x10® Q-m,' the room-temperature electrical resistivity
(2.13x10* Q-m) of the wire is 30.7% higher. If we directly fit the data using the widely adopted

Bloch-Griineisen (BG) formula?
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where po is the residual resistivity due to defect scattering, pepn is the resistivity arising from
electron-phonon (e-ph) interactions, aepr is a constant characterizing e-ph coupling, and Opis the
Debye temperature, the best fitting (see Fig. S5) for the 84 nm diameter wire gives a Debye
temperature of 128 K, much smaller than the bulk value of 230 K.?! In addition, po = 1.67x10 Q-
m, which is two orders of magnitude higher than the bulk value. Considering the actually enhanced
Young’s modulus in silver nanowires, the resulting lower ®p cannot be justified. More importantly,
we found that the fitting gets worse for smaller nanowires, which clearly indicates that a better
model is needed.

The BG model does not explicitly consider electron scattering at the nanowire surface, which
leads to much larger residue resistivity; at low temperatures, temperature-dependent small angle
e-ph scattering of electrons renders the resistance from boundary scattering at the nanowire surface
changes with temperature, leading to a much lower @p if its effect is absorbed into the BG fitting.’
To explicitly reflect the surface contribution, we calculate a reduction function following the

Fuchs-Sondheimer approach, which relates the nanowire resistivity with the bulk value as**?
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where puuir is the electrical resistivity of bulk silver that can be modeled using Eq. (1) and (2), pnw

is the electrical resistivity of the nanowire, 7 is the radius, @ is the polar angle between the electron



traveling direction and the wire axial direction, ¢ is the azimuthal angle, / is the electron mean free
path (EMFP) in bulk silver, and p is the specularity parameter at nanowire surface. For simplicity,
the above derivation is based on a circular cross section. Importantly, it has been shown that as
long as the surface area to volume ratio (or hydraulic diameter) is the same, the surface scattering
effect is approximately the same.'* In this approach, with ®p = 230 K, the fitting curve matches
the measured data almost perfectly with the following parameters: po = 8.15x10'! Q-m, aepn =
5.782x10°® Q-m, and p = 0.65, which provide minimum variance.

Fig. 2¢ depicts the electrical and thermal EMFP of the nanowire. The electrical EMFP (/e,nw)

amv

is calculated as I, ,,, = £ where n is the free electron density, m the electron mass, and vr the

ne?
Fermi velocity.?* First principles calculations have suggested that at room temperature phonons in
bulk silver only contribute ~1.07% to the total thermal conductivity.?> Because phonon MFP is
very small in silver (1-10 nm),* the lattice thermal conductivity of the 84 nm diameter wire can
be regarded approximately the same as that of the bulk (&pn,suix = ~4.6 W/m-K), which is ~1.4% of
the measured nanowire thermal conductivity, still a small percentage compared to the electron

contribution. As the electronic thermal conductivity is approximately equal to the total thermal
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conductivity, the thermal EMFP (/inv) is calculated as l;p, 5\, = 63—:, where C, = -
eVF F

heat capacity per unit volume in which Er is the Fermi energy.>** For silver, n is 5.85x10?® m™,
Eris 5.48 eV and vris 1.39x10° m/s.?* The calculated electrical and thermal EMFPs both decrease
as the temperature increases due to enhanced e-ph scattering at higher temperatures. At higher
temperatures, e-ph interactions mainly occur through large angle scattering, which poses resistance
to both electrical and thermal transport.?! However, as temperature drops, the dominant phonon

wave vector decreases, which allows for more electron scattering through small angles that has a



marginal effect on charge transport but effectively reduces the relaxation time for thermal
transport.?! Thus, the electrical EMFP is always higher than the thermal EMFP, and the difference
becomes larger as temperature drops.

Fig. 2d displays the Lorenz number of the nanowire and bulk silver.'®!” The resulting Lorenz
number increases with temperature, displaying a similar trend as reported for silver,>¢ platinum,?¢
and gold®’ nanowires or thin films. At room temperature, the nanowire has a comparable Lorenz
number with bulk silver. However, as temperature decreases, the Lorenz number of the nanowire
becomes higher than the bulk value. Based on the Matthiessen’s rule, the size effect on the EMFP
of the nanowire can be written as 1/, ,,, = 1/le puir + 1/1p, and /1y ny = 1/ lep pare + 1/,
where le,buik and I, puik are the electrical and thermal EMFP of bulk silver, respectively; and /s is the
EMFP due to the electron-boundary scattering with the nanowire surface. When the lattice thermal

conductivity is neglected in the 84 nm nanowire, the Lorenz number of the nanowire, L,
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. The ratio (le,bulk + lb)/(lth,bulk + lb) is larger

than unity and gets larger as temperature drops, which leads to the higher nanowire Lorenz number
at lower temperature.

The Lorenz number versus temperature for four silver nanowires of different sizes is plotted
in Fig. 3a, which shows a clear size dependence with higher values for smaller wires. To further
clarify the size dependence, we normalize the room-temperature thermal conductivity, electrical
conductivity and Lorenz number for different size wires with respect to the corresponding values
for the 84 nm wire, as shown in Fig. 3b. Both the thermal and electrical conductivities decrease
for smaller wires as a result of enhanced boundary scattering; and the electrical conductivity

decreases to a greater level, giving rise to an escalating Lorenz number. Fig. 3¢ and 3d plot the



thermal conductivity and electrical resistivity of four different size wires and the corresponding
thermal and electrical conductivity reduction between the 84 nm and 38 nm wires, respectively. In
the entire temperature range, the electrical conductivity reduces to a larger extent as compared to
thermal conductivity, giving rise to a higher Lorenz number for smaller wires. First principles
calculations have suggested that at 300 K electrons are with MFPs of 10-100 nm and phonons are
with MFPs of 1-10 nm in silver.?> Therefore, for nanowires with a diameter range of 38-84 nm,
boundary scattering could significantly suppress the electron contribution to the thermal
conductivity, while the size effect on phonon transport is still marginal. As such, the phonon
contribution to the thermal conductivity becomes more significant for smaller wires. This renders
the observed more significant reduction of electrical conductivity than thermal conductivity, and
hence the enhanced Lorenz number for small diameter wires.

However, our analysis indicates that eliminating the phonon contributions by assuming that

the lattice thermal conductivity remains to be 4.6 W/m-K for all nanowires, the Lorenz number

based purely on electron transport, L, = z—;, still increases as the wire diameter decreases (Fig. S6).

As mentioned previously, elastic stiffening occurs in silver nanowires of < 100 nm diameters with
an increasing Young’s modulus for smaller wires. However, the effects of elastic stiffening on
transport properties of silver nanowires have not been examined.

To further dissect the effects of elastic stiffening on electrical and thermal transport in silver
nanowires, we first model the electrical resistivity for the nanowires. From the measured Young’s
modulus (E) data for silver nanowires,'? we performed a curve fitting (see Fig. S7) to extract the
values for the four nanowires and derived their corresponding ®p. Then following the same
procedure as we have done for the 84 nm diameter wire, we fit for the three smaller diameter wires.

In the fitting, po is fixed to be the same value as that for the 84 nm wire, which given the same
7



nanowire synthesis procedure, is a reasonable assumption. Importantly, the fitting is not sensitive
to the value of po as boundary scattering plays a much more important role at low temperature.
Then we use p and aepr as two fitting parameters to recapture the experimental data and the best
values are listed in Table 1.

The resulting p value is between 0.65 and 0.47, indicating a significant portion of surface
scattering is specular reflection. Note that the measured thermal conductivity in our work is about
twice the predicted value based on the Boltzmann transport equation (BTE) with fully diffuse
electron-boundary scattering,® which suggests that the obtained p is in a reasonable range. The
specularity parameter p gets smaller progressively for smaller wires, which could be due to the
stronger edge effect in the pentagonal cross-section. ae-pn increases by almost 10% as the nanowire
diameter decreases from 84 to 38 nm. One possible reason is that as suggested by a few
publications, the e-ph coupling factor in nanostructures gets enhanced, which could lead to a larger
ae-ph. 2! The overall e-ph scattering rate (1/zepn, Where zepn is the relaxation time) that is
proportional to pepr, however, reduces as the nanowire diameter decreases, owing to that the rest
terms in Eq. (2) drops as ®p increases. This is also consistent with that the e-ph relaxation time is

proportional to the square of the phonon group velocity,?!3?

which means that as the Young’s
modulus increases, the e-ph scattering rate reduces.

With reduced e-ph scattering rate, boundary scattering will play a more significant role in
determining the EMFP; and if boundary scattering can effectively limit the electrical and thermal
EMFP to the same value, the Lorenz number should be simply the Sommerfeld value. However,
as Fig. 3a indicates, the Lorenz number for smaller nanowires can be actually higher than the

Sommerfeld value, and the difference for the smallest wire is ~6.3% at room temperature, well

beyond the phonon contribution of ~1.7% if we take xpr as the bulk value. This means that for
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silver nanowires, xp» will be much higher than that of the bulk silver, which can be attributed to
several changes induced by elastic stiffening. First, elastic stiffening corresponds to a higher speed
of sound, which is directly proportional to apr. In addition, the higher ®p shifts the phonon
distribution to lower wave vectors at any given temperature, which should reduce the Umklapp
scattering rate. Moreover, as discussed above, the e-ph scattering rate also becomes smaller. The
overall effect is significantly enhanced lattice thermal conductivity that renders a Lorenz number
higher than the Sommerfeld value for small nanowires. Actually if we take the room temperature
Lorenz number purely due to electron transport as the Sommerfeld value, the lattice thermal
conductivity for the 38 nm wire can be derived as 17.5 W/m-K, over three times that of the bulk
value of 4.6 W/m-K.

It is worth noting that the elastic stiffening in penta-twinned Ag nanowires is likely originated
from both the surface atom reconstruction and compression at the twin boundaries,'?3* which leads
to a rather uniform enhancement of Young’s modulus across the wire cross-section. As such, we
consider the elastic stiffening effects on transport properties based on an effective average value
of the Young’s modulus for the entire nanowire.

As contacts can play an critical role in the properties of composites, we seek to extract the
electrical and thermal contact resistance between individual silver nanowires with D = 65 nm (Fig.
4a), following the same approach for multi-wall carbon nanotubes (MWCNTs).** The measured
electrical and thermal resistance of the single (Rs) and contacted nanowires (R:.contact) are plotted in
Fig. 4c and 4d. The contact resistance (R.) can be derived according to Re= Ri.contact - Ro/Ls X Le,>**
which are about one-tenth of the measured total resistance of the single and contact samples. This
relatively low weight of the contact resistance results in significantly fluctuated results even though

the fluctuation in the measured total resistance is relatively small. Although the extracted R. carries
9



quite a large uncertainty, useful information can still be derived. At 300 K, compared to the contact
thermal resistance of ~1.8x107 K/W between two 63 nm diameter MWCNTs,** the contact thermal
resistance between two 65 nm diameter silver wires is only 7.70x10° K/W, ~22 times lower, which
suggests that silver nanowires could be much more effective nanofillers to enhance the thermal
conductivity of nanocomposites.

To understand the much lower contact thermal resistance, we solve for the contact thermal
conductance per unit area (Gc4). Fig. 4b shows an SEM micrograph of the wire-wire junction with
a contact area of 107.0 + 17.6 nm?, which is ~2 times that between two MWCNTSs of similar
diameters. The significantly larger contact area could be due to the pentagonal cross-section of the
silver wires. The calculated Gca is 12.1x10° W/K-m?, which falls in the range of 4-14x10° W/K-
m? for some metal-metal interfaces,*®3” but represents ~10 times that between MWCNTSs. Possible
reasons for this higher contact conductance are as follows. First, the thermal EMFP is ~ 37 nm at
300 K, much less than ~200 nm for phonons propagating along the radial direction in MWCNTs.
This eliminates reflection of energy carriers back to the emitting tube/wire, which is one important
factor for the low Gcs at MWCNT contacts.>* Furthermore, it has been shown that Joule heating
during electrical measurement could help to enhance the bonding between metal nanowires,*®*°
which could also facilitate transmission of energy carriers through the contact.

Fig. 4e shows the derived Lorenz number of the single wire and contact samples. While the
relatively low weight of the contact in the total resistance renders the overall Lorenz numbers of
the single and contact samples very close to each other, the extracted Lorenz number of the contact,
even though with quite significant fluctuations, is clearly higher than the Sommerfeld value. The

reason for this is that the extracted contact thermal conductance, 12.1x10° W/K-m?, is still ~100

times smaller than the conductance of a pseudo-interface in bulk silver as estimated by x»uw/a,
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where a is the lattice constant. As electrons are the dominant energy carriers in silver, this
remarkable reduction indicates that the contact presents significant resistance to electron transport.
On the other hand, the relative contribution of phonons in the contact thermal conductance could
be more significant as phonons have a much smaller MFP than electrons. The combined effects
lead to a larger Lorenz number at the contact.

In summary, systematic studies at the individual nanowire level provide direct experimental
evidence of altered Lorenz numbers in silver nanowires. The clear trend of increasing Lorenz
numbers for smaller wires comes mainly from the effects of elastic stiffening, which results in
reduced e-ph scattering rates and higher Debye temperatures. These changes significantly enhance
the phonon contribution to thermal transport, while the electron contribution is suppressed because
boundary scattering effectively limits the electron MFP in silver nanowires. Importantly, the study
provides experimental data on the contact thermal conductance per unit area, which is ~ 10 times
that between MWCNTs, indicating one important factor that renders silver nanowires more
effective nanofillers for enhancing the thermal conductivity of nanocomposites. This study
discloses interesting transport mechanisms and provides important insights into designing silver

nanowire-based composites.
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Figure 1. Effects of contact thermal resistance. (a) The SEM micrograph of a silver nanowire
placed on a 36 um-gap device with two rounds of Pt/C deposition at the wire-suspended membrane
contacts. The inset shows the cross-section of the wire with D» = 89 nm. (b) The measured thermal
conductance after the first and second round of EBID essentially overlaps (with < 2% difference).
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Figure 2. Thermal and electrical properties of an individual silver nanowire with D, = 84 nm and
Ls =44 um. (a) Temperature dependence of thermal conductivity. (b) Electrical resistivity of the
nanowire and bulk silver'®. The bulk resistivity is fitted with Eq. (2)-(3) and the fitting line for the
nanowire is achieved from Eq. (2)-(5). (¢) Thermal and electrical EMFP derived from the measured
thermal and electrical conductivity. (d) Lorenz number of the nanowire and bulk silver. The bulk
value is calculated with the experimental thermal conductivity'® and electrical resistivity'”.
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Figure 3. Size dependence of transport properties. (a) Derived Lorenz number of four different
diameter silver nanowires. The grey dash line labels the Sommerfeld number. (b) Normalized
thermal conductivity, electrical conductivity and Lorenz number with respect to the respective
values of the 84 nm diameter nanowire at 300 K. The grey dash line separates the enhanced Lorenz
number and reduced thermal and electrical conductivity as size decreases. (c¢) Thermal
conductivity of the four nanowires and the thermal conductivity reduction between the 84 nm and
38 nm wires. (d) Electrical resistivity of the four nanowires and electrical conductivity reduction
between the 84 nm and 38 nm wires. The Debye temperature used for the fitting lines is 230 K,
242 K, 265 K and 300 K, respectively. The uncertainty for the thermal conductivity and electrical
resistivity is ~12% and ~11%, respectively.
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Figure 4. Thermal and electrical properties at an individual contact between two silver nanowires.
(a) SEM image of two contacted silver nanowires with D» = 65 nm and L. = 39.8 um. (b) SEM
image of cross-sectional cutting of contacted silver nanowires tilted at 52°. The inset is the zoom-
in image of the contact configuration. (¢) Thermal and (d) Electrical resistance of single and
contacted nanowires as well as their contact resistance. (e¢) Lorenz number of single and contacted
nanowires and their contact Lorenz number versus temperature. The arrow guides the vertical
coordinate used for the three sets of data. The capital S and C in legends denote the single and
contacted silver nanowires, respectively. We note that the lengths of the contact sample and the
single wire sample are slightly different by 4.7%. The contact resistance between the two wires
(Re¢) is derived according to Re= R:contact - Rs/Ls < Le.
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Table 1. The parameters used for the fitting lines for the bulk silver and nanowires.

Dy, (nm) Normalized E Op(K) po(10M Q-m) aeps (102 Q-m) P
bulk 1 230 1.0 5.08
84 1 230 8.15 5.782 0.65
65 1.11 242 8.15 5.996 0.62
52 1.33 265 8.15 6.149 0.60

38 1.71 300 8.15 6.314 0.47
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