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Abstract

A characterization of a semilinear elliptic partial differential equation (PDE) on a bounded domain in R” is given in terms of
an infinite-dimensional dynamical system. The dynamical system is on the space of boundary data for the PDE. This is a novel
approach to elliptic problems that enables the use of dynamical systems tools in studying the corresponding PDE. The dynamical
system is ill-posed, meaning solutions do not exist forwards or backwards in time for generic initial data. We offer a framework in
which this ill-posed system can be analyzed. This can be viewed as generalizing the theory of spatial dynamics, which applies to
the case of an infinite cylindrical domain.
© 2020 Elsevier Masson SAS. All rights reserved.

MSC: 35J67; 35A24; 34D09; 35J25

Keywords: Semilinear equations; Spatial dynamics; Dynamical systems

1. Introduction

A standard trick in dynamical systems is to write the differential equation u,, + F(«) = 0 as a first-order system

Uy =0
vy = —F(u).

This allows for the application of dynamical systems methods, such as phase plane analysis, exponential dichotomies,
and the Evans function; see, for instance, [1] and references therein for a modern perspective.

Similarly, on an infinite cylindrical domain 2 =R x ' C R”, the semilinear partial differential equation Au +
F (u) =0 can be written in the form
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Uy =V

1
vy =—F(u) — Ayu, M

where (x,y) € R x Q" and A, denotes the Laplacian on the cross-section €' C R"~1. In this case the phase space
is infinite-dimensional, and the analysis requires more care. In particular, the equation is ill-posed both forwards and
backwards in time. As a result, it is nontrivial to prove existence of solutions. The idea of rewriting the semilinear
PDE as an evolution equation along the cylindrical direction is the basis of the area now known as Spatial Dynamics,
see [2—14].

In this paper we extend this correspondence to general Euclidean domains. That is, we obtain the analog of (1)
for a bounded domain €2 which is smoothly contracted to a point through a one-parameter family {€2,}. In this case ¢
becomes the dynamical variable with respect to which we study the evolution of the boundary data. While similar in
spirit to the cylindrical case described above, the analysis is complicated by the nontrivial geometry and the fact that
the resulting system of equations becomes singular as the domain degenerates to a point.

Outline of the paper

In Section 2 we motivate our general construction and results by studying harmonic functions in R3, where the
computations can be done explicitly. In Section 3 we present the general framework and state all of the major re-
sults. Section 4 contains some geometric preliminaries that will be needed for our analysis. The infinite-dimensional
dynamical system is studied in Section 5, where we prove its equivalence to the original semilinear PDE. Finally,
in Section 6 we describe exponential dichotomies for the linearized dynamical system, in particular proving that the
unstable dichotomy subspace (if it exists) coincides with the space of Cauchy data of weak solutions to the PDE.
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2. A motivating example: harmonic functions in R3

Suppose that u(r, 8, ¢) is a harmonic function in R3. Let , = {x : |x| <} C R3, and consider the functions

au
f(t) ::M(t,','), g(t) = a_(ta'a')v

r
which are in C*°(S82) for r > 0. We refer to the pair (f(¢), g(¢)) as the Cauchy data (or boundary data) of u on the
surface 3$2; = {x € R3: |x| =}. Note that f(¢) is just the function u evaluated at radius r = r. We have introduced
the new variable 7 to emphasize that we are viewing this as an evolutionary variable, rather than a spatial coordinate.

Differentiating f with respect to ¢, we obtain

df  ou

= =g(1).
dt or 8()

r=t

To differentiate g we use the formula Au = u,, + 2rYu, +r2A s2u, where Ag> denotes the Laplace—Beltrami
operator on the sphere:

A f 1 9 (. eaf N 1 8%f

= —— || SInv — — .
$2) = §ing 96 30 ) " sin2e 992
Since Au =0, it follows that
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dg 9%u 2 9u N 1 A 1 A fO) 2 ®
_— = — = — _—— —_ u = —— —_ -
dt  or?|,_, ror 20 et 278 0%

and so for all 7 > 0, f and g satisfy the linear system

d (f\_ 0 1 f
E<g>_<—t2Asz —2t‘>(g>‘ 2

The operator appearing on the right-hand side of (2) has spectrum unbounded in both directions. As a result, the
system is ill-posed, meaning one cannot expect a solution to exist forward or backward in time for generic initial data.
However, this system admits an exponential dichotomy—that is, a splitting of the phase space into two subspaces,
both infinite-dimensional, on which solutions exist forward and backward in time, respectively.

To see this, we first rescale f and g, multiplying them by appropriate powers of ¢, namely % f(t) and t'T%g(z),
where « is a real constant to be determined. We then reparametrize by defining a new variable T = log?, resulting in
the functions

f@ =), F@=e'T7g(eh),
which are defined for all T € R. It follows from (2) that

~,

d (F\ _( « 1 f
d_T<§>_(—A52 a-1><’§) 3)

for all T € R. The eigenvalues of the operator matrix on the right-hand side are

s Qe DE AT
= ) )
where 0 = 1o < 1 < pa < --- are the distinct eigenvalues of —A . These are given by u; = [(I + 1) for integers [ >
0. The corresponding eigenfunctions are the spherical harmonics Yl’” 0, @) for —I <m <1, hence u; has multiplicity
21 4+ 1. It follows that

1)I+Z¢Jl—i-l, v =a—1-1,
with the corresponding solutions to (3) given by

(E:,;(r), §f[n(r)> = (elatDrym [pa+Dtym)

(fl;,(f), gz;,(f)) = (e(a—l—m Y —(+ ])e(a—l—l)rYlm)
for —I <m <. Undoing the scaling and reparametrization yields

(fm @- gy ) = (Y] 11771y}
(i@, g ) = (771", =+ D72y,

Observe that the pair (fl"n; ), gl‘;1 (t)) is precisely the Cauchy data on 9€2; of the harmonic function u(r, 6, ¢) =
r'Y" (0, ¢). Similarly, (f,, (1), g, (1)) is the Cauchy data of u(r, 8, ¢) = r~'=1Y/" (6, ¢).

For any 79 € R, the unstable subspace of (3), denoted E"(7p), consists of functions (ﬁ) 2o) with the prop-
erty that there ex1sts a solution ( f (1),2(1)) to (3) that is defined for all T < 7y, satisfies the terminial condition
( f (t0), £(0)) = ( fo 20), and decays exponentially as T — —o0. S1m11arly, the stable subspace of (3), E*(tp), con-
sists of functions ( fo 80) with the property that there exists a solution ( f (1), g(1)) to (3) that is defined for all T > 1y,
satisfies the initial condition ( f (10), 8(10)) = ( fo 20), and decays exponentially as t — co. To determine the stable
and unstable subspaces, we must identify the solutions ( fﬁ;, &) for which the corresponding spatial eigenvalue vlﬂE
is negative, and those for which it is positive, respectively. This depends on the scaling parameter «v, which has not
yet been specified. We seek « so that the unstable subspace corresponds to the Cauchy data of all harmonic functions
that are bounded at the origin. This will be the case if vl+ > 0and v; <0 forall /. This is equivalent to v, <0 < var ,
and so any « € (0, 1) will suffice.

In summary, we have seen that for 0 < « < 1 the system (3) admits an exponential dichotomy such that: 1) the
unstable subspace E(t) consists of the Cauchy data on the surface {r = "} of harmonic functions that are bounded
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at the origin; and 2) the stable subspace E*(7) consists of the Cauchy data on {r = "} of harmonic functions that
decay at infinity.

Remark 2.1. A similar analysis carries through in the planar case, and an exponential dichotomy arises in the same
manner. However, the situation is complicated by the fact that the evolution equation has a two-dimensional center
subspace, corresponding to the harmonic functions 1 and logr. While logr blows up as » — 0, it does so very slowly,
in the sense that »* logr — 0 for any o > 0. On the other hand, if ¢ < 0, then both »* and r® logr are unbounded at
the origin. As a result, no choice of « is able to distinguish (in terms of growth or decay) log 7 from a constant function.
Therefore, the stable and unstable subspaces do not admit the same interpretation as in the higher-dimensional case.
This phenomenon will be observed again below; see Corollary 6.5 and Remark 6.6,

The main objective of this paper is to generalize the preceding constructions to semilinear elliptic equations on R”.
3. Definitions and results

We generalize (1) by considering a smooth family of domains {£2;} in R” and describing the time evolution of the
quantities u|yq, and du/ 8v|mt, where u: R” — R solves the semilinear equation

Au+ F(x,u)=0. 4)
We first describe the types of domains €2; to which our method applies. We let
Q ={xeR":yx) <), (5)

for a suitable function ¢ : R” — R. We assume the following for the remainder of the paper.
Hypothesis 3.1. The function v has the following properties:

1. y € C3(R",R);

2. ¥ has a nondegenerate minimum at x = 0, with ¢ (0) = 0;
3. ¥ has no other critical points;

4. 1 is proper (i.e. preimages of compact sets are compact).

These assumptions on ¥ are motivated by the example ¥ (x) = |x|2, which satisfies Hypothesis 3.1, and leads to
the family of domains €2; = {x : |x| < ¢}. In general, the nondegeneracy of ¥ ensures the domains shrink to a point in
a sufficiently regular manner at + — 0. By the Morse lemma there exist coordinates (yi, ..., ¥,) near the origin such
that ; = {yl2 + - y,% < tz}; see [15]. In this sense any function v satisfying Hypothesis 3.1 locally resembles |x|2.

For any 0 <a < b < co we define

Q={xeR":Yx) < b}, Qup={xeR" ca? < Y(x) < b}, (6)

so that €2, is diffeomorphic to an open ball and €2,  is diffeomorphic to an annulus. A case of particular interest is
a =0, where the domain is a punctured ball, €20, = €25 \ {0}.

To understand the evolution of u and its normal derivative restricted to 9<2;, we need a smooth parameterization of
the domains. For convenience we define a fixed “reference domain” 2 by

Q=Q=xeR":yx) <1} @)
The dynamical system we formulate is defined on the boundary, Q2 = {x € R" : ¥(x) = 1}. This is related to each

9€2; by a family of diffeomorphisms {¢;} whose existence is established in Section 4.1.

Lemma 3.2. Suppose  satisfies Hypothesis 3.1, and define {2;};~0 by (5). Then there exists a family of diffeomor-
phisms {@;}i~0 on R" such that ¢;(2) = ; for each t > 0, and

Ps O Pt = Pst

forany s, t > 0. In particular, ¢1 = id.
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It follows that ¢;(€2;) = Q4 for any s,¢ > 0. The family {¢;};~0 satisfies a group property with respect to the
multiplicative group of positive real numbers. Perhaps more naturally, it can be viewed as an additive group with
respect to the variable T = log?, because @exp(z)) © Pexp(r2) = Pexp(zi+12)-

The flow {¢;} is generated by a nonautonomous vector field X, satisfying

d
X(pi(x),1) = E‘pt(x) (®)

for any x € R” and ¢ > 0. We define a function o : R" \ {0} — R as follows. If x # 0, then x € 9<2; for some ¢ > 0,
namely t = 1 (x) = /¥ (x). Using this, we let
o(x)=X(x,1(x)) - vy, ©)

where v, denotes the outward unit normal to 9€2;(y) at the point x. This function can in fact be computed directly
from ; see (26). Next, for each ¢ > 0 we define a function o;: 922 — R by

o1 (y) =0 (¢ (y)). (10)

This measures the normal speed at which a point y € 9€2 moves under the flow, since

d
PR () V(v = X (@1 (¥), 1) = Vg, (y) = 0 (@1 (¥)) = 01 (¥).
At any point x € R” and ¢t > 0 we denote the tangential component of X (x, ¢) by y (x, t), so we have the decomposi-
tion X (x,t) = (X(x, t)- vx)vx 4+ y(x, t) into normal and tangential components. If t = ¢ (x), this simplifies to
X, 1) =0(x)vy +y(x,1). (11)

In the following sections we will always have x = ¢, (y) for some y € 952, and hence 7 =7 (x).
We next define the Cauchy data of a solution to (4). For u € C'(Q) we define functions f: (0, 00) — C 1(3€2) and
g: (0,00) - C°(BQ) by

9
SO =ule:(y), gy = %(wz(y)), y €08, (12)

then combine these to form the frace,

Trru=(f(1),8(1). 13)

Observe that f(¢) is just the restriction of u to €2, pulled back to 92 via the diffeomorphism ¢;, and similarly for
g(t). The advantage of f and g is that their domains are ¢-independent.

Now suppose that u is a solution to (4). If u is suitably smooth, one can show (see Section 5.3) that f and g satisfy
the system of equations

d

d—‘];‘ = th +O’tg

ar (14)
o= —o:Fi(f) — L f + (T; — 01 Hy)g,

where H; = Hyg, o ‘/’l}ag’ with Hygq, denoting the mean curvature of 9€2;, and F;(f): 02 — R is defined by
F:(f)(y) = F(p:(y), f()(y)). Additionally, T; and L, are the differential operators

L, f = div?® [Uvm’(foq),_l)] ° 9. (16)
In (15), V¥ denotes the tangential part of the gradient, computed as

VIR — vy — —y (17
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for any function u defined in a neighborhood of 9<2;. It is easily seen that this only depends on the restriction u| 9,

The tangential divergence, div?*¥, is minus the formal adjoint of V%% For any vector field Y defined in a neighbor-
hood of 9Q2; we can write

(div Y)|ml =div? (Y?%) + (Y - v) Hyg, +v -V, ¥ (18)

where Y% =Y — (Y - v)v is the tangential part of Y. In particular, when Y is tangential to 32, we have Y - v =0,
hence v-V,Y =—Y - V,v, and so div’* Y =divY 4+ Y - V,v.
To make the notion of a solution to (14) precise, we define the Hilbert spaces

H=H"0Q e H ?0Q), H' =H?0Q) o H'*06Q). (19)

Definition 3.3. Let J C R = (0, co) be an open interval. The pair ( f, g) is said to be a solution to (14) on J if
(f,2 €C'UHHYNC' (T, H)NC'U, H), Fi(f) € Lip(J, L*(39)),

and (f, g) satisfies (14) on J with values in H. Here J denotes the closure of J in Ry, so (0,T) = (0, T] for any
T < oo.

We also need to define the notion of a weak solution to the semilinear problem (4).

Definition 3.4. Let Q2 C R” be a bounded domain with Lipschitz boundary (such as €2, 5, or Q2 forsome 0 <a < b <
00). A function u is said to be a weak solution to (4) on Q2 if u € H'(Q), F (-, u) € L*(R2), and

/Vu~Vv:fF(-,u)v for all v € Hj (). (20)
Q Q

We then say that u is a weak solution on Qg p if it is a weak solution on €2, 5 for all a € (0, b). Finally, u is a weak
solution on R” (resp. R™ \ {0}) if it is a weak solution on €2, (resp. L2¢5) for all b > 0.

Remark 3.5. More generally, (20) makes sense for any F(-,u) € H —1(Q). For instance, this will be the case if F
satisfies a uniform growth assumption |F(x,z)| < C |z| "2/ =) for all x €  and z € R. However, the stronger
condition F(-,u) € LZ(Q) is needed in the proof of Theorem 3.6 to ensure that u € HI%C(SZ(L;,), and hence Tr; u =
(f(1),g(1)) e H! fora <t <b.

We can now state our first result relating the boundary data ( f, g) to u. It says that the PDE (4) on the deleted ball
Qo,7 = Q7 \ {0} is equivalent to the ODE (14) on the interval (0, T').

Theorem 3.6. Suppose 0 < T < oo. If u is a weak solution to (4) on Q.1, then (f, g) = Try u is a solution to (14) on
(0, T). Conversely, if (f, g) solves (14) on (0, T'), then there exists a weak solution u to (4) on Q0.7 with Tr,u = (f, g)
forallt € (0, 7).

Remark 3.7. It follows immediately that a weak solution to (4) on R" \ {0} is equivalent to a solution to (14) on
(0, 00). Note that both definitions are local, and involve no boundedness or decay assumptions about the behavior of
solutions near t =0 or r = o0.

In general we are interested in solutions to (4) on the ball Q7, not €2¢,7. This requires a further assumption on the
asymptotic behavior of f(#) and g(¢) as t — 0, in order to rule out solutions that are singular at a point. An example
of such a solution is u(x) = |x|>~", which is harmonic on R” \ {0} but is not contained in HILC(R”) on account of
its singular behavior at the origin. The following result can therefore be viewed as a kind of removable singularity
theorem.

Theorem 3.8. If (f, g) solves (14) on (0, T), and there exists p € (O, %) such that

I f Ol girepe) + 1’17p71||g(t)||y—1/2(3§z) (21)

Please cite this article in press as: M. Beck et al., A dynamical approach to semilinear elliptic equations, Ann. I. H. Poincaré — AN (2020),
https://doi.org/10.1016/j.anihpc.2020.08.001




ANIHPC:3031

M. Beck et al. / Ann. 1. H. Poincaré — AN eee (eeee) s0e—ocee 7

is bounded near t =0, then there exists a weak solution u to (4) on Qr with Try,u = (f, g) forallt € (0, T). Con-
versely, if u is a weak solution to (4) on Qr, then (f, g) = Tr; u is a solution of (14) on (0, T), with

/2= nj2—1

If O gi2pq) +1t I8N g-172030) = 0 (22)

ast — 0, provided n > 3. When n =2 we have

I f Ol girpe) + tlip”g(f)”H—lﬂ(aQ) -0 (23)
forany p € (0, 1).

In other words, a weak solution on the punctured ball 2o, 7 can be extended to a weak solution on the entire
ball Q7 if (f, g) = Tr; u satisfies the bound (21), in which case it necessarily satisfies the decay condition (22). In
the special case that u satisfies a linear differential equation, we obtain the stronger result that || f(¢)]| g 239) and
g (@)l z-1/2(5¢z) are bounded near = 0; see Lemma 6.4.

In this sense the semilinear elliptic equation (4) is equivalent to the dynamical system (14). This correspondence
allows us to apply dynamical systems methods to the study of (14). A guide as to what can be achieved with this
approach comes from the literature of the area known as spatial dynamics, as discussed in the introduction. There are
challenges, however, in applying the techniques of spatial dynamics in our setup.

Spatial dynamics was initiated by the paper of Kirchgéssner [6]. The goal of his paper is to establish the existence
of a small amplitude solution of a semilinear elliptic equation on a cylindrical domain, which addresses problems
that arise in fluid flow. The strategy is to restrict the dynamical system (1) to a center manifold. Even though (1) is
ill-posed, a center manifold theorem can nevertheless be proved, and a reduction to the center manifold leads to a
finite-dimensional system, to which bifurcation theory can be applied. This approach can establish the presence of
solutions that bifurcate from the trivial (zero) solution.

The underlying picture to keep in mind is the dynamics near a fixed point in the infinite-dimensional phase space
‘H. Although the dynamics is not well-posed in either forward or backward time, the splitting of the spectrum, which
is unbounded in both directions, into the right and left half planes can be used to get well-posedness in one time
direction on appropriate complementing subspaces. Results have been established in this situation which show that
there is a splitting into stable/unstable/center manifolds, see [16,17].

Many generalizations of Kirchgissner’s work have since appeared, notably the work of Mielke [8], who was able
to characterize all small bounded solutions in a center-type manifold. An important advance was made by Peterhof,
Sandstede and Scheel [11], who were the first to consider the behavior near a non-trivial solution. They start with
a traveling wave solution and consider nearby solutions specifically in the case of time-dependent forcing. They
introduce a new approach in their use of the Lyapunov—Schmidt method as an alternative to the center manifold
reduction. A key part of their approach is to establish exponential dichotomies as x — +o00. These are then used to
construct stable and unstable manifolds of the fixed point that represents the traveling wave in the infinite-dimensional
phase space. A Melnikov method is finally used to establish when these manifolds intersect.

At the heart of all these pieces of work is the notion that the underlying dynamical system generates a bi-semigroup;
see [16]. The characterization of the dynamics in terms of invariant manifolds can be cast somewhat generally—see
[16,17] as well as [11].

4. Geometric preliminaries
4.1. The vector field

The family of diffeomorphisms in Lemma 3.2 arises as the flow of a suitably chosen vector field. It is more
convenient to construct the flow with respect to the variable T =logz. This flow, which we denote @y, is generated
by an autonomous vector field X. To motivate our construction we assume that the flow exists and thus obtain some
restrictions on the form of X, which we then use to construct it explicitly.

If such a flow exists, the fact that ¢; maps Q2 = {x : ¥ (x) = 1} t0 IQexp(r) = {x : Y (x) = €27} would imply
¥ (@ (x)) = > (x), hence

Vi - X =24 (24)
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Since Vi//|Vir| defines a unit normal along each d€2;, we conclude that the normal component of X must have
magnitude

gV _ 2w
V¥ IVyl

and so X must be of the form

X =2y LA tial part
= e angentia art.
vy T nEEEP

The system of equations (14) is simplified by choosing a purely normal flow. However, the normal component of Z( is
in general not differentiable at the origin. Therefore, we must include a tangential component in the vector field X in
order to obtain a sufficiently smooth flow.

Lemma 4.1. There exists a C! vector field X satisfying (24), with X 0)=0and VX ) =1.

The vector field X is not uniquely determined—one can add any tangential vector field that is supported away from
the origin without changing the above properties. In particular, one can assume that

A
VP2

outside an arbitrarily small neighborhood of the origin.

X =2y

Proof. Since (24) determines the normal component of X, we just need to specify the tangential part. For this we take
the tangential projection of the vector field x + x. Since the vector field Vi /| V| is normal to each of the 0€2;, this
projection is given by

{x, Vi (x))

T =x="gyoPr

Vi (x).

We then define
X =2y VU T
= —_— X .
V|2

where x is a smooth cut-off function that equals 1 in a small neighborhood of the origin.
Near the origin, where x = 1, we have

2 (x) — (x, VY (x))
IV ()]

Since ¢ is C 3, we can write

f(x):x—i—

Vir(x).

Y= % (Ax, x) + O(lx*)
and
Vi (x) = Ax + O(|x[*)
where the Hessian A = Vzw(O) is positive definite. It follows that

> _2¢ (@) — (x, VY (x)) _ 2
X(x)—x= S Vi (x) =O0(x[%) (25)

for x close to 0, and so X is differentiable, with vX O=I1. O

Now let ¢ denote the flow generated by the vector field X that was constructed in Lemma 4.1. It follows that Or
is defined locally (i.e. for small 7) at each point x € R" and is differentiable in x. We now prove that this is defined
globally.
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Lemma 4.2. The flow ¢, is defined for all T € R, and satisfies ¢ (2) = Qexp(r)-

Proof. Fix x € R” and let 7 C R denote the maximal interval of existence for ¢; (x). Using (24) we compute

d S ~
El/f((Pr () =V - X =29 (g (x))

for v € J. It follows that ¥ (@; (x)) = ce?", with ¢ = ¥ (§o(x)) = ¥ (x), and so ¥ (F; (x)) = ¥ (x)e2". Since V¥ is
proper, this implies that ¢ (x) remains bounded for finite 7, and hence is defined for all T € R. Recalling the definition
of Q; from (5), the equality ¥ (@, (x)) = ¥ (x)e>" implies

e (x) € Qexpr) <= V(@ (0) < = Y1) <l = x e Q.
This completes the proof. O

To finish the proof of Lemma 3.2 we simply translate the above results from the variable 7 to ¢.

Proof of Lemma 3.2. For each ¢ > 0 define ¢; = @jog;. From Lemma 4.2 we obtain

@ () = %ogt(g) = Q.

Moreover, for any t1, t» > 0 we have
P11 © Py = Plogt; © Plogt, = Plogt+logtr, = Plog(tit) = Pritr
as claimed. O

We conclude this section by giving an explicit formula for the function o defined in (9). For any x € R"” we have

d d . 1
X (@i (0),0) = 01 (0) = = Fiog: (¥) =17 X (@1 (x)),
andso X (x,1) = t_lf(x). Using the fact that v, = Vi (x)/|V¢¥ (x)| and ¢ (x) = /¥ (x), we obtain

o) = Ky YO, YY)
t(x) [V (x)] [V (x)]

(26)

4.2. Aymptotics

We now study the asymptotic behavior of ¢, and D¢; as t — 0. This will be used in Section 4.5, where we describe
the #-dependence of the Sobolev spaces H*(€2;) and H*(32;).

Lemma 4.3. For each x € Q there exists X € R" such that
| (x) — 13| < C1?

as t — 0, for some constant C that does not depend on x. Moreover, if x # 0, then X # 0.

Proof. We start by deriving a uniform bound on @:(x). Since ¥ has a nondegenerate - minimum at x = 0, there is a
constant ¢ > 0 so that ¥ (x) > ¢|x|? for all x € Q. Using the fact that ¥ (x) < 1 for x € €, we thus obtain

|3 @) < ¥ @) = X (x) < ¥ @7

for any t <0.
Next, recalling the definition of the flow @, we compute

d _.. S~ ~
Zo¢ TP =TT (X (@ () = §r () = E(x, 7).

It follows from Lemma 4.1 and (27) that
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T~ 2
|E(xr, 7)< Ce " [gr ()] " < CTe’

hence E(x, -) is integrable on (—o0, 0]. Therefore, using the fact that @o(x) = x, we have
0 0 T

x—eifgﬁr(x):/E(x,s)ds:/‘E(x,s)ds—/E(x,s)ds,
T —0o0 —00
and so
0 T
gr(x)=¢€" x—/E(x,s)ds+/E(x,s)ds
—0Q0 —0Q

The desired asymptotic result follows from setting
0
X=x— / E(x,s)ds
—0oQ
and then observing that the remaining term satisfies

T

/ E(x,s)ds| <Ce*
[o)0]

because |E(x, s)| < Ce® uniformly in x.
To complete the proof, suppose that X = 0, and hence ‘fﬁr (x)‘ < Ce’". Since ¥ has a critical point at x = 0, it
satisfies ¥ (x) < C’ |x|2 for some positive constant C’. As in (27), we obtain

~ ~ 2
Y (@0)e* =¥ (@ (x) < C'|g: ().
This implies
Y < g (o)) < ccle,
and hence ¥ (x) < C2(Ce?. Letting T — —o0, we obtain ¥ (x) =0,andsox =0. O

In other words, the trajectories of the flow are asymptotic to straight lines for small . We now use this to prove that
the functions {o;} defined in (10) converge uniformly as r — 0.

Lemma 4.4. There is a positive function oy: 02 — R such that o, — o¢ uniformly as t — 0.

Proof. Let A = V2 (0). For small x we have
1
Y(x) = 5 (Ax, x) + Ol )
and
VY (x)| = |Ax| + O(Jx[*).
Combining this with (26), we see that

VIR V2{Ax,x)

o(x)=2 = + O(Ix]).
IV (x)] [Ax|
Now let y € 3Q2. From Lemma 4.3 we have ¢;(y) =ty + O(t?) for some nonzero y € R”, and so
2(Ay,y
or(y) =o0(p:(y) = W +O@).

We thus define og(y) = /2 {AY, ¥)/|AY]. Since the constant C in Lemma 4.3 is independent of x, we conclude that
o; — op uniformly on Q2. O
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We next consider the Jacobian matrix D¢, (x) and its determinant.

Lemma 4.5. There exist positive constants cy, co such that

cit" < det(Dg;(x)) < cpt"

for all x € Q and sufficiently small t > 0.

Proof. Differentiating the flow equation

d . &~
77 Pr () = X(r(x))
T

with respect to x, we find that D@ (x) satisfies the linear system

d . S~ ~
ED%(X) = [VX(@:(x) ] Dg: (x). (28)

Using Jacobi’s formula we obtain
L logdet(DF: (1) = r (DG (0! [V ()] DG )
= (V- X)(@: ().
From Lemma 4.1 and (27), the divergence satisfies
(V-X)(@: () =n+O(e).
Since logdet(Dgp(x)) = 0, we find that
nt — C <logdet(Dg; (x)) <nt +C
for all t <0, where C does not depend on x. It follows that
e Ce" < det(DP; (x)) < eCe?

uniformly in x. O
Lemma 4.6. For each x € Q there exists an invertible matrix M (x) such that

| Do) — M) | < cr?
as t — 0, for some constant C that does not depend on x. Moreover, |M(x)| and |M (x)~'| are bounded above
uniformly in x.

Proof. Using (28) we find that

d ~ S~ ~
Ee"D% () =" (VX (@r(x)) — 1) DG (x). (29)

Integrating from 7 to 0 and using the fact that Dgo(x) = I, we obtain
0
e D7 <1+ [ [9@0) ~ 1] | Do s
T

From Lemma 4.1 and (27) we have
VX (@) — 1] <Ce,

where C does not depend on x. It follows from Gronwall’s inequality that
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0
le™" D@. (x)| < exp /Cesds <eC (30)
T

for any T <0.
Now define

E(x, 1) =" (VX(@: (x)) — ) DF; (x).

It follows from (30) that E(x, -) is integrable on (—o0, 0], so we can integrate (28) to obtain

0 T
D@ (x) =e" I—/E(x,s)ds+fE(x,s)ds
—0o0 —0o0
We thus define
0
M(x):I—/E(x,s)ds.
—0o0

Bounding the remaining term as in the proof of Lemma 4.3, it follows that || Dy (x) —tM(x) H < Ct?. In particular,

this implies t~ "Dy, (x) = M(x) as t — 0. From the estimate in Lemma 4.5 we see that det(t ~! Dg; (x)) is bounded
away from zero, and so the limit M (x) is invertible. O

4.3. Mean curvature and the first variation of area

The rate of change of the area of 92, is related to its mean curvature. The mean curvature of a hypersurface is
defined to be the divergence of the outward unit normal, and so for d€2; we have

Vi
H‘ = 31
o (IVwI) G

In the radial case, where ¥ (x) = |x|2, one simply has Hyo, = (n — 1)/t for all x € 9€2;. An overview of mean
curvature and level set methods can be found in [18].

To study the ¢ = 0 limit of (14), we must understand the asymptotic behavior of the function H; = Hyg, o ¢; | 95
Using the nondegeneracy assumption imposed on ¥ in Hypothesis 3.1, we can control the mean curvature for small 7.

Lemma 4.7. There is a function Hy: 02 — R such that t H — Hy uniformly as t — 0.

Proof. Calculating the divergence of Vi /|V/|, we find

1 VY VY
Hyg = —— [ Ay — V2
o |wf|< v w(ww |wf|>>

Near the origin we have

Vi (x) = Ax + O(x?)
and

V2 (x) = A+ Ox).

It follows that

1 ( (Azx,Ax))
Hyg,(x) = — |rA— ——— | + O(1).

|Ax| |Ax|?

Now let y € 2. From Lemma 4.3 we have ¢;(y) = 1y + O(t?) for some nonzero y € R”, and so
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11 (A%3, AD)
Hi(y) = Hyo, (91 () = ——= |rA — ——=— ] + O(D).
’ t 1 1A A2
We thus define
1 A%y, Ay
Ho = - (wa - ATAT),
[AY] [AY]

so that t H;(y) = Ho(y) + O(¢), where the error term is uniform in y. This completes the proof. O

Next, let du; and du denote the surface measures on 0€2; and 9€2, respectively, and let a,;: 92 — R denote
the Radon—Nikodym derivative of the pulled-back measure ¢;d i, with respect to du, so that ¢/du; = a; dp. By
definition, this means

[ wne= [wopaan (32)
3 a0
for any measurable function w on 32,. This can be computed explicitly as the Jacobian determinant |det(D¢?)|,

where <p[3 1 02 — 0€2; denotes the restriction of ¢; to the boundary of the reference domain.

Lemma 4.8. The function a; satisfies

da .
d—tl =da; I:UZHI + (leaQt ]/) o (p[]

forallt > 0.

The proof can be found in [19, Section 1.3]. Using this, we can describe the asymptotic behavior of the area
function a,. This is a more delicate quantity than the total area of d€2;, and is quite sensitive to the behavior of the
vector field X near the origin.

Lemma 4.9. There exist positive constants ¢ and ¢ so that
a" ! <a(y) <! (33)

forall y € 9Q2 and t > O sufficiently small.

Proof. Writing X = ov + y and using (18), we obtain
(divX)l,q = div’¥ y + o Haq, +v - V, X,
and hence
o H; + (divag‘ y) o = <O'H(‘)Qt + div?% y) o @
=(divX —v-V,X)og;.

From Lemma 4.1 we have VX =1+ O(|x|). This implies divX =n+ O(|x]) and v - VU)N( =14 O(|x]|), hence
divX —v-VyX=m—1)+ O(x]). Since X (x,1) = t~1X (x), we obtain

n—1 n Oe: D _n

O'[Ht + (diVaQr )/) o@r = " p

-1
. +O(1),

using Lemma 4.3 to bound ¢, (y) for y € 9€2. Therefore

n—1 1da;, n-—1
C<——<

+C

t ~a; dt t

uniformly on 9€2, and the result follows. O
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4.4. The coarea formula

When relating a function # and its boundary data f(¢) and g(¢), we will make frequent use of the coarea formula.
This allows us to relate the integral of u over a given domain to the integrals of u over the level sets of a sufficiently
smooth function. It can be viewed as a generalization to the nonradial case of the standard formula for integration in
polar coordinates.

Suppose W: R” — R is smooth. Sard’s theorem implies that for almost every ¢ € R, the level set W~!(¢) is a
smooth hypersurface. Let du, denote the induced measure on W~!(¢). Defining the region Qup={a < V¥(x) < b},
the coarea formula says that

b

/w|V\I/|=/ / wdu, | dt

Qap a @)

for any measurable function w that is either nonnegative or integrable [20]. In fact, if du, is suitably interpreted, one
only requires the function W to be Lipschitz; see [21] for a general version of this result. If w/|V | is nonnegative or
integrable, we have

b
w
= —d dt.
/“’ / / v
Qa,b

a w1 (1)

To relate this to the domain 2, = {a2 <Ykx) < bz} defined in (6), we let ¥ = /¥ and calculate V¥ =
Vr/(2/V). Comparing with (26), we have |[VW| = o ~!, and so the coarea formula yields

b
/w:/ /awd,u, drt.
Qn.b

a \aQ,

Finally, using the fact that o; = 0 o ¢; ] 90 and recalling the definition of a; from (32), we obtain

b
[w=[| [ewemadu|d. (34)
Qu,b

a Q2

Note that all of the integrals on the right-hand side are computed on the fixed hypersurface 9<2.
4.5. Scaling of Sobolev norms

The diffeomorphisms ¢;: 2 — €; induce maps H*(2;) — H*(R2) and H*(0€2;) — H*(dR2) via the pullback,
u +— u o ¢;. To prove Theorem 3.8 we will need estimates on the norms of these maps for small 7.

Lemma 4.10. There exist constants c| and ¢y such that the following estimates hold for small t :

2 2
it uwo gl 2 < lull 2, < c2t™?lluo @il 2q)
forall u € L>(),
2 2—1
it uwo gl < lullgiq, < 2t Huogllgia
forallu e H! (2p),

it V2 fllp2pe) < Hf ° wfl‘ =t V21 fl26g)

LX) —

forall f e L*(3R), and
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et~/ 1l o) < Hf oﬂﬂr_l HH‘(BQ) <ot/ 11l oe)
t

forall f e H (3Q).

More precisely, for any 7 > 0 there exist constants c¢1(7") and c(T) such that the above estimates hold for all
te(0,T]

Proof. For the L2(2;) estimate we compute

/u2 = /(u o </)z)2 det(Dg;)
Q Q

and then apply Lemma 4.5. The L?(d2) estimate is obtained similarly, writing

[ (roa V= [ Fadu
I

A%y

and then using (33).
For the H'(£;) estimate we first compute V(i o ¢;) = (Dg;)T (Vu) o ¢,. It follows from Lemma 4.6 that

cit|(Vu) o | < |V(u o @)l < cat|(Vu) 0 | (35)
and so the norm of the gradient

IVulfs g, = / Vul? = / (Vi) 0 1 |* det(Degy)
Q Q

satisfies the estimate
n—2 2 2 n—2 2
A" 2V o g2y < IVul2ag ) < 2t 21V @0 9122, (36)
Combining this with the L2(2,) estimate, we have

31 gy = lulf2gq,) + 1Vl 2 )

e ("o gl + " 2IVWo eI
= a2 (w0 @il g + IV W0 @)l )

-2 2
=C2tn ||”°‘Pt||H1(Q)

and
10y Z €1 (1711 0 @01 22 g + "2V 0 9032 )
= a1t (1o @il2g) + IV W0 @) 11320 )
=it luo gl g
as desired.

Finally, for the H 1(8Q) estimate, we recall that the tangential gradient V< f is given by VBQ f=Vv f —(0 f /ov)v,
where f is any extension of f to a neighborhood of d€2. Choosing an extension f with d f/9v = 0, we use (35) to
compute
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[V (o)

- / VP (Fog ")
082

= / IV(fowr ) d
082
C n

st—zfl(vf)owfllzdm

082

C A
= t_2/ |vf|2a[ d/J/
Q2

L2(0%)

5Ct”‘3/ V[ du
IQ
=Ct" IV [0

where in the last line we have used the fact that ViQr=v f for this particular choice of f . Similarly, choosing an
extension f of f so that V% (f o) = V(f o ¢ ") on 8, we find that

2
992 -1 =3 w9 £2
Hv [(f0§0[ ) Lz(aﬂt) = Ctn ”v f”Lz(BQ)

for some different constant C. Combining this with the already obtained estimate for the L?(32) norm, the result
follows. O

5. Evolution of the boundary data

In this section we prove Theorems 3.6 and 3.8, which say that the partial differential equation (4) is equivalent to
the system of ordinary differential equations (14) for the boundary data. Aside from issues of regularity, the proof
of Theorem 3.6 consists of direct computations using integration by parts and the coarea formula (34). The proof of
Theorem 3.8, on the other hand, is more involved, and requires a detailed understanding of the geometry of the level
sets 092, ast — 0.

5.1. An approximation argument

To prove the second statement in Theorem 3.6 we need to reconstruct the function u € HIIOC(QOVT) from its Cauchy
data (f(¢), g(¢)) for 0 < ¢ < T. This is made possible by the following result.

Proposition 5.1. Suppose 2 C R" is a bounded domain, with Lipschitz boundary 9S2. Then C L(a, b1, CL(OQ)) is
dense in C%([a, b], H'(32)) N C!([a, b], L*(3K2)).

That is, if f € C%([a, b], H'(32)) N C'([a, b], L*>(3K)), there exist approximating functions f. € C'([a, b],
C1(3K)) such that
Lfe@) = FOl o) + [ KO = £/ O] 20, = 0

uniformly in ¢ as € — 0. The main ingredient in the proof is the following lemma, which combines a standard molli-
fication argument in local coordinates with a version of Kolmogorov’s compactness criteria; cf. [22,23].

Lemma 5.2. Suppose [ € H*(dQ), with k € {0, 1}. There exist functions f. € C'(3S2) such that || f. — Sl akoe) =0
as € — 0. Moreover, the convergence of fe to f is uniform on precompact sets of H*(92). That is, if S C H*(3Q)
has compact closure, then for any § > 0 there exists €y > 0 such that

Il fe = fllpr@ao) <6
foralle <epandall f €S.
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The density of C!'(3€2) in L?(92) and H'(9RQ) is standard. The key to the proof of the above lemma is to construct
the approximating functions f, in an explicit way that yields uniform convergence on precompact subsets of H*(9<2).

Proof. We first recall the definition of H*(9€2) for a Lipschitz domain, following [24]: There exist two finite collec-
tions of open sets, {W;} and {€2;}, such that 92 C U; W;, QN W; = Q; N W; for each j, and each 2; is given (after
arigid motion) by the hypograph of a Lipschitz function ¢; : R"~! — R. By this we mean that there is a rigid motion
kj of R" so that

K (Q)) =[x = (', x) €R" 1y < (D)

Let {¢;} be a partition of unity subordinate to the covering {W;}. Given a function f: dQ2 — R, we define functions
fi: R 5 R by

LG = (8, ) (7 &, £ (). 37)
We then define the H* (0€2) Sobolev norm by
L Ny = D 1L Fill g go-1y- (38)
J

We are now ready to define the mollification of f € H¥(d$2). We start by inverting (37) as follows. If x € QN W;,
then «j (x) = (x, £;(x")) for a unique x" € R”~!, namely x’ = Pkj(x), where P: R" — R”~! denotes projection onto
the first n — 1 components. It follows that (¢; /) (x) = f; (P/cj (x)) for any x € 32N W}, and so

F) =" fi(Prj(x))
J

for each x € Q2. Now, letting 1, denote the standard mollifier in R"1 we set

fe() =" (ne * f1)(Prj(x)).
J

It follows from (38) and standard properties of 7. that

1 fell e oey < ClLF it omy (39)
for some constant C that does not depend on f or €, and
Il fe = fll kg — 0 (40)

as € — 0. This completes the first part of the proof.
We prove the second claim by contradiction. Suppose there exists a number §p > 0, a sequence of positive numbers
€, tending to zero, and functions £ € S such that

1FE = £ e oy = S0
for all n. Using (39) we obtain
dp < ||f€(:) - f(n)”Hk(aQ)
<A = fellgroa + 1 fer = Fllareey + 1 — F Pl groa
<A+ONf = FNgrog + 1 fo — Fllaroo

for any function f € H*(3Q). Since || f., — Sl ko) — 0 as n — oo, we have

30
1+C’

which shows that £ has no convergent subsequences, contradicting the hypothesis on S. O

.. _ (n) >
lbngt%fllf N ko) =

We are now ready to prove the proposition.
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Proof of Proposition 5.1. Given f € CO%a, b], HY () N C1([a, b], L*(8R2)), we use the construction of Lemma
5.2 to define f, pointwise in ¢, i.e. fc(t) = f(t) foreach ¢ € [a, b]. It follows from (39) that f, € C%([a, b], H' (382))
for each €, and (40) implies that f.(¢) — f(¢) in H'(3Q) for each ¢. Since {f(@):t €la,b]}is a compact subset of
H'(39), the convergence is in fact uniform in ¢, hence f¢ — f in C O([a, b], H' (92)). Moreover, since
‘fé(t+h)_fe(t) ‘f(t-i-h)—f(t)

h LZ(GQ) h

for any i > 0, we conclude that f; is differentiable in ¢, with

(fo) = (fNe € CO(a, b], L*(382))

and f/(t) — f'(t) in L>(32), where the convergence is again uniform in z. O

— (f'(1)e —f'®

<c ‘
L2(3S2)

5.2. Preliminary constructions

We now use Proposition 5.1 to reconstruct # from its Cauchy data.

First suppose f € C%[a, b1, C°(32)) for some 0 < a < b < oo. For each x € Q4. p there is a unique ¢ € (a, b)
and y € <2 such that x = ¢,(y), namely t = /¥ (x) and y = ¢, ! (x). Thus we can define a continuous function
u: Qup— Rby

u(x) = f(0) ()04 ). (41)
We first relate the integrability properties of u to those of f.

Lemma 5.3. There exists a constant C = C(a,b) such that |ul2q,,) < CIfllcoqa.n.L200) for al [ €

CY%a, b], C°(32)). Therefore, the map f +— u in (41) extends uniquely to a bounded operator CY%a, b1, L*(3Q)) —
L*(Qq,p)-

Proof. Let f € C%([a, b], C°(32)). From the definition of u and the coarea formula (34) we have

b
/u2=/ /U,f(t)zatdu dt
Qu,b

a 02
2
SC Sup ||f(t)||L2(3Q)’
a<t<b

since o; and a; are bounded uniformly for ¢ € [a, b]. The existence of a unique bounded extension follows from the
density of C%([a, b], C°(3K2)) in C°([a, b], L?>(3R)), using Proposition 5.1. O

We next examine the differentiability properties of u.

Lemma 5.4. If f € C%([a, b], H' (3Q)) N C'([a, b], L>(3RQ)), then u € H'(Qy p) and the weak derivative is given by

d

Vitlyg, =V (Fog ) 407l <d—{ og ! —y VI (s orp,‘l)) € L2(09) 42)

fora<t<b.

Proof. We again use a density argument based on Proposition 5.1. If f € C%([a, b], C1(32)) N C!([a, b], C°(3R)),
then u € C'(,.p). Differentiating the equation f = u o ¢;, we obtain
df
— =(X .-V
dt ( u) o ¢
= (y-Vu+0v-Vu) o ¢

_ ou
=(y.VaQ’ (fO(pl 1)—}—0%)0@
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and so the normal derivative of # can be computed in terms of f as

ou df . .
w7 (dz ¢ —y-V <f°“’f )

Decomposing Vu into normal and tangential components along 9€2;,
au
Vu =V 4+ —v,
|8Q, v

we arrive at (42).
Next, using (42), Lemma 4.10, and the fact that o and y are uniformly bounded on €2, 5, we find that

L2(0 ) (”

for some constant C = C(a, b). It then follows from the coarea formula, as in the proof of Lemma 5.3, that

df
dt

The result now follows from Proposition 5.1. O

[ Vil

+ ||f(t)||H1(a§z)>

L2(3%2)

IVull2g,,) < C sup < +||f(z>||H1<asz>)~

a<t=<b L2(3Q)

We are now ready to prove the main result of this section, which will allow us to describe a weak solution to (4) in
terms of its restriction to each hypersurface 9€2;.

Lemma 5.5. If f € C%([a, b], H3?(32)) N C'([a, b], H'/2(32)) N C2([a, b], H/2(3Q)), and g is defined by

g=o0; (%_ tf)

b
d
/Vu Vv=— f /(vow,){L,f+d—f+atH,g—Ttg}a,dpL dt 43)
a o0

Qa,b

then

forany v e HO] (R4.5).

Proof. It suffices to consider v € Cgo(Qa,b). The coarea formula yields

b

/Vu~Vv=/ /U(VwVv)d,ut dt.

Qb a 082,

On 0€2; we use (42) and the definition of g to write

ov
Vi Volyg, = V% (f o <p;1) VI 4 2 (g o <p;1) .

For the tangential part we compute

/ o Vsu (f O‘Pz_l) . VaQ’vdu, =— / v divOS¥ (GVBQ’ (f O(pt_l)> duy

092 082

_ / (o gLy far di. (44)

For the normal part we have
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av _ av
/6—<g090[ l)duz=/m —ow |gardu
av av
9%, IQ
d Q2
= || gy Wee) = - Vv)og | gardp.
aQ

The first term on the right-hand side can be written as

— (W oy a d/l.—— vogQ a d/L— Vo@r)—a d/L— vog —d[L.
¢ t)8a; P t)8ar t P 1 t)8 ’t
Q2 Q2 Q2 R

We use the first variation of area formula (Lemma 4.8) to obtain
dat .90
(vowt)ggdu= (vogr) {Uth‘l‘(le ’V)O%}gardu
Q2 Q2
and then apply the divergence theorem to the last term to find

/ [(vdivm’ ¥) ogo,] ga;du = / vdiv?® y (g o (pt_l)dut
Bo) I

:—/y-[vVaQ’ (go<pf]>+(gocp;]>vmfv]du,

I
=—/(v0<pz)(ng)atdu—/[(V~Vm’v)0¢t]gazdu«.
I Q2
It follows that
v _1 d dg
oo (govr)dm == [ wowgadn— [ wog) =5 +oitig — Tigfadp. (45)
ov dt dt
082 0Q aQ

The result follows from adding (44) and (45), then integrating from a to b. The first term from the right-hand side of
(45) integrates to zero because v vanishes on 92, and 0€2;,. O

5.3. Proof of Theorem 3.6

First assume that u solves (4) on 0,7, in the sense of Definition 3.4. This means F (-, u) € Lz(Qa,T), and hence
Au € LZ(QH,T), for any a € (0, T'). Elliptic regularity (for instance [24, Theorem 4.16]) implies that u € Hz(Qa,;,)
forany0 <a <b<T,andsoTr,u e H! = H3/2(3Q) @ H/2(0Q) fort € (0, T). Since t > (u o<p,)|s2 is continuous
in H? for ¢ € (0, T), we in fact have Tr; u € C°((0, T), H'). Next observe that 7 — (u o )|, is differentiable in
H' for t € (0, T), and continuous for 7 € (0, T']. Similarly,  — A(u o ¢;) |sz is differentiable in L for ¢ € (0, T) and
continuous for ¢ € (0, T]. It follows from [25, Lemma 3.2] that Tr, u € C'((0, T), %) N C°((0, T1, ). Finally, the
coarea formula implies (as in Lemma 5.3) that F;(f) € L%*([a, T1, L3(32)) for any a € (0, T). Therefore (f, g) =
Tr, u satisfies the regularity conditions in Definition 3.3. We next show that it satisfies the differential equation (14).

Taking the normal component of (42), we obtain

du _ o afdf aQ -1
8_\)39 = (Eo% eV (fo% ) ’
t
hence
d _ ou
d—{:<y~vm’<f0<p, 1)—&—0%)0%:7}](4'@8-
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This verifies the first equation of (14). Next, using (43) and the definition of a weak solution to Au + F(x,u) =0, we
compute

/F(-,u)v:/Vrov

Qa.b Qa,b
b
dg
=- (vogr) L;f—i-z—l-U,H;g—T;g ardu | dt
a Q2

for any v € H& (24.5). Comparing with

b
/F(-,u)v:/ /aF(x,u)vdu dt
Qa.b a 08
b

:/ /(UOWZ)O'tFt(f)ath dt,
Q2

a
we find that
dg
o b (f)=—1L: f + i +oHig — T g

which is the second equation of (14). The completes the first half of the proof.

Now assume ( f, g) satisfies (14) on (0, T'), in the sense of Definition 3.3. Define u by (41). We must show that u
is a weak solution to (4) on 20,7, i.e. u is a weak solution on 2, 5 forany 0 <a <b=T.

For any such @ and b we have

feC%la,bl, H¥?0Q)) N C%(a, b], H'?(3%)),
g€ C%la, b, H?0Q)) N C%(a, b, H?(3Q)),
F,(f) e L*([a, b], L*(32)).

In particular, f € C%([a,b], H'(3R)) and g € C%([a, b], L?(3R)), so Lemmas 5.3 and 5.4 imply u € H'(Q,.p).

Moreover, it follows from the coarea formula that F (-, u) € Lz(Qa,b).
Letv e HO1 (£24,p). Using (43) and the coarea formula as in the first half of the proof, we obtain

b
/ F(-,u)v:/ /(UOWz)Gze(f)asz dt
Qa,b a \3Q
b
dg
=- (vogr) Ltf+E+UtHzg—ng ardp | dt
a Q2
= / Vu -V,
Qa,b

which says that u is a weak solution to (4) on €2, 5. This completes the proof of Theorem 3.6.
5.4. Proof of Theorem 3.8

It is easier to obtain estimates for the H~'/2(3€2) norm of a,g(¢), rather than the norm of g(r) alone. The results
obtained below are related to the estimates given in Theorem 3.8 by the following lemma.
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Lemma 5.6. Let a be a positive, continuous function on 9S2. Then

(mina)llgllg-120) < lagllp-12¢3q) < (Maxa)llgllg-1/2¢50)

forall g € H-'2(3Q).

Proof. It suffices to consider smooth g. We compute

||ag||H*l/2(aQ) = sup /agfd,u 1 feC®(@Q) and ||f||H1/2(aQ) =1
Q2

= sup /agfdu :feC®OR), I f 1200y =1and fg =0
a0

<sup (maxa)fgfd,u 1 feC®OR), 1 fllgirpg) =1and fg =0
Q2

= (maxa)||g||H1/z(3m.

Replacing a with a~! and g with ag, we obtain

-1 —1
||8||1-171/2(39) =|la (ag)”H*l/z(aQ) < (maxa )||ag||1-171/2(agz) = ||ag||1-1*1/2(ag2),

mina

which completes the proof. O

Combining this with Lemma 4.9, we see that there are constants c¢; and ¢; such that

" Mgl g-12p0) < lagllz-1rpe) < e2t"glg-1200) o

for all g € H~'/2(3Q2) and sufficiently small # > 0.

Keeping (46) in mind, we begin the proof of Theorem 3.8.

First assume that (f, g) is a solution to (14) on (0, T') satisfying the bound (21). Let u be the corresponding weak
solution to (4) on 20, 7, which exists by Theorem 3.6. We must prove that u € H 1 (27), and u is in fact a weak
solution on Q7. To thatend, let b=T.

From (21) we obtain || f (t)||i2 O < Ct~27 for some constant C. Computing as in the proof of Lemma 5.3, and
using Lemmas 4.4 and 4.9, we find

b
[ = [ a1 oy
Qa,b a
b
SC/z”*zl’*‘dt

a

SC’

where C does not depend on a, since n —2p — 1 > —1. It follows from the monotone convergence theorem that

u? = lim u? <C,
a—0t
Q2 Qa.b

sou € L2(Qp).
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We next show that u € H' (). Since u is a weak solution on Q. p for any a > 0, Green’s first identity implies

/(|Vu|2—uF(~,u)>= / ug—z A7)

Qb Q4.

On any 0€2; we have

u u
/u—duz=/(u0g0z) —o@ ardu
ov ov
Q2

3%

= f fgt)asdu
a0

and so (21) implies that

ou
/uadﬂt < Nf Ol ar@allagOll g-12p0)
082,

is bounded near ¢ = 0. It follows that

/ u
u—| <K
ov

Q4,5

for some constant K that does not depend on a. Together with (47), this implies

IVuldsg, ,) = Il ) IFC 02, , + K.

2
L%(Q24,p

/|W|2= lim /|Vu|2§C
a—0t
Qb Qa,b

hence u € H'(Q)) as was claimed.
Finally, we prove that u is a weak solution to (4) on 5. Let v € Cgo(Qb). Since u is a weak solution on €2, 5 and
v vanishes on 9€2j, Green’s first identity implies

/Vu~Vv: / F(~,u)v—/va—uduu. (48)
av

Qa.b Qa,b aQa

and so | Vu|| ) < C, with C independent of a. The monotone convergence theorem now implies

Since Vu - Vv € L'(€2), we can apply the dominated convergence theorem to the functions (Vi - VU)XQH , to obtain

lim Vu-Vv:/Vu-Vv.
a—0t
Qb Qp

It similarly follows that
lim F(',u)v=/F(o,u)v.
a—0t
Qab Qp
The boundary term in (48) can be written as/

' Here we write ¢ instead of a for the domain Q4 p, to avoid confusion with the area function a;.
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u
/vﬁ duy =/(v0¢1)g(t)az du

082 Q2

and so, using Lemma 4.10 and the boundedness of the Sobolev trace map, we obtain

ou
/Ua—vdﬂz < llvowillmirpallag@llg-12pq)
a9

<Clvogllgigllag®lg-1200)
< Ct7"2 vl g gpllag Ol g-1720)-

Since v and Vv are bounded, we have ||[v]| 51(q,) < C t"/? for some constant C (which depends on v), hence

—n/2
2l o llas g O =129y < Cllarg Ol g-120y < CtP,

which tends to 0 as ¢+ — 0 because p > 0. Therefore, taking the limit of (48) as a — 071, we obtain

/Vu-Vv:/F(~,u)v

Qp Qp

and so u is a weak solution on €2;. This completes the first half of the proof.

Next, assume that u € H!(Qr) is a weak solution to (4), and let ( f, g) denote the associated solution to (14) on
(0, T), which exists by Theorem 3.6. Using Lemma 4.10 and the boundedness of the Sobolev trace map H'(Q) —
H'2(32), we obtain

IO g12p0) < Clluo @il < Ct " lull g1 q,)- (49)

Elliptic regularity implies u € H?(S2;) for any t < T, so both u and Vu are contained in H'(£2;).
For n > 2, the Sobolev embedding theorem implies u € L2/ (=2 (Q,), hence u? € L"/"=2(Q,). Holder’s inequal-
ity then yields

2 2
‘/u = ‘L"/(n—Z)(Q[) ”1||Ln/2(91)
Q
(n=2)/n
N /|M|2’1/(n—2) |Qt|2/”
&4
(n—2)/n

£

In the last line we have used the fact that |©2;] < Ct", which can be obtained by choosing # = 1 in Lemma 4.10.
Similarly estimating the integral of |Vu|> over €; and then combining with (49), we see that

(n=2)/2n (n=2)/2n
PN FONrpe) < € f Ju 2/ + / |Vul?/ =2
; £

By the absolute continuity of the Lebesgue integral, we see that the right-hand side tends to 0 as # — 0. This verifies
the first term in (22).
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For the second term in (22), we let v € H (), and calculate

u 1
gWva;dp = E(U o, )du,

992 0
=/[w-wvow;l)—F(-,uxvow,‘l)]
o
= ||V”||L2(Q,) V(vo ‘P;_I)HLZ(Q,) +IFC, M)”LZ(Q,) lvo <P;_1 ||L2(Q,)
<C (:”/2—1 IVull 2@ IVVI 20y + I F C ”)||L2(S2,)”v||L2(Q)>

= C ("2 IVl 2 + P IFC 020, ) 1)

where we used the fact that u is a weak solution in the second line, and Lemma 4.10 in the penultimate line. It follows
that

2 ag (Ol 120y < C (r—l IVull 2, + IFC. u)an(Q,)) : (50)

so we just need to show that the right-hand side vanishes in the # = 0 limit.
Applying the Sobolev embedding theorem to Vu € H'(2,), as was done for u above, we obtain

(n—2)/2n

VUl 2, < C /|Vu|2”/("’2) — 0.
&

For the remaining term in (50) we simply observe that F (-, u) € L%($2,) for each 7, and so

/|F(-,u)|2—>0
Q

as t — 0. This establishes (22), and thus completes the proof of Theorem 3.8 in the case n > 2.
For the case n = 2, we return to (49), with u € H2(2;) for any ¢t < T. Now the Sobolev embedding theorem implies
u and Vu are contained in L?(€2;) for any 2 < g < oo; see, for instance [26, Corollary 9.14]. We then compute

/ MZ = ||M2 ||L‘1/2(S2,) ” 1 ”L‘I/(II—Z)(Q[)
Q

2/q

— /|u|q |Ql|(qu)/q

Y
2/q

§Ct2(q_2)/q /|u|q ,
&

and similarly for Vu, to obtain

1/q 1/q
1 fOllgrrpa < C /|u|‘f + /|Vu|‘f
Q Q

The right-hand side tends to 0 as r — 0, so we obtain the first term in (23) with p = 5 € (0, 1]. For the second term in
(23) we use (50) with n = 2 to obtain
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a0l g-1ag) = € (T 1Vull 2y + IFC 020, )

and then observe that
2/q

/|Vu|2 < Ccr24—2/q /|Vu|q ,
Q i

hence
1/q

11 MNa g (Ol 120y < C f IVuld | + 12 F )2,
Y

This shows that the second term in (23) tends to zero for any p =1 — 3 € [0, 1), and thus completes the proof of
Theorem 3.8.

6. Exponential dichotomies

In this final section we discuss exponential dichotomies for the linearization of (4). We first define what is meant
by an exponential dichotomy for the dynamical system (54) corresponding to the linearized PDE (51). Next, we
explore some consequences of this idea. In particular, we prove that, if a dichotomy exists, then the unstable subspace
coincides with the space of Cauchy data for the linear PDE.

The linear dynamical system (54) does not satisfy the sufficient conditions given in [11] for the existence of an
exponential dichotomy except when the domain is radial, i.e. ; = {x : |x| < t}. This case is studied in detail in [27],
where the existence of an exponential dichotomy is proven. The general case will be the subject of future investiga-
tions. For now we simply motivate the concept of an exponential dichotomy by describing some of its consequences
for elliptic boundary value problems.

We conclude by giving a dynamical interpretation of an eigenvalue problem, observing that eigenvalues correspond
to nontrivial intersections of the unstable subspace with a fixed subspace of # that encodes the boundary conditions.

6.1. Dichotomy subspaces

Suppose that u solves (4), with the linearized equation Au + D, F (x,#)u = 0. More generally, consider
Au=Vx)u. on

The linearized equation, as well as the eigenvalue equation Au + D, F (x, #)u = Au, can be written in this form. This
is a special case of (4), with F(x, u) = —V (x)u, and hence is equivalent, in the sense of Theorems 3.6 and 3.8, to the
linear system

a(r\_ T o f
dt (g>_<0,V,—L, Tt—Uth)<g>’ (52)

where we have defined V; = V o ¢; |as2: 9Q — R.

The system (52) is ill-posed, in the sense that solutions do not necessarily exist for given initial data. In [11]
it was shown that the corresponding equation (1) for the channel problem admits an exponential dichotomy. That
is, H = H'/?(3Q) @ H~/2(3Q) splits into two subspaces, both infinite-dimensional, on which the system admits
solutions forwards and backwards in time, respectively. However, (52) does not admit an exponential dichotomy
because, as seen in the example in Section 2, the solutions decay or grow polynomially, rather than exponentially, in
t. We will instead consider dichotomies for a suitably reparameterized and rescaled version of the system.

We let t = €7, and then define

~

FO) =€ f(e"), g(r)=e1T7g(e) (53)
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for some constant « to be determined. The scaling parameter o will be used to ensure that the asymptotic operator, i.e.
the limit of the right-hand side of (54) as r — 0, does not have spectrum on the imaginary axis. A direct computation
shows that if (f, g) solves (52), then

i(f)_( a+1T; oy )(f) (54)
dt \g) \?V,—L) l+a+t(T,—oH))\3)"

For convenience we set h = (f, g).

Definition 6.1. The system (54) is said to admit an exponential dichotomy on the half line (—oo, 0] if there exists a
continuous family of projectigns P": (—00,0] - B(H) and constants K, n*, n* > 0 such that, for every o < 0 and
z € H there exists a solution 4" (t; 19, z) of (54), defined for T < g, such that

o h'(10:70,2) = Pt(z0)z,
o 1" (t; w0, 2)lly < Ke™ "™ |z]lgy forall T < 7o,
e h"(t;10,2) € R(P“(7)) forall T < 19,

and a solution Es(r; 79, 2) of (54), defined for 79 < T <0, such that

o 7% (103 70,2) = P*(%0)z,
o ||h*(t: 70, 2)ll9 < Ke™ 0|zl forall 7o < 7 <0,
e h¥(t;10,2) € R(P’(t)) forall i <7 <O,

where PS(t) =1 — P%(7).

In other words, for any terminal data in the range of P“(7p), the system can be solved backwards in t, with the
solution decaying exponentially as T — —oo, and similarly for initial data in the range of P*(zp).
For any T < 0 we define the stable and unstable subspaces

E*()=R(P*(1)), E"(r)=R(P"“(1)). (55)
Undoing the scaling (53) and the change of variables t = ¢*, we define
E"(1) = {(f“f(logz), t—l—“g(logr)) : (Fllogr), F(logt)) € E”(logt)} (56)

for ¢ > 0, and similarly for E°(¢). Thus for any 7 € (0, 1] and ( fo, go) € E*(#p) there exists a solution ( f(¢), g(t)) to
(52), defined for 0 <t < ty, with (f(¢9), g(t0)) = (fo, go) and

Nt —a

[, 18], < K (%) 1o 100) 57)

The implications of this estimate for the corresponding solution u to the linear PDE (51) depend on the scaling
parameter « and its relation to the growth and decay rates n* and n*. This will be explored in detail in the following
section.

6.2. Relation to the Cauchy data space

Assuming the existence of an exponential dichotomy, we now prove that for an appropriate choice of « the unstable
subspace E"(t) corresponds to the space of Cauchy data of weak solutions to (51) on €2;. For ¢ > 0 let

K, ={ueH" (Q): Au=V(x)uon )},

where the equality Au = V (x)u on €2; is meant in a distributional sense. Since K; is a subset of {u € H' (Q):Aue
L2($2)}, the trace map Tr, (defined in (13)) can be applied, and we have Tr, u € HY23Q) @ H~1/2(8Q) for each
u € K;. We thus define

Tr,(K;) ={Tr,u:uecK;} CH.
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Theorem 6.2. Assume that (54) admits an exponential dichotomy on (—00, 0], and that V is of class C /201 i q
neighborhood of the origin. Ifa < n" + 75 — 1, then E"(t) C Tr;(K;) for each t > 0. If « > —n°, then Tr;(K;) € E" (1)
for each t > 0. Therefore, the two spaces coincide if

S u n
-’ <a<n +§—1. (58)

To prove that E*(¢) € Tr,(K,), we must show that any solution (f, g) to (52) having sufficient decay at t =0
corresponds to a solution u to (51). Thus suppose (f (o), g(t0)) € E*(ty) for some 79 > 0. It follows from (57) that

Lf Ol 20y + 18Ol g-120) < CHT

for all # < 1. The inequality « < 5 — 1 +n" impliesa —n" <n —-2+n* —a,a —n* <5 andn —2+n" —a > 0.
Therefore, there exists a number

pE (0, %)ﬂ[a—n”,n—Z—I—n”—a].
For this choice of p we have that

IOl zee + 1" P gl p-1200)

is bounded near ¢ = 0. It follows from Theorem 3.8 that (f(¢), g(¢)) = Tr; u for some u € K;, completing the proof
that E¥(tp) € Try, (Ky).

To prove the reverse inclusion, Tr;(K;) € E“(t), we use the fact that any solution to (52) having sufficient decay
at r = 0 is necessarily contained in the unstable subspace.

Lemma 6.3. Suppose n is a solution to (54) and satisfies the estimate ||/’l(‘()|| < Ce®T7) for all T < 10, for some
a > —n°. Then h(to) c E" (70)-

That is, any solution h(7) that does not blow up too rapidly as T — —oo must be contained in the unstable subspace,
so it in fact decays with rate n“.

Proof. Chgosing z= h(ro) in Definition 6.1, there exists a solutlon h* to (54) with 7% (t9) = P* (‘L’())Z, satisfying the
estimate ||h4(t)|| < K" (T=™)|z|| for T < 9. Now define s (t) =h(t) — h”(r) It follows that 4° is also a solution
to (54) for T < 19, with

RS ()] < Ce® ™) 4 K |zl T, (59)

Moreover, since 7*(t) € R(P"(t)), we have 1*(t) = (I — P*(1))h(t) € R(P*(r)). Now let 7, < 0. Since *(t)
solves (54) for T > t,, and has initial condition /°(z), it must be the unique forward-in-time solution whose existence
is guaranteed by the exponential dichotomy. Therefore it satisfies the estimate

17 (@)1l < Ke™ ™0k @l
for T > 1. Using (59) to bound ||ﬁs (t4)]l, we have

”],le(fo)” < K e (T—70) (Cea(f**fo) + K||z||e"u(t*7m)>.
Taking the limit 7, — —oo and using the fact that n* 4+ o > 0, we obtain s (t0)=0. O
We also require the following improved version of Theorem 3.8.

Lemma 6.4. Suppose u solves (51) on Qr, with the potential V of class CY"/?1:1 in a neighborhood of the origin.
Then || f (Ol g2q) and I8 || g-1/2¢3) are bounded near t = 0.

Proof. The smoothness of V allows us to use elliptic regularity (for instance [24, Theorem 4.16]) to conclude that
u € H*H/21(Q,) for sufficiently small 7. It follows from the Sobolev inequalities that u € C LY (€,) for some y €
(0, 1). In particular, # and Vu are uniformly bounded in a neighborhood of the origin, and so ||u|| 71 @) = Ct"'%. The
result now follows from estimates (49) and (50). O
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Now consider Tr; u € Tr; (K;). We have that || f(¢) ||H1/2(39) and ||g(¢) ||H71/2(39) are bounded as r — 0. Therefore
(7)) = (€27 f(e), et g (7)) satisfies the bound ||(7)lly < Ce®". Since a > —7°, Lemma 6.3 implies /(7) €
E" (t), hence h(t) = (f(t), g(¢)) € E*(t). This completes the proof of Theorem 6.2.

Note that the rates n* and n° depend implicitly on «, as the latter parameter appears in the rescaled system of
equations (54). To verify (58) one must therefore understand this dependence.

Corollary 6.5. Suppose n > 2. If 0 < a < 5 — 1 and (54) has an exponential dichotomy with rates n** > 0, then (58)
is satisfied, and hence E"(t) = Tr,(K;) for each t > 0.

Remark 6.6. When n = 2 there is no « that satisfies this condition. This is not a shortcoming of the method of proof,
but rather indicates a fundamental difference between the cases n =2 and n > 2. This was seen earlier when studying
harmonic functions on the plane. As observed above in Remark 2.1, there is no choice of « for which E*(t) = Tr,(K;).

6.3. Application to an eigenvalue problem

Finally, we use Corollary 6.5 to give a dynamical interpretation of the eigenvalue problem
—Au+Vu=2u (60)

with Dirichlet boundary conditions. To do so we define the Dirichlet subspace
D={(0.8):g€ H '?(0Q)} CH. (61)

The following result is then an immediate consequence of Corollary 6.5.

Corollary 6.7. Assuming the hypotheses of Corollary 6.5, X is an eigenvalue of the Dirichlet problem (60) on 2; if
and only if the unstable subspace EY(t) intersects the Dirichlet subspace D nontrivially. Moreover, the geometric
multiplicity of ) equals dim (E“ @®nN D).

Other boundary conditions (Neumann, Robin, etc.) can be characterized in a similar way by changing D accord-
ingly; see [28,25] for details.

Our construction thus gives a dynamical perspective on elliptic eigenvalue problems, similar to the Evans function
[1], which counts intersections between stable and unstable subspaces. (While traditionally developed for problems
in one spatial dimension, some progress has been made on extending the Evans function to channel domains; see
[29-33].)

This is also closely related to the Maslov index, a symplectic winding number that counts intersections of La-
grangian subspaces in a symplectic Hilbert space; see [28,25,34,35].
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