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ABSTRACT

Water reservoir operating rules are typically derived based on the assumption of streamflow stationarity,
however, this assumption could be undermined by climate change. Adaptive reservoir operation is one of the
most effective strategies to support water resources management under non-stationarity, yet until now, adaptive
strategies considering non-stationarity across multiple time scales are rarely investigated. We propose an
adaptive reservoir operation framework that incorporates streamflow non-stationarity across time scales
simultaneously. Specifically, we first decompose the streamflow into four frequency categories to detect non-
stationarity features through reservoir operation simulations. Next, we incorporate the non-stationarity infor-
mation from each frequency category into adaptive reservoir operation by using Bayesian Model Averaging. We
apply this framework to reservoir operation of the Grand Ethiopian Renaissance Dam on the Blue Nile River and
evaluate its effectiveness with streamflow simulated from 21 general circulation models (GCMs) for two
greenhouse gases emission scenarios. We find that streamflow non-stationarity from all GCMs varies by future
period and frequency category. The proposed Bayesian adaptive reservoir operation framework can detect
streamflow non-stationarity across all frequency categories and predominantly outperforms conventional
adaptive strategies, especially in terms of firm power output. In general, firm output increases under the Bayesian
framework as the power generation reliability increases. The proposed framework offers a robust approach to
identify adaptive strategies for reservoir operation to address streamflow non-stationarity.

1. Introduction

algorithms, e.g. (Cancelliere et al., 2002; Chaves and Chang, 2008),
genetic programming, e.g. (Ashofteh et al., 2015; Xiong et al., 2019),

Rapid socio-economic development, population growth, and changes
in preferences and consumption patterns continue to propel increasing
global water demand (WWAP, 2019). Concurrently, climate change is
likely to alter water supply availability, given expected changes to the
hydrologic cycle, including precipitation, temperature, and streamflow,
challenging water resources management (Allen and Ingram, 2002;
Gosling and Arnell, 2016; Milly et al., 2005; Poff et al., 2016). Surface-
water reservoirs are effective infrastructure means to reallocate water
resources spatially and temporally to address sectoral conflicts between
agriculture, power generation, water supply, tourism, etc. (Gaudard
et al., 2014), however as stressors on water demand and supply accel-
erate, novel methods to improve reservoir management and efficiency
are becoming increasingly valuable (Giuliani et al., 2016; Gleick, 2003).

In recent decades, strategies to improve reservoir operations have
been widely investigated, including those based on neural networks
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adaptive neural fuzzy inference systems, e.g. (Soltani et al., 2010), de-
cision tree algorithms, e.g. (Herman and Giuliani, 2018; Yang et al.,
2016), and others. Although these methods have demonstrated
improved effectiveness and efficiency in reservoir operations, they are
traditionally applied based on the assumption of future hydrologic sta-
tionarity. Given expected future large-scale changes to the global
climate system (Culley et al., 2016; Milly et al., 2008), statistical prop-
erties (e.g., expected value, variance, and coefficient of variation) of
hydrologic variables could change with time and be a deterministic
function of time (described as non-stationarity (Koutsoyiannis and
Montanari, 2015)) and this assumption could be problematic. Because of
hydrologic non-stationarity, the statistical properties of reservoir inflow
in the future could be different from historical levels. In this way, the
reservoir operating rules optimized from observed streamflow data may
not be suitable for reservoir decision-making in the future.
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To address this, adaptive reservoir operation models have been
developed, modified and applied to assess the impacts of climate change
and support long-term reservoir operation strategies (Ahmadi et al.,
2015; Block and Strzepek, 2010; Borgomeo et al., 2014; Brown et al.,
2015; Chang et al., 2018; Culley et al., 2016; Ehsani et al., 2017; Herman
et al., 2015; Jeuland and Whittington, 2014; Maier et al., 2016;
Steinschneider and Brown, 2012; Walsh et al., 2016; Xu et al., 2014). For
example, Xu et al. (2014) propose reservoir hedging rules adaptive to
non-stationary inflow conditions based on an autoregressive integrated
moving average model. Borgomeo et al. (2014) develop a risk-based
decision-making framework for long-term reservoir operations under
climate change by incorporating non-stationary probabilistic climate
projections obtained from a stochastic weather generator. Ahmadi et al.
(2015) simulate reservoir inflows based on hydrologic conditions from
global general circulation models to derive reservoir operating rules for
power generation under climate change. Culley et al. (2016) design
reservoir operating rules adaptive to climate change by using a bottom-
up approach (Brown et al., 2012) and evaluate the upper limit of
adaptive capacity in reservoir operations. The adaptive reservoir oper-
ation framework here is also noted as “dynamic planning” or “dynamic
adaptive plan” in some literatures (Haasnoot et al., 2013; Herman et al.,
2019).

In adaptive framework, detection-based and simulation-based ap-
proaches are typically used to overcome the hydrologic non-stationarity
and improve the adaptivity of reservoir operating rules. Detection-based
approaches first determine the presence of non-stationarity (e.g. by
analyzing historical streamflow directly or detecting trends in the im-
pacts of thermodynamic climate change, such as snowpack decline
(Ceres et al., 2017) and sea level rise (Thorarinsdottir et al., 2017)), and
subsequently generate synthetic streamflow considering detected non-
stationarity features (such as a trend) in historical streamflow to
derive reservoir operating rules (Xu et al., 2014). Recently, signposts or
triggers for non-stationarity detection have been investigated to deter-
mine “when to adapt” in water resources operation and planning
(Fletcher et al., 2019; Raso et al., 2019; Robinson and Herman, 2019).
Simulation-based approaches do not rely on non-stationarity detection
but rather determine reservoir operating rules based on streamflow
simulated from future climate projections (Chang et al., 2018; Culley
et al., 2016; Haasnoot et al., 2013; Ngo et al., 2018). For example, the
representative concentration pathways (RCPs) developed in the fifth
assessment report of the Intergovernmental Panel on Climate Change
(IPCC) (Taylor et al., 2012) have been used to project climate scenarios.
Subsequently, streamflow simulated from the climate scenarios (of
precipitation, temperature, etc.) using a hydrological model is used to
derive reservoir operating rules.

For both approaches, reservoir operating rules are derived from
synthetic or projected streamflow time series directly and only the
impact of possible streamflow non-stationarity at specific time scale is
considered (e.g., the reservoir operating rules derived from monthly
projected streamflow data typically only consider non-stationarity at a
monthly scale). However, changes in climate may cause changes in
streamflow variability at different time-scale (Katz and Brown, 1992),
potentially affecting reservoir operations uniquely. For example, long-
term variability (low-frequency information) in streamflow typically
has less impact than short-term variability (high-frequency information)
on reservoir operations for flood control (Herman and Giuliani, 2018).
Also, both the degree and the source of non-stationarity in streamflow
can vary at multiple timescales, which indicates that the adaptive
reservoir operating rules considering the impact of multiple timescale
non-stationarity need to be dynamic. For example, a dynamic reservoir
operation strategy based on rolling decision procedure (i.e., recalibrat-
ing reservoir operating rules every 5-10 years) (Xu et al., 2014) can be
used to enhance the robustness to streamflow non-stationarity (Yang
and Ng, 2017).

In recent years, model merging techniques such as Bayesian Model
Averaging (BMA), which have been widely applied in hydrologic
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predictions (Diks and Vrugt, 2010; Duan et al., 2007; Huang et al., 2019;
Rathinasamy et al., 2013; Zhang et al., 2009), are also used in reservoir
operations (Koppa et al., 2019; Yang et al., 2020; Zhang et al., 2015).
The BMA method is able to provide less risky inferences or estimations
(Hoeting et al., 1999) by combining multiple models, which can be also
used to improve reservoir decision making. For example, Zhang et al.
(2015) combine three individual reservoir operation models with BMA
and find this method can reduce the uncertainty of reservoir operating
rules. To consider streamflow non-stationarity at multiple time scales
simultaneously in reservoir decision-making, we develop a Bayesian-
based adaptive reservoir operation framework using the BMA method.
Specifically, we (1) decompose streamflow time series into multiple
frequency categories (e.g., high, median, and low frequency informa-
tion, representing seasonal, annual, and multi-year streamflow vari-
ability, respectively), (2) evaluate their impacts on the robustness of
reservoir operating rules (to recognize the sources of non-stationarity
related to reservoir operation, e.g., if the median frequency informa-
tion has the greatest impact, the non-stationarity at annual scale is
assumed most significant), and (3) merge the impacts of non-stationarity
of different frequency categories into reservoir decision making using
Bayesian Model Averaging.

We select the Grand Ethiopian Renaissance Dam (GERD) on the Blue
Nile River in Ethiopia to demonstrate the framework and provide
quantitative analysis. As in simulation-based approaches, we simulate
GERD reservoir inflow series in the future from Global Climate Models
(GCMs) under a suite of representative concentration pathways devel-
oped in the fifth assessment report of IPCC (Taylor et al., 2012) to
evaluate the performance of our adaptive reservoir operation frame-
work. It is worth noting that we are not using the simulated streamflow
to provide “accurate” projections of future conditions at GERD, but to
enhance the understanding of GERD reservoir operation under non-
stationary conditions.

This work contributes to an improved understanding of how possible
non-stationarity in streamflow may affect conventional water resources
operations and provides a creative way to detect the impacts of non-
stationarity on reservoir operations and modify existing reservoir
operating rules.

2. Study area and data
2.1. The Blue Nile basin and the Grand Ethiopian Renaissance Dam

The Blue Nile River, the most significant tributary of the Nile River,
originates at Tana Lake in Ethiopia and merges with the White Nile River
in Khartoum, Sudan. Average annual rainfall in the upper part of the
basin varies between 1200 and 1800 mm (Conway, 2000), with a
dominant rainy season in June-September contributing approximately
70% of mean annual precipitation. During this season, the Blue Nile
supplies nearly 80% of total Nile River streamflow, on average, vital to
livelihood and development in Ethiopia, Sudan and Egypt.

The GERD, situated on the Blue Nile River in western Ethiopia
approximately 15 km upstream of the Sudanese border and currently
under construction, will become the largest hydroelectric dam in Africa
(King and Block, 2014). When completed, the GERD will have a reser-
voir capacity of 74 billion cubic meters, a rated power capacity of 6,000
MW, and produce an average of 15,130 GWh of electricity annually,
nearly tripling Ethiopia’s current production (Tesfa, 2013). With elec-
tricity demand in Ethiopia projected to grow at a rate of approximately
30% per year (ETHIOPIA: Power Sector Market, 2016) the GERD is
expected to contribute to both Ethiopia’s national energy grid as well as
benefit other countries in the East African power pool (Nile Basin
Initiative, 2012). Ethiopia’s 15-year Growth and Transformation Plan
(National Planning Commission, 2016) outlines a strategy to reach
middle-income country status by 2025; development of the GERD is a
major centerpiece of this plan.
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2.2. Streamflow data and climate change projections

2.2.1. Historical analysis

A daily record of Blue Nile River flow data was obtained for the El
Diem gauging station, located just downstream of the GERD site, and
averaged to monthly flow estimates. As the El Diem record is only
available through 2009 and contains significant gaps, we performed a
hydrological simulation of the Blue Nile basin using the Noah Land
Surface Model (Noah LSM) (Ek et al., 2003) paired with the Hydrolog-
ical Mapping and Analysis Platform (Getirana et al., 2012), imple-
mented with the NASA Land Information System (Kumar et al., 2006), to
supplement the historical record. These simulations were implemented
at a 10 km horizontal resolution for the period 1981-2016 and use
meteorological forcing from the NASA Modern Era Reanalysis for
Research and Applications, version 2 (MERRA-2) (Gelaro et al., 2017),
but with precipitation drawn from the Climate Hazards InfraRed Pre-
cipitation with Stations, version 2 (CHIRPSv2) (Funk et al., 2015)
satellite-informed product. Monthly river flow estimates at the GERD
site were bias corrected conditioned on the overlapping period with the
El Diem gauge record. This record was compared to an independently
collected streamflow record from the GERD site for 1954 to 2003, and
agreement is strong (Nash-Sutcliffe Efficiency (Nash, 1970) of 0.76) for
the common period.

The minimum daily temperature, maximum daily temperature, and
precipitation forcing data used in the Noah LSM simulations—MERRA-2
temperature and CHIRPSv2 precipitation—were extracted as basin-wide
monthly averages and used to train an artificial neural network (ANN)
model to predict streamflow at the GERD site as a function of precipi-
tation and temperature. The ANN was implemented using the nnetar
function from the “forecast” R package (Hyndman and Khandakar,
2007). It fits a single-hidden-layer feed-forward ANN with lagged inputs
to predict log transformation of GERD streamflow as a function of
meteorological predictors. The model was trained to capture the rela-
tionship between GERD streamflow and different combinations of pre-
dictors including autoregression (timeseries forecasting, no predictors),
precipitation volume for the watershed area, and air temperature. The
model parameters (network size and weight decay) are tuned based on
the ANN results from Badr et al. (2014) and the output from the ANN is
used as the historical streamflow.

2.2.2. Streamflow based on climate change projections

To project future Blue Nile River flow at the GERD site, we applied
the ANN using temperature and precipitation fields extracted from the
NASA Earth Exchange Global Daily Downscaled Projections (NEX-
GDDP; (Thrasher et al., 2013)). The NEX-GDDP meteorological fields are
0.25° resolution gridded fields generated through a bias correction and
statistical disaggregation of selected Global Climate Model (GCM) out-
puts from the 5th Coupled Model Intercomparison Project (CMIP5)
(Taylor et al., 2012). Since NEX-GDDP is bias corrected to a different
meteorological reference from the one used in our study, we performed
an additional simple bias correction to provide consistency with our
historical record. NEX-GDDP includes output for single runs from 21
CMIP5 GCMs (Table 1) for the historical simulations (through 2005) and
for two projections—the high emissions Representative Concentration
Pathway 8.5 (RCP8.5) (Moss et al.,, 2010) and moderate emissions
RCP4.5—for the period 2006-2100. The NEX-GDDP projections for
precipitation and temperature extend beyond the historically observed
range of these variables, as expected under future climate conditions.
The predicted precipitation fields also appear to be unrealistic for some
GCMs, particularly for RCP8.5 in the second half of the 21st century.
This is not uncommon for local to regional scale precipitation pro-
jections in GCMs. As the focus of this paper is to understand reservoir
operation under non-stationary conditions, rather than to present spe-
cific predictions for future GERD observations, we do not perform GCM
selection or weighting to optimize realism of future projections Fig. 1.

Historical data (1954 to 2003) at the GERD site illustrate expected
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Table 1
List of 21 CMIP5 climate models used for analyzing future climate change for
Blue Nile.

D Model
abbreviation

Modeling Centre/Institution

1 ACCESS1-0 Commonwealth Scientific and Industrial Research
Organization (CSIRO) and Bureau of Meteorology (BOM),
Australia

Beijing Climate Center, China Meteorological
Administration, China

College of Global Change and Earth System Science,

Beijing Normal University, China

2 BCC-CSM1-1

3 BNU-ESM

4 CanESM2 Canadian Centre for Climate Modeling and Analysis,
Canada
5 CCsM4 University of Miami — RSMAS, United States

6 CESM1-BGC Community Earth System Model Contributors,
NSF-DOE-NCAR, United States

Centre National de Recherches Météorologiques, France
CSIRO - Queensland Climate Change Centre of Excellence,
Australia

NOAA Geophysical Fluid Dynamics Laboratory, United

7 CNRM-CM5
8 CSIRO-Mk3-6-0

9 GFDL-CM3

10 GFDL-ESM2G States
11 GFDL-ESM2M
12 INM-CM4 Institute for Numerical Mathematics, Russia

13 IPSL-CMSA-LR

14  IPSL-CM5A-MR

15 MIROC5

16  MIROC-ESM

17  MIROC-ESM-
CHEM

18  MPI-ESM-LR

19  MPI-ESM-MR

20  MRI-CGCM3

21 NorESM1-M

Institute Pierre-Simon Laplace, France

Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute, and National
Institute for Environmental Studies, Japan

Max Planck Institute for Meteorology, Germany
Max Planck Institute for Meteorology, Germany
Meteorological Research Institute, Japan
Norwegian Climate Centre, Norway

high reservoir inflows in July to October and comparatively low inflow
in the remaining months (Fig. 2.) Considering climate change scenario
RCP4.5, median reservoir inflow for all 21 GCMs in the future is similar
to historical inflow, especially for June to August, however for scenario
RCP8.5, their difference becomes evident (Fig. 2.) Both scenarios project
higher annual inflow volumes, with the increase mainly occurring dur-
ing the peak flow season. For example, the GCM median of August and
September inflow during 2071-2100 is projected to be almost twice the
historical inflow. Additionally, inflow uncertainty is also highest during
this season, and particularly notable for RCP8.5 (Fig. 2(b).) In this study,
the inflow data simulated from the two RCP scenarios are used in
reservoir operation simulations, which enables examining the adaptivity
of the proposed reservoir operation framework under various stream-
flow patterns.

3. Models and methods
3.1. Reservoir operation model

Hydropower production is the primary purpose of the GERD, with an
objective function as follows:

Max E=Y"" PeAt, P, =ngpQ-H'/1000 )}

where E is the sum of hydroelectricity generation (kW h); P; is the power
generation output in period t (kW); T is the total number of operational
periods and At is the time (h) of a single period (one month); 7 is the
dimensionless hydropower generation efficiency of the turbines (set as
0.85 in this study); g is the gravitational acceleration (m/s); p is the
water density (kg/m>); and Q7 and HP are the reservoir release (m>/s)
and the average power head (m) in period t, respectively.
Physical and operational reservoir constraints are listed as below.

(a) Water balance:



G. Yang et al.

Journal of Hydrology 594 (2021) 125959

34°E 36°E 38°E 40°E 42°E 44°E 46°E 48°E
1 L 1 1 1 1 1 1 (] 1 [ 1 1 1
16°N 16°N
N
15°N= =15°N
14°N— -14°N
13°N— =13°N
12°N= ~12°N
11°N= =11°N
10°N= =10°N
9°N- ~9°N
8°N- ~3°N
7°N= =7°N
3k Elevation (m) ~6°N
|} lligh : 4600
5°N= - =5°N
B Low @ 214
4°N4 e Kilometers ["4°N
0 70 140 280 420 560
T T T T T T T T T T T T T T T T
34°E 36°E 38°E 40°E 42°E 44°E 46°E 48°E
Fig. 1. The Blue Nile basin with Ethiopia country borders and the location of the GERD reservoir.
St =S+ (0" — Q™) -At — EP, @) downstream floods.
where S, and S;,; are reservoir storage (m3) in period t and t + 1, (d) Power generation limits (Tesfa, 2013):
; in i i 3 : : out
respectively, Q" represents reservoir inflow (m>/s) in period t, Q" is PL<P,<PU, 6)

reservoir release (m®/s) in period t, and EP; is the sum of evaporation
and seepage from the reservoir (m®) in period .

(b) Reservoir capacity limits (Jameel, 2014):
The reservoir structural and operational constraints can be
expressed as:

SIS <8 ©)

where S™" and S™ are the minimum and maximum allowable reservoir
storage (m), respectively.

Additionally, S8 and Se™ represent the initial and final reservoir
storage (m®) for simulations, respectively, and are prescribed as:

_ Sbegin t=1
SI - { Send t=T (4)

(c) Reservoir release limits:
The reservoir release constraints are expressed as:

OL<Q<QU, )

where QL, and QU; are the minimum and maximum release (m>/s) in
period t, respectively. The expected guidelines for GERD reservoir water
release are not explicitly available, thus releases are set lower than the
maximum reservoir inflow during the high-flow season to avoid

where PL; and PU, are the minimum and maximum power limits (kW) in
period t, respectively.

3.2. Improved CEEMDAN method

Large-scale ocean-climate phenomena (e.g. the El Nino-Southern
Oscillation, Pacific Decadal Oscillation, and Atlantic Multi-decadal
Oscillation) modulate climate and hydrologic variables, namely pre-
cipitation and streamflow, at unique frequencies and timescales (Det-
tinger et al., 2000; McCabe et al., 2007; Nalley et al., 2016; Nowak et al.,
2012). The influence of such phenomena at varying time-scale is
apparent on Blue Nile streamflow (Eldaw et al., 2003; Taye and Willems,
2012; Zaroug et al., 2014), which can be decomposed into many
nonlinear oscillatory patterns with different frequencies.

Numerous methods, including fast Fourier transform (Cochran et al.,
1967), wavelet transform (Torrence and Compo, 1998), and empirical
mode decomposition (EMD) (Huang et al., 1998; Huang and Wu, 2008;
Wu and Huang, 2004), are available for streamflow decomposition. Of
these three methods, only EMD is not subject to linear and stationary
assumptions (Wu et al., 2007). The process for applying EMD method is
as follows:

Step 1: Select all local maxima and minima and connect them with
two cubic splines as the upper and lower envelops, respectively.
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Step 2: Define the average of the upper and the lower envelops as the
intrinsic mode function (IMF), in which the difference between the
number of maxima or minima and the zero-crossings must be equal
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Fig. 2. Comparison of historical and future’s GERD reservoir inflow for 21 GCMs in scenario (a) RCP4.5 and (b) RCP8.5.

to zero or one.

Step 3: Obtain the residual by finding the difference between the

original signal (streamflow series) I and the IMF.

Step 4: Repeat Steps 1-3 until the envelops are symmetric (with
respect to a zero mean), at which point the streamflow signal is
decomposed into several IMFs and one residual.

To overcome mode mixing issues and redundant IMFs, the EMD is
modified into an ensemble empirical mode decomposition (EEMD) form
(Wu and Huang, 2009). By adding white noise to the original signal, the
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EEMD can avoid IMFs with widely disparate scales and preserve the
physical uniqueness of the decomposition. However, the sum of the
decomposed modes and the final trend from the EEMD will contain re-
sidual noise. To address this and obtain components with less noise, the
improved Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) as proposed by (Colominas et al., 2014) is
applied here for GERD reservoir inflow decomposition. For more details
about EMD, EEMD, and CEEMDAN, please refer to (Wu and Huang,
2004), (Wu and Huang, 2009), and (Colominas et al., 2014)
respectively.

To isolate streamflow frequency information, the streamflow time-
series is decomposed into unique frequency components using the
improved CEEMDAN method (e.g. GCM3: BNU-ESM; Fig. 3), based on a
30-year streamflow series. The frequency of the intrinsic mode functions
(IMF) decreases from sub-annual to long-term trend and are labeled as
IMF 1 to IMF 8. IMF 1 and IMF 2 illustrate sub-seasonal changes while
IMF 3 is annual, explaining inter-annual cycles. IMF 4-7 represent multi-
year to decadal frequencies, and IMF 8 represents the trend of the
streamflow across the 30-year period. IMF 8 is close to the inflow trend
obtained from linear regression (Fig. 3(a)) and IMF 3 has a 12 month
cycle, thus the improved CEEMDAN method may be able to accurately
provide streamflow frequency information at least in terms of trend and
12 month cycles.

The decomposed IMFs are further divided into 4 categories: high-
frequency (sub-annual), medium-frequency (annual), low-frequency
(multi-year to decadal), and trend. To understand the impact of each
frequency category, it is removed, and the streamflow series is recon-
structed based on the remaining IMFs. This is denoted as frequency-
removed streamflow and reservoir operating rules extracted from this
series as frequency-removed rules. Note that frequency-removed stream-
flow still corresponds to normal streamflow volume. Also, the IMF 8 here
is not centered on zero, thus the mean is added back into the streamflow
data after it is removed. The frequency-removed streamflow results for
2021-2050 (e.g. GCM3: BNU-ESM; Fig. 3(b)) show that the high, me-
dium and low frequency categories explain much more of the variance in
streamflow than the trend. By removing one frequency category, the
frequency-removed streamflow will not be affected by the removed
frequency, thus the performance difference between the frequency-
removed rules and the rules derived by streamflow data directly (fre-
quency-complete rules) indicates the impact of the removed frequency on
reservoir operation.

3.3. Reservoir operating rules

3.3.1. RBF-based reservoir operating rules

The radial basis function (RBF) approach which can ensure flexibility
to the structure of the reservoir operating rules and capability to deal
with a large number of input variables (Deisenroth et al., 2013), is
adopted to determine water release decisions. For more applications of
RBF models in reservoir operation see (Giuliani et al., 2015). With this
approach, the reservoir water release decision is defined as:

U
" = wup,(X) t=1,..T 0<wo,<l )
u=1

i € [-L1,b, € (0,1]  (®)

Y X — Cmu :
pu(X,) = exp| — ((1)'"[772)

where U is the number of RBFs, ¢, (-) represents the u RBF and o, is the
weight of the RBF, M is the number of input variables X;, and ¢, and b,
are the M-dimensional center and radius vectors of the u™ RBF,
respectively. Reservoir storage, inflow, and seasonal information z;
(where 7, refers to the position of the current period t within a water
year, e.g., it equals 1 when tis 1(12 x 0 + 1),13(12 x 1 + 1), 25(12 x 2
+ 1) ..., considering that there are 12 periods within a water year) are
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selected as input variables, i.e., X, = (S¢, Q" 7). The number of RBFs s
determined through a sensitivity analysis by increasing the RBFs until
the power generation of optimal solutions do not change significantly;
here, four RBFs are used. Thus M = 3 (three input variables), U = 4 (four
RBFs) and 20 parameters in the RBFs-based reservoir operating rules.

Three types of reservoir operation strategy or rules are discussed here
(Fig. 4.) The “historical-based rules” and “future-based rules” represent
rules extracted from historical and future reservoir inflow by optimizing
the parameters in Egs. (7) and (8) with the inputs of historical and future
streamflow, respectively. Both approaches produce static rules, derived
only once during a specific period. The “future-based rules” approach is
conditioned on perfect future foresight and therefore prescribes opera-
tions leading to optimal power generation in the future; clearly this
represents an upper (unrealistic) bound on performance of the RBF-
based rules. As a compromise, we derive “adaptive operating rules”
based on streamflow data proximal to when decisions are made. For
example, reservoir operating rules extracted from 30-years of stream-
flow (e.g. 2020-2049) are used for the period 2050-2054. The periods
2020-2049 and 2050-2054 in the example are denoted as the extraction
and application periods, respectively. We recalibrate and validate the
rules every 5 ~ 10 years and find that updating the rules at 5-year in-
crements performs best and thus this strategy is used for all adaptive
rules in this study. The comparison of historical-based, adaptive, and
future-based rules in monthly power generation can be found in Ap-
pendix S1 (Fig. S1).

3.3.2. BMA-based reservoir operating rules

Bayesian model averaging (BMA) is a statistical approach to infer a
probabilistic scheme by combining multiple possible competing models
and has been implemented in reservoir operating rules derivations
(Zhang et al., 2015). Suppose there exists K adaptive reservoir operating
rules (Ry, Ry, ..., Rg) from which K different reservoir release strategies
are available at each time period. By using the improved CEEMDAN
method, streamflow data can be decomposed into many IMFs with
varying frequency and classified into several categories (e.g. high, me-
dium and low frequency, and trend). In this study, K is equal to five: Ry
refers to frequency-complete rules derived by streamflow data directly,
and Ry, Rs, R4, and Rs refer to frequency-removed rules derived by
excluding high, medium and low frequency, and trend information,
respectively. More specifically for Ry, R3, R4, and Rs, the associated
category of IMFs (e.g. high frequency for Ry) is removed from the
original streamflow data and the remaining IMFs are summed together
to form a streamflow series without the corresponding (e.g. high fre-
quency) information. As described in Egs. (7) and (8), the rules Ry, Ry,
R3, R4, and Rs share the same structure (and same number of parame-
ters). However, their parameters are optimized based on different types
of streamflow time series (e.g., complete streamflow and streamflow
without high frequency information). In this study, we optimize the
parameters of rules Ry, Ry, Rs, R4, and Rs individually, by using the
Dynamically Dimensioned Search (DDS) evolutionary algorithm (Tolson
and Shoemaker, 2007).

According to the law of total probability, the reservoir release
probability density function is expressed as follows:

K

p(Qour‘Qin) = ZP(Q0L4I|Rk> Qin )p(Rk|Qm ) (9)

k=1

where p(Qout|Rk, Qin ) is the release probability density function based on
rule Ry and streamflow series Q;;. Given the adaptive rule Ry, Qo is the
deterministic function of Qi, (i.e., Qour = fr, (Qin)), thus the p(Qou|Rx,
Qin ) equals one for Qo = fr, (Qin), otherwise it equals zero. p(Rk|Qin ) is
the posterior probability of rule Ry given the streamflow series Qj,
which describes the probability that Ry is suitable to the reservoir
operation with Q;;. The p(Ry|Qin ) is an unknown variable and must be
estimated from the performance of adaptive rule Ry (the better Ry per-
forms with Qi,, the higher the p(Rx|Qix )). The sum of the posterior model
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Fig. 4. Schematic illustration of different types of reservoir operating rules.

probabilities is equal to one (i.e., Zlep(Rk\Qm) = 1), and the
P(Rk|Qin ) can be regarded as a weight wy. The reservoir release is then
the posterior mean of the BMA model values:

K
Qi = ElQou O] =D fi (Qin)wi (10)
k=1

where fg, (Qin) refers to the water release obtained from rule Ry.

By comparing the reservoir operation performance of rules Ry (k =
2,3,4,5) with Ry during the application period, the impact of the fre-
quency (high, medium and low) and trend information can be evaluated.
The value of the frequency information Fi on reservoir operations during
the period T; ~ T3 (AT = T, —T3) in this study is defined as:

T

Value(Fi, AT) = > [P(Q",R,) — P(Q!".R,) |

=T,

k=23, K an

where P() is the function to calculate power generation. Given a reser-
voir state, both the average power head H? and reservoir release Qf in
Eq. (1) can be calculated from reservoir inflow Qﬁ" and rules Ry to get the
power generation P(Q", Ry).

In most cases, frequency-complete rules R; can capture the main
features of frequency information in future streamflow and the
Value(Fy, AT) is generally positive. However, if the k™ frequency signal
is strong and changes significantly from the extraction to the application
periods, then the rules derived from the extraction period with that kth
frequency signal will perform poorly in the application period. For the
rules extraction with that signal removed, it will do better in the
application period and the Value(F, AT)can be negative. In this case, the
R; will be misleading and the weight applied to the rules extracted
without the categorical frequency information should be increased.

To detect and mitigate the non-stationarity associated with different
frequency information, the BMA model is extended to a dynamic model
by updating the weight wy based on the value of frequency information
through Egs. (12) and (13). Because Ry is obtained from the streamflow

. . . k
during the extraction period Qj,,

the more similar streamflow during
application period Qi is to Q{.‘n, the higher the wi. Thus wy here also
reflects the degree of non-stationarity in streamflow between Q¥, and

Qin-

0 Rank(Value(th - I)Walues) - 1+ (-1
o 05(K — 1)K Wk

k=1,2,...K 12)

o __ W
W ==k (13)
Zk:lzk)

where w}(ﬁ is the weight applied to releases at stage j, Rank(Value(Fy,j —
1)|Values ) is the descending rank of the frequency information value
Value(Fy,j — 1) among all ensemble members (K members in total).
More specifically, the Rank(Value(Fy,j — 1)|Values ) will be 1 (K) for the
greatest (least) information value as defined in Eq. (11).

In this study, the weight is updated annually according to the per-
formance of BMA-based rules. Considering that the weights are updated
much more frequently than the parameters of reservoir operating rules,
BMA model parameters and RBF-based rule parameters are not opti-
mized simultaneously. Initially, the weight of R; is equal to one, (i.e.,

)

frequency-complete rules are fully trusted, w(lo is set to one while

w,(co) (k=2,3,...,K) is set to zero). Then wY is updated according to
Value(Fy,X); a lower Value(Fy,X) will lead to a higher weight on the
rules extracted without the frequency information Fy. In this way, the
P(Rk|Qin ) in Eq. (9) can be estimated from the performance of reservoir
operating rules Ry (k = 1,2,3,4,5). Because the frequency-complete rules
R; are effective in most cases, additional weight w, is added for each
update of ZY) in the Eq. (12) as:

) _ Rank(Value(F,,j— 1)|Values ) — 1
a = 05K — 1)K

+wi ™ £, 14)

where w, ranges from 0 to 1 and is determined from the validation of the
BMA-based rules at stage j — 1 for maximum power generation. More
specifically, increasing w, from 0 to 1 (e.g., 0, 0.1, 0.2,...,1) and vali-
dating the performance of BMA-based rules at stage j — 1, the w, values
that produce the greatest power generation are selected for the stage j
(Fig. 5).
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Fig. 5. Procedure of the BMA-based reservoir operating rules derivation.

4. Results and discussion

4.1. Impacts of streamflow frequency information on adaptive reservoir
operations

To evaluate the impact of streamflow frequency information on
adaptive reservoir operations, the frequency-removed rules are applied
across 2020-2100 for each category and GCM, independently, and
compared against frequency-complete rules (Fig. 6.) The power gener-
ation output brought from all types of frequency information (which is
calculated by subtracting the output of frequency-removed rules with
the output of frequency-complete rules) is predominantly greater than
zero, implying that including all types of frequency information has a
beneficial impact on power generation on average (Fig. 6.). Addition-
ally, the output of frequency-removed rules (Py,f) is occasionally greater
than the output of frequency-complete rules (Ppq.m). More specifically,
Pyvof > Prorm Occurs for 32%, 43%, 38%, and 48% (25%, 36%, 35%, and
44%) of operational periods (years) for high, medium, low frequency
and trend -removed rules, respectively, under scenario RCP4.5 (RCP8.5)
(see bottom Fig. 6). Thus trend information leads to the highest per-
centage of periods with Py > Pporm, Which indicates that the trend
information is more likely to be non-stationary than other frequency
categories.

The average of frequency information value (Value(Fi,AT) in Eq.
(11), the difference between power generation of frequency-removed
rules and frequency complete rules) across all GCMs (lines in Fig. 7)
and the rank of frequency information value (bars in Fig. 7) indicate that
high frequency information typically contributes the most to power
output whereas the trend provides the least (i.e., the sub-seasonal
variability (short-term variability) in streamflow has greater impact
than the trend (long-term variability) on reservoir operation, which is
consistent with the findings from Herman and Giuliani (2018)); the
medium and low frequency information, although contributing less than
the high frequency, are still appreciable. More specifically, high-
frequency-removed rules produce approximately 120 MW, 200 MW,
and 180 MW power output more than frequency-complete rules during
the periods 2011-2040, 2041-2070, and 2071-2100, respectively for
RCP4.5, (140 MW, 240 MW, and 290 MW, respectively, for RCP8.5).
Except for 2071-2100 under scenario RCP8.5, low frequency informa-
tion contributes more to power output than the medium frequency in-
formation on average. For example, medium frequency contributes 157

MW and 124 MW (surpassing 130 MW and 100 MW from low frequency
information) annually during 2020 ~ 2100 for GCM3 and GCM15,
respectively, under scenario RCP4.5. The reason is that the medium
frequency information has been partially included in the RBF-based
rules (in Egs. (7) and (8)) in which the input variable 7, (the position
of the current period t within a water year) shares the same (annual)
cycle as the medium frequency.

The lack of frequency information clearly affects how the adaptive
reservoir operating rules are constructed. When a certain frequency is
removed from the streamflow series during rules extraction, the derived
reservoir operating rules will fail to appropriately adapt to future
streamflow when this feature (frequency) is influential for reservoir
decision-making. However, if the frequency-removed rules perform
better than the frequency-complete rules (Pyof > Pporm) in the applica-
tion period (Table 2), it can be inferred that non-stationarity exists
(streamflow in the rules extraction period is not consistent with that in
the rules application period) for the removed frequency. It is worth
noting that not all situations with Pyof > Pporm in Table 2 indicate
streamflow non-stationarity; instead, Pyof > Pporm during some times
could be caused by noise, especially when Py and Py are close to
each other (e.g., the median frequency for GCM21 under scenario
RCP4.5 during 2071-2100, Table 2). But the more frequently Py,¢ >
Phorm Occurs, the more likely streamflow non-stationarity exists. It can
be inferred that streamflow non-stationarity is significant when
considering the trend category, specifically for 12 GCMs during 2011 ~
2040 under scenario RCP4.5 (Table 2.) Removing streamflow informa-
tion at appropriate frequencies (e.g. when Pyof > Pporm) could possibly
improve adaptive reservoir operations.

4.2. BMA-based adaptive reservoir operating rules

4.2.1. Non-stationarity and adaptive reservoir operating rules

Given the apparent non-stationarity in streamflow, specified by
period, GCM, and frequency category (Table 2), future reservoir oper-
ations will likely benefit if the non-stationarity is detected and consid-
ered in the rules extraction stage. Detection, however, is challenging,
given that future streamflow is unknown and the non-stationarity
characteristics may change throughout the reservoir operation period.
Thus, it is assumed that the probability of non-stationarity occurrence in
the future is related with that in the past. More specifically, if streamflow
non-stationarity at one frequency is detected in the past, it can be
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Table 2
Monthly mean power output (MW) based on Pom — Puwof; in parentheses, percent of years Pyof > Pporm for different periods under RCP4.5 and RCP 8.5.
Scenarios Time periods GCMs High frequency Medium frequency Low frequency Trend
RCP4.5 2011-2040 GCM1 —91(53%) —84(53%) —102(63%) —47(57%)
GCM2 —27(50%) 47(33%) —46(63%) 14(40%)
GCM3 340(13%) 9(43%) 68(47%) —19(57%)
GCM4 263(20%) 25(37%) 140(20%) —15(47%)
GCM7 101(40%) 2(50%) 20(37%) —8(30%)
GCM9 122(40%) 19(43%) 61(37%) —6(53%)
GCM10 —11(53%) —29(60%) —42(47%) 15(43%)
GCM11 402(10%) 47(57%) 121(33%) —10(63%)
GCM13 —40(53%) —29(60%) —46(57%) —36(60%)
GCM15 101(33%) 47(37%) 70(30%) —22(40%)
GCM16 84(50%) 34(60%) 23(53%) —11(57%)
GCM19 148(33%) 22(47%) 8(40%) —24(50%)
GCM20 31(43%) 14(50%) 32(43%) —10(53%)
GCM21 60(43%) —2(53%) 42(43%) —4(50%)
2041-2070 GCMS8 150(30%) 32(47%) 47(47%) —17(60%)
GCM9 42(53%) 6(50%) —10(47%) —5(50%)
GCM11 221(37%) 53(47%) 102(43%) —2(57%)
GCM12 20(53%) 72(37%) —18(43%) 58(33%)
GCM17 85(37%) 26(50%) —28(53%) 18(47%)
GCM20 74(50%) —53(70%) —11(60%) —69(70%)
2071-2100 GCM2 68(40%) —10(57%) 48(43%) 4(60%)
GCM4 168(37%) 27(40%) 58(33%) —2(50%)
GCM6 182(27%) 30(50%) 38(40%) —25(57%)
GCM8 97(53%) —7(53%) 123(43%) 44(50%)
GCM11 189(40%) 20(57%) 93(40%) —10(57%)
GCM14 29(43%) —36(50%) —10(40%) —15(50%)
GCM20 11(47%) —36(57%) 57(53%) —27(53%)
GCM21 158(30%) —5(43%) 96(40%) 13(47%)
RCP8.5 2011-2040 GCM1 —99(57%) —6(47%) —4(40%) —66(53%)
GCM4 257(20%) 79(37%) 78(37%) —25(33%)
GCM5 62(37%) 28(43%) 24(50%) —40(50%)
GCM8 —70(53%) —8(53%) 60(40%) 20(50%)
GCM10 195(37%) —39(53%) —4(37%) —49(50%)
GCM13 114(33%) 70(40%) 82(37%) —40(63%)
GCM14 150(47%) 36(57%) 75(40%) —15(47%)
2041-2070 GCM7 26(40%) 9(60%) —13(47%) —38(60%)
GCMS8 148(33%) —21(53%) 20(47%) -32(47%)
GCM10 251(27%) 84(37%) 201(27%) —36(60%)
GCM16 141(40%) —10(47%) 43(37%) —8(53%)
GCM17 53(47%) 76(50%) -32(57%) 91(43%)
GCM20 208(30%) 51(57%) 139(40%) —10(53%)
2071-2100 GCM2 83(33%) 76(50%) —7(63%) —35(63%)
GCM4 144(20%) 107(30%) 65(30%) —1(43%)
GCMS8 74(43%) 44(43%) 2(40%) —20(47%)
GCM12 236(23%) 61(40%) 40(50%) —16(53%)

assumed to exist similarly in the future.

After detection of possible streamflow non-stationarity (Eq. (11)),
water release decision weights for the different rules are updated (Eqgs.
(12) and (13); (Fig. 8)). The weight of frequency-complete rules fluc-
tuates with the time, but it is always greater than the weight of
frequency-removed rules. Also, trend-removed rules receive the largest
weight for most GCMs in comparison to other frequency-removed rules,
indicating that streamflow non-stationarity is likely most significant for
the trend category (consistent with the findings in Fig. 6 and Table 2). By
updating the weight w,g) and merging the water releases obtained from
different types of rules through Eq. (10), the BMA-based rules incorpo-
rate non-stationarity from different frequency categories into reservoir
decision making in a dynamic way.

The cumulative mean power output from the BMA-based rules is
compared with normal rules (frequency-complete rules) (Fig. 8.) Except
for GCM3, 12, 16, and 19 under scenario RCP4.5 and GCM3, 9, 12, 15,
18, and 21 under scenario RCP8.5, the BMA-based outcomes are equal to
or superior to outcomes utilizing normal rules. More specifically, the
increase in power output through 2100 from the BMA-based rules is
greater than 10,000 MW-month (7.3 GW-h) for GCM1, 2, 8, 10, 11, 13,
and 20 under RCP4.5, and greater than 20,000 MW-month (14.6 GW-h)
for GCM8 and GCM10 under RCP8.5. This increase in power generation
cannot necessarily be generalized, as different frequency-removed

12

categories contribute uniquely by GCM, which can be inferred from the
weights of different types of reservoir operating rules in Fig. 8. For
example, the increase in cumulative output during 2020 ~ 2030 for
GCM2 under RCP4.5 is mainly supplied by the high frequency-removed
and low frequency-removed rules, whereas increases during 2040 ~
2050 for GCM8 under RCP4.5 is attributable to the trend-removed and
medium frequency-removed rules, respectively (Fig. 8(a).) In some cases
(e.g., GCM 15 under RCP8.5), BMA-based rules produce less overall
power than normal rules (Fig. 8(b)), implying that non-stationarity is
minimally evident throughout the period (the weight of normal adaptive
rules has its highest value and does not change during 2025 ~ 2100),
and BMA-based rules could be inferior to normal rule.

The performance of BMA-based rules is further investigated by
analyzing changes in monthly mean output (Fig. 9.) Generally, power
generation based on the high frequency-removed rules illustrates the
largest (negative) difference with normal adaptive rules; trend-removed
rules illustrate the least (closest to zero.) Since normal adaptive rules
have their parameters updated every 5 years in this case study, the
streamflow trend becomes mostly insignificant and thus has no
measurable impact on power generation. Although the BMA-based rules
predominantly perform better than or similar to normal rules in cumu-
lative or mean output, the improvement is limited (and BMA-based rules
may be even inferior to normal rules in some cases). The reason is that
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normal adaptive rules have partially considered possible non-
stationarity (especially based on trend information) by recalibrating
the parameters every 5 years.

4.2.2. Performance of BMA-based rules in firm output

In addition to considering maximum power generation, the BMA-
based rules are also evaluated for their ability to improve firm power
generation for various reliability levels (Fig. 10.) Reliability is condi-
tioned on each GCM time-series individually; a 95% reliability implies
that a power output threshold is met or exceeded in 95% of the months
during the given period for that GCM. In general, BMA-based rules

improve firm output across most GCMs and reliability levels, with the
largest increase in firm output (for reliability of 95%) during 2011 ~
2100 (greater than350 MW [105%] per month for RCP4.5 and 450 MW
[180%] per month for RCP8.5; Fig. 10). Considering RCP8.5 only, the
BMA-based model is superior in nearly all cases. Thus the BMA-based
rules obtain an advantage over normal adaptive rules mainly in terms
of firm output (instead of total or mean output).

As shown in Fig. 9(b), BMA-based rules could perform worse than
normal rules in terms of mean output during 2011 ~ 2020 for some
GCMs (such as GCM18 in scenario RCP8.5). The comparison between
the BMA-based and normal rules in density distribution and boxplot of
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“HFr”,

“MFr”, “LFr”, and “TRr” denote the reservoir operating rules extracted with high-frequency removed, medium-frequency removed, low-frequency removed,

and trend removed streamflow, respectively; “BMA” denotes the BMA-based adaptive reservoir operating rules.

monthly output during 2011 ~ 2020 under GCM18 in scenario RCP8.5
(Fig. 11(b) and (d)) (BMA-based model results in lower mean output
than the model conditioned on normal rules) illustrates that BMA-based
rules tend to increase low-level (<3000 MW) outputs and the increment
mainly occurs in June, July, and August. Comparing the case when the
BMA-based model results in higher mean output than the model using
normal rules (Fig. 11(a) and (c)) also illustrates the advantage of BMA-
based rules in obtaining greater power generation when the output is
lower than 2000 MW. This occurs because the BMA-based rules can
avoid extremely high or low releases (in mistake) by averaging releases
from normal (frequency-complete) and frequency-removed rules. Thus
the BMA-based rules can avoid extremely low output and obtain more
consistent outputs than normal rules (see the density distribution of
monthly output in Fig. 11(a)).

Averaging across all GCMs, the BMA-based rules produce more firm
power output than normal adaptive reservoir operating rules for all
levels of reliability (from 80% to 100%) (Table 3.) For example, the
percentage increase in firm power output of BMA-based rules during
2011 ~ 2100 ranges from 3.9% to 69.1% and 5.4% to 129.4% for
RCP4.5 and RCP8.5, respectively. Additionally, the percentage increase
in firm output increases as the reliability increases, to over 35% and 50%
during all time periods for RCP4.5 and RCP8.5, respectively, when the
reliability is close to 100%. This advantage in firm output is particularly
significant when considering demand for high power generation reli-
ability, which can be crucial in the manufacturing sector (Allcott et al.,
2016), and may lead to economic benefits now and into the future.

5. Conclusions

Adaptive reservoir operating rules generally outperform static or
historical-based rules in water resources management under non-
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stationary conditions. However, conventional adaptive rules do not
consider potential non-stationarity at multiple time scales, which is
rarely investigated. This study illustrates a strategy to incorporate
streamflow non-stationarity information for different time scales
simultaneously into adaptive reservoir operating rules and potential
value over conventional (normal) adaptive rules.

To detect the streamflow non-stationarity at different time scales,
streamflow time series are decomposed into different frequency cate-
gories and their impacts on reservoir operation is evaluated. Subse-
quently, the non-stationarity information of different frequency
categories is incorporated into adaptive reservoir operating rules using a
BMA method. The performance of the Bayesian adaptive reservoir
operation framework is evaluated for the GERD reservoir operation in
Ethiopia using monthly streamflow simulated from 21 GCMs under
scenarios RCP4.5 and RCP8.5. High, medium, low, and trend informa-
tion extracted from the streamflow time series is shown to affect GERD
reservoir operations diversely. Recognizing streamflow non-stationarity
at different frequencies and removing it from the original streamflow
time series can improve adaptive reservoir operations.

Overall, high frequency (sub-seasonal) information has the greatest
impact on power generation, while the most significant non-stationarity
in streamflow is associated with the trend information for adaptive
GERD reservoir operation. Additionally, the Bayesian adaptive frame-
work can recognize streamflow non-stationarity at different frequency
categories and mitigate its impacts on normal adaptive reservoir oper-
ating rules. Thus, the Bayesian adaptive rules predominantly outperform
normal adaptive rules considering power generation, especially in terms
of firm power output. In general, firm output increases under the
Bayesian framework as the power generation reliability increases; this
implies that the Bayesian adaptive rules are preferable when high power
generation reliability is required. Although the Bayesian adaptive rules
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Fig. 10. Firm output increment by using BMA-based rules over normal rules for 21 GCMs in scenario (a) RCP4.5 and (b) RCP8.5. Reliability is conditioned on each
GCM time-series individually; a 95% reliability implies that a power output threshold is met or exceeded in 95% of the months during the given period for that GCM.

can outperform conventional adaptive rules in terms of total power
generation and firm power output simultaneously for some GCMs (such
as GCM10 under RCP4.5 and GCMS8 under RCP8.5), overall the Bayesian
adaptive rules do not consistently provide superior performance.

Given that streamflow non-stationarity may be attributed to many
factors (e.g. emission of greenhouse gases, changes in catchment char-
acteristics) it is challenging to accurately identify all non-stationary
components and incorporate them into water resources management.
The findings in this paper not only illustrate the effectiveness of the
proposed Bayesian adaptive framework but also reveal the possibility of
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tackling adaptive water resources operation problems in the future from
the perspective of time and frequency domains. In that way, the non-
stationary features in streamflow at multiple time scales can be recog-
nized with the support of time-frequency analysis and incorporated into
water resources decision making. Future research efforts could focus on
expanding and improving non-stationarity source detection and
considering broader envelops of uncertainty (e.g., future water demand)
in reservoir operation.



G. Yang et al.

GCM8-RCP8.5

T

[—INormal
[—1BMA-based| |

Probability density

0 1000 2000 3000 4000 5000 6000

Mean output (MW)
(a)
GCM8-RCP8.5
6000 F— T T T T T T B T T .
——Median Yo
+ Average Lo
25%-75% !
5000 | ——10%-90% e I . 1
| "
- b ro
Z 4000} Vo DT |
g | L
& ‘ + .
g3000- L N + ! : - i
- - !
g : - LT — 4|+ : E LT
2 T - [ | B | !
S2000F 400 T L _+l LA
L T T — ™ ([
(8 PR e o B B 8
1000} L IET R A A e - — HinaE S e (|
L L i i S Q! L [
2+ e N -+ B LT + L .

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec
Month

(©

Journal of Hydrology 594 (2021) 125959

<10 GCM18-RCP8.5
3.5 T T T T T T T
[——INormal
3+ [—1BMA-based ||
25 4

Probability density
- [N)

o

1.5 L L L L L " n
0 1000 2000 3000 4000 5000 6000 7000
Mean output (MW)
(b)
GCM18-RCP8.5
s000f————————————————————————
——Median . T
+ Average o
25%-75%
5000 || —10%-90% D ;
Do
L -
3 T[T T
z4000-.r o - LT
— VoL
= g s Celr
£3000} __ L T s s L
E T LT el i
1 -
£ L T T o [
i M
= 2000 AL R —;—( Ll | 1‘ : e
oo el 2oL T L-L !
+ L g ! _:_ L - < 1 o <L
1000 | R LS N ]

0 1 1 1 1 1 1 1 1 1 1 1 1
Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec
Month

(d)
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legend, the reader is referred to the web version of this article.)

Table 3
Firm output increase (and percentage increase) of BMA-based rules (MW).

Scenarios  Reliability =~ Time periods (year)
2011 ~ 2041 ~ 2071 ~ 2011 ~
2040 2070 2100 2100
RCP4.5 80% 77 (9.5%) 25 (2.2%) 54 (5.1%) 39 (3.9%)
85% 96 48 (4.8%) 72 (7.6%) 51 (5.9%)
(14.4%)
90% 105 60 (6.9%) 102 83 (12%)
(20.1%) (13.1%)
95% 95 (27%) 95 93 114
(14.4%) (16.7%) (25.7%)
100% 56 102 112 41 (69.1%)
(50.2%) (37.1%) (66.8%)
RCP8.5 80% 93 82 (6.4%) 53 (3.1%) 63 (5.4%)
(10.4%)
85% 120 78 (6.8%) 69 (4.6%) 87 (8.6%)
(16.1%)
90% 154 103 89 (7.2%) 86 (10.1%)
(28.1%) (10.4%)
95% 142 103 (13%) 201 159
(39.5%) (24.4%) (28.7%)
100% 70 156 164 64
(63.8%) (56.8%) (53.5%) (129.4%)
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