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A B S T R A C T   

Water reservoir operating rules are typically derived based on the assumption of streamflow stationarity, 
however, this assumption could be undermined by climate change. Adaptive reservoir operation is one of the 
most effective strategies to support water resources management under non-stationarity, yet until now, adaptive 
strategies considering non-stationarity across multiple time scales are rarely investigated. We propose an 
adaptive reservoir operation framework that incorporates streamflow non-stationarity across time scales 
simultaneously. Specifically, we first decompose the streamflow into four frequency categories to detect non- 
stationarity features through reservoir operation simulations. Next, we incorporate the non-stationarity infor
mation from each frequency category into adaptive reservoir operation by using Bayesian Model Averaging. We 
apply this framework to reservoir operation of the Grand Ethiopian Renaissance Dam on the Blue Nile River and 
evaluate its effectiveness with streamflow simulated from 21 general circulation models (GCMs) for two 
greenhouse gases emission scenarios. We find that streamflow non-stationarity from all GCMs varies by future 
period and frequency category. The proposed Bayesian adaptive reservoir operation framework can detect 
streamflow non-stationarity across all frequency categories and predominantly outperforms conventional 
adaptive strategies, especially in terms of firm power output. In general, firm output increases under the Bayesian 
framework as the power generation reliability increases. The proposed framework offers a robust approach to 
identify adaptive strategies for reservoir operation to address streamflow non-stationarity.   

1. Introduction 

Rapid socio-economic development, population growth, and changes 
in preferences and consumption patterns continue to propel increasing 
global water demand (WWAP, 2019). Concurrently, climate change is 
likely to alter water supply availability, given expected changes to the 
hydrologic cycle, including precipitation, temperature, and streamflow, 
challenging water resources management (Allen and Ingram, 2002; 
Gosling and Arnell, 2016; Milly et al., 2005; Poff et al., 2016). Surface- 
water reservoirs are effective infrastructure means to reallocate water 
resources spatially and temporally to address sectoral conflicts between 
agriculture, power generation, water supply, tourism, etc. (Gaudard 
et al., 2014), however as stressors on water demand and supply accel
erate, novel methods to improve reservoir management and efficiency 
are becoming increasingly valuable (Giuliani et al., 2016; Gleick, 2003). 

In recent decades, strategies to improve reservoir operations have 
been widely investigated, including those based on neural networks 

algorithms, e.g. (Cancelliere et al., 2002; Chaves and Chang, 2008), 
genetic programming, e.g. (Ashofteh et al., 2015; Xiong et al., 2019), 
adaptive neural fuzzy inference systems, e.g. (Soltani et al., 2010), de
cision tree algorithms, e.g. (Herman and Giuliani, 2018; Yang et al., 
2016), and others. Although these methods have demonstrated 
improved effectiveness and efficiency in reservoir operations, they are 
traditionally applied based on the assumption of future hydrologic sta
tionarity. Given expected future large-scale changes to the global 
climate system (Culley et al., 2016; Milly et al., 2008), statistical prop
erties (e.g., expected value, variance, and coefficient of variation) of 
hydrologic variables could change with time and be a deterministic 
function of time (described as non-stationarity (Koutsoyiannis and 
Montanari, 2015)) and this assumption could be problematic. Because of 
hydrologic non-stationarity, the statistical properties of reservoir inflow 
in the future could be different from historical levels. In this way, the 
reservoir operating rules optimized from observed streamflow data may 
not be suitable for reservoir decision-making in the future. 
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To address this, adaptive reservoir operation models have been 
developed, modified and applied to assess the impacts of climate change 
and support long-term reservoir operation strategies (Ahmadi et al., 
2015; Block and Strzepek, 2010; Borgomeo et al., 2014; Brown et al., 
2015; Chang et al., 2018; Culley et al., 2016; Ehsani et al., 2017; Herman 
et al., 2015; Jeuland and Whittington, 2014; Maier et al., 2016; 
Steinschneider and Brown, 2012; Walsh et al., 2016; Xu et al., 2014). For 
example, Xu et al. (2014) propose reservoir hedging rules adaptive to 
non-stationary inflow conditions based on an autoregressive integrated 
moving average model. Borgomeo et al. (2014) develop a risk-based 
decision-making framework for long-term reservoir operations under 
climate change by incorporating non-stationary probabilistic climate 
projections obtained from a stochastic weather generator. Ahmadi et al. 
(2015) simulate reservoir inflows based on hydrologic conditions from 
global general circulation models to derive reservoir operating rules for 
power generation under climate change. Culley et al. (2016) design 
reservoir operating rules adaptive to climate change by using a bottom- 
up approach (Brown et al., 2012) and evaluate the upper limit of 
adaptive capacity in reservoir operations. The adaptive reservoir oper
ation framework here is also noted as “dynamic planning” or “dynamic 
adaptive plan” in some literatures (Haasnoot et al., 2013; Herman et al., 
2019). 

In adaptive framework, detection-based and simulation-based ap
proaches are typically used to overcome the hydrologic non-stationarity 
and improve the adaptivity of reservoir operating rules. Detection-based 
approaches first determine the presence of non-stationarity (e.g. by 
analyzing historical streamflow directly or detecting trends in the im
pacts of thermodynamic climate change, such as snowpack decline 
(Ceres et al., 2017) and sea level rise (Thorarinsdottir et al., 2017)), and 
subsequently generate synthetic streamflow considering detected non- 
stationarity features (such as a trend) in historical streamflow to 
derive reservoir operating rules (Xu et al., 2014). Recently, signposts or 
triggers for non-stationarity detection have been investigated to deter
mine “when to adapt” in water resources operation and planning 
(Fletcher et al., 2019; Raso et al., 2019; Robinson and Herman, 2019). 
Simulation-based approaches do not rely on non-stationarity detection 
but rather determine reservoir operating rules based on streamflow 
simulated from future climate projections (Chang et al., 2018; Culley 
et al., 2016; Haasnoot et al., 2013; Ngo et al., 2018). For example, the 
representative concentration pathways (RCPs) developed in the fifth 
assessment report of the Intergovernmental Panel on Climate Change 
(IPCC) (Taylor et al., 2012) have been used to project climate scenarios. 
Subsequently, streamflow simulated from the climate scenarios (of 
precipitation, temperature, etc.) using a hydrological model is used to 
derive reservoir operating rules. 

For both approaches, reservoir operating rules are derived from 
synthetic or projected streamflow time series directly and only the 
impact of possible streamflow non-stationarity at specific time scale is 
considered (e.g., the reservoir operating rules derived from monthly 
projected streamflow data typically only consider non-stationarity at a 
monthly scale). However, changes in climate may cause changes in 
streamflow variability at different time-scale (Katz and Brown, 1992), 
potentially affecting reservoir operations uniquely. For example, long- 
term variability (low-frequency information) in streamflow typically 
has less impact than short-term variability (high-frequency information) 
on reservoir operations for flood control (Herman and Giuliani, 2018). 
Also, both the degree and the source of non-stationarity in streamflow 
can vary at multiple timescales, which indicates that the adaptive 
reservoir operating rules considering the impact of multiple timescale 
non-stationarity need to be dynamic. For example, a dynamic reservoir 
operation strategy based on rolling decision procedure (i.e., recalibrat
ing reservoir operating rules every 5–10 years) (Xu et al., 2014) can be 
used to enhance the robustness to streamflow non-stationarity (Yang 
and Ng, 2017). 

In recent years, model merging techniques such as Bayesian Model 
Averaging (BMA), which have been widely applied in hydrologic 

predictions (Diks and Vrugt, 2010; Duan et al., 2007; Huang et al., 2019; 
Rathinasamy et al., 2013; Zhang et al., 2009), are also used in reservoir 
operations (Koppa et al., 2019; Yang et al., 2020; Zhang et al., 2015). 
The BMA method is able to provide less risky inferences or estimations 
(Hoeting et al., 1999) by combining multiple models, which can be also 
used to improve reservoir decision making. For example, Zhang et al. 
(2015) combine three individual reservoir operation models with BMA 
and find this method can reduce the uncertainty of reservoir operating 
rules. To consider streamflow non-stationarity at multiple time scales 
simultaneously in reservoir decision-making, we develop a Bayesian- 
based adaptive reservoir operation framework using the BMA method. 
Specifically, we (1) decompose streamflow time series into multiple 
frequency categories (e.g., high, median, and low frequency informa
tion, representing seasonal, annual, and multi-year streamflow vari
ability, respectively), (2) evaluate their impacts on the robustness of 
reservoir operating rules (to recognize the sources of non-stationarity 
related to reservoir operation, e.g., if the median frequency informa
tion has the greatest impact, the non-stationarity at annual scale is 
assumed most significant), and (3) merge the impacts of non-stationarity 
of different frequency categories into reservoir decision making using 
Bayesian Model Averaging. 

We select the Grand Ethiopian Renaissance Dam (GERD) on the Blue 
Nile River in Ethiopia to demonstrate the framework and provide 
quantitative analysis. As in simulation-based approaches, we simulate 
GERD reservoir inflow series in the future from Global Climate Models 
(GCMs) under a suite of representative concentration pathways devel
oped in the fifth assessment report of IPCC (Taylor et al., 2012) to 
evaluate the performance of our adaptive reservoir operation frame
work. It is worth noting that we are not using the simulated streamflow 
to provide “accurate” projections of future conditions at GERD, but to 
enhance the understanding of GERD reservoir operation under non- 
stationary conditions. 

This work contributes to an improved understanding of how possible 
non-stationarity in streamflow may affect conventional water resources 
operations and provides a creative way to detect the impacts of non- 
stationarity on reservoir operations and modify existing reservoir 
operating rules. 

2. Study area and data 

2.1. The Blue Nile basin and the Grand Ethiopian Renaissance Dam 

The Blue Nile River, the most significant tributary of the Nile River, 
originates at Tana Lake in Ethiopia and merges with the White Nile River 
in Khartoum, Sudan. Average annual rainfall in the upper part of the 
basin varies between 1200 and 1800 mm (Conway, 2000), with a 
dominant rainy season in June–September contributing approximately 
70% of mean annual precipitation. During this season, the Blue Nile 
supplies nearly 80% of total Nile River streamflow, on average, vital to 
livelihood and development in Ethiopia, Sudan and Egypt. 

The GERD, situated on the Blue Nile River in western Ethiopia 
approximately 15 km upstream of the Sudanese border and currently 
under construction, will become the largest hydroelectric dam in Africa 
(King and Block, 2014). When completed, the GERD will have a reser
voir capacity of 74 billion cubic meters, a rated power capacity of 6,000 
MW, and produce an average of 15,130 GWh of electricity annually, 
nearly tripling Ethiopia’s current production (Tesfa, 2013). With elec
tricity demand in Ethiopia projected to grow at a rate of approximately 
30% per year (ETHIOPIA: Power Sector Market, 2016) the GERD is 
expected to contribute to both Ethiopia’s national energy grid as well as 
benefit other countries in the East African power pool (Nile Basin 
Initiative, 2012). Ethiopia’s 15-year Growth and Transformation Plan 
(National Planning Commission, 2016) outlines a strategy to reach 
middle-income country status by 2025; development of the GERD is a 
major centerpiece of this plan. 
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2.2. Streamflow data and climate change projections 

2.2.1. Historical analysis 
A daily record of Blue Nile River flow data was obtained for the El 

Diem gauging station, located just downstream of the GERD site, and 
averaged to monthly flow estimates. As the El Diem record is only 
available through 2009 and contains significant gaps, we performed a 
hydrological simulation of the Blue Nile basin using the Noah Land 
Surface Model (Noah LSM) (Ek et al., 2003) paired with the Hydrolog
ical Mapping and Analysis Platform (Getirana et al., 2012), imple
mented with the NASA Land Information System (Kumar et al., 2006), to 
supplement the historical record. These simulations were implemented 
at a 10 km horizontal resolution for the period 1981–2016 and use 
meteorological forcing from the NASA Modern Era Reanalysis for 
Research and Applications, version 2 (MERRA-2) (Gelaro et al., 2017), 
but with precipitation drawn from the Climate Hazards InfraRed Pre
cipitation with Stations, version 2 (CHIRPSv2) (Funk et al., 2015) 
satellite-informed product. Monthly river flow estimates at the GERD 
site were bias corrected conditioned on the overlapping period with the 
El Diem gauge record. This record was compared to an independently 
collected streamflow record from the GERD site for 1954 to 2003, and 
agreement is strong (Nash-Sutcliffe Efficiency (Nash, 1970) of 0.76) for 
the common period. 

The minimum daily temperature, maximum daily temperature, and 
precipitation forcing data used in the Noah LSM simulations—MERRA-2 
temperature and CHIRPSv2 precipitation—were extracted as basin-wide 
monthly averages and used to train an artificial neural network (ANN) 
model to predict streamflow at the GERD site as a function of precipi
tation and temperature. The ANN was implemented using the nnetar 
function from the “forecast” R package (Hyndman and Khandakar, 
2007). It fits a single-hidden-layer feed-forward ANN with lagged inputs 
to predict log transformation of GERD streamflow as a function of 
meteorological predictors. The model was trained to capture the rela
tionship between GERD streamflow and different combinations of pre
dictors including autoregression (timeseries forecasting, no predictors), 
precipitation volume for the watershed area, and air temperature. The 
model parameters (network size and weight decay) are tuned based on 
the ANN results from Badr et al. (2014) and the output from the ANN is 
used as the historical streamflow. 

2.2.2. Streamflow based on climate change projections 
To project future Blue Nile River flow at the GERD site, we applied 

the ANN using temperature and precipitation fields extracted from the 
NASA Earth Exchange Global Daily Downscaled Projections (NEX- 
GDDP; (Thrasher et al., 2013)). The NEX-GDDP meteorological fields are 
0.25◦ resolution gridded fields generated through a bias correction and 
statistical disaggregation of selected Global Climate Model (GCM) out
puts from the 5th Coupled Model Intercomparison Project (CMIP5) 
(Taylor et al., 2012). Since NEX-GDDP is bias corrected to a different 
meteorological reference from the one used in our study, we performed 
an additional simple bias correction to provide consistency with our 
historical record. NEX-GDDP includes output for single runs from 21 
CMIP5 GCMs (Table 1) for the historical simulations (through 2005) and 
for two projections—the high emissions Representative Concentration 
Pathway 8.5 (RCP8.5) (Moss et al., 2010) and moderate emissions 
RCP4.5—for the period 2006–2100. The NEX-GDDP projections for 
precipitation and temperature extend beyond the historically observed 
range of these variables, as expected under future climate conditions. 
The predicted precipitation fields also appear to be unrealistic for some 
GCMs, particularly for RCP8.5 in the second half of the 21st century. 
This is not uncommon for local to regional scale precipitation pro
jections in GCMs. As the focus of this paper is to understand reservoir 
operation under non-stationary conditions, rather than to present spe
cific predictions for future GERD observations, we do not perform GCM 
selection or weighting to optimize realism of future projections Fig. 1. 

Historical data (1954 to 2003) at the GERD site illustrate expected 

high reservoir inflows in July to October and comparatively low inflow 
in the remaining months (Fig. 2.) Considering climate change scenario 
RCP4.5, median reservoir inflow for all 21 GCMs in the future is similar 
to historical inflow, especially for June to August, however for scenario 
RCP8.5, their difference becomes evident (Fig. 2.) Both scenarios project 
higher annual inflow volumes, with the increase mainly occurring dur
ing the peak flow season. For example, the GCM median of August and 
September inflow during 2071–2100 is projected to be almost twice the 
historical inflow. Additionally, inflow uncertainty is also highest during 
this season, and particularly notable for RCP8.5 (Fig. 2(b).) In this study, 
the inflow data simulated from the two RCP scenarios are used in 
reservoir operation simulations, which enables examining the adaptivity 
of the proposed reservoir operation framework under various stream
flow patterns. 

3. Models and methods 

3.1. Reservoir operation model 

Hydropower production is the primary purpose of the GERD, with an 
objective function as follows: 

Max E =
∑T

t=1
Pt⋅Δt , Pt = η⋅g⋅ρ⋅QP

t ⋅HP
t /1000 (1)  

where E is the sum of hydroelectricity generation (kW h); Pt is the power 
generation output in period t (kW); T is the total number of operational 
periods and Δt is the time (h) of a single period (one month); η is the 
dimensionless hydropower generation efficiency of the turbines (set as 
0.85 in this study); g is the gravitational acceleration (m/s2); ρ is the 
water density (kg/m3); and QP

t and HP
t are the reservoir release (m3/s) 

and the average power head (m) in period t, respectively. 
Physical and operational reservoir constraints are listed as below.  

(a) Water balance: 

Table 1 
List of 21 CMIP5 climate models used for analyzing future climate change for 
Blue Nile.  

ID Model 
abbreviation 

Modeling Centre/Institution 

1 ACCESS1-0 Commonwealth Scientific and Industrial Research 
Organization (CSIRO) and Bureau of Meteorology (BOM), 
Australia 

2 BCC-CSM1-1 Beijing Climate Center, China Meteorological 
Administration, China 

3 BNU-ESM College of Global Change and Earth System Science, 
Beijing Normal University, China 

4 CanESM2 Canadian Centre for Climate Modeling and Analysis, 
Canada 

5 CCSM4 University of Miami – RSMAS, United States 
6 CESM1-BGC Community Earth System Model Contributors, 

NSF–DOE–NCAR, United States 
7 CNRM-CM5 Centre National de Recherches Météorologiques, France 
8 CSIRO-Mk3-6-0 CSIRO - Queensland Climate Change Centre of Excellence, 

Australia 
9 GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, United 

States 10 GFDL-ESM2G 
11 GFDL-ESM2M 
12 INM-CM4 Institute for Numerical Mathematics, Russia 
13 IPSL-CM5A-LR Institute Pierre-Simon Laplace, France 
14 IPSL-CM5A-MR 
15 MIROC5 Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute, and National 
Institute for Environmental Studies, Japan 

16 MIROC-ESM 
17 MIROC-ESM- 

CHEM 
18 MPI-ESM-LR Max Planck Institute for Meteorology, Germany 
19 MPI-ESM-MR Max Planck Institute for Meteorology, Germany 
20 MRI-CGCM3 Meteorological Research Institute, Japan 
21 NorESM1-M Norwegian Climate Centre, Norway  
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St+1 = St +
(
Qin

t − Qout
t

)
⋅Δt−EPt (2)  

where St and St+1 are reservoir storage (m3) in period t and t + 1, 
respectively, Qin

t represents reservoir inflow (m3/s) in period t, Qout
t is 

reservoir release (m3/s) in period t, and EPt is the sum of evaporation 
and seepage from the reservoir (m3) in period t.  

(b) Reservoir capacity limits (Jameel, 2014): 
The reservoir structural and operational constraints can be 

expressed as: 

Smin⩽St⩽Smax (3)  

where Smin and Smax are the minimum and maximum allowable reservoir 
storage (m3), respectively. 

Additionally, Sbegin and Send represent the initial and final reservoir 
storage (m3) for simulations, respectively, and are prescribed as: 

St =

{
Sbegin t = 1
Send t = T

(4)    

(c) Reservoir release limits: 
The reservoir release constraints are expressed as: 

QLt⩽Qout
t ⩽QUt (5)  

where QLt and QUt are the minimum and maximum release (m3/s) in 
period t, respectively. The expected guidelines for GERD reservoir water 
release are not explicitly available, thus releases are set lower than the 
maximum reservoir inflow during the high-flow season to avoid 

downstream floods.  

(d) Power generation limits (Tesfa, 2013): 

PLt⩽Pt⩽PUt (6)  

where PLt and PUt are the minimum and maximum power limits (kW) in 
period t, respectively. 

3.2. Improved CEEMDAN method 

Large-scale ocean-climate phenomena (e.g. the El Niño-Southern 
Oscillation, Pacific Decadal Oscillation, and Atlantic Multi-decadal 
Oscillation) modulate climate and hydrologic variables, namely pre
cipitation and streamflow, at unique frequencies and timescales (Det
tinger et al., 2000; McCabe et al., 2007; Nalley et al., 2016; Nowak et al., 
2012). The influence of such phenomena at varying time-scale is 
apparent on Blue Nile streamflow (Eldaw et al., 2003; Taye and Willems, 
2012; Zaroug et al., 2014), which can be decomposed into many 
nonlinear oscillatory patterns with different frequencies. 

Numerous methods, including fast Fourier transform (Cochran et al., 
1967), wavelet transform (Torrence and Compo, 1998), and empirical 
mode decomposition (EMD) (Huang et al., 1998; Huang and Wu, 2008; 
Wu and Huang, 2004), are available for streamflow decomposition. Of 
these three methods, only EMD is not subject to linear and stationary 
assumptions (Wu et al., 2007). The process for applying EMD method is 
as follows: 

Step 1: Select all local maxima and minima and connect them with 
two cubic splines as the upper and lower envelops, respectively. 

Fig. 1. The Blue Nile basin with Ethiopia country borders and the location of the GERD reservoir.  
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Step 2: Define the average of the upper and the lower envelops as the 
intrinsic mode function (IMF), in which the difference between the 
number of maxima or minima and the zero-crossings must be equal 
to zero or one. 
Step 3: Obtain the residual by finding the difference between the 
original signal (streamflow series) I and the IMF. 

Step 4: Repeat Steps 1–3 until the envelops are symmetric (with 
respect to a zero mean), at which point the streamflow signal is 
decomposed into several IMFs and one residual. 

To overcome mode mixing issues and redundant IMFs, the EMD is 
modified into an ensemble empirical mode decomposition (EEMD) form 
(Wu and Huang, 2009). By adding white noise to the original signal, the 

Fig. 2. Comparison of historical and future’s GERD reservoir inflow for 21 GCMs in scenario (a) RCP4.5 and (b) RCP8.5.  
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EEMD can avoid IMFs with widely disparate scales and preserve the 
physical uniqueness of the decomposition. However, the sum of the 
decomposed modes and the final trend from the EEMD will contain re
sidual noise. To address this and obtain components with less noise, the 
improved Complete Ensemble Empirical Mode Decomposition with 
Adaptive Noise (CEEMDAN) as proposed by (Colominas et al., 2014) is 
applied here for GERD reservoir inflow decomposition. For more details 
about EMD, EEMD, and CEEMDAN, please refer to (Wu and Huang, 
2004), (Wu and Huang, 2009), and (Colominas et al., 2014) 
respectively. 

To isolate streamflow frequency information, the streamflow time- 
series is decomposed into unique frequency components using the 
improved CEEMDAN method (e.g. GCM3: BNU-ESM; Fig. 3), based on a 
30-year streamflow series. The frequency of the intrinsic mode functions 
(IMF) decreases from sub-annual to long-term trend and are labeled as 
IMF 1 to IMF 8. IMF 1 and IMF 2 illustrate sub-seasonal changes while 
IMF 3 is annual, explaining inter-annual cycles. IMF 4–7 represent multi- 
year to decadal frequencies, and IMF 8 represents the trend of the 
streamflow across the 30-year period. IMF 8 is close to the inflow trend 
obtained from linear regression (Fig. 3(a)) and IMF 3 has a 12 month 
cycle, thus the improved CEEMDAN method may be able to accurately 
provide streamflow frequency information at least in terms of trend and 
12 month cycles. 

The decomposed IMFs are further divided into 4 categories: high- 
frequency (sub-annual), medium-frequency (annual), low-frequency 
(multi-year to decadal), and trend. To understand the impact of each 
frequency category, it is removed, and the streamflow series is recon
structed based on the remaining IMFs. This is denoted as frequency- 
removed streamflow and reservoir operating rules extracted from this 
series as frequency-removed rules. Note that frequency-removed stream
flow still corresponds to normal streamflow volume. Also, the IMF 8 here 
is not centered on zero, thus the mean is added back into the streamflow 
data after it is removed. The frequency-removed streamflow results for 
2021–2050 (e.g. GCM3: BNU-ESM; Fig. 3(b)) show that the high, me
dium and low frequency categories explain much more of the variance in 
streamflow than the trend. By removing one frequency category, the 
frequency-removed streamflow will not be affected by the removed 
frequency, thus the performance difference between the frequency- 
removed rules and the rules derived by streamflow data directly (fre
quency-complete rules) indicates the impact of the removed frequency on 
reservoir operation. 

3.3. Reservoir operating rules 

3.3.1. RBF-based reservoir operating rules 
The radial basis function (RBF) approach which can ensure flexibility 

to the structure of the reservoir operating rules and capability to deal 
with a large number of input variables (Deisenroth et al., 2013), is 
adopted to determine water release decisions. For more applications of 
RBF models in reservoir operation see (Giuliani et al., 2015). With this 
approach, the reservoir water release decision is defined as: 

Qout
t =

∑U

u=1
ωuφu(Xt) t = 1, ..., T 0⩽ωu⩽1 (7)  

φu(Xt) = exp

[

−
∑M

m=1

(
(Xt)m − cm,u

)2

b2
u

]

cm,u ∈ [−1, 1], bu ∈ (0, 1] (8)  

where U is the number of RBFs, φu(⋅) represents the uth RBF and ωu is the 
weight of the RBF, M is the number of input variables Xt, and cu and bu 

are the M-dimensional center and radius vectors of the uth RBF, 
respectively. Reservoir storage, inflow, and seasonal information τt 
(where τt refers to the position of the current period t within a water 
year, e.g., it equals 1 when t is 1(12 × 0 + 1), 13(12 × 1 + 1), 25(12 × 2 
+ 1) …, considering that there are 12 periods within a water year) are 

selected as input variables, i.e., Xt =
(
St ,Qin

t , τt
)
. The number of RBFs is 

determined through a sensitivity analysis by increasing the RBFs until 
the power generation of optimal solutions do not change significantly; 
here, four RBFs are used. Thus M = 3 (three input variables), U = 4 (four 
RBFs) and 20 parameters in the RBFs-based reservoir operating rules. 

Three types of reservoir operation strategy or rules are discussed here 
(Fig. 4.) The “historical-based rules” and “future-based rules” represent 
rules extracted from historical and future reservoir inflow by optimizing 
the parameters in Eqs. (7) and (8) with the inputs of historical and future 
streamflow, respectively. Both approaches produce static rules, derived 
only once during a specific period. The “future-based rules” approach is 
conditioned on perfect future foresight and therefore prescribes opera
tions leading to optimal power generation in the future; clearly this 
represents an upper (unrealistic) bound on performance of the RBF- 
based rules. As a compromise, we derive “adaptive operating rules” 
based on streamflow data proximal to when decisions are made. For 
example, reservoir operating rules extracted from 30-years of stream
flow (e.g. 2020–2049) are used for the period 2050–2054. The periods 
2020–2049 and 2050–2054 in the example are denoted as the extraction 
and application periods, respectively. We recalibrate and validate the 
rules every 5 ~ 10 years and find that updating the rules at 5-year in
crements performs best and thus this strategy is used for all adaptive 
rules in this study. The comparison of historical-based, adaptive, and 
future-based rules in monthly power generation can be found in Ap
pendix S1 (Fig. S1). 

3.3.2. BMA-based reservoir operating rules 
Bayesian model averaging (BMA) is a statistical approach to infer a 

probabilistic scheme by combining multiple possible competing models 
and has been implemented in reservoir operating rules derivations 
(Zhang et al., 2015). Suppose there exists K adaptive reservoir operating 
rules (R1, R2, …, RK) from which K different reservoir release strategies 
are available at each time period. By using the improved CEEMDAN 
method, streamflow data can be decomposed into many IMFs with 
varying frequency and classified into several categories (e.g. high, me
dium and low frequency, and trend). In this study, K is equal to five: R1 
refers to frequency-complete rules derived by streamflow data directly, 
and R2, R3, R4, and R5 refer to frequency-removed rules derived by 
excluding high, medium and low frequency, and trend information, 
respectively. More specifically for R2, R3, R4, and R5, the associated 
category of IMFs (e.g. high frequency for R2) is removed from the 
original streamflow data and the remaining IMFs are summed together 
to form a streamflow series without the corresponding (e.g. high fre
quency) information. As described in Eqs. (7) and (8), the rules R1, R2, 
R3, R4, and R5 share the same structure (and same number of parame
ters). However, their parameters are optimized based on different types 
of streamflow time series (e.g., complete streamflow and streamflow 
without high frequency information). In this study, we optimize the 
parameters of rules R1, R2, R3, R4, and R5 individually, by using the 
Dynamically Dimensioned Search (DDS) evolutionary algorithm (Tolson 
and Shoemaker, 2007). 

According to the law of total probability, the reservoir release 
probability density function is expressed as follows: 

p(Qout|Qin) =
∑K

k=1
p(Qout|Rk,Qin )p(Rk|Qin ) (9)  

where p(Qout |Rk,Qin ) is the release probability density function based on 
rule Rk and streamflow series Qin. Given the adaptive rule Rk, Qout is the 
deterministic function of Qin (i.e., Qout = fRk (Qin)), thus the p(Qout |Rk,

Qin ) equals one for Qout = fRk (Qin), otherwise it equals zero. p(Rk|Qin ) is 
the posterior probability of rule Rk given the streamflow series Qin, 
which describes the probability that Rk is suitable to the reservoir 
operation with Qin. The p(Rk|Qin ) is an unknown variable and must be 
estimated from the performance of adaptive rule Rk (the better Rk per
forms with Qin, the higher the p(Rk|Qin )). The sum of the posterior model 
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probabilities is equal to one (i.e., 
∑K

k=1p(Rk|Qin ) = 1), and the 
p(Rk|Qin ) can be regarded as a weight wk. The reservoir release is then 
the posterior mean of the BMA model values: 

Q*
out = E[Qout|Qin ] =

∑K

k=1
fRk (Qin)wk (10)  

where fRk (Qin) refers to the water release obtained from rule Rk. 
By comparing the reservoir operation performance of rules Rk (k =

2,3,4,5) with R1 during the application period, the impact of the fre
quency (high, medium and low) and trend information can be evaluated. 
The value of the frequency information Fk on reservoir operations during 
the period T1 ~ T2 (ΔT = T2 −T1) in this study is defined as: 

Value(Fk,ΔT) =
∑T2

t=T1

[
P
(
Qin

t ,R1
)
− P

(
Qin

t ,Rk
) ]

k = 2, 3, ...,K (11)  

where P() is the function to calculate power generation. Given a reser
voir state, both the average power head HP

t and reservoir release QP
t in 

Eq. (1) can be calculated from reservoir inflow Qin
t and rules Rk to get the 

power generation P
(
Qin

t ,Rk
)
. 

In most cases, frequency-complete rules R1 can capture the main 
features of frequency information in future streamflow and the 
Value(Fk,ΔT) is generally positive. However, if the kth frequency signal 
is strong and changes significantly from the extraction to the application 
periods, then the rules derived from the extraction period with that kth 

frequency signal will perform poorly in the application period. For the 
rules extraction with that signal removed, it will do better in the 
application period and the Value(Fk,ΔT)can be negative. In this case, the 
R1 will be misleading and the weight applied to the rules extracted 
without the categorical frequency information should be increased. 

To detect and mitigate the non-stationarity associated with different 
frequency information, the BMA model is extended to a dynamic model 
by updating the weight wk based on the value of frequency information 
through Eqs. (12) and (13). Because Rk is obtained from the streamflow 
during the extraction period Qk

in, the more similar streamflow during 
application period Qin is to Qk

in, the higher the wk. Thus wk here also 
reflects the degree of non-stationarity in streamflow between Qk

in and 
Qin. 

z(j)k =
Rank(Value(Fk, j − 1)|Values ) − 1

0.5(K − 1)⋅K
+w(j−1)

k k = 1, 2,…,K (12)  

w(j)
k =

z(j)k
∑K

k=1z(j)k

(13)  

where w(j)
k is the weight applied to releases at stage j, Rank(Value(Fk, j −

1)|Values ) is the descending rank of the frequency information value 
Value(Fk, j − 1) among all ensemble members (K members in total). 
More specifically, the Rank(Value(Fk, j − 1)|Values ) will be 1 (K) for the 
greatest (least) information value as defined in Eq. (11). 

In this study, the weight is updated annually according to the per
formance of BMA-based rules. Considering that the weights are updated 
much more frequently than the parameters of reservoir operating rules, 
BMA model parameters and RBF-based rule parameters are not opti
mized simultaneously. Initially, the weight of R1 is equal to one, (i.e., 
frequency-complete rules are fully trusted, w(0)

1 is set to one while 
w(0)

k (k = 2, 3, ...,K) is set to zero). Then w(j)
k is updated according to 

Value(Fk,X); a lower Value(Fk,X) will lead to a higher weight on the 
rules extracted without the frequency information Fk. In this way, the 
p(Rk|Qin ) in Eq. (9) can be estimated from the performance of reservoir 
operating rules Rk (k = 1,2,3,4,5). Because the frequency-complete rules 
R1 are effective in most cases, additional weight wa is added for each 
update of z(j)1 in the Eq. (12) as: 

z(j)1 =
Rank(Value(F1, j − 1)|Values ) − 1

0.5(K − 1)⋅K
+w(j−1)

1 +wa (14)  

where wa ranges from 0 to 1 and is determined from the validation of the 
BMA-based rules at stage j − 1 for maximum power generation. More 
specifically, increasing wa from 0 to 1 (e.g., 0, 0.1, 0.2,…,1) and vali
dating the performance of BMA-based rules at stage j − 1, the wa values 
that produce the greatest power generation are selected for the stage j 
(Fig. 5). 

Fig. 4. Schematic illustration of different types of reservoir operating rules.  
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4. Results and discussion 

4.1. Impacts of streamflow frequency information on adaptive reservoir 
operations 

To evaluate the impact of streamflow frequency information on 
adaptive reservoir operations, the frequency-removed rules are applied 
across 2020–2100 for each category and GCM, independently, and 
compared against frequency-complete rules (Fig. 6.) The power gener
ation output brought from all types of frequency information (which is 
calculated by subtracting the output of frequency-removed rules with 
the output of frequency-complete rules) is predominantly greater than 
zero, implying that including all types of frequency information has a 
beneficial impact on power generation on average (Fig. 6.). Addition
ally, the output of frequency-removed rules (Pwof) is occasionally greater 
than the output of frequency-complete rules (Pnorm). More specifically, 
Pwof > Pnorm occurs for 32%, 43%, 38%, and 48% (25%, 36%, 35%, and 
44%) of operational periods (years) for high, medium, low frequency 
and trend -removed rules, respectively, under scenario RCP4.5 (RCP8.5) 
(see bottom Fig. 6). Thus trend information leads to the highest per
centage of periods with Pwof > Pnorm, which indicates that the trend 
information is more likely to be non-stationary than other frequency 
categories. 

The average of frequency information value (Value(Fk,ΔT) in Eq. 
(11), the difference between power generation of frequency-removed 
rules and frequency complete rules) across all GCMs (lines in Fig. 7) 
and the rank of frequency information value (bars in Fig. 7) indicate that 
high frequency information typically contributes the most to power 
output whereas the trend provides the least (i.e., the sub-seasonal 
variability (short-term variability) in streamflow has greater impact 
than the trend (long-term variability) on reservoir operation, which is 
consistent with the findings from Herman and Giuliani (2018)); the 
medium and low frequency information, although contributing less than 
the high frequency, are still appreciable. More specifically, high- 
frequency-removed rules produce approximately 120 MW, 200 MW, 
and 180 MW power output more than frequency-complete rules during 
the periods 2011–2040, 2041–2070, and 2071–2100, respectively for 
RCP4.5, (140 MW, 240 MW, and 290 MW, respectively, for RCP8.5). 
Except for 2071–2100 under scenario RCP8.5, low frequency informa
tion contributes more to power output than the medium frequency in
formation on average. For example, medium frequency contributes 157 

MW and 124 MW (surpassing 130 MW and 100 MW from low frequency 
information) annually during 2020 ~ 2100 for GCM3 and GCM15, 
respectively, under scenario RCP4.5. The reason is that the medium 
frequency information has been partially included in the RBF-based 
rules (in Eqs. (7) and (8)) in which the input variable τt (the position 
of the current period t within a water year) shares the same (annual) 
cycle as the medium frequency. 

The lack of frequency information clearly affects how the adaptive 
reservoir operating rules are constructed. When a certain frequency is 
removed from the streamflow series during rules extraction, the derived 
reservoir operating rules will fail to appropriately adapt to future 
streamflow when this feature (frequency) is influential for reservoir 
decision-making. However, if the frequency-removed rules perform 
better than the frequency-complete rules (Pwof > Pnorm) in the applica
tion period (Table 2), it can be inferred that non-stationarity exists 
(streamflow in the rules extraction period is not consistent with that in 
the rules application period) for the removed frequency. It is worth 
noting that not all situations with Pwof > Pnorm in Table 2 indicate 
streamflow non-stationarity; instead, Pwof > Pnorm during some times 
could be caused by noise, especially when Pwof and Pnorm are close to 
each other (e.g., the median frequency for GCM21 under scenario 
RCP4.5 during 2071–2100, Table 2). But the more frequently Pwof >

Pnorm occurs, the more likely streamflow non-stationarity exists. It can 
be inferred that streamflow non-stationarity is significant when 
considering the trend category, specifically for 12 GCMs during 2011 ~ 
2040 under scenario RCP4.5 (Table 2.) Removing streamflow informa
tion at appropriate frequencies (e.g. when Pwof > Pnorm) could possibly 
improve adaptive reservoir operations. 

4.2. BMA-based adaptive reservoir operating rules 

4.2.1. Non-stationarity and adaptive reservoir operating rules 
Given the apparent non-stationarity in streamflow, specified by 

period, GCM, and frequency category (Table 2), future reservoir oper
ations will likely benefit if the non-stationarity is detected and consid
ered in the rules extraction stage. Detection, however, is challenging, 
given that future streamflow is unknown and the non-stationarity 
characteristics may change throughout the reservoir operation period. 
Thus, it is assumed that the probability of non-stationarity occurrence in 
the future is related with that in the past. More specifically, if streamflow 
non-stationarity at one frequency is detected in the past, it can be 

Fig. 5. Procedure of the BMA-based reservoir operating rules derivation.  
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Fig. 6. Difference in power generation output between frequency-removed rules and frequency-complete rules for 21 GCMs in scenario (a) RCP4.5 and (b) RCP8.5. 
“Pwof” and “Pnorm” refer to the power output of frequency-removed rules and frequency-complete rules, respectively. 
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Fig. 7. Rank and power output of high, medium and low frequency, and trend information for 21 GCMs in scenario (a) RCP4.5 and (b) RCP8.5. Line and bar charts 
represent the rank and output, respectively, the darker bar means more important frequency and the length of the bars means the number of GCMs in which a certain 
frequency information ranks the first, second, third or fourth place in adaptive reservoir operation. 
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assumed to exist similarly in the future. 
After detection of possible streamflow non-stationarity (Eq. (11)), 

water release decision weights for the different rules are updated (Eqs. 
(12) and (13); (Fig. 8)). The weight of frequency-complete rules fluc
tuates with the time, but it is always greater than the weight of 
frequency-removed rules. Also, trend-removed rules receive the largest 
weight for most GCMs in comparison to other frequency-removed rules, 
indicating that streamflow non-stationarity is likely most significant for 
the trend category (consistent with the findings in Fig. 6 and Table 2). By 
updating the weight w(j)

k and merging the water releases obtained from 
different types of rules through Eq. (10), the BMA-based rules incorpo
rate non-stationarity from different frequency categories into reservoir 
decision making in a dynamic way. 

The cumulative mean power output from the BMA-based rules is 
compared with normal rules (frequency-complete rules) (Fig. 8.) Except 
for GCM3, 12, 16, and 19 under scenario RCP4.5 and GCM3, 9, 12, 15, 
18, and 21 under scenario RCP8.5, the BMA-based outcomes are equal to 
or superior to outcomes utilizing normal rules. More specifically, the 
increase in power output through 2100 from the BMA-based rules is 
greater than 10,000 MW⋅month (7.3 GW⋅h) for GCM1, 2, 8, 10, 11, 13, 
and 20 under RCP4.5, and greater than 20,000 MW⋅month (14.6 GW⋅h) 
for GCM8 and GCM10 under RCP8.5. This increase in power generation 
cannot necessarily be generalized, as different frequency-removed 

categories contribute uniquely by GCM, which can be inferred from the 
weights of different types of reservoir operating rules in Fig. 8. For 
example, the increase in cumulative output during 2020 ~ 2030 for 
GCM2 under RCP4.5 is mainly supplied by the high frequency-removed 
and low frequency-removed rules, whereas increases during 2040 ~ 
2050 for GCM8 under RCP4.5 is attributable to the trend-removed and 
medium frequency-removed rules, respectively (Fig. 8(a).) In some cases 
(e.g., GCM 15 under RCP8.5), BMA-based rules produce less overall 
power than normal rules (Fig. 8(b)), implying that non-stationarity is 
minimally evident throughout the period (the weight of normal adaptive 
rules has its highest value and does not change during 2025 ~ 2100), 
and BMA-based rules could be inferior to normal rule. 

The performance of BMA-based rules is further investigated by 
analyzing changes in monthly mean output (Fig. 9.) Generally, power 
generation based on the high frequency-removed rules illustrates the 
largest (negative) difference with normal adaptive rules; trend-removed 
rules illustrate the least (closest to zero.) Since normal adaptive rules 
have their parameters updated every 5 years in this case study, the 
streamflow trend becomes mostly insignificant and thus has no 
measurable impact on power generation. Although the BMA-based rules 
predominantly perform better than or similar to normal rules in cumu
lative or mean output, the improvement is limited (and BMA-based rules 
may be even inferior to normal rules in some cases). The reason is that 

Table 2 
Monthly mean power output (MW) based on Pnorm − Pwof; in parentheses, percent of years Pwof > Pnorm for different periods under RCP4.5 and RCP 8.5.  

Scenarios Time periods GCMs High frequency Medium frequency Low frequency Trend 

RCP4.5 2011–2040 GCM1 −91(53%) −84(53%) −102(63%) −47(57%) 
GCM2 −27(50%) 47(33%) −46(63%) 14(40%) 
GCM3 340(13%) 9(43%) 68(47%) −19(57%) 
GCM4 263(20%) 25(37%) 140(20%) −15(47%) 
GCM7 101(40%) 2(50%) 20(37%) −8(30%) 
GCM9 122(40%) 19(43%) 61(37%) −6(53%) 
GCM10 −11(53%) −29(60%) −42(47%) 15(43%) 
GCM11 402(10%) 47(57%) 121(33%) −10(63%) 
GCM13 −40(53%) −29(60%) −46(57%) −36(60%) 
GCM15 101(33%) 47(37%) 70(30%) −22(40%) 
GCM16 84(50%) 34(60%) 23(53%) −11(57%) 
GCM19 148(33%) 22(47%) 8(40%) −24(50%) 
GCM20 31(43%) 14(50%) 32(43%) −10(53%) 
GCM21 60(43%) −2(53%) 42(43%) −4(50%) 

2041–2070 GCM8 150(30%) 32(47%) 47(47%) −17(60%) 
GCM9 42(53%) 6(50%) −10(47%) −5(50%) 
GCM11 221(37%) 53(47%) 102(43%) −2(57%) 
GCM12 20(53%) 72(37%) −18(43%) 58(33%) 
GCM17 85(37%) 26(50%) −28(53%) 18(47%) 
GCM20 74(50%) −53(70%) −11(60%) −69(70%) 

2071–2100 GCM2 68(40%) −10(57%) 48(43%) 4(60%) 
GCM4 168(37%) 27(40%) 58(33%) −2(50%) 
GCM6 182(27%) 30(50%) 38(40%) −25(57%) 
GCM8 97(53%) −7(53%) 123(43%) 44(50%) 
GCM11 189(40%) 20(57%) 93(40%) −10(57%) 
GCM14 29(43%) −36(50%) −10(40%) −15(50%) 
GCM20 11(47%) −36(57%) 57(53%) −27(53%) 
GCM21 158(30%) −5(43%) 96(40%) 13(47%)  

RCP8.5 2011–2040 GCM1 −99(57%) −6(47%) −4(40%) −66(53%) 
GCM4 257(20%) 79(37%) 78(37%) −25(33%) 
GCM5 62(37%) 28(43%) 24(50%) −40(50%) 
GCM8 −70(53%) −8(53%) 60(40%) 20(50%) 
GCM10 195(37%) −39(53%) −4(37%) −49(50%) 
GCM13 114(33%) 70(40%) 82(37%) −40(63%) 
GCM14 150(47%) 36(57%) 75(40%) −15(47%) 

2041–2070 GCM7 26(40%) 9(60%) −13(47%) −38(60%) 
GCM8 148(33%) −21(53%) 20(47%) –32(47%) 
GCM10 251(27%) 84(37%) 201(27%) −36(60%) 
GCM16 141(40%) −10(47%) 43(37%) −8(53%) 
GCM17 53(47%) 76(50%) –32(57%) 91(43%) 
GCM20 208(30%) 51(57%) 139(40%) −10(53%) 

2071–2100 GCM2 83(33%) 76(50%) −7(63%) −35(63%) 
GCM4 144(20%) 107(30%) 65(30%) −1(43%) 
GCM8 74(43%) 44(43%) 2(40%) −20(47%) 
GCM12 236(23%) 61(40%) 40(50%) −16(53%)  
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normal adaptive rules have partially considered possible non- 
stationarity (especially based on trend information) by recalibrating 
the parameters every 5 years. 

4.2.2. Performance of BMA-based rules in firm output 
In addition to considering maximum power generation, the BMA- 

based rules are also evaluated for their ability to improve firm power 
generation for various reliability levels (Fig. 10.) Reliability is condi
tioned on each GCM time-series individually; a 95% reliability implies 
that a power output threshold is met or exceeded in 95% of the months 
during the given period for that GCM. In general, BMA-based rules 

improve firm output across most GCMs and reliability levels, with the 
largest increase in firm output (for reliability of 95%) during 2011 ~ 
2100 (greater than350 MW [105%] per month for RCP4.5 and 450 MW 
[180%] per month for RCP8.5; Fig. 10). Considering RCP8.5 only, the 
BMA-based model is superior in nearly all cases. Thus the BMA-based 
rules obtain an advantage over normal adaptive rules mainly in terms 
of firm output (instead of total or mean output). 

As shown in Fig. 9(b), BMA-based rules could perform worse than 
normal rules in terms of mean output during 2011 ~ 2020 for some 
GCMs (such as GCM18 in scenario RCP8.5). The comparison between 
the BMA-based and normal rules in density distribution and boxplot of 

Fig. 8. Weight of different types of reservoir operating rules and cumulative output of BMA-based rules compared with normal adaptive rules for 21 GCMs in 
scenario (a) RCP4.5 and (b) RCP8.5. “HFr”, “MFr”, “LFr”, “TRr”, and “Normal” denote the weight of high-frequency-removed, medium-frequency-removed, low- 
frequency-removed, trend-removed, and frequency-complete rules, respectively. 
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monthly output during 2011 ~ 2020 under GCM18 in scenario RCP8.5 
(Fig. 11(b) and (d)) (BMA-based model results in lower mean output 
than the model conditioned on normal rules) illustrates that BMA-based 
rules tend to increase low-level (<3000 MW) outputs and the increment 
mainly occurs in June, July, and August. Comparing the case when the 
BMA-based model results in higher mean output than the model using 
normal rules (Fig. 11(a) and (c)) also illustrates the advantage of BMA- 
based rules in obtaining greater power generation when the output is 
lower than 2000 MW. This occurs because the BMA-based rules can 
avoid extremely high or low releases (in mistake) by averaging releases 
from normal (frequency-complete) and frequency-removed rules. Thus 
the BMA-based rules can avoid extremely low output and obtain more 
consistent outputs than normal rules (see the density distribution of 
monthly output in Fig. 11(a)). 

Averaging across all GCMs, the BMA-based rules produce more firm 
power output than normal adaptive reservoir operating rules for all 
levels of reliability (from 80% to 100%) (Table 3.) For example, the 
percentage increase in firm power output of BMA-based rules during 
2011 ~ 2100 ranges from 3.9% to 69.1% and 5.4% to 129.4% for 
RCP4.5 and RCP8.5, respectively. Additionally, the percentage increase 
in firm output increases as the reliability increases, to over 35% and 50% 
during all time periods for RCP4.5 and RCP8.5, respectively, when the 
reliability is close to 100%. This advantage in firm output is particularly 
significant when considering demand for high power generation reli
ability, which can be crucial in the manufacturing sector (Allcott et al., 
2016), and may lead to economic benefits now and into the future. 

5. Conclusions 

Adaptive reservoir operating rules generally outperform static or 
historical-based rules in water resources management under non- 

stationary conditions. However, conventional adaptive rules do not 
consider potential non-stationarity at multiple time scales, which is 
rarely investigated. This study illustrates a strategy to incorporate 
streamflow non-stationarity information for different time scales 
simultaneously into adaptive reservoir operating rules and potential 
value over conventional (normal) adaptive rules. 

To detect the streamflow non-stationarity at different time scales, 
streamflow time series are decomposed into different frequency cate
gories and their impacts on reservoir operation is evaluated. Subse
quently, the non-stationarity information of different frequency 
categories is incorporated into adaptive reservoir operating rules using a 
BMA method. The performance of the Bayesian adaptive reservoir 
operation framework is evaluated for the GERD reservoir operation in 
Ethiopia using monthly streamflow simulated from 21 GCMs under 
scenarios RCP4.5 and RCP8.5. High, medium, low, and trend informa
tion extracted from the streamflow time series is shown to affect GERD 
reservoir operations diversely. Recognizing streamflow non-stationarity 
at different frequencies and removing it from the original streamflow 
time series can improve adaptive reservoir operations. 

Overall, high frequency (sub-seasonal) information has the greatest 
impact on power generation, while the most significant non-stationarity 
in streamflow is associated with the trend information for adaptive 
GERD reservoir operation. Additionally, the Bayesian adaptive frame
work can recognize streamflow non-stationarity at different frequency 
categories and mitigate its impacts on normal adaptive reservoir oper
ating rules. Thus, the Bayesian adaptive rules predominantly outperform 
normal adaptive rules considering power generation, especially in terms 
of firm power output. In general, firm output increases under the 
Bayesian framework as the power generation reliability increases; this 
implies that the Bayesian adaptive rules are preferable when high power 
generation reliability is required. Although the Bayesian adaptive rules 
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Fig. 9. Monthly mean output increased by using information-removed and BMA-based reservoir operating rules for 21 GCMs in scenario (a) RCP4.5 and (b) RCP8.5. 
“HFr”, “MFr”, “LFr”, and “TRr” denote the reservoir operating rules extracted with high-frequency removed, medium-frequency removed, low-frequency removed, 
and trend removed streamflow, respectively; “BMA” denotes the BMA-based adaptive reservoir operating rules. 
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can outperform conventional adaptive rules in terms of total power 
generation and firm power output simultaneously for some GCMs (such 
as GCM10 under RCP4.5 and GCM8 under RCP8.5), overall the Bayesian 
adaptive rules do not consistently provide superior performance. 

Given that streamflow non-stationarity may be attributed to many 
factors (e.g. emission of greenhouse gases, changes in catchment char
acteristics) it is challenging to accurately identify all non-stationary 
components and incorporate them into water resources management. 
The findings in this paper not only illustrate the effectiveness of the 
proposed Bayesian adaptive framework but also reveal the possibility of 

tackling adaptive water resources operation problems in the future from 
the perspective of time and frequency domains. In that way, the non- 
stationary features in streamflow at multiple time scales can be recog
nized with the support of time–frequency analysis and incorporated into 
water resources decision making. Future research efforts could focus on 
expanding and improving non-stationarity source detection and 
considering broader envelops of uncertainty (e.g., future water demand) 
in reservoir operation. 
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Fig. 10. Firm output increment by using BMA-based rules over normal rules for 21 GCMs in scenario (a) RCP4.5 and (b) RCP8.5. Reliability is conditioned on each 
GCM time-series individually; a 95% reliability implies that a power output threshold is met or exceeded in 95% of the months during the given period for that GCM. 
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