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Abstract

A characterization of a semilinear elliptic partial differential equation (PDE) on a bounded domain in Rn is given in terms of 
an infinite-dimensional dynamical system. The dynamical system is on the space of boundary data for the PDE. This is a novel 
approach to elliptic problems that enables the use of dynamical systems tools in studying the corresponding PDE. The dynamical 
system is ill-posed, meaning solutions do not exist forwards or backwards in time for generic initial data. We offer a framework in 
which this ill-posed system can be analyzed. This can be viewed as generalizing the theory of spatial dynamics, which applies to 
the case of an infinite cylindrical domain.
© 2020 Elsevier Masson SAS. All rights reserved.
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1. Introduction

A standard trick in dynamical systems is to write the differential equation uxx + F(u) = 0 as a first-order system

ux = v

vx = −F(u).

This allows for the application of dynamical systems methods, such as phase plane analysis, exponential dichotomies, 
and the Evans function; see, for instance, [1] and references therein for a modern perspective.

Similarly, on an infinite cylindrical domain � = R × �′ ⊂ Rn, the semilinear partial differential equation �u +
F(u) = 0 can be written in the form
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ux = v

vx = −F(u) − �yu,
(1)

where (x, y) ∈ R × �′ and �y denotes the Laplacian on the cross-section �′ ⊂ Rn−1. In this case the phase space 
is infinite-dimensional, and the analysis requires more care. In particular, the equation is ill-posed both forwards and 
backwards in time. As a result, it is nontrivial to prove existence of solutions. The idea of rewriting the semilinear 
PDE as an evolution equation along the cylindrical direction is the basis of the area now known as Spatial Dynamics, 
see [2–14].

In this paper we extend this correspondence to general Euclidean domains. That is, we obtain the analog of (1)
for a bounded domain � which is smoothly contracted to a point through a one-parameter family {�t}. In this case t
becomes the dynamical variable with respect to which we study the evolution of the boundary data. While similar in 
spirit to the cylindrical case described above, the analysis is complicated by the nontrivial geometry and the fact that 
the resulting system of equations becomes singular as the domain degenerates to a point.

Outline of the paper

In Section 2 we motivate our general construction and results by studying harmonic functions in R3, where the 
computations can be done explicitly. In Section 3 we present the general framework and state all of the major re-
sults. Section 4 contains some geometric preliminaries that will be needed for our analysis. The infinite-dimensional 
dynamical system is studied in Section 5, where we prove its equivalence to the original semilinear PDE. Finally, 
in Section 6 we describe exponential dichotomies for the linearized dynamical system, in particular proving that the 
unstable dichotomy subspace (if it exists) coincides with the space of Cauchy data of weak solutions to the PDE.
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2. A motivating example: harmonic functions in R3

Suppose that u(r, θ, φ) is a harmonic function in R3. Let �t = {x : |x| < t} ⊂R3, and consider the functions

f (t) := u(t, ·, ·), g(t) := ∂u

∂r
(t, ·, ·),

which are in C∞(S2) for t > 0. We refer to the pair (f (t), g(t)) as the Cauchy data (or boundary data) of u on the 
surface ∂�t = {x ∈ R3 : |x| = t}. Note that f (t) is just the function u evaluated at radius r = t . We have introduced 
the new variable t to emphasize that we are viewing this as an evolutionary variable, rather than a spatial coordinate.

Differentiating f with respect to t , we obtain

df

dt
= ∂u

∂r

∣∣∣∣
r=t

= g(t).

To differentiate g we use the formula �u = urr + 2r−1ur + r−2�S2u, where �S2 denotes the Laplace–Beltrami 
operator on the sphere:

�S2f = 1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+ 1

sin2 θ

∂2f

∂φ2 .

Since �u = 0, it follows that
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dg

dt
= ∂2u

∂r2

∣∣∣∣
r=t

= −
(

2

r

∂u

∂r
+ 1

r2 �S2u

)∣∣∣∣
r=t

= − 1

t2 �S2f (t) − 2

t
g(t)

and so for all t > 0, f and g satisfy the linear system

d

dt

(
f

g

)
=
(

0 1
−t−2�S2 −2t−1

)(
f

g

)
. (2)

The operator appearing on the right-hand side of (2) has spectrum unbounded in both directions. As a result, the 
system is ill-posed, meaning one cannot expect a solution to exist forward or backward in time for generic initial data. 
However, this system admits an exponential dichotomy—that is, a splitting of the phase space into two subspaces, 
both infinite-dimensional, on which solutions exist forward and backward in time, respectively.

To see this, we first rescale f and g, multiplying them by appropriate powers of t , namely tαf (t) and t1+αg(t), 
where α is a real constant to be determined. We then reparametrize by defining a new variable τ = log t , resulting in 
the functions

f̃ (τ ) = eατ f (eτ ), g̃(τ ) = e(1+α)τ g(eτ ),

which are defined for all τ ∈ R. It follows from (2) that

d

dτ

(
f̃

g̃

)
=
(

α 1
−�S2 α − 1

)(
f̃

g̃

)
(3)

for all τ ∈ R. The eigenvalues of the operator matrix on the right-hand side are

ν±
l = (2α − 1) ± √

4μl + 1

2
,

where 0 = μ0 < μ1 < μ2 < · · · are the distinct eigenvalues of −�S2 . These are given by μl = l(l +1) for integers l ≥
0. The corresponding eigenfunctions are the spherical harmonics Ym

l (θ, φ) for −l ≤ m ≤ l, hence μl has multiplicity 
2l + 1. It follows that

ν+
l = α + l, ν−

l = α − l − 1,

with the corresponding solutions to (3) given by(
f̃ +

lm(τ ), g̃+
lm(τ )

)
= (

e(α+l)τ Ym
l , le(α+l)τ Ym

l

)
(
f̃ −

lm(τ ), g̃−
lm(τ )

)
= (

e(α−l−1)τ Ym
l , −(l + 1)e(α−l−1)τ Ym

l

)
for −l ≤ m ≤ l. Undoing the scaling and reparametrization yields(

f +
lm(t), g+

lm(t)
)= (

t lYm
l , lt l−1Ym

l

)(
f −

lm(t), g−
lm(t)

)= (
t−l−1Ym

l , −(l + 1)t−l−2Ym
l

)
.

Observe that the pair 
(
f +

lm(t), g+
lm(t)

)
is precisely the Cauchy data on ∂�t of the harmonic function u(r, θ, φ) =

rlYm
l (θ, φ). Similarly, 

(
f −

lm(t), g−
lm(t)

)
is the Cauchy data of u(r, θ, φ) = r−l−1Ym

l (θ, φ).
For any τ0 ∈ R, the unstable subspace of (3), denoted Eu(τ0), consists of functions (f̃0, ̃g0) with the prop-

erty that there exists a solution (f̃ (τ ), ̃g(τ)) to (3) that is defined for all τ ≤ τ0, satisfies the terminial condition 
(f̃ (τ0), ̃g(τ0)) = (f̃0, ̃g0), and decays exponentially as τ → −∞. Similarly, the stable subspace of (3), Es(τ0), con-
sists of functions (f̃0, ̃g0) with the property that there exists a solution (f̃ (τ ), ̃g(τ)) to (3) that is defined for all τ ≥ τ0, 
satisfies the initial condition (f̃ (τ0), ̃g(τ0)) = (f̃0, ̃g0), and decays exponentially as τ → ∞. To determine the stable 
and unstable subspaces, we must identify the solutions (f̃ ±

lm, ̃g±
lm) for which the corresponding spatial eigenvalue ν±

l

is negative, and those for which it is positive, respectively. This depends on the scaling parameter α, which has not 
yet been specified. We seek α so that the unstable subspace corresponds to the Cauchy data of all harmonic functions 
that are bounded at the origin. This will be the case if ν+

l > 0 and ν−
l < 0 for all l. This is equivalent to ν−

0 < 0 < ν+
0 , 

and so any α ∈ (0, 1) will suffice.
In summary, we have seen that for 0 < α < 1 the system (3) admits an exponential dichotomy such that: 1) the 

unstable subspace Eu(τ) consists of the Cauchy data on the surface {r = eτ } of harmonic functions that are bounded 
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at the origin; and 2) the stable subspace Es(τ) consists of the Cauchy data on {r = eτ } of harmonic functions that 
decay at infinity.

Remark 2.1. A similar analysis carries through in the planar case, and an exponential dichotomy arises in the same 
manner. However, the situation is complicated by the fact that the evolution equation has a two-dimensional center 
subspace, corresponding to the harmonic functions 1 and log r . While log r blows up as r → 0, it does so very slowly, 
in the sense that rα log r → 0 for any α > 0. On the other hand, if α < 0, then both rα and rα log r are unbounded at 
the origin. As a result, no choice of α is able to distinguish (in terms of growth or decay) log r from a constant function. 
Therefore, the stable and unstable subspaces do not admit the same interpretation as in the higher-dimensional case. 
This phenomenon will be observed again below; see Corollary 6.5 and Remark 6.6,

The main objective of this paper is to generalize the preceding constructions to semilinear elliptic equations on Rn.

3. Definitions and results

We generalize (1) by considering a smooth family of domains {�t} in Rn and describing the time evolution of the 
quantities u|∂�t

and ∂u/∂ν
∣∣
∂�t

, where u : Rn →R solves the semilinear equation

�u + F(x,u) = 0. (4)

We first describe the types of domains �t to which our method applies. We let

�t = {x ∈ Rn : ψ(x) < t2}, (5)

for a suitable function ψ : Rn → R. We assume the following for the remainder of the paper.

Hypothesis 3.1. The function ψ has the following properties:

1. ψ ∈ C3(Rn, R);
2. ψ has a nondegenerate minimum at x = 0, with ψ(0) = 0;
3. ψ has no other critical points;
4. ψ is proper (i.e. preimages of compact sets are compact).

These assumptions on ψ are motivated by the example ψ(x) = |x|2, which satisfies Hypothesis 3.1, and leads to 
the family of domains �t = {x : |x| < t}. In general, the nondegeneracy of ψ ensures the domains shrink to a point in 
a sufficiently regular manner at t → 0. By the Morse lemma there exist coordinates (y1, . . . , yn) near the origin such 
that �t = {

y2
1 + · · ·y2

n < t2
}
; see [15]. In this sense any function ψ satisfying Hypothesis 3.1 locally resembles |x|2.

For any 0 ≤ a < b < ∞ we define

�b = {x ∈ Rn : ψ(x) < b2}, �a,b = {x ∈Rn : a2 < ψ(x) < b2}, (6)

so that �b is diffeomorphic to an open ball and �a,b is diffeomorphic to an annulus. A case of particular interest is 
a = 0, where the domain is a punctured ball, �0,b = �b \ {0}.

To understand the evolution of u and its normal derivative restricted to ∂�t , we need a smooth parameterization of 
the domains. For convenience we define a fixed “reference domain” � by

� = �1 = {x ∈Rn : ψ(x) < 1}. (7)

The dynamical system we formulate is defined on the boundary, ∂� = {x ∈ Rn : ψ(x) = 1}. This is related to each 
∂�t by a family of diffeomorphisms {ϕt} whose existence is established in Section 4.1.

Lemma 3.2. Suppose ψ satisfies Hypothesis 3.1, and define {�t }t>0 by (5). Then there exists a family of diffeomor-
phisms {ϕt }t>0 on Rn such that ϕt(�) = �t for each t > 0, and

ϕs ◦ ϕt = ϕst

for any s, t > 0. In particular, ϕ1 = id.
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It follows that ϕs(�t ) = �st for any s, t > 0. The family {ϕt }t>0 satisfies a group property with respect to the 
multiplicative group of positive real numbers. Perhaps more naturally, it can be viewed as an additive group with 
respect to the variable τ = log t , because ϕexp(τ1) ◦ ϕexp(τ2) = ϕexp(τ1+τ2).

The flow {ϕt } is generated by a nonautonomous vector field X, satisfying

X(ϕt (x), t) = d

dt
ϕt (x) (8)

for any x ∈ Rn and t > 0. We define a function σ : Rn \ {0} → R as follows. If x �= 0, then x ∈ ∂�t for some t > 0, 
namely t = t (x) = √

ψ(x). Using this, we let

σ(x) = X(x, t (x)) · νx, (9)

where νx denotes the outward unit normal to ∂�t(x) at the point x. This function can in fact be computed directly 
from ψ ; see (26). Next, for each t > 0 we define a function σt : ∂� → R by

σt (y) = σ(ϕt (y)). (10)

This measures the normal speed at which a point y ∈ ∂� moves under the flow, since

d

dt
ϕt (y) · νϕt (y) = X(ϕt (y), t) · νϕt (y) = σ(ϕt (y)) = σt (y).

At any point x ∈ Rn and t > 0 we denote the tangential component of X(x, t) by γ (x, t), so we have the decomposi-
tion X(x, t) = (

X(x, t) · νx

)
νx + γ (x, t) into normal and tangential components. If t = t (x), this simplifies to

X(x, t) = σ(x)νx + γ (x, t). (11)

In the following sections we will always have x = ϕt (y) for some y ∈ ∂�, and hence t = t (x).
We next define the Cauchy data of a solution to (4). For u ∈ C1(�̄) we define functions f : (0, ∞) → C1(∂�) and 

g : (0, ∞) → C0(∂�) by

f (t)(y) = u(ϕt (y)), g(t)(y) = ∂u

∂ν
(ϕt (y)), y ∈ ∂�, (12)

then combine these to form the trace,

Trt u = (f (t), g(t)) . (13)

Observe that f (t) is just the restriction of u to ∂�t , pulled back to ∂� via the diffeomorphism ϕt , and similarly for 
g(t). The advantage of f and g is that their domains are t -independent.

Now suppose that u is a solution to (4). If u is suitably smooth, one can show (see Section 5.3) that f and g satisfy 
the system of equations

df

dt
= Ttf + σtg

dg

dt
= −σtFt (f ) − Ltf + (Tt − σtHt )g,

(14)

where Ht = H∂�t ◦ ϕt

∣∣
∂�

, with H∂�t denoting the mean curvature of ∂�t , and Ft(f ) : ∂� → R is defined by 
Ft(f )(y) = F(ϕt (y), f (t)(y)). Additionally, Tt and Lt are the differential operators

Ttf =
[
γ · ∇∂�t

(
f ◦ ϕ−1

t

)]
◦ ϕt (15)

Ltf = div∂�t

[
σ∇∂�t (f ◦ ϕ−1

t )
]
◦ ϕt . (16)

In (15), ∇∂�t denotes the tangential part of the gradient, computed as

∇∂�t u = ∇u − ∂u

∂ν
ν (17)
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for any function u defined in a neighborhood of ∂�t . It is easily seen that this only depends on the restriction u
∣∣
∂�t

. 

The tangential divergence, div∂�t , is minus the formal adjoint of ∇∂�t . For any vector field Y defined in a neighbor-
hood of ∂�t we can write

(divY)
∣∣
∂�t

= div∂�t
(
Y ∂�t

)+ (Y · ν)H∂�t + ν · ∇νY (18)

where Y ∂�t = Y − (Y · ν)ν is the tangential part of Y . In particular, when Y is tangential to ∂�t , we have Y · ν = 0, 
hence ν · ∇νY = −Y · ∇νν, and so div∂�t Y = divY + Y · ∇νν.

To make the notion of a solution to (14) precise, we define the Hilbert spaces

H = H 1/2(∂�) ⊕ H−1/2(∂�), H1 = H 3/2(∂�) ⊕ H 1/2(∂�). (19)

Definition 3.3. Let J ⊂R+ = (0, ∞) be an open interval. The pair (f, g) is said to be a solution to (14) on J if

(f, g) ∈ C0(J,H1) ∩ C1(J,H) ∩ C0(J̄ ,H), Ft (f ) ∈ L2
loc(J,L2(∂�)),

and (f, g) satisfies (14) on J with values in H. Here J̄ denotes the closure of J in R+, so (0, T ) = (0, T ] for any 
T < ∞.

We also need to define the notion of a weak solution to the semilinear problem (4).

Definition 3.4. Let � ⊂Rn be a bounded domain with Lipschitz boundary (such as �a,b or �b for some 0 < a < b <

∞). A function u is said to be a weak solution to (4) on � if u ∈ H 1(�), F(·, u) ∈ L2(�), and∫
�

∇u · ∇v =
∫
�

F(·, u)v for all v ∈ H 1
0 (�). (20)

We then say that u is a weak solution on �0,b if it is a weak solution on �a,b for all a ∈ (0, b). Finally, u is a weak 
solution on Rn (resp. Rn \ {0}) if it is a weak solution on �b (resp. �0,b) for all b > 0.

Remark 3.5. More generally, (20) makes sense for any F(·, u) ∈ H−1(�). For instance, this will be the case if F
satisfies a uniform growth assumption |F(x, z)| ≤ C|z|(n+2)/(n−2) for all x ∈ � and z ∈ R. However, the stronger 
condition F(·, u) ∈ L2(�) is needed in the proof of Theorem 3.6 to ensure that u ∈ H 2

loc(�a,b), and hence Trt u =
(f (t), g(t)) ∈ H1 for a < t < b.

We can now state our first result relating the boundary data (f, g) to u. It says that the PDE (4) on the deleted ball 
�0,T = �T \ {0} is equivalent to the ODE (14) on the interval (0, T ).

Theorem 3.6. Suppose 0 < T < ∞. If u is a weak solution to (4) on �0,T , then (f, g) = Trt u is a solution to (14) on 
(0, T ). Conversely, if (f, g) solves (14) on (0, T ), then there exists a weak solution u to (4) on �0,T with Trt u = (f, g)

for all t ∈ (0, T ).

Remark 3.7. It follows immediately that a weak solution to (4) on Rn \ {0} is equivalent to a solution to (14) on 
(0, ∞). Note that both definitions are local, and involve no boundedness or decay assumptions about the behavior of 
solutions near t = 0 or t = ∞.

In general we are interested in solutions to (4) on the ball �T , not �0,T . This requires a further assumption on the 
asymptotic behavior of f (t) and g(t) as t → 0, in order to rule out solutions that are singular at a point. An example 
of such a solution is u(x) = |x|2−n, which is harmonic on Rn \ {0} but is not contained in H 1

loc(R
n) on account of 

its singular behavior at the origin. The following result can therefore be viewed as a kind of removable singularity 
theorem.

Theorem 3.8. If (f, g) solves (14) on (0, T ), and there exists p ∈ (0, n2
)

such that

tp‖f (t)‖H 1/2(∂�) + tn−p−1‖g(t)‖H−1/2(∂�) (21)
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is bounded near t = 0, then there exists a weak solution u to (4) on �T with Trt u = (f, g) for all t ∈ (0, T ). Con-
versely, if u is a weak solution to (4) on �T , then (f, g) = Trt u is a solution of (14) on (0, T ), with

tn/2−1‖f (t)‖H 1/2(∂�) + tn/2−1‖g(t)‖H−1/2(∂�) → 0 (22)

as t → 0, provided n ≥ 3. When n = 2 we have

tp‖f (t)‖H 1/2(∂�) + t1−p‖g(t)‖H−1/2(∂�) → 0 (23)

for any p ∈ (0, 1).

In other words, a weak solution on the punctured ball �0,T can be extended to a weak solution on the entire 
ball �T if (f, g) = Trt u satisfies the bound (21), in which case it necessarily satisfies the decay condition (22). In 
the special case that u satisfies a linear differential equation, we obtain the stronger result that ‖f (t)‖H 1/2(∂�) and 
‖g(t)‖H−1/2(∂�) are bounded near t = 0; see Lemma 6.4.

In this sense the semilinear elliptic equation (4) is equivalent to the dynamical system (14). This correspondence 
allows us to apply dynamical systems methods to the study of (14). A guide as to what can be achieved with this 
approach comes from the literature of the area known as spatial dynamics, as discussed in the introduction. There are 
challenges, however, in applying the techniques of spatial dynamics in our setup.

Spatial dynamics was initiated by the paper of Kirchgässner [6]. The goal of his paper is to establish the existence 
of a small amplitude solution of a semilinear elliptic equation on a cylindrical domain, which addresses problems 
that arise in fluid flow. The strategy is to restrict the dynamical system (1) to a center manifold. Even though (1) is 
ill-posed, a center manifold theorem can nevertheless be proved, and a reduction to the center manifold leads to a 
finite-dimensional system, to which bifurcation theory can be applied. This approach can establish the presence of 
solutions that bifurcate from the trivial (zero) solution.

The underlying picture to keep in mind is the dynamics near a fixed point in the infinite-dimensional phase space 
H. Although the dynamics is not well-posed in either forward or backward time, the splitting of the spectrum, which 
is unbounded in both directions, into the right and left half planes can be used to get well-posedness in one time 
direction on appropriate complementing subspaces. Results have been established in this situation which show that 
there is a splitting into stable/unstable/center manifolds, see [16,17].

Many generalizations of Kirchgässner’s work have since appeared, notably the work of Mielke [8], who was able 
to characterize all small bounded solutions in a center-type manifold. An important advance was made by Peterhof, 
Sandstede and Scheel [11], who were the first to consider the behavior near a non-trivial solution. They start with 
a traveling wave solution and consider nearby solutions specifically in the case of time-dependent forcing. They 
introduce a new approach in their use of the Lyapunov–Schmidt method as an alternative to the center manifold 
reduction. A key part of their approach is to establish exponential dichotomies as x → ±∞. These are then used to 
construct stable and unstable manifolds of the fixed point that represents the traveling wave in the infinite-dimensional 
phase space. A Melnikov method is finally used to establish when these manifolds intersect.

At the heart of all these pieces of work is the notion that the underlying dynamical system generates a bi-semigroup; 
see [16]. The characterization of the dynamics in terms of invariant manifolds can be cast somewhat generally—see 
[16,17] as well as [11].

4. Geometric preliminaries

4.1. The vector field

The family of diffeomorphisms in Lemma 3.2 arises as the flow of a suitably chosen vector field. It is more 
convenient to construct the flow with respect to the variable τ = log t . This flow, which we denote ϕ̃τ , is generated 
by an autonomous vector field X̃. To motivate our construction we assume that the flow exists and thus obtain some 
restrictions on the form of X̃, which we then use to construct it explicitly.

If such a flow exists, the fact that ϕ̃τ maps ∂� = {x : ψ(x) = 1} to ∂�exp(τ ) = {x : ψ(x) = e2τ } would imply 
ψ(ϕ̃τ (x)) = e2τψ(x), hence

∇ψ · X̃ = 2ψ. (24)
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Since ∇ψ/|∇ψ | defines a unit normal along each ∂�t , we conclude that the normal component of X̃ must have 
magnitude

X̃ · ∇ψ

|∇ψ | = 2ψ

|∇ψ | ,

and so X̃ must be of the form

X̃ = 2ψ
∇ψ

|∇ψ |2 + tangential part.

The system of equations (14) is simplified by choosing a purely normal flow. However, the normal component of X̃ is 
in general not differentiable at the origin. Therefore, we must include a tangential component in the vector field X̃ in 
order to obtain a sufficiently smooth flow.

Lemma 4.1. There exists a C1 vector field X̃ satisfying (24), with X̃(0) = 0 and ∇X̃(0) = I .

The vector field X̃ is not uniquely determined—one can add any tangential vector field that is supported away from 
the origin without changing the above properties. In particular, one can assume that

X̃ = 2ψ
∇ψ

|∇ψ |2
outside an arbitrarily small neighborhood of the origin.

Proof. Since (24) determines the normal component of X̃, we just need to specify the tangential part. For this we take 
the tangential projection of the vector field x �→ x. Since the vector field ∇ψ/|∇ψ | is normal to each of the ∂�t , this 
projection is given by

T (x) = x − 〈x,∇ψ(x)〉
|∇ψ(x)|2 ∇ψ(x).

We then define

X̃ = 2ψ
∇ψ

|∇ψ |2 + χT ,

where χ is a smooth cut-off function that equals 1 in a small neighborhood of the origin.
Near the origin, where χ = 1, we have

X̃(x) = x + 2ψ(x) − 〈x,∇ψ(x)〉
|∇ψ(x)|2 ∇ψ(x).

Since ψ is C3, we can write

ψ(x) = 1

2
〈Ax,x〉 +O(|x|3)

and

∇ψ(x) = Ax +O(|x|2)
where the Hessian A = ∇2ψ(0) is positive definite. It follows that

X̃(x) − x = 2ψ(x) − 〈x,∇ψ(x)〉
|∇ψ(x)|2 ∇ψ(x) =O(|x|2) (25)

for x close to 0, and so X̃ is differentiable, with ∇X̃(0) = I . �
Now let ϕ̃τ denote the flow generated by the vector field X̃ that was constructed in Lemma 4.1. It follows that ϕ̃τ

is defined locally (i.e. for small τ ) at each point x ∈ Rn and is differentiable in x. We now prove that this is defined 
globally.
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Lemma 4.2. The flow ϕ̃τ is defined for all τ ∈ R, and satisfies ϕ̃τ (�) = �exp(τ ).

Proof. Fix x ∈Rn and let J ⊂R denote the maximal interval of existence for ϕ̃τ (x). Using (24) we compute

d

dτ
ψ(ϕ̃τ (x)) = ∇ψ · X̃ = 2ψ(ϕ̃τ (x))

for τ ∈ J . It follows that ψ(ϕ̃τ (x)) = ce2τ , with c = ψ(ϕ̃0(x)) = ψ(x), and so ψ(ϕ̃τ (x)) = ψ(x)e2τ . Since ψ is 
proper, this implies that ̃ϕτ (x) remains bounded for finite τ , and hence is defined for all τ ∈R. Recalling the definition 
of �t from (5), the equality ψ(ϕ̃τ (x)) = ψ(x)e2τ implies

ϕ̃τ (x) ∈ �exp(τ ) ⇐⇒ ψ(ϕ̃τ (x)) < e2τ ⇐⇒ ψ(x) < 1 ⇐⇒ x ∈ �.

This completes the proof. �
To finish the proof of Lemma 3.2 we simply translate the above results from the variable τ to t .

Proof of Lemma 3.2. For each t > 0 define ϕt = ϕ̃log t . From Lemma 4.2 we obtain

ϕt (�) = ϕ̃log t (�) = �t .

Moreover, for any t1, t2 > 0 we have

ϕt1 ◦ ϕt2 = ϕ̃log t1 ◦ ϕ̃log t2 = ϕ̃log t1+log t2 = ϕ̃log(t1t2) = ϕt1t2

as claimed. �
We conclude this section by giving an explicit formula for the function σ defined in (9). For any x ∈Rn we have

X(ϕt (x), t) = d

dt
ϕt (x) = d

dt
ϕ̃log t (x) = t−1X̃(ϕt (x)),

and so X(x, t) = t−1X̃(x). Using the fact that νx = ∇ψ(x)/|∇ψ(x)| and t (x) = √
ψ(x), we obtain

σ(x) = 1

t (x)
X̃(x) · ∇ψ(x)

|∇ψ(x)| = 2

√
ψ(x)

|∇ψ(x)| . (26)

4.2. Aymptotics

We now study the asymptotic behavior of ϕt and Dϕt as t → 0. This will be used in Section 4.5, where we describe 
the t -dependence of the Sobolev spaces Hs(�t ) and Hs(∂�t ).

Lemma 4.3. For each x ∈ � there exists ̂x ∈Rn such that∣∣ϕt (x) − t x̂
∣∣≤ Ct2

as t → 0, for some constant C that does not depend on x. Moreover, if x �= 0, then ̂x �= 0.

Proof. We start by deriving a uniform bound on ϕ̃τ (x). Since ψ has a nondegenerate minimum at x = 0, there is a 
constant c > 0 so that ψ(x) ≥ c|x|2 for all x ∈ �. Using the fact that ψ(x) ≤ 1 for x ∈ �, we thus obtain

c
∣∣ϕ̃τ (x)

∣∣2 ≤ ψ(ϕ̃τ (x)) = e2τψ(x) ≤ e2τ (27)

for any τ ≤ 0.
Next, recalling the definition of the flow ϕ̃τ , we compute

d

dτ
e−τ ϕ̃τ (x) = e−τ

(
X̃(ϕ̃τ (x)) − ϕ̃τ (x)

)=: E(x, τ).

It follows from Lemma 4.1 and (27) that
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|E(x, τ)| ≤ Ce−τ
∣∣ϕ̃τ (x)

∣∣2 ≤ C′eτ

hence E(x, ·) is integrable on (−∞, 0]. Therefore, using the fact that ϕ̃0(x) = x, we have

x − e−τ ϕ̃τ (x) =
0∫

τ

E(x, s) ds =
0∫

−∞
E(x, s) ds −

τ∫
−∞

E(x, s) ds,

and so

ϕ̃τ (x) = eτ

⎛⎝x −
0∫

−∞
E(x, s) ds +

τ∫
−∞

E(x, s) ds

⎞⎠ .

The desired asymptotic result follows from setting

x̂ = x −
0∫

−∞
E(x, s) ds

and then observing that the remaining term satisfies∣∣∣∣∣∣
τ∫

−∞
E(x, s) ds

∣∣∣∣∣∣≤ Ceτ

because |E(x, s)| ≤ Ces uniformly in x.
To complete the proof, suppose that x̂ = 0, and hence 

∣∣ϕ̃τ (x)
∣∣ ≤ Ce2τ . Since ψ has a critical point at x = 0, it 

satisfies ψ(x) ≤ C′|x|2 for some positive constant C′. As in (27), we obtain

ψ(x)e2τ = ψ(ϕ̃τ (x)) ≤ C′∣∣ϕ̃τ (x)
∣∣2.

This implies

ψ(x)e2τ ≤ C′∣∣ϕ̃τ (x)
∣∣2 ≤ C2C′e4τ ,

and hence ψ(x) ≤ C2C′e2τ . Letting τ → −∞, we obtain ψ(x) = 0, and so x = 0. �
In other words, the trajectories of the flow are asymptotic to straight lines for small t . We now use this to prove that 

the functions {σt } defined in (10) converge uniformly as t → 0.

Lemma 4.4. There is a positive function σ0 : ∂� → R such that σt → σ0 uniformly as t → 0.

Proof. Let A = ∇2ψ(0). For small x we have

ψ(x) = 1

2
〈Ax,x〉 +O(|x|3)

and

|∇ψ(x)| = |Ax| +O(|x|2).
Combining this with (26), we see that

σ(x) = 2

√
ψ(x)

|∇ψ(x)| =
√

2 〈Ax,x〉
|Ax| +O(|x|).

Now let y ∈ ∂�. From Lemma 4.3 we have ϕt(y) = t ŷ +O(t2) for some nonzero ̂y ∈ Rn, and so

σt (y) = σ(ϕt (y)) =
√

2 〈Aŷ, ŷ〉
|Aŷ| +O(t).

We thus define σ0(y) = √
2 〈Aŷ, ŷ〉/|Aŷ|. Since the constant C in Lemma 4.3 is independent of x, we conclude that 

σt → σ0 uniformly on ∂�. �
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We next consider the Jacobian matrix Dϕt(x) and its determinant.

Lemma 4.5. There exist positive constants c1, c2 such that

c1t
n ≤ det(Dϕt (x)) ≤ c2t

n

for all x ∈ � and sufficiently small t > 0.

Proof. Differentiating the flow equation

d

dτ
ϕ̃τ (x) = X̃(ϕ̃τ (x))

with respect to x, we find that Dϕ̃τ (x) satisfies the linear system

d

dτ
Dϕ̃τ (x) = [∇X̃(ϕ̃τ (x))

]
Dϕ̃τ (x). (28)

Using Jacobi’s formula we obtain

d

dτ
log det(Dϕ̃τ (x)) = tr

(
Dϕ̃τ (x)−1[∇X̃(ϕ̃τ (x))

]
Dϕ̃τ (x)

)
= (∇ · X̃)(ϕ̃τ (x)).

From Lemma 4.1 and (27), the divergence satisfies

(∇ · X̃)(ϕ̃τ (x)) = n +O(eτ ).

Since log det(Dϕ̃0(x)) = 0, we find that

nτ − C ≤ log det(Dϕ̃τ (x)) ≤ nτ + C

for all τ ≤ 0, where C does not depend on x. It follows that

e−Cenτ ≤ det(Dϕ̃τ (x)) ≤ eCenτ

uniformly in x. �
Lemma 4.6. For each x ∈ � there exists an invertible matrix M(x) such that∥∥Dϕt(x) − tM(x)

∥∥≤ Ct2

as t → 0, for some constant C that does not depend on x. Moreover, ‖M(x)‖ and ‖M(x)−1‖ are bounded above 
uniformly in x.

Proof. Using (28) we find that

d

dτ
e−τDϕ̃τ (x) = e−τ

(∇X̃(ϕ̃τ (x)) − I
)
Dϕ̃τ (x). (29)

Integrating from τ to 0 and using the fact that Dϕ̃0(x) = I , we obtain

∥∥e−τDϕ̃τ (x)
∥∥≤ 1 +

0∫
τ

∥∥∇X̃(ϕ̃s(x)) − I
∥∥∥∥e−sDϕ̃s(x)

∥∥ds.

From Lemma 4.1 and (27) we have∥∥∇X̃(ϕ̃τ (x)) − I
∥∥≤ Ceτ ,

where C does not depend on x. It follows from Gronwall’s inequality that
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∥∥e−τDϕ̃τ (x)
∥∥≤ exp

⎧⎨⎩
0∫

τ

Cesds

⎫⎬⎭≤ eC (30)

for any τ ≤ 0.
Now define

E(x, τ) = e−τ
(∇X̃(ϕ̃τ (x)) − I

)
Dϕ̃τ (x).

It follows from (30) that E(x, ·) is integrable on (−∞, 0], so we can integrate (28) to obtain

Dϕ̃τ (x) = eτ

⎛⎝I −
0∫

−∞
E(x, s) ds +

τ∫
−∞

E(x, s) ds

⎞⎠ .

We thus define

M(x) = I −
0∫

−∞
E(x, s) ds.

Bounding the remaining term as in the proof of Lemma 4.3, it follows that 
∥∥Dϕt(x) − tM(x)

∥∥≤ Ct2. In particular, 
this implies t−1Dϕt(x) → M(x) as t → 0. From the estimate in Lemma 4.5 we see that det(t−1Dϕt(x)) is bounded 
away from zero, and so the limit M(x) is invertible. �
4.3. Mean curvature and the first variation of area

The rate of change of the area of ∂�t is related to its mean curvature. The mean curvature of a hypersurface is 
defined to be the divergence of the outward unit normal, and so for ∂�t we have

H∂�t = ∇ ·
( ∇ψ

|∇ψ |
)

. (31)

In the radial case, where ψ(x) = |x|2, one simply has H∂�t = (n − 1)/t for all x ∈ ∂�t . An overview of mean 
curvature and level set methods can be found in [18].

To study the t = 0 limit of (14), we must understand the asymptotic behavior of the function Ht = H∂�t ◦ ϕt

∣∣
∂�

. 
Using the nondegeneracy assumption imposed on ψ in Hypothesis 3.1, we can control the mean curvature for small t .

Lemma 4.7. There is a function H0 : ∂� → R such that tHt → H0 uniformly as t → 0.

Proof. Calculating the divergence of ∇ψ/|∇ψ |, we find

H∂�t = 1

|∇ψ |
(

�ψ − ∇2ψ

( ∇ψ

|∇ψ | ,
∇ψ

|∇ψ |
))

.

Near the origin we have

∇ψ(x) = Ax +O(x2)

and

∇2ψ(x) = A +O(x).

It follows that

H∂�t (x) = 1

|Ax|

(
trA −

〈
A2x,Ax

〉
|Ax|2

)
+O(1).

Now let y ∈ ∂�. From Lemma 4.3 we have ϕt(y) = t ŷ +O(t2) for some nonzero ̂y ∈ Rn, and so
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Ht(y) = H∂�t (ϕt (y)) = 1

t

1

|Aŷ|

(
trA −

〈
A2ŷ,Aŷ

〉
|Aŷ|2

)
+O(1).

We thus define

H0(y) = 1

|Aŷ|

(
trA −

〈
A2ŷ,Aŷ

〉
|Aŷ|2

)
,

so that tHt (y) = H0(y) +O(t), where the error term is uniform in y. This completes the proof. �
Next, let dμt and dμ denote the surface measures on ∂�t and ∂�, respectively, and let at : ∂� → R denote 

the Radon–Nikodym derivative of the pulled-back measure ϕ∗
t dμt with respect to dμ, so that ϕ∗

t dμt = at dμ. By 
definition, this means∫

∂�t

w dμt =
∫
∂�

(w ◦ ϕt )at dμ (32)

for any measurable function w on ∂�t . This can be computed explicitly as the Jacobian determinant | det(Dϕ∂
t )|, 

where ϕ∂
t : ∂� → ∂�t denotes the restriction of ϕt to the boundary of the reference domain.

Lemma 4.8. The function at satisfies

dat

dt
= at

[
σtHt + (

div∂�t γ
) ◦ ϕt

]
for all t > 0.

The proof can be found in [19, Section 1.3]. Using this, we can describe the asymptotic behavior of the area 
function at . This is a more delicate quantity than the total area of ∂�t , and is quite sensitive to the behavior of the 
vector field X near the origin.

Lemma 4.9. There exist positive constants c1 and c2 so that

c1t
n−1 ≤ at (y) ≤ c2t

n−1 (33)

for all y ∈ ∂� and t > 0 sufficiently small.

Proof. Writing X = σν + γ and using (18), we obtain

(divX)
∣∣
∂�t

= div∂�t γ + σH∂�t + ν · ∇νX,

and hence

σtHt + (
div∂�t γ

) ◦ ϕt =
(
σH∂�t + div∂�t γ

)
◦ ϕt

= (divX − ν · ∇νX) ◦ ϕt .

From Lemma 4.1 we have ∇X̃ = I + O(|x|). This implies div X̃ = n + O(|x|) and ν · ∇νX̃ = 1 + O(|x|), hence 
div X̃ − ν · ∇νX̃ = (n − 1) +O(|x|). Since X(x, t) = t−1X̃(x), we obtain

σtHt + (
div∂�t γ

) ◦ ϕt = n − 1

t
+ O(|ϕt (y)|)

t
= n − 1

t
+O(1),

using Lemma 4.3 to bound ϕt(y) for y ∈ ∂�. Therefore

n − 1

t
− C ≤ 1

at

dat

dt
≤ n − 1

t
+ C

uniformly on ∂�, and the result follows. �
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4.4. The coarea formula

When relating a function u and its boundary data f (t) and g(t), we will make frequent use of the coarea formula. 
This allows us to relate the integral of u over a given domain to the integrals of u over the level sets of a sufficiently 
smooth function. It can be viewed as a generalization to the nonradial case of the standard formula for integration in 
polar coordinates.

Suppose � : Rn → R is smooth. Sard’s theorem implies that for almost every t ∈ R, the level set �−1(t) is a 
smooth hypersurface. Let dμt denote the induced measure on �−1(t). Defining the region �a,b = {a < �(x) < b}, 
the coarea formula says that

∫
�a,b

w|∇�| =
b∫

a

⎛⎜⎝ ∫
�−1(t)

w dμt

⎞⎟⎠dt

for any measurable function w that is either nonnegative or integrable [20]. In fact, if dμt is suitably interpreted, one 
only requires the function � to be Lipschitz; see [21] for a general version of this result. If w/|∇�| is nonnegative or 
integrable, we have

∫
�a,b

w =
b∫

a

⎛⎜⎝ ∫
�−1(t)

w

|∇�| dμt

⎞⎟⎠dt.

To relate this to the domain �a,b = {a2 < ψ(x) < b2} defined in (6), we let � = √
ψ and calculate ∇� =

∇ψ/(2
√

ψ). Comparing with (26), we have |∇�| = σ−1, and so the coarea formula yields

∫
�a,b

w =
b∫

a

⎛⎜⎝ ∫
∂�t

σw dμt

⎞⎟⎠dt.

Finally, using the fact that σt = σ ◦ ϕt

∣∣
∂�

and recalling the definition of at from (32), we obtain

∫
�a,b

w =
b∫

a

⎛⎝ ∫
∂�

σt (w ◦ ϕt )at dμ

⎞⎠dt. (34)

Note that all of the integrals on the right-hand side are computed on the fixed hypersurface ∂�.

4.5. Scaling of Sobolev norms

The diffeomorphisms ϕt : � → �t induce maps Hs(�t) → Hs(�) and Hs(∂�t ) → Hs(∂�) via the pullback, 
u �→ u ◦ ϕt . To prove Theorem 3.8 we will need estimates on the norms of these maps for small t .

Lemma 4.10. There exist constants c1 and c2 such that the following estimates hold for small t :

c1t
n/2‖u ◦ ϕt‖L2(�) ≤ ‖u‖L2(�t )

≤ c2t
n/2‖u ◦ ϕt‖L2(�)

for all u ∈ L2(�t ),

c1t
n/2‖u ◦ ϕt‖H 1(�) ≤ ‖u‖H 1(�t )

≤ c2t
n/2−1‖u ◦ ϕt‖H 1(�)

for all u ∈ H 1(�t ),

c1t
(n−1)/2‖f ‖L2(∂�) ≤

∥∥∥f ◦ ϕ−1
t

∥∥∥
L2(∂�t )

≤ c2t
(n−1)/2‖f ‖L2(∂�)

for all f ∈ L2(∂�), and
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c1t
(n−1)/2 ‖f ‖H 1(∂�) ≤

∥∥∥f ◦ ϕ−1
t

∥∥∥
H 1(∂�t )

≤ c2t
(n−3)/2 ‖f ‖H 1(∂�)

for all f ∈ H 1(∂�).

More precisely, for any T > 0 there exist constants c1(T ) and c2(T ) such that the above estimates hold for all 
t ∈ (0, T ].

Proof. For the L2(�t ) estimate we compute∫
�t

u2 =
∫
�

(u ◦ ϕt )
2 det(Dϕt )

and then apply Lemma 4.5. The L2(∂�) estimate is obtained similarly, writing∫
∂�t

(
f ◦ ϕ−1

t

)2
dμt =

∫
∂�

f 2at dμ

and then using (33).
For the H 1(�t ) estimate we first compute ∇(u ◦ ϕt ) = (Dϕt )

T (∇u) ◦ ϕt . It follows from Lemma 4.6 that

c1t
∣∣(∇u) ◦ ϕt

∣∣≤ |∇(u ◦ ϕt )| ≤ c2t
∣∣(∇u) ◦ ϕt

∣∣ (35)

and so the norm of the gradient

‖∇u‖2
L2(�t )

=
∫
�t

|∇u|2 =
∫
�

|(∇u) ◦ ϕt |2 det(Dϕt )

satisfies the estimate

c1t
n−2‖∇(u ◦ ϕt )‖2

L2(�)
≤ ‖∇u‖2

L2(�t )
≤ c2t

n−2‖∇(u ◦ ϕt )‖2
L2(�)

. (36)

Combining this with the L2(�t ) estimate, we have

‖u‖2
H 1(�t )

= ‖u‖2
L2(�t )

+ ‖∇u‖2
L2(�t )

≤ c2

(
tn‖u ◦ ϕt‖2

L2(�)
+ tn−2‖∇(u ◦ ϕt )‖2

L2(�)

)
≤ c2t

n−2
(
‖u ◦ ϕt‖2

L2(�)
+ ‖∇(u ◦ ϕt )‖2

L2(�)

)
= c2t

n−2‖u ◦ ϕt‖2
H 1(�)

and

‖u‖2
H 1(�t )

≥ c1

(
tn‖u ◦ ϕt‖2

L2(�)
+ tn−2‖∇(u ◦ ϕt )‖2

L2(�)

)
≥ c1t

n
(
‖u ◦ ϕt‖2

L2(�)
+ ‖∇(u ◦ ϕt )‖2

L2(�)

)
= c1t

n‖u ◦ ϕt‖2
H 1(�)

as desired.
Finally, for the H 1(∂�) estimate, we recall that the tangential gradient ∇∂�f is given by ∇∂�f = ∇f̂ −(∂f̂ /∂ν)ν, 

where f̂ is any extension of f to a neighborhood of ∂�. Choosing an extension f̂ with ∂f̂ /∂ν = 0, we use (35) to 
compute
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∥∥∥∇∂�t
(
f ◦ ϕ−1

t

)∥∥∥2

L2(∂�t )
=
∫

∂�t

∣∣∇∂�t
(
f ◦ ϕ−1

t

)∣∣2dμt

≤
∫

∂�t

∣∣∇(f̂ ◦ ϕ−1
t

)∣∣2dμt

≤ C

t2

∫
∂�t

∣∣(∇f̂ ) ◦ ϕ−1
t

∣∣2dμt

= C

t2

∫
∂�

∣∣∇f̂
∣∣2at dμ

≤ Ctn−3
∫
∂�

∣∣∇f̂
∣∣2 dμ

= Ctn−3‖∇∂�f ‖2
L2(∂�)

where in the last line we have used the fact that ∇∂�f = ∇f̂ for this particular choice of f̂ . Similarly, choosing an 
extension f̂ of f so that ∇∂�t

(
f ◦ ϕ−1

t

)= ∇(f̂ ◦ ϕ−1
t

)
on ∂�t , we find that∥∥∥∇∂�t

(
f ◦ ϕ−1

t

)∥∥∥2

L2(∂�t )
≥ Ctn−3‖∇∂�f ‖2

L2(∂�)

for some different constant C. Combining this with the already obtained estimate for the L2(∂�) norm, the result 
follows. �
5. Evolution of the boundary data

In this section we prove Theorems 3.6 and 3.8, which say that the partial differential equation (4) is equivalent to 
the system of ordinary differential equations (14) for the boundary data. Aside from issues of regularity, the proof 
of Theorem 3.6 consists of direct computations using integration by parts and the coarea formula (34). The proof of 
Theorem 3.8, on the other hand, is more involved, and requires a detailed understanding of the geometry of the level 
sets ∂�t as t → 0.

5.1. An approximation argument

To prove the second statement in Theorem 3.6 we need to reconstruct the function u ∈ H 1
loc(�0,T ) from its Cauchy 

data (f (t), g(t)) for 0 < t < T . This is made possible by the following result.

Proposition 5.1. Suppose � ⊂ Rn is a bounded domain, with Lipschitz boundary ∂�. Then C1([a, b], C1(∂�)) is 
dense in C0([a, b], H 1(∂�)) ∩ C1([a, b], L2(∂�)).

That is, if f ∈ C0([a, b], H 1(∂�)) ∩ C1([a, b], L2(∂�)), there exist approximating functions fε ∈ C1([a, b],
C1(∂�)) such that

‖fε(t) − f (t)‖H 1(∂�) + ∥∥f ′
ε(t) − f ′(t)

∥∥
L2(∂�)

→ 0

uniformly in t as ε → 0. The main ingredient in the proof is the following lemma, which combines a standard molli-
fication argument in local coordinates with a version of Kolmogorov’s compactness criteria; cf. [22,23].

Lemma 5.2. Suppose f ∈ Hk(∂�), with k ∈ {0, 1}. There exist functions fε ∈ C1(∂�) such that ‖fε −f ‖Hk(∂�) → 0
as ε → 0. Moreover, the convergence of fε to f is uniform on precompact sets of Hk(∂�). That is, if S ⊂ Hk(∂�)

has compact closure, then for any δ > 0 there exists ε0 > 0 such that

‖fε − f ‖Hk(∂�) < δ

for all ε < ε0 and all f ∈ S.
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The density of C1(∂�) in L2(∂�) and H 1(∂�) is standard. The key to the proof of the above lemma is to construct 
the approximating functions fε in an explicit way that yields uniform convergence on precompact subsets of Hk(∂�).

Proof. We first recall the definition of Hs(∂�) for a Lipschitz domain, following [24]: There exist two finite collec-
tions of open sets, {Wj } and {�j }, such that ∂� ⊂ ∪jWj , � ∩ Wj = �j ∩ Wj for each j , and each �j is given (after 
a rigid motion) by the hypograph of a Lipschitz function ζj : Rn−1 → R. By this we mean that there is a rigid motion 
κj of Rn so that

κj (�j ) = {x = (x′, xn) ∈Rn : xn < ζj (x
′)}.

Let {φj } be a partition of unity subordinate to the covering {Wj }. Given a function f : ∂� → R, we define functions 
fj : Rn−1 →R by

fj (x
′) = (

φjf
)(

κ−1
j (x′, ζj (x

′))
)
. (37)

We then define the Hk(∂�) Sobolev norm by

‖f ‖Hk(∂�) =
∑
j

‖fj‖Hk(Rn−1). (38)

We are now ready to define the mollification of f ∈ Hk(∂�). We start by inverting (37) as follows. If x ∈ ∂�∩Wj , 
then κj (x) = (x′, ζj (x

′)) for a unique x′ ∈ Rn−1, namely x′ = Pκj (x), where P : Rn →Rn−1 denotes projection onto 
the first n − 1 components. It follows that (φjf )(x) = fj

(
Pκj (x)

)
for any x ∈ ∂� ∩ Wj , and so

f (x) =
∑
j

fj

(
Pκj (x)

)
for each x ∈ ∂�. Now, letting ηε denote the standard mollifier in Rn−1, we set

fε(x) =
∑
j

(ηε ∗ fj )
(
Pκj (x)

)
.

It follows from (38) and standard properties of ηε that

‖fε‖Hk(∂�) ≤ C‖f ‖Hk(∂�) (39)

for some constant C that does not depend on f or ε, and

‖fε − f ‖Hk(∂�) → 0 (40)

as ε → 0. This completes the first part of the proof.
We prove the second claim by contradiction. Suppose there exists a number δ0 > 0, a sequence of positive numbers 

εn tending to zero, and functions f (n) ∈ S such that

‖f (n)
εn

− f (n)‖Hk(∂�) ≥ δ0

for all n. Using (39) we obtain

δ0 ≤ ‖f (n)
εn

− f (n)‖Hk(∂�)

≤ ‖f (n)
εn

− fεn‖Hk(∂�) + ‖fεn − f ‖Hk(∂�) + ‖f − f (n)‖Hk(∂�)

≤ (1 + C)‖f − f (n)‖Hk(∂�) + ‖fεn − f ‖Hk(∂�)

for any function f ∈ Hk(∂�). Since ‖fεn − f ‖Hk(∂�) → 0 as n → ∞, we have

lim inf
n→∞ ‖f − f (n)‖Hk(∂�) ≥ δ0

1 + C
,

which shows that f (n) has no convergent subsequences, contradicting the hypothesis on S. �
We are now ready to prove the proposition.
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Proof of Proposition 5.1. Given f ∈ C0([a, b], H 1(∂�)) ∩ C1([a, b], L2(∂�)), we use the construction of Lemma 
5.2 to define fε pointwise in t , i.e. fε(t) = f (t)ε for each t ∈ [a, b]. It follows from (39) that fε ∈ C0([a, b], H 1(∂�))

for each ε, and (40) implies that fε(t) → f (t) in H 1(∂�) for each t . Since {f (t) : t ∈ [a, b]} is a compact subset of 
H 1(∂�), the convergence is in fact uniform in t , hence fε → f in C0([a, b], H 1(∂�)). Moreover, since∥∥∥∥fε(t + h) − fε(t)

h
− (f ′(t))ε

∥∥∥∥
L2(∂�)

≤ C

∥∥∥∥f (t + h) − f (t)

h
− f ′(t)

∥∥∥∥
L2(∂�)

for any h > 0, we conclude that fε is differentiable in t , with

(fε)
′ = (f ′)ε ∈ C0([a, b],L2(∂�))

and f ′
ε(t) → f ′(t) in L2(∂�), where the convergence is again uniform in t . �

5.2. Preliminary constructions

We now use Proposition 5.1 to reconstruct u from its Cauchy data.
First suppose f ∈ C0([a, b], C0(∂�)) for some 0 < a < b < ∞. For each x ∈ �a,b there is a unique t ∈ (a, b)

and y ∈ ∂� such that x = ϕt (y), namely t = √
ψ(x) and y = ϕ−1

t (x). Thus we can define a continuous function 
u : �a,b →R by

u(x) = f (t)
(
ϕ−1

t (x)(x)
)
. (41)

We first relate the integrability properties of u to those of f .

Lemma 5.3. There exists a constant C = C(a, b) such that ‖u‖L2(�a,b)
≤ C‖f ‖C0([a,b],L2(∂�)) for all f ∈

C0([a, b], C0(∂�)). Therefore, the map f �→ u in (41) extends uniquely to a bounded operator C0([a, b], L2(∂�)) →
L2(�a,b).

Proof. Let f ∈ C0([a, b], C0(∂�)). From the definition of u and the coarea formula (34) we have∫
�a,b

u2 =
b∫

a

⎛⎝ ∫
∂�

σtf (t)2at dμ

⎞⎠dt

≤ C sup
a≤t≤b

‖f (t)‖2
L2(∂�)

,

since σt and at are bounded uniformly for t ∈ [a, b]. The existence of a unique bounded extension follows from the 
density of C0([a, b], C0(∂�)) in C0([a, b], L2(∂�)), using Proposition 5.1. �

We next examine the differentiability properties of u.

Lemma 5.4. If f ∈ C0([a, b], H 1(∂�)) ∩C1([a, b], L2(∂�)), then u ∈ H 1(�a,b) and the weak derivative is given by

∇u
∣∣
∂�t

= ∇∂�t

(
f ◦ ϕ−1

t

)
+ σ−1ν

(
df

dt
◦ ϕ−1

t − γ · ∇∂�t

(
f ◦ ϕ−1

t

))
∈ L2(∂�t ) (42)

for a < t < b.

Proof. We again use a density argument based on Proposition 5.1. If f ∈ C0([a, b], C1(∂�)) ∩ C1([a, b], C0(∂�)), 
then u ∈ C1(�a,b). Differentiating the equation f = u ◦ ϕt , we obtain

df

dt
= (

X · ∇u
) ◦ ϕt

= (
γ · ∇u + σν · ∇u

) ◦ ϕt

=
(

γ · ∇∂�t

(
f ◦ ϕ−1

t

)
+ σ

∂u

∂ν

)
◦ ϕt
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and so the normal derivative of u can be computed in terms of f as

∂u

∂ν
= σ−1

(
df

dt
◦ ϕ−1

t − γ · ∇∂�t

(
f ◦ ϕ−1

t

))
.

Decomposing ∇u into normal and tangential components along ∂�t ,

∇u
∣∣
∂�t

= ∇∂�t u + ∂u

∂ν
ν,

we arrive at (42).
Next, using (42), Lemma 4.10, and the fact that σ and γ are uniformly bounded on �a,b, we find that∥∥∥∇u

∣∣
∂�t

∥∥∥
L2(∂�t )

≤ C

(∥∥∥∥df

dt

∥∥∥∥
L2(∂�)

+ ‖f (t)‖H 1(∂�)

)
for some constant C = C(a, b). It then follows from the coarea formula, as in the proof of Lemma 5.3, that

‖∇u‖L2(�a,b)
≤ C sup

a≤t≤b

(∥∥∥∥df

dt

∥∥∥∥
L2(∂�)

+ ‖f (t)‖H 1(∂�)

)
.

The result now follows from Proposition 5.1. �
We are now ready to prove the main result of this section, which will allow us to describe a weak solution to (4) in 

terms of its restriction to each hypersurface ∂�t .

Lemma 5.5. If f ∈ C0([a, b], H 3/2(∂�)) ∩ C1([a, b], H 1/2(∂�)) ∩ C2([a, b], H−1/2(∂�)), and g is defined by

g = σ−1
t

(
df

dt
− Ttf

)
,

then ∫
�a,b

∇u · ∇v = −
b∫

a

⎛⎝ ∫
∂�

(v ◦ ϕt )

{
Ltf + dg

dt
+ σtHtg − Ttg

}
at dμ

⎞⎠dt (43)

for any v ∈ H 1
0 (�a,b).

Proof. It suffices to consider v ∈ C∞
0 (�a,b). The coarea formula yields

∫
�a,b

∇u · ∇v =
b∫

a

⎛⎜⎝ ∫
∂�t

σ (∇u · ∇v)dμt

⎞⎟⎠dt.

On ∂�t we use (42) and the definition of g to write

∇u · ∇v|∂�t
= ∇∂�t

(
f ◦ ϕ−1

t

)
· ∇∂�t v + ∂v

∂ν

(
g ◦ ϕ−1

t

)
.

For the tangential part we compute∫
∂�t

σ∇∂�t

(
f ◦ ϕ−1

t

)
· ∇∂�t v dμt = −

∫
∂�t

v div∂�t

(
σ∇∂�t

(
f ◦ ϕ−1

t

))
dμt

= −
∫
∂�

(v ◦ ϕt )(Ltf )at dμ. (44)

For the normal part we have
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∫
∂�t

σ
∂v

∂ν

(
g ◦ ϕ−1

t

)
dμt =

∫
∂�

σt

(
∂v

∂ν
◦ ϕt

)
gat dμ

=
∫
∂�

[
d

dt
(v ◦ ϕt ) − (γ · ∇∂�t v) ◦ ϕt

]
gat dμ.

The first term on the right-hand side can be written as∫
∂�

d

dt
(v ◦ ϕt )gat dμ = d

dt

∫
∂�

(v ◦ ϕt )gat dμ −
∫
∂�

(v ◦ ϕt )
dg

dt
at dμ −

∫
∂�

(v ◦ ϕt )g
dat

dt
dμ.

We use the first variation of area formula (Lemma 4.8) to obtain∫
∂�

(v ◦ ϕt )g
dat

dt
dμ =

∫
∂�

(v ◦ ϕt )
{
σtHt + (

div∂�t γ
) ◦ ϕt

}
gat dμ

and then apply the divergence theorem to the last term to find∫
∂�

[(
v div∂�t γ

) ◦ ϕt

]
gat dμ =

∫
∂�t

v div∂�t γ
(
g ◦ ϕ−1

t

)
dμt

= −
∫

∂�t

γ ·
[
v∇∂�t

(
g ◦ ϕ−1

t

)
+
(
g ◦ ϕ−1

t

)
∇∂�t v

]
dμt

= −
∫
∂�

(v ◦ ϕt )(Ttg)at dμ −
∫
∂�

[
(γ · ∇∂�t v) ◦ ϕt

]
gat dμ.

It follows that∫
∂�t

σ
∂v

∂ν

(
g ◦ ϕ−1

t

)
dμt = d

dt

∫
∂�

(v ◦ ϕt )gat dμ −
∫
∂�

(v ◦ ϕt )

{
dg

dt
+ σtHtg − Ttg

}
at dμ. (45)

The result follows from adding (44) and (45), then integrating from a to b. The first term from the right-hand side of 
(45) integrates to zero because v vanishes on ∂�a and ∂�b . �
5.3. Proof of Theorem 3.6

First assume that u solves (4) on �0,T , in the sense of Definition 3.4. This means F(·, u) ∈ L2(�a,T ), and hence 
�u ∈ L2(�a,T ), for any a ∈ (0, T ). Elliptic regularity (for instance [24, Theorem 4.16]) implies that u ∈ H 2(�a,b)

for any 0 < a < b < T , and so Trt u ∈ H1 = H 3/2(∂�) ⊕H 1/2(∂�) for t ∈ (0, T ). Since t �→ (u ◦ϕt )
∣∣
�

is continuous 
in H 2 for t ∈ (0, T ), we in fact have Trt u ∈ C0

(
(0, T ), H1

)
. Next observe that t �→ (u ◦ ϕt )

∣∣
�

is differentiable in 
H 1 for t ∈ (0, T ), and continuous for t ∈ (0, T ]. Similarly, t �→ �(u ◦ ϕt )

∣∣
�

is differentiable in L2 for t ∈ (0, T ) and 
continuous for t ∈ (0, T ]. It follows from [25, Lemma 3.2] that Trt u ∈ C1

(
(0, T ), H

) ∩ C0
(
(0, T ], H). Finally, the 

coarea formula implies (as in Lemma 5.3) that Ft(f ) ∈ L2([a, T ], L2(∂�)) for any a ∈ (0, T ). Therefore (f, g) =
Trt u satisfies the regularity conditions in Definition 3.3. We next show that it satisfies the differential equation (14).

Taking the normal component of (42), we obtain

∂u

∂ν

∣∣∣∣
∂�t

= σ−1
(

df

dt
◦ ϕ−1

t − γ · ∇∂�t

(
f ◦ ϕ−1

t

))
,

hence

df =
(

γ · ∇∂�t

(
f ◦ ϕ−1

t

)
+ σ

∂u
)

◦ ϕt = Ttf + σtg.

dt ∂ν
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This verifies the first equation of (14). Next, using (43) and the definition of a weak solution to �u +F(x, u) = 0, we 
compute∫

�a,b

F (·, u)v =
∫

�a,b

∇u · ∇v

= −
b∫

a

⎛⎝ ∫
∂�

(v ◦ ϕt )

{
Ltf + dg

dt
+ σtHtg − Ttg

}
at dμ

⎞⎠dt

for any v ∈ H 1
0 (�a,b). Comparing with

∫
�a,b

F (·, u)v =
b∫

a

⎛⎜⎝ ∫
∂�t

σF (x,u)v dμ

⎞⎟⎠dt

=
b∫

a

⎛⎝ ∫
∂�

(v ◦ ϕt )σtFt (f )at dμ

⎞⎠dt,

we find that

σtFt (f ) = −
{
Ltf + dg

dt
+ σtHtg − Ttg

}
which is the second equation of (14). The completes the first half of the proof.

Now assume (f, g) satisfies (14) on (0, T ), in the sense of Definition 3.3. Define u by (41). We must show that u
is a weak solution to (4) on �0,T , i.e. u is a weak solution on �a,b for any 0 < a < b = T .

For any such a and b we have

f ∈ C0([a, b],H 3/2(∂�)) ∩ C0([a, b],H 1/2(∂�)),

g ∈ C0([a, b],H 1/2(∂�)) ∩ C0([a, b],H−1/2(∂�)),

Ft (f ) ∈ L2([a, b],L2(∂�)).

In particular, f ∈ C0([a, b], H 1(∂�)) and g ∈ C0([a, b], L2(∂�)), so Lemmas 5.3 and 5.4 imply u ∈ H 1(�a,b). 
Moreover, it follows from the coarea formula that F(·, u) ∈ L2(�a,b).

Let v ∈ H 1
0 (�a,b). Using (43) and the coarea formula as in the first half of the proof, we obtain

∫
�a,b

F (·, u)v =
b∫

a

⎛⎝ ∫
∂�

(v ◦ ϕt )σtFt (f ) atdμ

⎞⎠dt

= −
b∫

a

⎛⎝ ∫
∂�

(v ◦ ϕt )

{
Ltf + dg

dt
+ σtHtg − Ttg

}
at dμ

⎞⎠dt

=
∫

�a,b

∇u · ∇v,

which says that u is a weak solution to (4) on �a,b . This completes the proof of Theorem 3.6.

5.4. Proof of Theorem 3.8

It is easier to obtain estimates for the H−1/2(∂�) norm of atg(t), rather than the norm of g(t) alone. The results 
obtained below are related to the estimates given in Theorem 3.8 by the following lemma.
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Lemma 5.6. Let a be a positive, continuous function on ∂�. Then

(mina)‖g‖H−1/2(∂�) ≤ ‖ag‖H−1/2(∂�) ≤ (maxa)‖g‖H−1/2(∂�)

for all g ∈ H−1/2(∂�).

Proof. It suffices to consider smooth g. We compute

‖ag‖H−1/2(∂�) = sup

⎧⎨⎩
∣∣∣∣∣∣
∫
∂�

agf dμ

∣∣∣∣∣∣ : f ∈ C∞(∂�) and ‖f ‖H 1/2(∂�) = 1

⎫⎬⎭
= sup

⎧⎨⎩
∫
∂�

agf dμ : f ∈ C∞(∂�),‖f ‖H 1/2(∂�) = 1 and fg ≥ 0

⎫⎬⎭
≤ sup

⎧⎨⎩(maxa)

∫
∂�

gf dμ : f ∈ C∞(∂�),‖f ‖H 1/2(∂�) = 1 and fg ≥ 0

⎫⎬⎭
= (maxa)‖g‖H 1/2(∂�).

Replacing a with a−1 and g with ag, we obtain

‖g‖H−1/2(∂�) = ‖a−1(ag)‖H−1/2(∂�) ≤ (maxa−1)‖ag‖H−1/2(∂�) = 1

mina
‖ag‖H−1/2(∂�),

which completes the proof. �
Combining this with Lemma 4.9, we see that there are constants c1 and c2 such that

c1t
n−1‖g‖H−1/2(∂�) ≤ ‖atg‖H−1/2(∂�) ≤ c2t

n−1‖g‖H−1/2(∂�) (46)

for all g ∈ H−1/2(∂�) and sufficiently small t > 0.
Keeping (46) in mind, we begin the proof of Theorem 3.8.
First assume that (f, g) is a solution to (14) on (0, T ) satisfying the bound (21). Let u be the corresponding weak 

solution to (4) on �0,T , which exists by Theorem 3.6. We must prove that u ∈ H 1(�T ), and u is in fact a weak 
solution on �T . To that end, let b = T .

From (21) we obtain ‖f (t)‖2
L2(∂�)

≤ Ct−2p for some constant C. Computing as in the proof of Lemma 5.3, and 
using Lemmas 4.4 and 4.9, we find

∫
�a,b

u2 =
b∫

a

‖√σtatf (t)‖2
L2(∂�)

dt

≤ C

b∫
a

tn−2p−1 dt

≤ C,

where C does not depend on a, since n − 2p − 1 > −1. It follows from the monotone convergence theorem that∫
�b

u2 = lim
a→0+

∫
�a,b

u2 ≤ C,

so u ∈ L2(�b).
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We next show that u ∈ H 1(�b). Since u is a weak solution on �a,b for any a > 0, Green’s first identity implies∫
�a,b

(
|∇u|2 − uF(·, u)

)
=

∫
∂�a,b

u
∂u

∂ν
. (47)

On any ∂�t we have∫
∂�t

u
∂u

∂ν
dμt =

∫
∂�

(u ◦ ϕt )

(
∂u

∂ν
◦ ϕt

)
at dμ

=
∫
∂�

f (t)g(t)at dμ

and so (21) implies that∣∣∣∣∣∣∣
∫

∂�t

u
∂u

∂ν
dμt

∣∣∣∣∣∣∣≤ ‖f (t)‖H 1/2(∂�)‖atg(t)‖H−1/2(∂�)

is bounded near t = 0. It follows that∣∣∣∣∣∣∣
∫

∂�a,b

u
∂u

∂ν

∣∣∣∣∣∣∣≤ K

for some constant K that does not depend on a. Together with (47), this implies

‖∇u‖2
L2(�a,b)

≤ ‖u‖L2(�a,b)
‖F(·, u)‖L2(�a,b)

+ K,

and so ‖∇u‖2
L2(�a,b)

≤ C, with C independent of a. The monotone convergence theorem now implies∫
�b

|∇u|2 = lim
a→0+

∫
�a,b

|∇u|2 ≤ C

hence u ∈ H 1(�b) as was claimed.
Finally, we prove that u is a weak solution to (4) on �b. Let v ∈ C∞

0 (�b). Since u is a weak solution on �a,b and 
v vanishes on ∂�b , Green’s first identity implies∫

�a,b

∇u · ∇v =
∫

�a,b

F (·, u)v −
∫

∂�a

v
∂u

∂ν
dμa. (48)

Since ∇u · ∇v ∈ L1(�b), we can apply the dominated convergence theorem to the functions (∇u · ∇v)X
�a,b

to obtain

lim
a→0+

∫
�a,b

∇u · ∇v =
∫
�b

∇u · ∇v.

It similarly follows that

lim
a→0+

∫
�a,b

F (·, u)v =
∫
�b

F (·, u)v.

The boundary term in (48) can be written as1

1 Here we write t instead of a for the domain �a,b , to avoid confusion with the area function at .
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∫
∂�t

v
∂u

∂ν
dμt =

∫
∂�

(v ◦ ϕt )g(t)at dμ

and so, using Lemma 4.10 and the boundedness of the Sobolev trace map, we obtain∣∣∣∣∣∣∣
∫

∂�t

v
∂u

∂ν
dμt

∣∣∣∣∣∣∣≤ ‖v ◦ ϕt‖H 1/2(∂�)‖atg(t)‖H−1/2(∂�)

≤ C‖v ◦ ϕt‖H 1(�)‖atg(t)‖H−1/2(∂�)

≤ Ct−n/2‖v‖H 1(�t )
‖atg(t)‖H−1/2(∂�).

Since v and ∇v are bounded, we have ‖v‖H 1(�t )
≤ Ctn/2 for some constant C (which depends on v), hence

t−n/2‖v‖H 1(�t )
‖atg(t)‖H−1/2(∂�) ≤ C‖atg(t)‖H−1/2(∂�) ≤ Ctp,

which tends to 0 as t → 0 because p > 0. Therefore, taking the limit of (48) as a → 0+, we obtain∫
�b

∇u · ∇v =
∫
�b

F (·, u)v

and so u is a weak solution on �b. This completes the first half of the proof.
Next, assume that u ∈ H 1(�T ) is a weak solution to (4), and let (f, g) denote the associated solution to (14) on 

(0, T ), which exists by Theorem 3.6. Using Lemma 4.10 and the boundedness of the Sobolev trace map H 1(�) →
H 1/2(∂�), we obtain

‖f (t)‖H 1/2(∂�) ≤ C‖u ◦ ϕt‖H 1(�) ≤ Ct−n/2‖u‖H 1(�t )
. (49)

Elliptic regularity implies u ∈ H 2(�t ) for any t < T , so both u and ∇u are contained in H 1(�t ).
For n > 2, the Sobolev embedding theorem implies u ∈ L2n/(n−2)(�t ), hence u2 ∈ Ln/(n−2)(�t ). Hölder’s inequal-

ity then yields∫
�t

u2 ≤
∥∥∥u2

∥∥∥
Ln/(n−2)(�t )

‖1‖Ln/2(�t )

=
⎛⎜⎝∫

�t

|u|2n/(n−2)

⎞⎟⎠
(n−2)/n

|�t |2/n

≤ Ct2

⎛⎜⎝∫
�t

|u|2n/(n−2)

⎞⎟⎠
(n−2)/n

.

In the last line we have used the fact that |�t | ≤ Ctn, which can be obtained by choosing u = 1 in Lemma 4.10. 
Similarly estimating the integral of |∇u|2 over �t and then combining with (49), we see that

tn/2−1‖f (t)‖H 1/2(∂�) ≤ C

⎡⎢⎣
⎛⎜⎝∫

�t

|u|2n/(n−2)

⎞⎟⎠
(n−2)/2n

+
⎛⎜⎝∫

�t

|∇u|2n/(n−2)

⎞⎟⎠
(n−2)/2n⎤⎥⎦ .

By the absolute continuity of the Lebesgue integral, we see that the right-hand side tends to 0 as t → 0. This verifies 
the first term in (22).
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For the second term in (22), we let v ∈ H 1(�), and calculate∫
∂�

g(t)vat dμ =
∫

∂�t

∂u

∂ν
(v ◦ ϕ−1

t ) dμt

=
∫
�t

[
∇u · ∇(v ◦ ϕ−1

t ) − F(·, u)(v ◦ ϕ−1
t )

]
≤ ‖∇u‖L2(�t )

‖∇(v ◦ ϕ−1
t )‖L2(�t )

+ ‖F(·, u)‖L2(�t )
‖v ◦ ϕ−1

t ‖L2(�t )

≤ C
(
tn/2−1‖∇u‖L2(�t )

‖∇v‖L2(�) + tn/2‖F(·, u)‖L2(�t )
‖v‖L2(�)

)
≤ C

(
tn/2−1‖∇u‖L2(�t )

+ tn/2‖F(·, u)‖L2(�t )

)
‖v‖H 1(�)

where we used the fact that u is a weak solution in the second line, and Lemma 4.10 in the penultimate line. It follows 
that

t−n/2‖atg(t)‖H−1/2(∂�) ≤ C
(
t−1‖∇u‖L2(�t )

+ ‖F(·, u)‖L2(�t )

)
, (50)

so we just need to show that the right-hand side vanishes in the t = 0 limit.
Applying the Sobolev embedding theorem to ∇u ∈ H 1(�t ), as was done for u above, we obtain

t−1‖∇u‖L2(�t )
≤ C

⎛⎜⎝∫
�t

|∇u|2n/(n−2)

⎞⎟⎠
(n−2)/2n

→ 0.

For the remaining term in (50) we simply observe that F(·, u) ∈ L2(�t ) for each t , and so∫
�t

|F(·, u)|2 → 0

as t → 0. This establishes (22), and thus completes the proof of Theorem 3.8 in the case n > 2.
For the case n = 2, we return to (49), with u ∈ H 2(�t ) for any t < T . Now the Sobolev embedding theorem implies 

u and ∇u are contained in Lq(�t) for any 2 ≤ q < ∞; see, for instance [26, Corollary 9.14]. We then compute∫
�t

u2 ≤ ∥∥u2
∥∥

Lq/2(�t )
‖1‖Lq/(q−2)(�t )

=
⎛⎜⎝∫

�t

|u|q
⎞⎟⎠

2/q

|�t |(q−2)/q

≤ Ct2(q−2)/q

⎛⎜⎝∫
�t

|u|q
⎞⎟⎠

2/q

,

and similarly for ∇u, to obtain

t2/q‖f (t)‖H 1/2(∂�) ≤ C

⎡⎢⎣
⎛⎜⎝∫

�t

|u|q
⎞⎟⎠

1/q

+
⎛⎜⎝∫

�t

|∇u|q
⎞⎟⎠

1/q⎤⎥⎦ .

The right-hand side tends to 0 as t → 0, so we obtain the first term in (23) with p = 2
q

∈ (0, 1]. For the second term in 
(23) we use (50) with n = 2 to obtain
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t−1‖atg(t)‖H−1/2(∂�) ≤ C
(
t−1‖∇u‖L2(�t )

+ ‖F(·, u)‖L2(�t )

)
,

and then observe that

∫
�t

|∇u|2 ≤ Ct2(q−2)/q

⎛⎜⎝∫
�t

|∇u|q
⎞⎟⎠

2/q

,

hence

t2/q−1‖atg(t)‖H−1/2(∂�) ≤ C

⎡⎢⎣
⎛⎜⎝∫

�t

|∇u|q
⎞⎟⎠

1/q

+ tq/2‖F(·, u)‖L2(�t )

⎤⎥⎦ .

This shows that the second term in (23) tends to zero for any p = 1 − 2
q

∈ [0, 1), and thus completes the proof of 
Theorem 3.8.

6. Exponential dichotomies

In this final section we discuss exponential dichotomies for the linearization of (4). We first define what is meant 
by an exponential dichotomy for the dynamical system (54) corresponding to the linearized PDE (51). Next, we 
explore some consequences of this idea. In particular, we prove that, if a dichotomy exists, then the unstable subspace 
coincides with the space of Cauchy data for the linear PDE.

The linear dynamical system (54) does not satisfy the sufficient conditions given in [11] for the existence of an 
exponential dichotomy except when the domain is radial, i.e. �t = {x : |x| < t}. This case is studied in detail in [27], 
where the existence of an exponential dichotomy is proven. The general case will be the subject of future investiga-
tions. For now we simply motivate the concept of an exponential dichotomy by describing some of its consequences 
for elliptic boundary value problems.

We conclude by giving a dynamical interpretation of an eigenvalue problem, observing that eigenvalues correspond 
to nontrivial intersections of the unstable subspace with a fixed subspace of H that encodes the boundary conditions.

6.1. Dichotomy subspaces

Suppose that ̂u solves (4), with the linearized equation �u + DuF(x, ̂u)u = 0. More generally, consider

�u = V (x)u. (51)

The linearized equation, as well as the eigenvalue equation �u +DuF(x, ̂u)u = λu, can be written in this form. This 
is a special case of (4), with F(x, u) = −V (x)u, and hence is equivalent, in the sense of Theorems 3.6 and 3.8, to the 
linear system

d

dt

(
f

g

)
=
(

Tt σt

σtVt − Lt Tt − σtHt

)(
f

g

)
, (52)

where we have defined Vt = V ◦ ϕt

∣∣
∂�

: ∂� → R.
The system (52) is ill-posed, in the sense that solutions do not necessarily exist for given initial data. In [11]

it was shown that the corresponding equation (1) for the channel problem admits an exponential dichotomy. That 
is, H = H 1/2(∂�) ⊕ H−1/2(∂�) splits into two subspaces, both infinite-dimensional, on which the system admits 
solutions forwards and backwards in time, respectively. However, (52) does not admit an exponential dichotomy 
because, as seen in the example in Section 2, the solutions decay or grow polynomially, rather than exponentially, in 
t . We will instead consider dichotomies for a suitably reparameterized and rescaled version of the system.

We let t = eτ , and then define

f̃ (τ ) = eατ f (eτ ), g̃(τ ) = e(1+α)τ g(eτ ) (53)
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for some constant α to be determined. The scaling parameter α will be used to ensure that the asymptotic operator, i.e. 
the limit of the right-hand side of (54) as t → 0, does not have spectrum on the imaginary axis. A direct computation 
shows that if (f, g) solves (52), then

d

dτ

(
f̃

g̃

)
=
(

α + tTt σt

t2(σtVt − Lt) 1 + α + t (Tt − σtHt )

)(
f̃

g̃

)
. (54)

For convenience we set ̃h = (f̃ , ̃g).

Definition 6.1. The system (54) is said to admit an exponential dichotomy on the half line (−∞, 0] if there exists a 
continuous family of projections P u : (−∞, 0] → B(H) and constants K, ηu, ηs > 0 such that, for every τ0 ≤ 0 and 
z ∈H there exists a solution ̃hu(τ ; τ0, z) of (54), defined for τ ≤ τ0, such that

• h̃u(τ0; τ0, z) = P u(τ0)z,
• ‖h̃u(τ ; τ0, z)‖H ≤ Keηu(τ−τ0)‖z‖H for all τ ≤ τ0,
• h̃u(τ ; τ0, z) ∈ R(P u(τ)) for all τ ≤ τ0,

and a solution ̃hs(τ ; τ0, z) of (54), defined for τ0 ≤ τ ≤ 0, such that

• h̃s(τ0; τ0, z) = P s(τ0)z,
• ‖h̃s(τ ; τ0, z)‖H ≤ Keηs(τ0−τ)‖z‖H for all τ0 ≤ τ ≤ 0,
• h̃s(τ ; τ0, z) ∈ R(P s(τ )) for all τ0 ≤ τ ≤ 0,

where P s(τ ) = I − P u(τ).

In other words, for any terminal data in the range of P u(τ0), the system can be solved backwards in τ , with the 
solution decaying exponentially as τ → −∞, and similarly for initial data in the range of P s(τ0).

For any τ ≤ 0 we define the stable and unstable subspaces

Ẽs(τ ) = R(P s(τ )), Ẽu(τ ) = R(P u(τ)). (55)

Undoing the scaling (53) and the change of variables t = eτ , we define

Eu(t) =
{(

t−αf̃ (log t), t−1−αg̃(log t)
)

: (f̃ (log t), g̃(log t)
) ∈ Ẽu(log t)

}
(56)

for t > 0, and similarly for Es(t). Thus for any t0 ∈ (0, 1] and (f0, g0) ∈ Eu(t0) there exists a solution (f (t), g(t)) to 
(52), defined for 0 < t ≤ t0, with (f (t0), g(t0)) = (f0, g0) and∥∥(f (t), tg(t))

∥∥
H ≤ K

(
t

t0

)ηu−α ∥∥(f0, t0g0)
∥∥
H. (57)

The implications of this estimate for the corresponding solution u to the linear PDE (51) depend on the scaling 
parameter α and its relation to the growth and decay rates ηu and ηs . This will be explored in detail in the following 
section.

6.2. Relation to the Cauchy data space

Assuming the existence of an exponential dichotomy, we now prove that for an appropriate choice of α the unstable 
subspace Eu(t) corresponds to the space of Cauchy data of weak solutions to (51) on �t . For t > 0 let

Kt = {u ∈ H 1(�t ) : �u = V (x)u on �t },
where the equality �u = V (x)u on �t is meant in a distributional sense. Since Kt is a subset of {u ∈ H 1(�t ) : �u ∈
L2(�t )}, the trace map Trt (defined in (13)) can be applied, and we have Trt u ∈ H 1/2(∂�) ⊕ H−1/2(∂�) for each 
u ∈ Kt . We thus define

Trt (Kt ) = {Trt u : u ∈ Kt } ⊂H.
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Theorem 6.2. Assume that (54) admits an exponential dichotomy on (−∞, 0], and that V is of class C�n/2�,1 in a 
neighborhood of the origin. If α < ηu + n

2 −1, then Eu(t) ⊆ Trt (Kt ) for each t > 0. If α > −ηs , then Trt (Kt ) ⊆ Eu(t)

for each t > 0. Therefore, the two spaces coincide if

−ηs < α < ηu + n

2
− 1. (58)

To prove that Eu(t) ⊆ Trt (Kt ), we must show that any solution (f, g) to (52) having sufficient decay at t = 0
corresponds to a solution u to (51). Thus suppose (f (t0), g(t0)) ∈ Eu(t0) for some t0 > 0. It follows from (57) that

‖f (t)‖H 1/2(∂�) + t‖g(t)‖H−1/2(∂�) ≤ Ctη
u−α

for all t ≤ t0. The inequality α < n
2 − 1 + ηu implies α − ηu ≤ n − 2 + ηu − α, α − ηu < n

2 and n − 2 + ηu − α > 0. 
Therefore, there exists a number

p ∈
(

0,
n

2

)
∩ [α − ηu,n − 2 + ηu − α].

For this choice of p we have that

tp‖f (t)‖H 1/2(∂�) + tn−p−1‖g(t)‖H−1/2(∂�)

is bounded near t = 0. It follows from Theorem 3.8 that (f (t), g(t)) = Trt u for some u ∈ Kt , completing the proof 
that Eu(t0) ⊆ Trt0(Kt0).

To prove the reverse inclusion, Trt (Kt ) ⊆ Eu(t), we use the fact that any solution to (52) having sufficient decay 
at t = 0 is necessarily contained in the unstable subspace.

Lemma 6.3. Suppose h̃ is a solution to (54) and satisfies the estimate ‖h̃(τ )‖ ≤ Ceα(τ−τ0) for all τ ≤ τ0, for some 
α > −ηs . Then ̃h(τ0) ∈ Ẽu(τ0).

That is, any solution ̃h(τ) that does not blow up too rapidly as τ → −∞ must be contained in the unstable subspace, 
so it in fact decays with rate ηu.

Proof. Choosing z = h(τ0) in Definition 6.1, there exists a solution ̃hu to (54) with ̃hu(τ0) = P u(τ0)z, satisfying the 
estimate ‖h̃u(τ )‖ ≤ Keηu(τ−τ0)‖z‖ for τ ≤ τ0. Now define ̃hs(τ ) = h(τ) − h̃u(τ ). It follows that ̃hs is also a solution 
to (54) for τ ≤ τ0, with

‖h̃s(τ )‖ ≤ Ceα(τ−τ0) + K‖z‖eηu(τ−τ0). (59)

Moreover, since h̃u(τ ) ∈ R(P u(τ)), we have h̃s(τ ) = (I − P u(τ))̃h(τ ) ∈ R(P s(τ )). Now let τ∗ < τ0. Since h̃s(τ )

solves (54) for τ ≥ τ∗, and has initial condition ̃hs(τ∗), it must be the unique forward-in-time solution whose existence 
is guaranteed by the exponential dichotomy. Therefore it satisfies the estimate

‖h̃s(τ )‖ ≤ Keηs(τ∗−τ)‖h̃s(τ∗)‖
for τ ≥ τ∗. Using (59) to bound ‖h̃s(τ∗)‖, we have

‖h̃s(τ0)‖ ≤ Keηs(τ∗−τ0)
(
Ceα(τ∗−τ0) + K‖z‖eηu(τ∗−τ0)

)
.

Taking the limit τ∗ → −∞ and using the fact that ηs + α > 0, we obtain ̃hs(τ0) = 0. �
We also require the following improved version of Theorem 3.8.

Lemma 6.4. Suppose u solves (51) on �T , with the potential V of class C�n/2�,1 in a neighborhood of the origin. 
Then ‖f (t)‖H 1/2(∂�) and ‖g(t)‖H−1/2(∂�) are bounded near t = 0.

Proof. The smoothness of V allows us to use elliptic regularity (for instance [24, Theorem 4.16]) to conclude that 
u ∈ H 2+�n/2�(�t ) for sufficiently small t . It follows from the Sobolev inequalities that u ∈ C1,γ (�t ) for some γ ∈
(0, 1). In particular, u and ∇u are uniformly bounded in a neighborhood of the origin, and so ‖u‖H 1(�t )

≤ Ctn/2. The 
result now follows from estimates (49) and (50). �
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Now consider Trt u ∈ Trt (Kt ). We have that ‖f (t)‖H 1/2(∂�) and ‖g(t)‖H−1/2(∂�) are bounded as t → 0. Therefore 
h̃(τ ) = (

eατ f (eτ ), e(1+α)τ g(eτ )
)

satisfies the bound ‖h̃(τ )‖H ≤ Ceατ . Since α > −ηs , Lemma 6.3 implies h̃(τ ) ∈
Ẽu(τ ), hence h(t) = (f (t), g(t)) ∈ Eu(t). This completes the proof of Theorem 6.2.

Note that the rates ηu and ηs depend implicitly on α, as the latter parameter appears in the rescaled system of 
equations (54). To verify (58) one must therefore understand this dependence.

Corollary 6.5. Suppose n > 2. If 0 < α ≤ n
2 − 1 and (54) has an exponential dichotomy with rates ηs,u > 0, then (58)

is satisfied, and hence Eu(t) = Trt (Kt ) for each t > 0.

Remark 6.6. When n = 2 there is no α that satisfies this condition. This is not a shortcoming of the method of proof, 
but rather indicates a fundamental difference between the cases n = 2 and n > 2. This was seen earlier when studying 
harmonic functions on the plane. As observed above in Remark 2.1, there is no choice of α for which Eu(t) = Trt (Kt ).

6.3. Application to an eigenvalue problem

Finally, we use Corollary 6.5 to give a dynamical interpretation of the eigenvalue problem

−�u + V u = λu (60)

with Dirichlet boundary conditions. To do so we define the Dirichlet subspace

D = {(0, g) : g ∈ H−1/2(∂�)} ⊂H. (61)

The following result is then an immediate consequence of Corollary 6.5.

Corollary 6.7. Assuming the hypotheses of Corollary 6.5, λ is an eigenvalue of the Dirichlet problem (60) on �t if 
and only if the unstable subspace Eu(t) intersects the Dirichlet subspace D nontrivially. Moreover, the geometric 
multiplicity of λ equals dim

(
Eu(t) ∩D

)
.

Other boundary conditions (Neumann, Robin, etc.) can be characterized in a similar way by changing D accord-
ingly; see [28,25] for details.

Our construction thus gives a dynamical perspective on elliptic eigenvalue problems, similar to the Evans function 
[1], which counts intersections between stable and unstable subspaces. (While traditionally developed for problems 
in one spatial dimension, some progress has been made on extending the Evans function to channel domains; see 
[29–33].)

This is also closely related to the Maslov index, a symplectic winding number that counts intersections of La-
grangian subspaces in a symplectic Hilbert space; see [28,25,34,35].
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